《几何图形初步》拓展提高测试卷[1]
四川自贡市七年级数学上册第四单元《几何图形初步》-解答题专项提高卷(含答案解析)
一、解答题1.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 8.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.9.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数. 解析:(1)50°;(2)150°【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案.【详解】(1)设这个角为α,根据题意,得 18039010()a α︒-=︒-+︒.解得:50α=︒.答:这个角的度数为50︒.(2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒.∴ 150αβ∠+∠≡︒.【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.10.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.解析:(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE=90°-(80°-∠B OD)=10°+∠B OD即∠COE-∠BOD=10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键.11.如图,A、B、C三点在一条直线上,根据图形填空:(1)AC=++;(2)AB=AC﹣;(3)DB+BC=﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.解析:(1)AD,DB,BC;(2)BC;(3)AC;(4)6cm.【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD和CD的长度相等并且都等于AC的一半,DB的长度为CD长度的一半即为AC长度的四分之一.AB的长度等于AD加上DB,从而可求出AB的长度.【详解】(1)AC=AD+DB+BC故答案为:AD,DB,BC;(2)AB=AC﹣BC;故答案为:BC;(3)DB+BC=DC=AC﹣AD故答案为:AC;(4)∵D是AC的中点,AC=8时,AD=DC=4B是DC的中点,∴DB=2∴AB=AD+DB=4+2,=6(cm).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.12.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.13.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.14.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段OA′,OB′,OC′,使它们分别与线段a 相等; (2)在射线OD 上作线段OD′,使OD′与线段b 相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 16.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.解析:∠BOC =76°,∠EOC =19°.【分析】由∠BOC =2∠AOC ,则∠AOB=∠BOC+∠AOC=3∠AOC ,即∠BOC=23∠AOB ,然后求解即可;再根据OE 是∠AOB 的平分线求得∠BOE ,最后根据角的和差即可求得∠EOC .【详解】解:∵∠BOC =2∠AOC ,∠AOB =114°, ∴∠BOC =23∠AOB =23×114°=76°, ∵OE 是∠AOB 的平分线,∠AOB =114°, ∴∠BOE =12∠AOB =12×114°=57°. ∴∠EOC =∠BOC -∠BOE =19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.17.如图,∠AOC :∠COD :∠BOD=2:3:4,且A ,O ,B 三点在一条直线上,OE ,OF 分别平分∠AOC 和∠BOD ,OG 平分∠EOF ,求∠GOF 的度数。
人教七年级上册数学第四章几何图形初步 提优测试卷(含答案)
七年级上册数学第四章提优测试卷时间:100分钟满分:120分一、选择题(30分)1.如图,一个斜插吸管的盒装饮料从正看的图形是()A. B. C. D.2.已知∠A的余角为32°,∠A的补角为()A.58°B.68°C.122°D.148°3.已知点C是线段AB上一点,不能确定点C是线段AB中点条件是()A.AC=BC A.AC=21AB C.AB=2AC D. AC=BC=AB4.把15°30′化成度的形式,则15°30′=()A.15.5°B.16.5°C.15°D.15.155.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“之”相对的面上的汉字是()A. 力B.镇C.赵D魅6.经过任意三点中的两点共可以出的直线条数是()A.一条或三条B.三条C.两条D.一条7.如图所示,已知线段AB=60m,点M为AB的中点,点N为MB的中点,则线段MN的长为()A. 30 cmB. 15 cmC. 10 cmD. 5 cm第7题图第8题图8.如图所示。
∠AB是平角OC是射线,OD平分∠AOC,OE平分∠BOC,若∠COE=20°,∠DOC 等于()A.40°B.50°C.60°D.70°9.如图AB=CD则AC与BD的大小关系是()A. AC>BDB. AC<BDC.AC= BDD.不能确定10.如图是由小立方块构成的立体图形从三个方向到的图形,则构成这个立体图形的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题(共5小题,每小题3分,计15分)11.桌上放着一个圆柱和长方体,则甲、乙、丙3幅图分别是从哪一面看到的图形?12.如图,直线AB,CD相交于点O,∠1=50°则∠2= .13.如图,∠ABC=90°,∠1=18°,∠2=∠4=72°,图中互为余角的有.第13题第14题14.如图,已知M,N分别是AC、CB的中点,MN=6cm,则AB=cm.15.如图,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
七年级数学上册第四单元《几何图形初步》-解答题专项测试卷(含答案解析)(1)
一、解答题1.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.2.直线l上有A,B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=__________cm,OB=___________cm;(2)若C点是线段AO上的一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发向右运动,点P的速度为2cm/s,点Q的速度为1cm s⁄,设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP−OQ=8;②当点P经过点O时,动点M从点O出发,以3cm s⁄的速度向右运动.当点M追上点Q后立即返回.以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为___________cm.解析:(1)16,8;(2)83;(3)①t=165或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB , ∴20B+OB=24, ∴OB=8,0A=16, 故答案分别为16,8. (2)设CO 的长为x cm .由题意,得x +(x +8)=24−8−x . 解得x =83. 所以CO 的长为83cm .(3)①当点P 在点O 左边时,2(16−2t)−(8+t)=8,t=165,当点P 在点O 右边时,2(2t−16)−(8+t)=8,t=16, ∴t=165 或16s 时,2OP−OQ=8.②设点M 运动的时间为ts,由题意:t(2−1)=16,t=16, ∴点M 运动的路程为16×3=48cm. 故答案为48cm. 【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程. 3.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm 【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
(必考题)人教版初中七年级数学上册第四章《几何图形初步》模拟测试题(答案解析)(1)
一、选择题1.(0分)[ID :68657]如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.(0分)[ID :68647]下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形3.(0分)[ID :68643]点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( ) A .3B .2C .3 或 5D .2 或 64.(0分)[ID :68640]α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对5.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°6.(0分)[ID :68627]一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒7.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8.(0分)[ID :68622]如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒9.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 10.(0分)[ID :68618]“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线11.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .1812.(0分)[ID :68603]已知α∠和β∠互补,且αβ∠>∠,则有下列式子: ①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 13.(0分)[ID :68599]如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150°14.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A.字母A B.字母F C.字母E D.字母B15.(0分)[ID:68565]用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球二、填空题16.(0分)[ID:68713]请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.17.(0分)[ID:68698]如图,共有_________条直线,_________条射线,_________条线段.18.(0分)[ID:68726]从起始站A市坐火车到终点站G市中途共停靠5次,各站点到A市距离如下:站点B C D E F G到A市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.(0分)[ID:68708]如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.MN ,线20.(0分)[ID:68695]已知,如图,点M,N分别是线段AB,BC的中点,且9段1143BD AB CD ==,则线段BD 的长为________.21.(0分)[ID :68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.22.(0分)[ID :68755]如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.23.(0分)[ID :68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π) 24.(0分)[ID :68748]一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14)25.(0分)[ID :68744]如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.26.(0分)[ID :68739]如图,上午6:30时,时针和分针所夹锐角的度数是_____.27.(0分)[ID :68728]如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题28.(0分)[ID :68784]如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由; (2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD . 29.(0分)[ID :68811]如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.30.(0分)[ID :68802]小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.C5.A6.D7.B8.A9.C10.A11.B12.B13.C14.D15.A二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两17.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条18.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种19.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出20.3【分析】根据等式的性质可得AB与BD的关系CD与BD的关系根据线段中点的性质可得AM与BM的关系DN与NC的关系根据线段的和差可得BD的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD21.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;22.90【分析】根据折叠的性质及平角的定义求出根据BD为∠A′BE的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD为∠A′BE的平分线∴∴故答案为:90【点睛】此题考查折叠的性质23.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷3125.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°26.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键三、解答题28.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.5.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD=40°,∠BOC=50°,所以∠COD=90°,又因为OM,ON分别平分∠BOC和∠AOD,所以∠N OD+∠M OC=45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.6.D解析:D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D . 【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.7.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .8.A解析:A 【分析】根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果. 【详解】∵∠AOB=90°,且∠AOC=40°, ∴∠COB=∠AOB+∠AOC=90°+40°=130°, ∵OM 平分∠BOC , ∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°, ∵ON 平分∠AOC , ∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°. ∴∠MON 的度数是45°. 故选:A . 【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.9.C解析:C 【分析】先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可. 【详解】 ∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.10.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.11.B解析:B【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,进而可得答案.【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m=21;则m+n=21+1=22.故选:B.【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.12.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 13.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.14.D解析:D【分析】根据与A 相邻的四个面上的数字确定即可.【详解】由图可知,A 相邻的四个面上的字母是B 、D 、E 、F ,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.15.A解析:A【解析】【分析】用平面截圆锥,得到的截面是圆、椭圆或者三角形等,不可能是四边形,用平面截球体,得到的截面始终是圆形;用平面截长方体,得到的截面是三角形,长方形等;接下来,用平面截圆柱,对得到的截面进行分析,即可得到答案.【详解】∵圆柱体的主视图只有矩形或圆,∴圆柱体的主视图符合题意.故选:A.【点睛】此题考查截一个几何体,熟练掌握常见几何体的特征是解题的关键.二、填空题16.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.【详解】(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.17.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.18.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.19.450°【分析】(1)∠AOE =90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA 即和为90°而有的角相加等于∠BOD 即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE =90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA ,即和为90°,而有的角相加等于∠BOD ,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD ,∠EOC ,∠EOB ,∠EOA ,∠DOC ,∠DOB ,∠DOA ,∠COB ,∠COA ,∠BOA 共10个;它们的度数之和是(∠EOD +∠DOA)+(∠EOC +∠COA)+(∠ EOB +∠BOA)+[(∠DOC +∠COB)+∠DOB]+∠EOA =90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.20.3【分析】根据等式的性质可得AB 与BD 的关系CD 与BD 的关系根据线段中点的性质可得AM 与BM 的关系DN 与NC 的关系根据线段的和差可得BD 的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD解析:3【分析】根据等式的性质,可得AB 与BD 的关系,CD 与BD 的关系,根据线段中点的性质,可得AM 与BM 的关系,DN 与NC 的关系,根据线段的和差,可得BD 的长,根据线段的和差,可得答案.【详解】 ∵1143BD AB CD ==,∴AB =4BD ,CD =3BD . 点M 、N 分别是线段AB 、BC 的中点,AM =BM =2BD ,DB =BN =NC .由线段的和差,得MN =MB +BN =3BD =9.所以BD =3.故答案为3.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.21.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱; 解析:正方体 四棱锥 三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.22.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A ′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.23.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 24.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m 后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m 后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m 2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.25.【分析】先求出∠CAB 及∠ABC 的度数再根据三角形内角和是180°即可进行解答【详解】∵C 岛在A 岛的北偏东60°方向在B 岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB 及∠ABC 的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB ﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB 和∠ABC 的度数是解题关键.26.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题28.(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD+∠BOC=360°﹣∠AOB﹣∠DOC=360°﹣90°﹣90°=180°,所以∠AOD和∠BOC互补.(2)因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°﹣∠DOC﹣∠DOE=90°﹣∠DOE,∠BOF=180°﹣∠AOB﹣∠AOE=90°﹣∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,则∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180°,所以90°+7x+3x=180°,解方程得:x=9°,所以∠AOD=180°﹣∠BOC=180°﹣14x=54°.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90°+7x+4x=180°,解得:x =90 () 11,所以∠AOD=180°﹣∠BOC=180°﹣14x720 ()11 .综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.29.(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.30.(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.。
(必考题)人教版初中七年级数学上册第四章《几何图形初步》模拟测试卷(含答案解析)(1)
一、选择题1.(0分)[ID :68655]如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.(0分)[ID :68646]有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑3.(0分)[ID :68639]如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较4.(0分)[ID :68627]一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒5.(0分)[ID :68626]如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定6.(0分)[ID :68623]下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D .7.(0分)[ID :68621]已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5 B .9 C .10 D .168.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .189.(0分)[ID :68603]已知α∠和β∠互补,且αβ∠>∠,则有下列式子: ①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个10.(0分)[ID :68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .411.(0分)[ID :68594]如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .412.(0分)[ID :68593]如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 13.(0分)[ID :68592]若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B14.(0分)[ID :68569]线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( ) A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm15.(0分)[ID :68562]下列图形中,是圆锥的表面展开图的是( )A .B .C .D .二、填空题16.(0分)[ID :68715]长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π).17.(0分)[ID :68714]硬币在桌面上快速地转动时,看上去象球,这说明了_________________.18.(0分)[ID :68696]下午3:40时,时钟上分针与时针的夹角是_________度.19.(0分)[ID :68726]从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.20.(0分)[ID :68719]某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.21.(0分)[ID :68706]如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.22.(0分)[ID :68678]如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.23.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
人教版 七年级数学上册 第4章 几何图形初步 培优训练(含答案)
人教版七年级数学第4章几何图形初步培优训练一、选择题1. 如图所示的几何体属于球的是()2. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm3. 图中的几何体的面数是()A.5B.6C.7D.84. 如图所示的几何体是由一些小正方体组成的,那么从左面看这个几何体得到的图形是()5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. [2019·北京一模]下列几何体中,是圆锥的为()7. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB8. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题11. 如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.13. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.14. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.15. 图中可用字母表示出的射线有条.16. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、作图题17. 如图①②,画出绕虚线旋转一周得到的立体图形.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题19. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?20. 如图,下列各几何体的表面中包含哪些平面图形?21. 计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.22. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.23. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步培优训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】A5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】D7. 【答案】B8. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.13. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同14. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.16. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、作图题17. 【答案】解:如图所示:18. 【答案】解:如图所示.四、解答题19. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.22. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.23. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。
七年级数学下册第四章《几何图形初步》综合测试卷-人教版(含答案)
七年级数学下册第四章《几何图形初步》综合测试卷-人教版(含答案)[时间:45分钟分值:100分]一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题意)1.下列几何体的形状属于球体的是()2.下列四个角中,最大的角为()3.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.∠AOC也可以用∠O来表示D.图中共有三个角,分别是∠AOB,∠AOC,∠BOC4.如图,射线OA表示的方向是()A.东偏南20°B.北偏东20°C.北偏东70°D.东偏北60°5.如图所示的长方形沿图中虚线旋转一周,得到的几何体是()6.如图是一个几何体的展开图,则这个几何体是()7.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做的理由是()A.两点之间,线段最短B.两点确定一条直线C.两条直线相交只有一个交点D.过一点可以作无数条直线8.如图,八点三十分时,时针与分针所成的角是()A.75°B.65°C.55°D.45°9.如图是一个正方体骰子的展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,那么在前面的点数为()A.2B.4C.5D.610.如图,一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖(A点)正好对着直尺的刻度约为5.6 cm,另一端(B点)正好对着直尺的刻度约为20.6 cm.则水笔的中点位置对着直尺的刻度约为()A.15 cmB.7.5 cmC.13.1 cmD.12.1 cm11.小明根据下列语句,分别画出了图ⓐⓑⓒⓓ,并将图形的标号填在了相应的“语句”后面的横线上,其中正确的是()①直线l经过A,B,C三点,并且点C在点A与点B之间:ⓒ;②点C在线段AB的反向延长线上:ⓑ;③点P是直线a外一点,过点P的直线b与直线a相交于点Q:ⓓ;④直线l,m,n相交于点D:ⓐ.A.①②③④B.①②④C.①③④D.②③12.如上图、,某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B,AC=CD=DB.现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所走的总路程最短,则加油站M的位置在()A.A,B之间B.C,D之间C.A,C之间D.B,D之间二、填空题(13~14题每小题3分,15题共有2个空,每空2分,共10分)13.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.14.一点将长为28 cm的线段分成5∶2的两段,则该点与原线段中点间的距离为cm.15.在同一个平面内,已知∠AOB=75°18',若OD平分∠AOB,则∠AOD=,若∠AOC=27°53',则∠BOC=.三、解答题(本大题共6个小题,共54分)16.(8分)如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求点O到点A、点B的距离之和最短,请你在公路m上确定仓库O的位置,同时说明你选择该点的理由.17.(8分)如图所示,平面上有三个点A,B,P和线段a,根据下列语句画图:(1)画过点A,B的直线;(2)过点A画射线AP;(3)在射线AP上依次截取AC=a,CD=2a.18.(9分)已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?19.(9分)如图,∠BAC和∠DAE都是70°30'的角.(1)已知∠DAC=27°30',求∠BAE的度数;(2)请写出图中另外一对相等的角;(3)若∠DAC的度数变大,则∠BAE与∠DAC的度数之和如何变化?请说明理由.20.(10分)如图,已知数轴上A,B两点对应的数分别为-2,4,P为数轴上一动点,对应的数为x.(1)若P为线段AB的中点,求点P对应的数.(2)数轴上是否存在一点P,使点P到点A,B的距离之和为10?若存在,求出x的值;若不存在,请说明理由.21.(10分)如图,点O在直线AB上,射线OC上的点C在直线AB上方,∠AOC=4∠BOC.(1)如图①,求∠AOC的度数;(2)如图②,点D在直线AB上方,∠AOD与∠BOC互余,OE平分∠COD,求∠BOE的度数;(3)在(2)的条件下,点F,G在直线AB下方,OG平分∠FOB,若∠FOD与∠BOG互补,求∠EOF的度数.参考答案1.B2.D3.C[解析] 由于以O为顶点的角有三个,因此∠AOC不能用∠O来表示.4.C[解析] 根据方位角的概念,射线OA表示的方向是北偏东70°.5.B6.C7.B8.A9.A[解析] 这是一个正方体的展开图,正方体共有六个面,其中“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,如果1点在上面,3点在左面,可知5点在后面,那么2点在前面.10.C[解析] 因为水笔的笔尖(A点)正好对着直尺的刻度约为5.6 cm,另一端(B点)正好对着直尺的刻度约为20.6 cm,所以水笔的长度为20.6-5.6=15(cm),水笔的一半长为15÷2=7.5(cm),所以水笔的中点位置对着直尺的刻度约为5.6+7.5=13.1(cm).11.B12.B[解析] (1)当M的位置在A,C之间时,如图①,A,B,C,D站的各一辆汽车到加油站所走的总路程为AC+MD+MB=4AC+2MC;(2)当M的位置在C,D之间时,如图②,A,B,C,D站的各一辆汽车到加油站所走的总路程为CD+AM+MB=4AC;(3)当M的位置在D,B之间时,如图③,A,B,C,D站的各一辆汽车到加油站所走的总路程为AM+CM+DB=4AC+2MD.综上,在C,D之间(含C,D点)建一个加油站M时,A,B,C,D站各一辆汽车到加油站所走的总路程最短.13.点动成线14.615.37°39'103°11'或47°25'[解析] 若OD平分∠AOB,则∠AOD=1∠AOB=37°39'.2若OC在∠AOB的外部,则∠BOC=∠AOB+∠AOC=75°18'+27°53'=102°71'=103°11';若OC在∠AOB的内部,则∠BOC=∠AOB-∠AOC=75°18'-27°53'=74°78'-27°53'=47°25'.16.解:如图,连接AB交直线m于点O,则点O即为所求的点.理由:两点的所有连线中,线段最短.17.解:(1)(2)(3)如图所示.18.解:(1)由21÷3=7知,此棱柱是七棱柱. (2)这个七棱柱有9个面,14个顶点.(3)这个棱柱的所有侧面的面积之和是7×4×20=560.19.解:(1)∠BAE=∠BAD+∠DAE=(∠BAC -∠DAC )+∠DAE=(70°30'-27°30')+70°30'=113°30'. (2)因为∠BAD=∠BAC -∠DAC ,∠CAE=∠DAE -∠DAC ,且∠BAC=∠DAE , 所以∠BAD=∠CAE.(3)∠BAE 与∠DAC 的度数之和不变.理由:因为∠BAE+∠DAC=∠BAC+∠CAE+∠DAC= ∠BAC+∠DAE=141°,所以∠BAE 与∠DAC 的度数之和不变. 20.解:(1)点P 对应的数为4+(-2)2=1.(2)存在.当点P 在线段AB 上时,P A+PB=6≠10.当点P 在点B 右侧时,有x -4+x+2=10,解得x=6. 当点P 在点A 左侧时,有-2-x+4-x=10,解得x=-4.综上所述,当点P 到点A ,B 的距离之和为10时,x 的值为6或-4.21.解:(1)设∠BOC=α,则∠AOC=4α.因为∠BOC+∠AOC=180°,所以α+4α=180°. 所以α=36°.所以∠AOC=144°.(2)因为∠AOD 与∠BOC 互余,所以∠AOD+∠BOC=90°.所以∠COD=180°-∠AOD - ∠BOC=90°.因为OE 平分∠COD ,所以∠COE=12∠COD=12×90°=45°.所以∠BOE=∠COE+∠BOC=81°.(3)①如图ⓐ.因为OG 平分∠FOB ,所以∠FOG=∠BOG.因为∠FOD 与∠BOG 互补, 所以∠FOD+∠BOG=180°.设∠BOG=x °,则∠BOF=2x °,∠BOD=∠COD+∠BOC=36°+90°=126°.因为∠FOD=∠BOD+ ∠BOF ,所以126+2x+x=180,解得x=18.所以∠EOF=∠BOE+∠BOF=117°.②如图ⓑ.因为OG 平分∠FOB ,所以∠FOG=∠BOG.因为∠FOD 与∠BOG 互补,所以∠FOD+∠BOG=180°.所以∠FOD+∠FOG=180°. 所以点D ,O ,G 共线,所以∠BOG=∠AOD=90°-∠BOC=54°.所以∠AOF=180°-∠BOF=72°. 又因为∠AOE=180°-∠BOE=99°,所以∠EOF=∠AOF+∠AOE=171°.综上所述,∠EOF的度数为117°或171°.。
七年级数学上册第四单元《几何图形初步》-解答题专项测试题(培优专题)(1)
一、解答题1.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ; (2)若AC=6,求a 的值; (3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.8.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.9.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.10.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.11.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ; (2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.12.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.13.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.14.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =,∴19cm 2AM MB AB ===. ∵:2:1MC CB =,∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.16.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.解析:AB=12cm ,CD=16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.17.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.18.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.19.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.20.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案. 【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.21.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.23.已知线段AB=10cm,直线AB上有一点C,BC=6cm,M为线段AB的中点,N为线段BC的中点,求线段MN的长.解析:2cm或8cm【分析】分两种情况:(1)点C在线段AB上时,(2)点C在AB的延长线上时,分别求出线段MN的值,即可.【详解】解:(1)若为图1情形,∵M为AB的中点,∴MB=MA=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.24.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 25.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC ,根据∠BOC 的余角的4倍等于∠AOD 即可得出结论.解:(1)∵OB 平分∠COD ,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC .∵∠AOD=4(90°﹣∠BOC ),∴180°﹣∠BOC=4(90°﹣∠BOC ),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.29.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050∴∠=︒-∠=︒-︒=︒,BOP AOM∠内部时(如图3-1),①当射线OP在BOC∠=∠-∠=︒-︒=︒;COP BOC BOP1005050∠外部时(如图3-2),②当射线OP在BOC∠=∠+∠=︒+︒=︒.10050150COP BOC BOP∠的度数为50︒或150︒.综上所述,COP【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.30.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.。
2022年人教版七年级上册第4章《几何图形初步》测试卷(附答案)(1)
第4章几何图形初步测试卷〔1〕一、选择题〔每题3分,共30分〕1.〔3分〕分别从正面、左面和上面这三个方向看下面的四个几何体,得到如下图的平面图形,那么这个几何体是〔〕A.B.C.D.2.〔3分〕从左面看图中四个几何体,得到的图形是四边形的几何体共有〔〕A.1个 B.2个 C.3个 D.4个3.〔3分〕如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.〔3分〕如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.5.〔3分〕下面等式成立的是〔〕A.83.5°=83°50′ B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.〔3分〕以下语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有〔〕A.1个 B.2个 C.3个 D.4个7.〔3分〕如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,那么∠BOD的度数是〔〕A.25°B.35°C.45°D.55°8.〔3分〕如图,∠1+∠2等于〔〕A.60°B.90°C.110° D.180°9.〔3分〕C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm10.〔3分〕甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题〔每空3分,共30分〕11.〔3分〕如图,各图中的阴影局部绕着直线l旋转360°,所形成的立体图形分别是.12.〔3分〕如图,以图中A,B,C,D,E为端点的线段共有条.13.〔3分〕如下图:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.〔3分〕如图,直线AB,CD相交于点0,OE平分∠AOD,假设∠BOC=80°,那么∠AOE=°.15.〔3分〕如图是某几何体的平面展开图,那么这个几何体是.16.〔3分〕如图绕着中心最小旋转能与自身重合.17.〔3分〕如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,那么∠ABC等于度.18.〔3分〕一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.〔3分〕∠A=40°,那么它的补角等于.20.〔3分〕两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题〔21、22、26、27小题各12分,23、24、25题各14分,共90分〕21.〔12分〕如图,假设CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.〔12分〕如下图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.〔12分〕:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM 是∠BOC的平分线.〔1〕求∠MON的大小;〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.〔12分〕如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.25.〔14分〕如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.〔14分〕如图,C是AB的中点,D是AC的中点,E是BC的中点.〔1〕假设DE=9cm,求AB的长;〔2〕假设CE=5cm,求DB的长.27.〔14分〕一个角的余角比它的补角的还少20°,求这个角.参考答案与试题解析一、选择题〔每题3分,共30分〕1.〔3分〕分别从正面、左面和上面这三个方向看下面的四个几何体,得到如下图的平面图形,那么这个几何体是〔〕A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.应选C.【点评】此题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.〔3分〕从左面看图中四个几何体,得到的图形是四边形的几何体共有〔〕A.1个 B.2个 C.3个 D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;应选B.【点评】此题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于根底题.3.〔3分〕如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其外表展开图的特点解题.【解答】解:观察图形,由立体图形及其外表展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.应选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.〔3分〕如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.应选B.【点评】此题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.〔3分〕下面等式成立的是〔〕A.83.5°=83°50′ B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′36″=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.应选D.【点评】此类题是进行度、分、秒的加法、减法计算,相比照拟简单,注意以60为进制即可.6.〔3分〕以下语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有〔〕A.1个 B.2个 C.3个 D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.应选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.〔3分〕如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,那么∠BOD的度数是〔〕A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.应选D.【点评】此题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.〔3分〕如图,∠1+∠2等于〔〕A.60°B.90°C.110° D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.应选B.【点评】此题考查了平角的定义:180°的角叫平角.9.〔3分〕C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.应选C.【点评】此题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.〔3分〕甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换〔折叠问题〕.【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.应选A.【点评】此题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题〔每空3分,共30分〕11.〔3分〕如图,各图中的阴影局部绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】此题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决此题的关键.12.〔3分〕如图,以图中A,B,C,D,E为端点的线段共有10条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】此题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.〔3分〕如下图:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】此题考查了角的计算:1直角=90°;1平角=180°.14.〔3分〕如图,直线AB,CD相交于点0,OE平分∠AOD,假设∠BOC=80°,那么∠AOE=40°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.〔3分〕如图是某几何体的平面展开图,那么这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】此题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.〔3分〕如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四局部,因而每局部被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】此题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.〔3分〕如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,那么∠ABC等于60度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】此题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.〔3分〕一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.〔3分〕∠A=40°,那么它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】此题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.〔3分〕两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】此题考查了直线、射线、线段,主要利用了相交线的交点,是根底题.三、解答题〔21、22、26、27小题各12分,23、24、25题各14分,共90分〕21.〔12分〕如图,假设CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3〔cm〕;D是AC的中点,AD=DC=3〔cm〕,AB=AD+DB=3+7=10〔cm〕.【点评】此题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.〔12分〕如下图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】此题主要考查邻补角的概念以及角平分线的定义.23.〔12分〕:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM 是∠BOC的平分线.〔1〕求∠MON的大小;〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】〔1〕根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.〔2〕根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:〔1〕∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于根底题.24.〔12分〕如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】〔1〕正方体的外表展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;〔2〕确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“A〞与“﹣2〞是相对面,“3〞与“1〞是相对面,“x〞与“3x﹣2〞是相对面,〔1〕∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;〔2〕∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.〔14分〕如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换〔折叠问题〕.【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】此题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.〔14分〕如图,C是AB的中点,D是AC的中点,E是BC的中点.〔1〕假设DE=9cm,求AB的长;〔2〕假设CE=5cm,求DB的长.【考点】比拟线段的长短.【专题】计算题.【分析】〔1〕根据中点的概念,可以证明:AB=2DE,故AB的长可求;〔2〕由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD 的长,最后即可求得BD的长.【解答】解:〔1〕∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;〔2〕∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.〔14分〕一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,那么它的余角为〔90°﹣x〕,补角为〔180°﹣x〕,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,那么它的余角为〔90°﹣x〕,补角为〔180°﹣x〕,根据题意可,得90°﹣x=〔180°﹣x〕﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于根底题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
人教版七年级上册数学分层单元测第四章 几何图形初步--提升卷(解析版)
2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第四章几何图形初步(能力提升)一、选择题1. 如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A. 2B. 12C. 14D. 15【答案】D【解析】【分析】根据立体图形与展开图的关系找出“4”的对立面,剩余的四个面即为相邻面,将它们上的数字求和即可.【详解】由正方体与其展开图的关系可得这些数间的对应关系如下:“2”与“4”,“3”与“5”,“1”与“6”,即“2”与“4”处在对立面上,“1”、“3”、“5”、“6”所在面均是“4”的相邻面+++=则所求数字之和为:135615故选:D.【点睛】本题考查了立体图形与展开图的关系,正确找出“4”所在面的相邻面是解题关键.2. 直线l上有两点A、B,直线l外有两点C、D,过其中两点画直线,共可以画出的直线条数是()A. 4B. 6C. 4或2D. 4或6【答案】D【解析】【分析】因为直线l上有两点A、B,直线l外两点C、D由两种情况,即当C、D两点可A、B中任一点在一条直线上时经过两点可以画4条直线;若当C、D两点不和A、B中任一点在一条直线上时经过两点可以画6条直线.【详解】如图所示:如图1,当A、B两点中任一点与直线CD在同一条直线上时,如图所示经过两点可以画4条直线;如图2,当A、B两点与直线CD不在同一条直线上时,如图所示可以画6条直线.故选:D.【点睛】本题考查的是直线的性质,即两点确定一条直线,解答此类题目时要分四个点中有三点共线和任意三点不共线解答,不要漏解.3. 下列语句正确的是()= B. 反向延长线段AB,得到射线BAA. 延长线段AB到C,使BC ACC. 取射线AB的中点D. 连接A、B两点,使线段AB过点C 【答案】B【解析】【分析】根据直线,射线,线段的定义解答即可,直线:在平面内,无端点,向两方无限延伸的线,射线:在平面内,有一个端点,向一方无限延伸,线段:在平面内,有两个端点,不延伸.=,故错误;【详解】A. 延长线段AB到C,使BC ABB. 反向延长线段AB,得到射线BA,正确;C. 取线段AB的中点,故错误;D. 连接A、B两点,则线段AB不一定过点C,故错误;故选B.【点睛】本题考查了直线、射线、线段的定义,正确掌握三者的概念是解题的关键.4. 有两根木条,一根木条AB 长为90cm ,另一根木条CD 长为140cm ,在它们的中点处各有一个小圆孔M 、N(圆孔直径忽略不计,AB 、CD 抽象成线段,M 、N 抽象成两个点),将它们的一端A 和C 重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是( )A. 115cmB. 35cmC. 115cm 或15cmD. 115cm 或25cm【答案】D【解析】【分析】本题没有给出图形,在画图时,应考虑到A 、B 、M 、N 四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.【详解】本题有两种情形:①当A ,C(或B ,D)重合,且剩余两端点在重合点同侧时,()11MN CN AM CD AB 704525cm 22=-=-=-=; ②当B ,C(或A ,D)重合,且剩余两端点在重合点两侧时,()11MN CN BM CD AB 7045115cm 22=+=+=+=, ∴两根木条的小圆孔之间的距离MN 是25cm 或115cm .故选:D .【点睛】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5. 如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB =BC =CD =1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A. 线段BC 的任意一点处B. 只能是A 或D 处C. 只能是线段BC 的中点E 处D. 线段AB 或CD 内的任意一点处【答案】A【解析】【详解】要想4个人到工具箱的距离之和最短,据图可知:位置在A 与B 之间时,距离之和;AD BC >+位置在B 与C 之间时,距离之和;AD BC =+位置在C 与D 之间时,距离之和AD BC >+,则工具箱在B 与C 之间时,距离之和最短.故选:A .6. 在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52︒,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A. 北偏西52︒B. 南偏东52︒C. 西偏北52︒D. 北偏西38︒【答案】A【解析】【详解】如图,连接AB ,由题意得:∠CAB =52°,∵DB ∥AC ,∴∠CAB =∠ABD =52°,∴B 地所修公路走向应该是北偏西52°.故选:A .【点睛】本题结合方位角、平行线的性质解题.7. 已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为()A. 12α∠ B.12β∠ C. ()12αβ∠-∠ D. ()1+2αβ∠∠【答案】C【解析】【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-,180°-∠α),然后再把等式变形即可.【详解】∵∠α与∠β互补,∴∠α+∠β=180°,∵∠α,∠β,∴∠β=180°-∠α,∴∠β的余角为:90°-,180°-∠α,=∠α-90°=∠α-12,∠α+∠β,=12∠α−12∠β=12,∠α-∠β,,故选C,【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.8. 已知三条不同的射线OA,OB,OC有下列条件:①∠AOC=,BOC,,AOB=2,AOC ,,AOC+,COB=,AOB ,,BOC=12,AOB,其中能确定OC平分,AOB的有, ,A. 4个B. 3个C. 2个D. 1个【答案】D【解析】【详解】如图,根据角平分线的意义,可由∠AOC=,BOC,知OC是∠AOB的平分线;如图,此时,∠AOB=2,BOC,,BOC=12,AOB,但OC不是∠AOB的平分线;由于,AOC+,COB=,AOB,但是,AOC与,COB不一定相等,所以OC不一定是∠AOB的平分线.所以只有①能说明OC是∠AOB的角平分线.故选D.9. 将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF的度数为().A. 40°B. 45°C. 56°D. 37°【答案】D【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE-∠B′AD′=∠BAD,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.10. 如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=13∠EOC,则下列四个结论正确的个数有()①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】根据题意首先计算出,AOD的度数,再计算出,AOE、,EOC、,BOE、,BOD 的度数,然后再分析即可.【详解】解:由题意设,BOE=x,,EOC=3x,,,DOE=60°,OD平分∠AOB,,,AOD=,BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,,,EOC=,AOE=90°,,BOE=30°,,,BOD=,AOD=30°,故,正确;,,BOD=,AOD=30°,,射线OE平分,AOC,故,正确;,,BOE=30°,,AOB=60°,,DOE=60°,,,AOB+,BOE=90°,,BOE+,DOE=90°,,图中与,BOE互余的角有2个,故,正确;,,AOE=,EOC=90°,,,AOE+,EOC=180°,,,EOC=90°,,DOB=30°,,BOE=30°,,AOD=30°,,,COD+,AOD=180°,,COD+,BOD=180°,,COD+,BOE=180°,,COB+,AOB=180°,,COB+,DOE=180°,,图中互补的角有6对,故,正确,正确的有4个,故选:D .【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.二、填空题11. 栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线,理由是________.【答案】两点确定一条直线【解析】【分析】直接利用直线的性质分析得出答案.【详解】解:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线用到的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,正确把握直线的性质是解题关键.12. 已知OC 平分AOB ∠,若70AOB ∠=︒,10COD ∠=︒,则AOD ∠的度数为__________︒.【答案】25或45【解析】【分析】根据题意,分类讨论,分别画出对应的图形,然后利用各角的关系求值即可.【详解】解:若OD 在∠AOC 的内部,如下图所示∵OC 平分AOB ∠,70AOB ∠=︒∴∠AOC=1352AOB ∠=︒∵10COD ∠=︒∴∠AOD=∠AOC -∠COD=25°若OD 在∠BOC 的内部,如下图所示∵OC 平分AOB ∠,70AOB ∠=︒∴∠AOC=1352AOB ∠=︒∵10COD ∠=︒∴∠AOD=∠AOC +∠COD=45°综上所述:∠AOD=25°或45°故答案为:25°或45°.【点睛】此题考查的是角的和与差,掌握各角之间的关系和分类讨论的数学思想是解决此题的关键.13. 在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分. 【答案】4011或32011 【解析】 【分析】设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷=当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.14. 如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.【答案】1.5cm【解析】【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.15. 一副三角板AOB 与COD 如图摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON 平分∠COB ,OM 平分∠AOD.当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,αβ+=______度.【答案】105【解析】【分析】图1中先设∠AOM=x=∠DOM,则∠BOM=60−x,根据∠BOD=∠DOM−∠BOM,得出∠BOD的度数,再根据∠COB=∠BOD+∠DOC,求出∠CON=∠BON,最后根据∠NOM=∠BOM+∠BON,即可得出α;图2中设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60−2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x−y的度数,最后根据∠MON与各角之间的关系,【详解】解:图1中设∠AOM=x=∠DOM,∵∠AOB=60°,∴∠BOM=60°−x,∵∠BOD=∠DOM−∠BOM,∴∠BOD=x−(60°−x)=2x−60°,∵∠COB=∠BOD+∠DOC,∴∠COB=(2x−60°)+45°=2x−15°,∴∠CON=∠BON=1(2x−15°)=x−7.5°,2∴α=∠NOM=∠BOM+∠BON=60°−x+x−7.5°=52.5°;图2中设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°−2x,∵∠COD=45°,∴60−2x+2y=45°,即x−y=7.5°,∴β=∠MON=x+(60−2x)+y=60−(x−y)=52.5°,+=52.5°+52.5°=105°,∴αβ故答案为:105.【点睛】本题考查了角的计算,解题的关键是设一个未知数(或两个未知数),用代数方法解决几何问题.三、解答题16. 如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:①射线BA;②直线AD,BC相交于点E;③延长DC至F(虚线),使CF=BC,连接EF(虚线).(2)图中以E为顶点的角中,小于平角的角共有__________个.【答案】(1)见解析;(2)8【解析】【分析】(1)根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF为始边的角有4个,以EC为始边的角有1个,以EA为始边的角有1个,以EC的反向延长线为始边的有1个,以EA的反向延长线为始边的有1个,所以以E为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.17. 如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【答案】120°【解析】【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18. 已知,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点,(1)如果AB 10cm =,那么MN 等于多少?(2)如果AC :CB 3=:2,NB 3.5cm =,那么AB 等于多少?(要求先根据题意正确画出草图,再列式计算,要有解题过程)【答案】(1)MN=5cm ;(2)AB 17.5cm =.【解析】【分析】(1)由已知点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点,得MN=CM+CN=12AC+12BC=12AB ; (2)由已知得AB=7÷25=17.5cm .【详解】(1)111MN CM CN AC BC AB 5222=+=+==cm ; (2)NB 3.5= cm ,BC 7cm ∴=, 2AB 717.5cm 5∴=÷=. 【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19. 如图所示,把一根细线绳对折成两条重合的线段AB ,点P 在线段AB 上,且:2:3AP BP =.(l )若细线绳的长度是100cm ,求图中线段AP 的长;(2)从点P 处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm ,求原来细线绳的长.【答案】(1)20cm ;(2)150cm 或100cm .【解析】【分析】(1)由“一根细线绳对折成两条重合的线段AB ”可知线段AB 的长为细线长度的一半,由:2:3AP BP =即可求出线段AP 长;(2)分情况讨论,当点A 为对折点时,最长的一段为PAP 段,由此可求出AP 长,根据:2:3AP BP =可得BP 长,易得AB 长,由细线长为2AB 求解即可;当点B 为对折点时,最长的一段为PBP 段,由此可求出BP 长,根据:2:3AP BP =可得AP 长,易得AB 长,由细线长为2AB 求解即可.【详解】解:(1)由题意得1100502AB cm =⨯=, :2:3,AP BP AP BP AB =+=22023AB AP cm ∴=⨯=+ 所以图中线段AP 的长为20cm .(2)如图,当点A 为对折点时,最长的一段为PAP 段,260,30AP cm AP cm ∴=∴=,:2:3AP BP =303452BP cm ∴=⨯= 304575AB AP BP cm ∴=+=+=所以细线长为2275150AB cm =⨯=;如图,当点B 为对折点时,最长的一段为PBP 段,260,30BP cm BP cm ∴=∴=,:2:3AP BP =302203AP cm ∴=⨯= 203050AB AP BP cm ∴=+=+=所以细线长为2250100AB cm =⨯=,综合上述,原来细线绳的长为150cm 或100cm .【点睛】本题主要考查了线段的和与差,灵活的利用线段的比例及已知线段的长度是解题的关键.20. 如图,一渔在海上点E 开始绕点O 航行,开始时E 点在O 点的东偏北46°20′,然后绕O 点航行到C ,测得,COE=2,AOE 继续绕行,最后到达D 点且OD=3海里,,COD=12,COB.(1)求,BOC 的度数;(2)说明渔船最后到达的D 点在什么位置.【答案】(1),BOC=49°;(2)D 点在O 点的北偏西73°30′且距离3海里的位置【解析】【分析】(1)根据角的和差解答即可;(2)先根据角的和差求出∠BOD 的度数,则点D 的位置即可判断.【详解】(1)∵开始时E 点在O 点的东偏北46°20′、∴4620EOA ∠=︒',∴29240,COE AOE ∠=∠=︒'904340BOE EOA ∠=︒-∠=︒',∴9240434049COB COE BOE ∠=∠-∠=︒'-︒'=︒.(2)1149243022COD COB ∠=∠=⨯︒=︒', ∴4924307330BOD COB COD ∠=∠+∠=︒+︒'=︒',∴D 点在O 点的北偏西73°30′且距离3海里的位置.【点睛】本题考查的是与方位角有关的计算,解题的关键是熟练掌握象限角之间的大小关系.21. 如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°,将一直角三角板的直角顶点放在点O 处(30OMN ∠=︒),一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠,求BON ∠的度数;(2)将图1中的三角板绕点O 以每秒5〫的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,求t 的值;将图1中的三角板绕点O 逆时针旋转至图3,使一边ON 在AOC ∠的内部,请探究AOM NOC ∠-∠的值.【答案】(1)35°;(2)11或47;(3)∠AOM-∠NOC=20°.【解析】【分析】(1)根据角平分线的定义通过计算即可求得∠BON 的度数;(2)当ON 的反向延长线平分∠AOC 时或当射线ON 平分∠AOC 时这两种情况分别讨论,根据角平分线的定义以及角的关系进行计算即可;(3)根据∠MON=90°,∠AOC=70°,分别求得∠AOM=90°-∠AON ,∠NOC=70°-∠AON ,再根据∠AOM-∠NOC=(90°-∠AON )-(70°-∠AON )进行计算,即可得出∠AOM 与∠NOC 的数量关系.【详解】解:(1)如图2中,∵OM 平分∠BOC ,∴∠MOC=∠MOB ,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°;(2)(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当当ON的反向延长线平分∠AOC时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11;②如图3,当射线ON平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47,综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;故答案为:11或47;(3)∠AOM-∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM-∠NOC=20°.【点睛】本题主要考查的是角平分线的定义的运用,熟练掌握角平分线的使用和角的和差关系是解题的关键.。
《好题》七年级数学上册第四单元《几何图形初步》-解答题专项提高卷(课后培优)
一、解答题1.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值. 解析:(1)①3cm ;②见解析;(2)9AP =或11cm. 【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论. 【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=, ∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=, ∴2433CD CP PB DB cm =+-=+-=; ②∵8,12AP AB ==,∴4,82BP AC t ==-, ∴43DP t =-,∴2434CD DP CP t t t =+=+-=-, ∴2AC CD =; (2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=, ∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=, 综上所述,9AP =或11cm. 【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.2.如图,C ,D ,E 为直线AB 上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n-条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,所以n个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC与线段CA,所以这条直线上共有(1)2n n-条线段.因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n个点时,共有2n条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 3.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB=,求线段AC的长度.解析:8cm【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?” 解析:34个 【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个. 【详解】 用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个) 【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A 处发现一只虫子在D 处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI 方向爬行,蚂蚁预想在点I 处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x=41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B、面C相对的面分别是和;(2)若A=a3+15a2b+3,B=﹣12a2b+a3,C=a3﹣1,D=﹣15(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.解析:(1)面F,面E;(2)F=12a2b,E=1【分析】(1)根据“相间Z端是对面”,可得B的对面为F,C的对面是E,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A与D,B与F,C与E,列式计算即可.【详解】(1)由“相间Z端是对面”,可得B的对面为F,C的对面是E.故答案为:面F,面E.(2)由题意得:A与D相对,B与F相对,C与E相对,A+D=B+F=C+E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.9.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.解析:(1)14;(2)37823或37831.【分析】(1)设AB=2x,则BC=3x,CD=4x.根据线段中点的性质求出MC、CN,列出方程求出x,计算即可;(2)分两种情况:①当N在CD的第一个三等分点时,根据MN=9,求出x的值,再根据BD=BC+CD求出结果即可;②当N在CD的第二个三等分点时,方法同①.【详解】设AB=2x,则BC=3x,CD=4x.∴AC=AB+BC=5x,∵点M是线段AC的中点,∴MC=2.5x,∵点N是线段CD的中点,∴CN=2x,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数. 解析:(1)∠CAE =18°;(2)∠ACD =120°. 【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解. 【详解】解:(1)∵∠BAC =90°, ∴∠1+∠2=90°, ∵∠1=4∠2, ∴4∠2+∠2=90°, ∴∠2=18°, 又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°, ∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°, ∴∠ACE ﹣∠BCD =30°, 又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°, ∴∠ACD =∠ACB+∠BCD =90°+30°=120°. 【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.11.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点. (1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案. (3)据题意画出图形,利用MN=MC-NC 即可得出答案. 【详解】解:(1)点M 、N 分别是AC 、BC 的中点, ∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得: MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.12.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可. (2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可. 【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠.因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠.因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=. (3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=,()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.13.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .解析:【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长. 【详解】∵E ,F 分别是线段AB ,CD 的中点, ∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4, ∴AC+2CF=6, 解得,CF=1, 同理可得:EB=1, ∴BC=2,∴EF=EB+BC+CF=1+2+1=4. 【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.解析:120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.AB=点C在线段AB上,点D,E分别是AC和BC的中点.17.线段12cm(1)若点C恰好是AB中点,求DE的长;AC=,求DE的长;(2)若4cm(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点, 所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =.(3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 18.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.19.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.20.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,21.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.22.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.解析:2cm 或8cm【分析】分两种情况:(1)点C 在线段AB 上时,(2)点C 在AB 的延长线上时,分别求出线段MN 的值,即可.【详解】解:(1)若为图1情形,∵M 为AB 的中点,∴MB =MA =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB ﹣NB =2cm ;(2)若为图2情形,∵M 为AB 的中点,∴MB =AB =5cm ,∵N 为BC 的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.23.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 24.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.已知,A 、B 是线段EF 上两点,已知EA :AB :BF=1:2:3,M 、N 分别为EA 、BF 的中点, 且MN=8cm ,求EF 的长.解析:12cm【解析】【分析】由已知设设EA=x ,AB=2x ,BF=3x ,根据线段中点性质得MN=MA+AB+BN=12x+2x+32x=4x=8,可得EF=EA+AB+BF=6x=12. 【详解】解:∵EA :AB :BF=1:2:3,可以设EA=x ,AB=2x ,BF=3x ,而M 、N 分别为EA 、BF 的中点,∴MA=12EA ,NB=12BF , ∴MN=MA+AB+BN=12x+2x+32x=4x , ∵MN=8cm ,∴4x=8,∴x=2, ∴EF=EA+AB+BF=6x=12,∴EF 的长为12cm .【点睛】本题考核知识点:线段的中点.解题关键点:根据线段中点性质和线段的和差关系列出方程.26.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.27.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
2020-2021初中数学几何图形初步经典测试题附答案解析(1)
2020-2021初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.下列说法,正确的是() A.经过一点有且只有一条直线 B.两条射线组成的图形叫做角 C.两条直线相交至少有两个交点 D.两点确定一条直线【答案】D 【解析】 【分析】根据直线的性质、角的定义、相交线的概念一一判断即可. 【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D. 【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键2 . / 1 与/ 2 互余,/ 1 与/3 互补,若/ 3=125°,则/ 2=()解:根据题意得:/ 1 + 7 3=180°, / 3=125°,则/ 1=55°, 1 + 7 2=90°,则/ 2=35°故选:A.【点睛】 本题考查余角、补角的计算.3 .如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出 5cm,宽留出1cm,则该六棱柱的侧面积是()A. 35°【答案】A 【解析】 【分析】【详解】B. 45C. 55D. 65°A. (108 24察)cm2B. 108 1273 cm2C. 54 2443 cm2D. 54 1273 cm2【答案】A【解析】【分析】设正六棱柱的底面边长为acm,高为hcm,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a= 2, h =9-2J3,再根据六棱柱的侧面积是6ah求解.【详解】解:设正六棱柱的底面边长为acm,高为hcm ,如图,正六边形边长AB= acm时,由正六边形的性质可知/ BAD= 30°,BD= —a cm, AD= ^3 a cm , 2 2,AC=2AD=邪a cm,A ------ i—- - - -D「•挪动前所在矩形的长为(2h+2£a) cm,宽为(4a + - a ) cm ,2挪动后所在矩形的长为(h+2a+J3a) cm,宽为4acm,由题意得:(2h+2万a) -(h + 2a+V3a) =5, (4a+1a)-4a=1,2・•.a=2, h=9- 2技「•该六棱柱的侧面积是6ah = 6X2X(9- 2^/3) = (108 2473) cm2;故选:A.【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A落在DE上,若BC P DE ,则AFC的度数为 ()A. 90°B. 75°C. 105°D. 120°【答案】B 【解析】 【分析】根据平行线的性质可得 /E /BCE 30 ,再根据三角形外角的性质即可求解 的度数. 【详解】••• BC//DE Z E / BCE 30••• / AFC / B / BCE 45 3075故答案为:B. 【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.【分析】根据三棱柱的展开图的特点作答. 【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C. 【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.6 .如图,直线a//b,点B 在直线b 上,且AB± BC, Z 1=55 °,那么/ 2的度数是AFC5.下面四个图形中,是三棱柱的平面展开图的是 ( )由垂线的性质可得/ ABC=90 ,所以/ 3=180° -90°-/1=35°,再由平行线的性质可得到/ 2的度数.【详解】又「 a// b, 所以/ 2=7 3=35° . 故选C. 【点睛】本题主要考查了平行线的性质7 .如右图,在 ABC 中, ACB 90 , CD AD ,垂足为点D ,有下列说法:①点 A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段 AD 的长;③线段 CD 是 ABC 边AB 上的高;④线段CD 是 BCD边BD 上的高.上述说法中,正确的个数为()【答案】D 【解析】 【分析】根据两点间的距离定义即可判断 ①,根据点到直线距离的概念即可判断 ②,根据三角形的高的定义即可判断③④. 【详解】B. 30°C. 35°D. 50°B. 2个C. 3个D. 4个BA. 20°【答案】C解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段 AB 的长,・•.①正确;②、点A 到直线CD 的距离是线段 AD 的长,••・②正确; ③、根据三角形的高的定义, 那BC 边AB 上的高是线段 CD, ••.③正确;④、根据三角形的高的定义,ADBC 边BD 上的高是线段 CD,④ 正确.综上所述,正确的是①②③④ 共4个. 故选:D. 【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能 熟练地运用概念进行判断是解此题的关键.8 .如图,B 是线段AD 的中点,C 是线段BD 上一点,则下列结论中错误..的是(*・ ・.AB C D A. BC=AB-CDB. BC=-(AD-CD)【答案】B 【解析】试题解析:: B 是线段AD 的中点,.•.AB=BD=-AD2 ,A 、BC=BD-CD=AB-CD 故本选项正确;-1B 、BC=BD-CD] AD-CD,故本选项错误;-- - 1......G BC=BD-CDh AD-CD,故本选项正确; 2D 、BC=AC-AB=AC-BD 故本选项正确.故选B.9.如图,直线 AB, CD 交于点 O,射线 OM 平分/ AOC,若/ AOC= 76°,则/ BOM 等于8CA. 38°B, 104°C, 142°D, 144【答案】C 【解析】・. / AOC= 76°,射线 OM 平分/ AOC,1 1/ AOM= — / AOC=— x 76=38C. BC=- AD-CDD. BC=AC-BD()2 2 'BOM=180° 上 AOM=180° 38 =142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键10.已知:在RtAABC 中,/ C=90 °, BC=1, AC= J3 ,点D 是斜边AB 的中点,点E 是边C. D.【答案】C 【解析】 【分析】作B 关于AC 的对称点B',连接B'。
几何图形初步提高复习题
⼏何图形初步提⾼复习题《⼏何图形初步》提⾼复习题基础强化训练1.把两块三⾓板按如图所⽰那样拼在⼀起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°2. 在灯塔O 处观测到轮船A 位于北偏西54°的⽅向,同时轮船B 在南偏东15°的⽅向,那么∠AOB 的⼤⼩为 ( ) A .69°B .111°C .141°D .159°3. ⼀个⾓的余⾓⽐这个⾓的21少30°,请你计算出这个⾓的⼤⼩.4. 如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.5. 如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长6. 若⼀个⾓的余⾓⽐这个⾓⼤31°20′,则这个⾓⼤⼩为__________,其补⾓⼤⼩_______。
7. ⼀副三⾓板如图摆放,若∠AGB=90°,则∠AFE=__________度。
8. 在⼀条直线上顺次取A ,B ,C 三点,使得AB=5cm ,BC=3cm 。
如果点D 是线段AC 的中点,那么线段DB 的长度是__________cm 。
9. 如图,点A ,O ,E 在同⼀条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE 。
求∠DOB 的度数。
10. ⼀个⾓的补⾓与20°⾓的和的⼀半等于这个⾓的余⾓的3倍,求这个⾓.A BC第1题图北O A B第2题图 OACB EDA E DB F C1.⼀个⾓的余⾓是它的补⾓的52,这个⾓的补⾓是() A.30° B.60° C.120° D.150°2.⼀份数学试卷有20道选择题,规定答对⼀道得5分,不做或做错⼀题扣1分,结果某学⽣得分为76分,则他做对题数为()道 A.16B.17C.18D.193.∠1和∠2互余,∠2和∠3互补,∠1=63°,∠3=________.4.已知轮船在逆⽔中前进的速度为m 千⽶/时,⽔流的速度为2千⽶/时,则这轮船在顺⽔中航⾏的速度是千⽶/时5.⾦佰客超市举办迎新春送⼤礼的促销活动,全场商品⼀律打8折,宋⽼师花了992元买了热⽔器,那么该商品的原售价为_ ___元.6.假设有⾜够多的⿊⽩围棋⼦,按照⼀定的规律排列成⼀⾏请问第2007个棋⼦是⿊的还是⽩的?答:_ ___.7.若∠AOB=∠COD=61∠AOD,已知∠COB=80°,求∠AOB、∠AOD 的度数.3.已知关于x 的⽅程(m+3)x |m|-2+6m=0…①与nx -5=x(3-n) …②的解相同,其中⽅程①是⼀元⼀次⽅程,求代数式(m+x )2000·(-m 2n +xn 2)+1的值.4.某⼀家服装⼚接受⼀批校服订货任务,按计划天数进⾏⽣产,如果每天平均⽣产20套,就⽐订货任务少⽣产100套,如果每天平均⽣产23套,就可超过订货任务20套,问这批服装订货任务是多少套?原计划多少天完成?线段与⾓习题精选1、如图,,,点B 、O 、D 在同⼀直线上,则的度数为()(A )(B )(C )(D )2、如图,已知AOB 是⼀条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则……(1)∠AOC的补⾓是;(2)是∠AOC 的余⾓;(3)∠DOC 的余⾓是;(4)∠COF 的补⾓是.3、如图,点A 、O 、E 在同⼀直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE ,求∠COB 的度数(7分)4、如图,已知直线AB 和CD 相交于O 点,COE ∠是直⾓,OF 平分AOE ∠,34COF o ∠,求BOD ∠的度数.5、如图,点O 是直线AB 上的⼀点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°,求∠DOE 、∠BOE 的度数.6、如图10,将长⽅形纸⽚沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.7、把⼀张正⽅形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______. 8、如图所⽰,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .EDCB AO图10 A CBEFB '第15题图9、如图14,将⼀副三⾓尺的直⾓顶点重合在⼀起.(1)若∠DOB 与∠DOA 的⽐是2∶11,求∠BOC 的度数.(2)若叠合所成的∠BOC =n°(0少?10、如图,点C 在线段AB 上,AC = 8厘⽶,CB = 6厘⽶,点M 、N 分别是AC 、BC 的中点。
2022-2023学年七年级数学上《几何图形初步》测试卷及答案解析
2022-2023学年七年级数学上《几何图形初步》一.选择题(共8小题)1.(2021秋•唐山期末)下列几何体中,面的个数最多的是()A.B.C.D.2.(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.3.(2021秋•金水区校级期末)某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出如图所示的无盖长方体盒子,制作过程如下:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.则该无盖长方体盒子的体积可以表示为()A.b(a﹣b)2cm3B.b(a﹣b)2cm3C.b(a﹣2b)2cm3D.b(a﹣2b)2cm34.(2021秋•南岗区期末)下列说法正确的是()A.0的倒数还是0B.圆锥的体积等于圆柱体积的C.半径相等的两个圆的周长相等D.正方体的表面积与它的棱长成正比例关系5.(2021秋•道里区期末)甲、乙两个圆的直径之比是3:2,则甲、乙两圆的面积之比为()A.2:3B.3:2C.9:16D.9:4 6.(2021秋•威县期末)将下列图形绕直线l旋转一周,可得圆锥的是()A.B.C.D.7.(2021秋•曾都区期末)下列立体图形中,各面不都是平面图形的是()A.B.C.D.8.(2021秋•乳山市期末)我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是()A.B.C.D.二.多选题(共2小题)(多选)9.(2021秋•潍坊期末)用一个平面去截一个几何体,如果截面是四边形,那么这个几何体可能是()A.圆锥体B.正方体C.圆柱体D.球体(多选)10.(2019秋•盐田区期末)下列几何体中,截面可能为圆的是()A.棱柱B.圆柱C.圆锥D.球三.填空题(共6小题)11.(2022•平邑县二模)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为n,则正方体上小球总数用n表示为.12.(2021秋•崂山区期末)一块长、宽、高分别为5cm,4cm,3cm的长方体橡皮泥,要用它来捏一个底面半径为2cm的圆柱,设它的高是hcm,根据题意列方程为.13.(2021秋•法库县期末)一个棱柱有18条棱,则这个棱柱共有个面.14.(2021秋•杜尔伯特县期末)如图所示,把一个圆柱形木料削成一个与它等底等高的圆锥,削去部分的体积是9dm3,圆锥的体积是dm3.15.(2021秋•浦东新区期末)如图,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是厘米.16.(2021秋•宝安区校级期中)一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是.四.解答题(共4小题)17.(2021秋•仁寿县期末)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按图中虚线折叠四边使其成为一个有底无盖的长方体盒子.(1)用含x的代数式表示长方体盒子的底面积.(2)当x=1cm时,求长方体盒子的体积.18.(2021秋•广丰区期末)如图,有一个零件,由三部分组成,底座是一个长方体,底面正方形边长为2Rcm,高为3cm,中间部分是底面半径为Rcm,高为3cm的圆柱,上部是底面半径为rcm,高为2cm的圆柱,计算它的体积.19.(2021秋•朝阳区校级期末)求如图的体积(不用写单位,π取3.14).20.(2021秋•吴兴区期末)如图1所示,爱心农场的一个长、宽、高分别为12分米、8分米、20分米的长方体鱼池内装有高度为9分米的水.某项目化学习小组需要将一长方体基座(足够高)放置在鱼池内.若基座竖直放置在鱼池底部,如图2所示,则池内水面上升3分米.(1)求基座的底面积;(2)在安装过程中,先将基座吊起,使得基座的底部与水面齐平,如图3所示,然后将基座以每分钟2分米的速度下降,设下降的时间为t分钟.求当t=2时,水面上升的高度;(3)在(2)的条件下,求下降过程中,基座的底面把池中水深分成1:2的两部分时t 的值.2022-2023学年七年级数学上《几何图形初步》参考答案与试题解析一.选择题(共8小题)1.(2021秋•唐山期末)下列几何体中,面的个数最多的是()A.B.C.D.【考点】认识立体图形.【专题】展开与折叠;几何直观.【分析】根据每一个几何体的面的个数判断即可.【解答】解:A.圆锥有2个面,B.三棱柱有5个面,C.长方体有6个面,D.圆柱有3个面,∴上列几何体中,面的个数最多的是长方体,故选:C.【点评】本题考查了认识立体图形,熟练掌握每一个几何体的特征是解题的关键.2.(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.【考点】认识立体图形.【专题】投影与视图;几何直观.【分析】简单几何体的识别.【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.【点评】本题考查简单几何体的识别,正确区分几何体是解题的关键.3.(2021秋•金水区校级期末)某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出如图所示的无盖长方体盒子,制作过程如下:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.则该无盖长方体盒子的体积可以表示为()A.b(a﹣b)2cm3B.b(a﹣b)2cm3C.b(a﹣2b)2cm3D.b(a﹣2b)2cm3【考点】认识立体图形;列代数式.【专题】投影与视图;空间观念.【分析】根据分别用代数式表示长方体的长、宽、高,利用体积计算公式可得答案.【解答】解:由题意得,这个长方体的底面是边长为(a﹣2b)的正方形,高为b,所以体积为(a﹣2b)(a﹣2b)×b=b(a﹣2b)2(cm3),故选:D.【点评】本题考查认识立体图形,掌握长方体体积的计算方法是正确解答的关键.4.(2021秋•南岗区期末)下列说法正确的是()A.0的倒数还是0B.圆锥的体积等于圆柱体积的C.半径相等的两个圆的周长相等D.正方体的表面积与它的棱长成正比例关系【考点】认识立体图形;倒数.【专题】实数;函数及其图象;与圆有关的计算;数感;应用意识.【分析】根据倒数的定义,圆锥体积的计算方法,圆周长的计算方法以及正方体表面积的定义与计算方法逐项进行判断即可.【解答】解:A.0没有倒数,因此选项A不符合题意;B.圆锥的体积等于与它等底等高圆柱体体积的,因此选项B不符合题意;C.由于圆的周长为2πr,所以半径相等的两个圆的周长相等,因此选项C符合题意;D.设正方体的棱长为a,正方体的表面积为S=6a2,所以表面积与a2成正比例关系,因此选项D不符合题意;故选:C.【点评】本题考查倒数的定义,圆锥体积、圆周长、正方体表面积,掌握倒数的定义,圆锥体积、圆周长、正方体表面积的计算方法是正确判断的前提.5.(2021秋•道里区期末)甲、乙两个圆的直径之比是3:2,则甲、乙两圆的面积之比为()A.2:3B.3:2C.9:16D.9:4【考点】认识平面图形.【专题】与圆有关的计算;运算能力.【分析】先求出两圆的半径比,再根据圆的面积公式计算即可.【解答】解:∵甲、乙两个圆的直径之比是3:2,∴甲、乙两个圆的半径之比也是3:2,∵圆的面积等于πr2,∴甲、乙两圆的面积之比为9:4,故选:D.【点评】本题考查了认识平面图形,熟练掌握圆的面积计算公式是解题的关键.6.(2021秋•威县期末)将下列图形绕直线l旋转一周,可得圆锥的是()A.B.C.D.【考点】点、线、面、体.【专题】展开与折叠;空间观念.【分析】根据空间想象逐一判断即可.【解答】解:A.绕直线l旋转一周可以得到圆柱体;B.绕直线l旋转一周可以得到圆锥体;C.绕直线l旋转一周可以得到球体;D.绕直线l旋转一周可以得到圆锥与圆柱组合体;故选:B.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.7.(2021秋•曾都区期末)下列立体图形中,各面不都是平面图形的是()A.B.C.D.【考点】认识立体图形.【专题】几何图形问题;空间观念.【分析】根据组成立体图形的面进行分析判断.【解答】解:A、四棱锥由四个平面组成,故此选项不符合题意;B、圆锥由一个平面和一个曲面组成,故此选项符合题意;C、六棱柱由八个平面组成,故此选项不符合题意;D、三棱柱由五个平面组成,故此选项不符合题意;故选:B.【点评】本题考查立体图形,准确识图,理解平面及曲面的特征是解题关键.8.(2021秋•乳山市期末)我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是()A.B.C.D.【考点】点、线、面、体.【专题】展开与折叠;空间观念.【分析】根据每一个几何体的特征判断即可.【解答】解:A.绕着直线旋转一周能得到上图所示的几何体,故A符合题意;B.绕着直线旋转一周不能得到上图所示的几何体,故B不符合题意;C.绕着直线旋转一周不能得到上图所示的几何体,故C不符合题意;D.绕着直线旋转一周不能得到上图所示的几何体,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.二.多选题(共2小题)(多选)9.(2021秋•潍坊期末)用一个平面去截一个几何体,如果截面是四边形,那么这个几何体可能是()A.圆锥体B.正方体C.圆柱体D.球体【考点】截一个几何体.【专题】展开与折叠;空间观念.【分析】根据每一个几何体的截面形状判断即可.【解答】解:用一个平面去截一个几何体,圆锥体、球体的截面形状不可能是四边形,正方体、圆柱体的截面形状可能是四边形,所以,用一个平面去截一个几何体,A.圆锥体,B.正方体,C.圆柱体,D.球体,如果截面是四边形,那么这个几何体可能是:BC,故选:BC.【点评】本题考查了截一个几何体,熟练掌握每一个几何体的截面形状是解题的关键.(多选)10.(2019秋•盐田区期末)下列几何体中,截面可能为圆的是()A.棱柱B.圆柱C.圆锥D.球【考点】截一个几何体;认识立体图形.【专题】推理填空题;空间观念.【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解答】解:用一个平面去截一个几何体,截面可能为圆的是圆柱、圆锥、球.故选:BCD.【点评】此题主要考查了截一个几何体和认识立体图形.解题的关键是明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.三.填空题(共6小题)11.(2022•平邑县二模)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为n,则正方体上小球总数用n表示为12n﹣16.【考点】认识立体图形;列代数式.【专题】线段、角、相交线与平行线;空间观念.【分析】每条棱上有n个小球,12条棱就有12n个小球,这时,每个顶点处的小球被多计算了2次,应该减去,于是可得答案.【解答】解:因为正方体有12条棱,每条棱上的小球数为n,所以12条棱上有12n个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16(次),正方体上小球总数用n表示为12n﹣16.故答案为:12n﹣16.【点评】本题考查正方体的特征、列代数式等知识,掌握正方体的特征是解决问题的前提,考虑每个顶点处的小球被重复计算是解决问题的关键.12.(2021秋•崂山区期末)一块长、宽、高分别为5cm,4cm,3cm的长方体橡皮泥,要用它来捏一个底面半径为2cm的圆柱,设它的高是hcm,根据题意列方程为3×4×5=4πh.【考点】认识立体图形;由实际问题抽象出一元一次方程.【专题】线段、角、相交线与平行线.【分析】根据题意找出题中存在的等量关系:长方体的体积=圆柱体的体积,根据等量关系列方程即可.【解答】解:根据等量关系列方程得:3×4×5=4πh,故答案为:3×4×5=4πh.【点评】此题主要考查了认识立体图形,正确掌握圆柱体体积公式是解题关键.13.(2021秋•法库县期末)一个棱柱有18条棱,则这个棱柱共有八个面.【考点】认识立体图形.【专题】投影与视图;空间观念;几何直观.【分析】根据n棱柱的“棱”条数计算规律得出答案.【解答】解:由n棱柱有3n条棱,所以一个棱柱有18条棱,则它是18÷3=6,因此它是六棱柱,而六棱柱有6+2=8个面,故答案为:八.【点评】本题考查认识立体图形,掌握棱柱的形体特征是正确判断的前提.14.(2021秋•杜尔伯特县期末)如图所示,把一个圆柱形木料削成一个与它等底等高的圆锥,削去部分的体积是9dm3,圆锥的体积是 4.5dm3.【考点】认识立体图形.【专题】展开与折叠;运算能力.【分析】根据圆柱与圆锥的体积公式即可解答.【解答】解:∵圆柱的体积=底面积×高,圆锥的体积=底面积×高,∴削去部分的体积=圆锥的体积的2倍,∴9÷2=4.5(立方分米),∴圆锥的体积是4.5dm3,故答案为:4.5.【点评】本题考查了认识立体图形,熟练掌握圆柱与圆锥的体积公式是解题的关键.15.(2021秋•浦东新区期末)如图,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是20.5厘米.【考点】认识平面图形.【专题】与圆有关的计算;运算能力.【分析】根据圆周长、面积,长方形面积之间的关系用OA,分别表示AB,CD,弧AD 的长,然后根据周长的定义进行计算即可.【解答】解:设OA=r,∵圆的周长是16.4厘米,即2πr=16.4,∴πr=8.2,又∵圆的面积与长方形的面积正好相等,∴π×OA2=AB•OA,∴AB=πr,∴阴影部分的周长=AB+OA+CD+弧AD长=πr+r+(πr﹣r)+×2πr=πr=×8.2=20.5(厘米),故答案为:20.5.【点评】本题考查认识平面图形,掌握圆周长、面积以及长方形的面积、周长的定义是正确解答的关键.16.(2021秋•宝安区校级期中)一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是面动成体.【考点】点、线、面、体.【专题】投影与视图;空间观念.【分析】根据点、线、面、体的关系,“点动成线,线动成面,面动成体”进行判断即可.【解答】解:硬币的面可以近似看作“圆形”的面,快速旋转,看上去像形成了一个球,说明“面动成体”,故答案为:面动成体.【点评】本题考查点、线、面、体,理解点、线、面、体的关系,掌握“点动成线,线动成面,面动成体”是正确判断的前提.四.解答题(共4小题)17.(2021秋•仁寿县期末)如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按图中虚线折叠四边使其成为一个有底无盖的长方体盒子.(1)用含x的代数式表示长方体盒子的底面积.(2)当x=1cm时,求长方体盒子的体积.【考点】认识立体图形;列代数式;代数式求值.【专题】展开与折叠;运算能力.【分析】(1)根据题目的已知可得,长方体的底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,然后利用长方形的面积公式计算即可解答;(2)利用长方体的体积公式进行计算即可.【解答】解:(1)由题意得:(10﹣2x)(6﹣2x)=60﹣20x﹣12x+4x2=4x2﹣32x+60(平方厘米),答:长方体盒子的底面积为(4x2﹣32x+60)平方厘米;(2)当x=1cm时,长方体盒子的体积为:x(10﹣2x)(6﹣2x)=1×8×4=32(立方厘米),答:长方体盒子的体积为32立方厘米.【点评】本题考查了认识立体图形,列代数式,代数式求值,熟练掌握长方体的体积公式是解题的关键.18.(2021秋•广丰区期末)如图,有一个零件,由三部分组成,底座是一个长方体,底面正方形边长为2Rcm,高为3cm,中间部分是底面半径为Rcm,高为3cm的圆柱,上部是底面半径为rcm,高为2cm的圆柱,计算它的体积.【考点】认识立体图形;列代数式.【专题】几何图形;运算能力.【分析】先分别计算每个几何体体积,再相加.【解答】解:由题意得:体积V=(2R)2×3+πR2×3+πr2×2=(12R2+3πR2+2πr2)cm3.答:该几何体的体积是(12R2+3πR2+2πr2)cm3.【点评】本题考查几何体体积的计算,掌握各个几何体体积计算公式是求解本题的关键.19.(2021秋•朝阳区校级期末)求如图的体积(不用写单位,π取3.14).【考点】认识立体图形.【专题】展开与折叠;运算能力.【分析】利用高为2,底面直径为2的圆柱体积的一半加上高为4,底面直径为2的圆柱体积即可解答.【解答】解:由题意得:π×()2×4+×π×()2×(6﹣4)=4π+π=5π,答:上图的体积为:5π.【点评】本题考查了认识立体图形,结合图形去分析是解题的关键.20.(2021秋•吴兴区期末)如图1所示,爱心农场的一个长、宽、高分别为12分米、8分米、20分米的长方体鱼池内装有高度为9分米的水.某项目化学习小组需要将一长方体基座(足够高)放置在鱼池内.若基座竖直放置在鱼池底部,如图2所示,则池内水面上升3分米.(1)求基座的底面积;(2)在安装过程中,先将基座吊起,使得基座的底部与水面齐平,如图3所示,然后将基座以每分钟2分米的速度下降,设下降的时间为t分钟.求当t=2时,水面上升的高度;(3)在(2)的条件下,求下降过程中,基座的底面把池中水深分成1:2的两部分时t 的值.【考点】认识立体图形;列代数式;代数式求值.【专题】展开与折叠;运算能力.【分析】(1)设底面积为S平方分米,根据体积公式计算即可;(2)设水面上升x分米,根据公式可列方程,求解可得答案;(3)利用代数式分别表示出水面上升高度、基座底面到池底、基座底面到水面,根据题意列出方程,求解答案.【解答】解:(1)设底面积为S平方分米,12×8×3=S×(9+3),解得S=24,答:底面积为24平方分米;(2)设水面上升x分米,24×(2×2+x)=12×8x,解得x=,答:水面上升分米;(3)水面上升高度分米,基座底面到池底:(9﹣2t)分米,基座底面到水面:2t+分米,或,解得t=或,答:t的值为或.【点评】此题考查的是立体图形、列代数式、求代数式的值,掌握有关体积公式是解决此题关键.。
人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(有答案解析)(1)
一、选择题1.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线4.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 5.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150° 7.在钟表上,1点30分时,时针与分针所成的角是( ).A .150°B .165°C .135°D .120° 8.下图是一个三面带有标记的正方体,它的表面展开图是( )A .B .C .D . 9.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 10.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题13.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.14.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .15.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.16.如图,用边长为4cm的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm2.17.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.18.已知∠A=67°,则∠A的余角等于______度.19.如图所示,O是直线AB上一点,OD平分∠BOC, ∠COE=90°,若∠AOC=40°,则∠DOE=_________.20.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题21.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.23.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒. (1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)24.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.25.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 26.如图,把下列物体和与其相似的图形连接起来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C根据折叠的性质,结合折叠不变性,可知剪下来的图形是C ,有四个直角三角形构成的特殊四边形.故选C.2.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 4.C解析:C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.5.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 6.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.7.C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.【详解】钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.8.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.9.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.10.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题13.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.14.【分析】棱长为1cm的正方体拼的表面积是6要使拼接成的长方体表面积最大则重合的面要最少当四个正方体排成一列时面积最大重合的有6个面【详解】解:当四个正方体排成一列时面积最大重合的有6个面根据以上分析解析:18【分析】棱长为1cm的正方体拼的表面积是6,要使拼接成的长方体表面积最大则重合的面要最少,当四个正方体排成一列时,面积最大.重合的有6个面.解:当四个正方体排成一列时,面积最大.重合的有6个面.根据以上分析表面积最大的为:4×(4×1)+2×(1×1)=18.故答案为18.【点睛】本题的考查了长方体表面积的计算,关键是要分析出什么情况下表面积最大.15.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个 解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示,∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.16.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】 解:阴影部分的面积=42-7×18×12×42=16-7=9. 故答案为9.本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.17.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.18.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.19.20【解析】【分析】求出∠BOC=140°根据OD平分∠BOC得出∠COD=∠BOC求出∠COD=70°根据∠DOE=∠COE-∠COD求出即可【详解】∵O 是直线AB上一点∴∠AOC+∠BOC=18解析:20【解析】【分析】求出∠BOC=140°,根据OD平分∠BOC得出∠COD=12∠BOC,求出∠COD=70°,根据∠DOE=∠COE-∠COD求出即可.【详解】∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=12∠BOC=70°, ∵∠DOE=∠COE-∠COD ,∠COE=90°,∴∠DOE=20°,故答案为20°.【点睛】本题考查了角的计算、角平分线的定义,解题的关键是能求出各个角的度数. 20.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题21.∠BOC =76°,∠EOC =19°.【分析】由∠BOC =2∠AOC ,则∠AOB=∠BOC+∠AOC=3∠AOC ,即∠BOC=23∠AOB ,然后求解即可;再根据OE 是∠AOB 的平分线求得∠BOE ,最后根据角的和差即可求得∠EOC .【详解】解:∵∠BOC =2∠AOC ,∠AOB =114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.23.(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,所以甲型盒的容积为24540⨯⨯=(立方分米).乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,容积为2228⨯⨯=(立方分米),故答案为40,8.(2)甲型盒的底面积为248⨯=(平方分米),两个乙型盒中的水的体积为8216⨯=(立方分米),所以甲型盒内水的高度为1682÷=(分米).答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.24.(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.25.(1)40︒,16α;(2)①存在,当20t=秒或25秒时,∠COD的度数是20︒;②当907t=,36019,1807,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.26.见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题3分,共30分)
1、从上向下看图(1),应是右图中所示的( )
C
D
B A
2、把弯曲的河道改直,能够缩短航程,这样做的道理是( ) A .两点之间,射线最短 B .两点之间,线段最短 C .两点确定一条直线 D .两点之间,直线最短
3、下列图形中,不是正方形的表面展开图的是( )
A .
B .
C .
D .
4、下列四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )
A .
B .
C .
D .
5、三条互不重合的直线的交点个数可能是( )个.
A 、0,1,3
B 、2,3,3
C 、0,1,2,3
D 、0,1,2
6、用一副三角板画角,下面的角不能画出的是( )
A .15°的角
B .135°的角
C .145°的角
D .150°的角 7、点P 在线段EF 上,现有四个等式①PE=PF;②PE=12EF;③1
2
EF=PE;④2PE=EF;其中能表示点P 是EF 中点的有( )
A .4个
B .3个
C .2个
D .1个
8、已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC 的长为( )
A. 3
B. 13
C. 5或13
D. 3或13
第9题 主视图 俯视图
9、如图是一个由若干个相同的小正方体组成的几何体的
主视图和俯视图,则能组成这个几何体的小正方体的
个数最多..
是( ) A .11个 B .12个 C .13个 D .14个
10、如图,是由四个11⨯的小正方形组成的大正方形,则1234+++=∠∠∠∠( ) A.180 B.150 C.135
D.120
第10题 二、填空题(每题3分,共18分)
11、计算:984536712234''''''+=___________________.
12、若一个角的补角是这个角的余角的3倍,则这个角的度数是 .
13、观察下图,这是由一些相同小正方体构成的立体图形的三种视图,构成这个立体图形的小正方体的个数是_______.
14、在2:35时刻,钟面上时针与分针的夹角(小于平角)为 .
第16题 15、已知线段AB ,延长AB 到C ,使BC=21
AB ,反向延长AC 到D ,使DA=21
AC ,若AB=8㎝,则DC 的长是 .
16、将两块直角三角板的直角顶点重合,如图所示,若128AOD =∠,则
B O
C =∠_________.
17、(8分)按要求画图(请用直尺或三角板画图,严禁徒手画图) (1)如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB ; (2)作射线BC ;(3)画线段CD ;
(4)连接AD,并在AD 的延长线上截取线段DE ,使
DE=BC.
(2)如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图。
第13题
B
A
18、(6分)在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.
19、(6分)如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,
34COF ∠,求BOD ∠及其补角的度数.
20、(6分)已知:线段AB=5cm ,延长AB 到C ,使AC=7cm ,在AB 的反向延长线上取点D ,使BD=4BC ,设线段CD 的中点为E ,问线段AE 是线段CD 的几分之一?(画图并说明理由)
21、(8分)把一个长方形纸片ABCD 的一角折起来,折痕为AE ,使∠EAB’=∠B’AD (1)求∠EAD ;
(2)再沿AC 对折长方形ABCD ,使B 点落在F 点上,若∠EAF =110°,求∠B’AC
22、(8分) 如图,∠AOB 为直角,∠BOC 为锐角,且OM 平分∠AOC ,ON 平分∠BOC . (1)若∠BOC =46°,试求∠MON 的度数;
(2)如果(1)中的∠BOC =α(α为锐角),其他条件不变,
试求∠MON 的度数(结果用含α的式子表示).
(3)如果∠AOB =β,∠BOC =46°其他条件不变,试求∠MON 的度数(结果用含β的式子表示).
23、(10分)如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB=10。
动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒。
(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的代数式表示); (2)动点R 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少秒时追上点R ?
(3)若M 为AP 的中点,N 为PB 的中点。
点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长;
2013学年六中珠江中学初一数学《几何图形初步》测试卷(答卷)
·
·
·
B
O
A
班级: 姓名: 学号: 成绩: 一、选择题(10小题,每题3分共30分)
二、填空题(6小题,每题3分共18分)
11._________________ 12.___ __ _________ 13._________________ 14.___________________ 15. _____________________ 16._________________ 三.解答题(共52分)
17、(8分)按要求画图(请用直尺或三角板画图,严禁徒手画图) (1
)如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB ; (2)作射线BC ;(3)画线段CD ;
(4)连接AD,并在AD 的延长线上截取线段DE ,使DE=BC.
(2)如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图。
18、(6分)在直线l 上按指定方向依次取点A 、B 、C 、D ,且使AB :BC :CD=2:3:4,如图所示,若AB 的中点M 与CD 的中点N 的距离是15cm ,求AB 的长.
B A
19、(6分)如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,
34COF ∠,求BOD ∠及其补角的度数.
20、(6分)已知:线段AB=5cm ,延长AB 到C ,使AC=7cm ,在AB 的反向延长线上取点D ,使BD=4BC ,设线段CD 的中点为E ,问线段AE 是线段CD 的几分之一?(画图并说明理由)
21、(8分)把一个长方形纸片ABCD 的一角折起来,折痕为AE ,使∠EAB’=∠B’AD (1)求∠EAD ;
(2)再沿AC 对折长方形ABCD ,使B 点落在F 点上,若∠EAF =110°,求∠B’AC
22、(8分) 如图,∠AOB为直角,∠BOC为锐角,且OM平分∠AOC,ON平分∠BOC.
(1)若∠BOC=46°,试求∠MON的度数;
(2)如果(1)中的∠BOC=α(α为锐角),其他条件不变,
试求∠MON的度数(结果用含α的式子表示).
(3)如果∠AOB=β,∠BOC=46°其他条件不变,试求∠MON的
度数(结果用含β的式子表示).
23、(10分)如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10。
动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);
(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?
(3)若M为AP的中点,N为PB的中点。
点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
B O A
·
··
0 6。