(初级试题)整式乘法、整式除法、乘法公式

合集下载

整式乘法计算50题.pdf

整式乘法计算50题.pdf
解答: 解:(x+y)5÷(﹣x﹣y)2÷(x+y) =(x+y)5÷(x+y)2÷(x+y) =(x+y)2.
7.已知 10x=a,10y=b,求 103x+3y+103x﹣2y 的值.
解答: 解:∵ 10x=a,10y=b, ∴ 103x+3y+103x﹣2y =103x×103y+103x÷102y =a3×b3+a3÷b2
14.计算:(an•bn+1)3•(ab)n. 解答: 解:原式=a3n×b3n+3×anbn=a3n+nb3n+3+n=a4nb4n+3.
整式乘除 50 题(朱韬老师分享)
15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2]. 解答: 解:原式=﹣6a5b(x+y)5.
16.计算:﹣6a2b(x﹣y)3• ab2(y﹣x)2.
=a3b3+
=

8.己知 53x+1÷5x﹣1=252x﹣3,求 x 的值.
解答: 解:原式等价于 52x+2=54x﹣6 2x+2=4x﹣6 x=4. 故答案为:4.
整式乘除 50 题(朱韬老师分享)
9.已知(x2n)2÷(x3n+2÷x3)与﹣ x3 是同类项,求 4n2﹣1 的值.
解答: 解:(x2n)2÷(x3n+2÷x3)=xn+1, 可得 xn+1 与﹣ x3 是同类项,即 n+1=3, 解得:n=2, 则原式=16﹣1=15.
40.已知 a,b,c 为实数,设 值大于零. 41.计算:2(m+1)2﹣(2m+1)(2m﹣1). 42.已知 a﹣b=2,b﹣c=2,a+c=14,求 a2﹣b2.

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算练习(提高27题)1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。

整式的乘法公式练习题

整式的乘法公式练习题

《乘法公式》练习题(一) 一、填空题1.(a +b )(a -b )=_____,公式的条件是_____,结论是_____.2.(x -1)(x +1)=_____,(2a +b )(2a -b )=_____,(31x -y )(31x +y )=_____. 3.(x +4)(-x +4)=_____,(x +3y )(_____)=9y 2-x 2,(-m -n )(_____)=m 2-n 2 4.98×102=(_____)(_____)=( )2-( )2=_____. 5.-(2x 2+3y )(3y -2x 2)=_____. 6.(a -b )(a +b )(a 2+b 2)=_____.7.(_____-4b )(_____+4b )=9a 2-16b 2,(_____-2x )(_____-2x )=4x 2-25y 28.(xy -z )(z +xy )=_____,(65x -0.7y )(65x +0.7y )=_____.9.(41x +y 2)(_____)=y 4-161x 2 二、选择题11.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x +y )(-x -y ) B.(2x +3y )(2x -3z ) C.(-a -b )(a -b ) D.(m -n )(n -m ) 12.下列计算正确的是( )A.(2x +3)(2x -3)=2x 2-9B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 213.下列多项式乘法,不能用平方差公式计算的是( ) A.(-a -b )(-b +a ) B.(xy +z )(xy -z ) C.(-2a -b )(2a +b ) D.(0.5x -y )(-y -0.5x )14.(4x 2-5y )需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-4x 2-5y B.-4x 2+5y C.(4x 2-5y )2D.(4x +5y )215.a 4+(1-a )(1+a )(1+a 2)的计算结果是( ) A.-1 B.1 C.2a 4-1D.1-2a 416.下列各式运算结果是x 2-25y 2的是( ) A.(x +5y )(-x +5y ) B.(-x -5y )(-x +5y ) C.(x -y )(x +25y ) D.(x -5y )(5y -x ) 三、解答题 17.1.03×0.97 18.(-2x 2+5)(-2x 2-5) 19.a (a -5)-(a +6)(a -6)20.(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 21.(31x +y )(31x -y )(91x 2+y 2)22.(x +y )(x -y )-x (x +y )23.3(2x +1)(2x -1)-2(3x +2)(2-3x ) 24.9982-425.2003×2001-20022 《乘法公式》练习题(二)1.222)(b a b a +=+--( ) 2.2222)(y xy x y x +-=----( ) 3.2222)(b ab a b a ++=----( ) 4.2229122)32(y xy x y x +-=-( ) 5.2294)32)(32(y x y x y x -=-+( )6______________)3)(32(=-+y x y x ; 7._______________)52(2=+y x ; 8.______________)23)(32(=--y x y x ;9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13。

整式乘法公式练习题附答案

整式乘法公式练习题附答案

1、(﹣2m﹣1)2;2、(a+b+3)(a+b-3)3、计算4、(x-2y+3)(x+2y+3)5、计算:6、运用整式乘法公式计算:.7、(a+b-c)(a-b+c)8、因式分解:;9、的值是()A. B. C. D.10、只要a、b为实数,的值总是()A.正数B.负数C.非负数D.非正数11、计算的结果是:()A.B.C.D.12、已知,,则与的值分别是()A.4,1B.2,C.5,1D.10,13、不论为什么实数,代数式的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数14、若9x2+mxy+16y2是一个完全平方式,则m的值为()A.24B.﹣12C.±12D.±2415、若,,则的值为A、15B、90C、100D、11016、如图,两个正方形的边长分别为和,如果,,那么阴影部分的面积是()A. B.C. D.17、下列多项式乘法中,能用平方差计算的是()A. B.C. D.18、下列各式中与2nm﹣m2﹣n2相等的是()A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 19、若a+b=0,ab=11,则a2-ab+b2的值为()A.11B.-11C.-33D.3320、若x2+mx+1是完全平方式,则m=()。

A2B-2C±2D±421、已知,求:①②xy的值.22、已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23、已知,求的值.24、已知,,,求代数式的值。

25、已知,求代数式的值。

26、已知:=2,请分别求出下列式子的值(1);(2)27、已知x2+x-1=0,求x3+2x2+3的值.28、探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?29、计算:19902-19892+19882-19872+…+22-1.30、已知,,则___________.31、已知实数x满足x+=3,则x2+的值为_________.32、若,,则=,=。

整式的乘除—乘法公式

整式的乘除—乘法公式

整式的乘除—乘法公式1整式的乘除—乘法公式【复习】(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳⼩结公式的变式,准确灵活运⽤公式:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2⑦连⽤公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧逆⽤公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz【典例分析】例1.已知2=+b a ,1=ab ,求22b a +的值。

例2.已知8=+b a ,2=ab ,求2)(b a -的值。

例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

2 例5:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

第02讲 整式的乘除法(知识解读+真题演练+课后巩固)(原卷版)

第02讲 整式的乘除法(知识解读+真题演练+课后巩固)(原卷版)

第02讲整式的乘除法1.掌握单项式乘(或除以)单项式,多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算.2.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活的运用运算律进行混合运算。

知识点1:单项式乘单项式单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点2:单项式乘多项式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.知识点3:多项式乘多项式多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.知识点4:单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.知识点5:多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【题型1单项式乘单项式】【典例1】(2023春•青龙县期末)计算2x2y•xy2的结果是.【变式1-1】(2023•长岭县模拟)计算(2x)2(﹣3xy2)=.【变式1-2】(2023春•永定区期末)计算:2(a2)3•(﹣3a2b)=.【变式1-3】(2023春•新城区校级期末)=.【题型2单项式乘多项式】【典例2】(2023春•秦都区期中)计算:3a(2a2﹣4a)﹣2a2(3a+4).【变式2-1】(2023春•青秀区期中)化简:x+2x(x+1)﹣3x(2x﹣5).【变式2-2】(2022春•槐荫区期末)计算:﹣3a(2a﹣4b+2)+6a.【变式2-3】(2022春•平桂区期中)计算:m(m3+m2)﹣m3(m﹣3).【题型3多项式乘多项式】【典例3】(2022秋•惠阳区校级月考)计算:(1)(x﹣3)(x2+4);(2)(3x2﹣y)(x+2y).【变式3-1】(2022秋•兴城市期末)计算:(2a﹣3b)(2a2+6ab+5b2).【变式3-2】(2022秋•南宫市期末)计算:(x﹣2)(x﹣5)﹣x2.【变式3-3】(2023春•沙坪坝区校级期末)计算:(1)(2x2)3﹣6x3(x3+2x2+x).(2)(2x﹣1)(x+4)+(2x+3)(x﹣5).【题型4多项式乘多项式-不存在某项问题】【典例4】(2023春•昭平县期末)已知(x2+mx﹣3)(2x+n)的展开式中不含x2项,常数项是﹣6.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.【变式4-1】(2023春•巨野县期末)(1)若(x2+mx+n)(x2﹣3x+1)的展开式中不含x2和x3项,求m、n的值.(2)求(m+n)(m2﹣mn+n2)的值.【变式4-2】(2023春•温江区校级期中)若(x+m)(x2﹣3x+n)的展开式中不含x项,x2项的系数为﹣1,求n m的值.【变式4-3】(2023春•茶陵县期中)若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2022q2023的值.【题型5多项式乘多项式的实际应用】【典例5】(2022秋•松原期末)如图,某小区有一块长为(2a+3b)米,宽为(3a+2b)米的长方形地块,物业公司计划在小区内修一条平行四边形小路,小路的底边宽为a米,将阴影部分进行绿化.(1)用含有a、b的式子表示绿化的总面积S;(2)若a=2,b=4,求出此时绿化的总面积S.【变式5-1】(2023春•绥德县期末)如图,在某高铁站广场前有一块长为2a+b,宽为a+b的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当a=200,b=100时,求这两个长方形喷泉池的总面积.【变式5-2】(2022秋•晋江市期末)甲、乙两个长方形的边长如图所示,其面积分别记为S1,S2.(1)请通过计算比较S1与S2的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长的和,设该正方形的面积为S3,试说明代数式S3﹣2(S1+S2)的值是一个常数.【变式5-3】(2023春•张店区期中)某学校准备在一块长为(3a+2b)米,宽为(2a+b)米的长方形空地上修建一块长为(a+2b)米,宽为(3a﹣b)米的长方形草坪,四周铺设地砖(阴影部分),(1)求铺设地砖的面积;(用含a、b的式子表示,结果化为最简)(2)若a=3,b=4,铺设地砖的成本为50元/平方米,则完成铺设地砖需要多少元?【典例6】(2022秋•西湖区校级期末)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b).【变式6-1】(2023春•龙泉驿区期末)“以形释数”是利用数形结合思想证明代数问题的一种体现,若干张边长为a的正方形A纸片,边长为b的正方形B纸片,长和宽分别为a与b的长方形C纸片(如图1).(1)小李同学拼成一个宽为(a+b),长为(a+2b)的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式:(a+b)(a+2b)=a2+3ab+2b2(答案直接填写到横线上);(2)如果用这三种纸片拼出一个面积为(2a+b)(a+3b)的大长方形,求需要A,B,C三种纸片各多少张;(3)利用上述方法,画出面积为2a2+5ab+2b2的长方形,并求出此长方形的周长(用含a,b的代数式表示).【变式6-2】(2021秋•罗庄区期末)我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.【题型6单项式除法运算】【典例7】(2023•青岛)计算:8x3y÷(2x)2=.【变式7-1】(2022秋•柳州期末)计算4x2y÷2xy=【变式7-2】(2023春•威宁县期末)计算:﹣28a3÷7a=.【变式7-3】(2023秋•鲤城区校级月考)计算:6a2b÷2ab=.【变式7-4】(2023•城阳区三模)=.【题型7多项式除法运算】【典例8】(2023•丰城市校级开学)先化简,再求值:(12a3﹣6a2+3a)÷3a,其中a=﹣1.【变式8-1】(2023春•济南期中)计算:(ab3﹣2a2b2+ab)÷ab.【变式8-2】(2023春•莲湖区期中)计算:(15x4y2﹣12x2y3﹣3x2)÷(﹣3x2).【变式8-3】(2023春•西安月考)计算:ab(2a3b2c﹣6ab3c2)÷(﹣2ab2c).1.(2023•随州)设有边长分别为a和b(a>b)的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为2a+2b的矩形,则需要C类纸片的张数为()A.6B.7C.8D.9 2.(2023•金昌)计算:a(a+2)﹣2a=()A.2B.a2C.a2+2a D.a2﹣2a 3.(2021•兰州)计算:2a(a2+2b)=()A.a3+4ab B.2a3+2ab C.2a+4ab D.2a3+4ab 4.(2020•兰州)化简:a(a﹣2)+4a=()A.a2+2a B.a2+6a C.a2﹣6a D.a2+4a﹣2 5.(2021•凉山州)阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550﹣1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N).又∵m+n=log a M+log a N,∴log a(M•N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=,②log327=,③log71=;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56﹣log530.1.(2023春•市南区校级期中)小明有足够多的如图所示的正方形卡片A,B和长方形卡片C,如果他要拼一个长为(a+2b),宽为(a+b)的大长方形,共需要C类卡片()A.3张B.4张C.5张D.6张2.(2022秋•新抚区期末)如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b 3.(2023春•裕华区期中)化简x(x﹣2)+4x的结果是()A.x2+6x B.x2﹣2x C.x2﹣6x D.x2+2x 4.(2023春•平湖市期中)计算(a+3b)(a+2b)的结果是()A.a2+5ab+5b2B.a2+5ab+6b2C.a2+5b2D.a2+6b2 5.(2023春•临清市期末)若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p 6.(2023春•承德县期末)若(x﹣3)(x+n)=x2+mx﹣21,则m,n的值分别是()A.4,﹣3B.﹣7,4C.﹣5,18D.4,7 7.(2023春•包河区期中)若关于x的多项式(x2+ax)(x﹣2)展开合并后不含x2项,则a的值是()A.2B.C.0D.﹣2 8.(2023春•漳浦县期中)已知(x﹣1)(x﹣2)=x2+mx+n,则m+n的值为()A.﹣1B.﹣5C.5D.1 9.(2023春•潍坊期中)计算下列各题:(1)x2•(﹣2xy2)3;(2)(2m+1)•.10.(2022秋•河北区期末)计算:(1)a•a5+(a3)2﹣(2a2)3;(2)(2x+1)(x﹣2).11.(2022秋•天河区期末)计算:(2x+1)(x﹣3)12.(2022春•临湘市校级月考)计算:(1)(﹣2a2b)3+8(a2)2•(﹣a2)•(﹣b)3;(2)(x﹣1)(x2+x+1).13.(2022秋•昌吉市校级期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)试用含a、b的代数式表示绿化的面积是多少平方米?(2)若a=10,b=8,且每平方米造价为100元,求出绿化需要多少费用?14.(2022秋•衡南县期中)若(x2+mx)(x2﹣3x+n)的展开式中不含x2和x3项,求m和n的值.15.(2022春•揭东区期末)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?16.(2023•桃城区校级模拟)甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)填空:S1﹣S2=(用含m的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由.。

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法分解演习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a) (x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(am)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(xn+5)=3xn+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(an)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为天然数)等于______.(二)选择:27.下列盘算最后一步的根据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x(乘法交流律)=-20(a2a3)·(x4x)(乘法联合律)=-20a5x5. ( )A.乘法意义;B.乘方界说;C.同底数幂相乘轨则;D.幂的乘方轨则.28.下列盘算准确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(ym)3·yn的运算成果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列盘算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.盘算-a2b2·(-ab3)2所得的成果是[ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列盘算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列盘算准确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的成果是 [ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不合错误.36.若0<y<1,那么代数式y(1-y)(1+y)的值必定是[ ]A.正的;B.非负;C.负的;D.正.负不克不及独一肯定.37.()2·(-4m)3的盘算成果是[ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.假如b2m<bm(m为天然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列盘算中准确的是[ ]A.am+1·a2=am+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3anb)4=-81a4nb4;B.(an+1bn)4=a4n+4b4n;C.(-2an)2·(3a2)3=-54a2n+6;D.(3xn+1-2xn)·5x=15xn+2-10xn+1. 41.下列盘算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)bx-y=bx-by,(4)2164=(64)3,(5)x2n-1 y2n-1=xy2n-2.A.只有(1)与(2)准确;B.只有(1)与(3)准确;C.只有(1)与(4)准确;D.只有(2)与(3)准确.42.(-6xny)2·3xn-1y的盘算成果是 [ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列盘算准确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列盘算准确的是[ ]A.(a+b)2=a2+b2;B.am·a n=amn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的盘算成果写成10的幂的情势,准确的是[ ]A.100×103=106; B.1000×10100=103000;C.1002n×1000=104n+3; D.1005×10=10005=1015.48.t2-(t+1)(t-5)的盘算成果准确的是 [ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分离是[ ] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使xnym·xnym>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不管m,n为奇数或偶数都可以;D.不管m,n为奇数或偶数都不成.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)盘算52.(6×108)(7×109)(4×104).53.(-5xn+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.xn+1(xn-xn-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2ambn)(-a2bn)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(3b4)2·(4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3am+2bn+2)(2am+2am-2bn-2+3bn).91.(-2xmyn)3·(-x2yn)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(-1.5b+1)(-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.盘算[(-a)2m]3·a3m+[(-a)3m]3(m为天然数).(四)化简(五)求值;104.先化简yn(yn+9y-12)-3(3yn+1-4yn),再求其值,个中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,个中x= 106.光的速度每秒约3×105千米,太阳光射到地球上须要的时光约是5×102秒.问地球与太阳的距离约是若干千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字交流,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为天然数),求证:ab-cb=ac.120.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3ny3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证实(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算演习(进步27题)1.=2.若2x + 5y-3 = 0 则=3.已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < cB.c < b < aC.a < c < bD.c < a < b4.已知,则x =5.21990×31991的个位数字是若干6.盘算下列各题(1)(2)(3)(4)7.盘算(-2x-5)(2x-5)8.盘算9.盘算,当a6 = 64时, 该式的值.10.盘算11.盘算12.盘算13.的值是n B.C.2n-1 D.22n-1A.14214.若, 求a2 + b2的值.15.求证: 不管x.y为何值, 多项式的值永弘远于或等于0.16.若,求: M-N的值是()A.正数 B.负数 C.非负数 D.可正可负17.已知a = -2000 b = 1997 c = -1995那么的值是若干.18.已知由此求的值为?19.实数a.b.c知足a = 6-b, c2 = ab-9,求证: a = b20.用公式解题,化简21.已知x + y = 5, , 求x -y 之值由此可以得到 ①②22.已知a +b +c = 2,求的值 23.若a + b = 5,24.已知求a.b 的值 25.已知, 求xy 的值 26.已知的值27.已知的值 《乘法公式》演习题(一)一.填空题1.(a+b)(a -b)=_____,公式的前提是_____,结论是_____.2.(x -1)(x+1)=_____,(2a+b)(2a -b)=_____,(31x -y)(31x+y)=_____.3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m -n)(_____)=m2-n24.98×102=(_____)(_____)=( )2-( )2=_____.5.-(2x2+3y)(3y -2x2)=_____.6.(a -b)(a+b)(a2+b2)=_____.7.(_____-4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y28.(xy -z)(z+xy)=_____,(65x -0.7y)(65x+0.7y)=_____.9.(41x+y2)(_____)=y4-161x2 10.不雅察下列各式: (x -1)(x+1)=x2-1 ,(x -1)(x2+x+1)=x3-1 , (x -1)(x3+x2+x+1)=x4-1 根据前面各式的纪律可得 (x -1)(xn+xn -1+…+x+1)=_____.二.选择题11.下列多项式乘法,能用平方差公式进行盘算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)12.下列盘算准确的是( )A.(2x+3)(2x -3)=2x2-9B.(x+4)(x -4)=x2-4C.(5+x)(x -6)=x2-30D.(-1+4b)(-1-4b)=1-16b213.下列多项式乘法,不克不及用平方差公式盘算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)14.(4x2-5y)需乘以下列哪个式子,才干应用平方差公式进行盘算( )A.-4x2-5yB.-4x2+5yC.(4x2-5y)2D.(4x+5y)215.a4+(1-a)(1+a)(1+a2)的盘算成果是( )A.-1B.1C.2a4-1D.1-2a416.下列各式运算成果是x2-25y2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)三.解答题×0.97 18.(-2x2+5)(-2x2-5)19.a(a -5)-(a+6)(a -6) 20.(2x -3y)(3y+2x)-(4y -3x)(3x+4y) 21.(31x+y)(31x -y)(91x2+y2) 22.(x+y)(x -y)-x(x+y) 23.3(2x+1)(2x -1)-2(3x+2)(2-3x)24.9982-4 25.2003×2001-20022《乘法公式》演习题(二)1.222)(b a b a +=+--( ) 2.2222)(y xy x y x +-=----( ) 3.2222)(b ab a b a ++=----( ) 4.2229122)32(y xy x y x +-=-( ) 5.2294)32)(32(y x y x y x -=-+( )6______________)3)(32(=-+y x y x ;7._______________)52(2=+y x ; 8.______________)23)(32(=--y x y x ;9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13.4))(________2(2-=+x x ; 14._____________)3)(3()2)(1(=+---+x x x x ;15.____________)2()12(22=+--x x ;16.224)__________)(__2(y x y x -=-+; 17.______________)1)(1)(1)(1(42=++-+x x x x ;18.下列多项式乘法中不克不及用平方差公式盘算的是( )(A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+(C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +-19.下列多项式乘法中可以用平方差公式盘算的是( )(A ) ))((b a b a -+-(B ))2)(2(x x ++(C ) )31)(31(x y y x -+(D ) )1)(2(+-x x20.下列盘算不准确的是( )(A ) 222)(y x xy = (B ) 2221)1(xx x x +=- (C ) 22))((b a a b b a -=+- (D ) 2222)(y xy x y x ++=--21.化简:))(())(())((a c a c c b c b b a b a +-++-++-22.化简求值:22)2()2()2)(12(+---+-x x x x ,个中211-=x23.解方程:24.(1)已知2)()1(2-=---y x x x , (2)假如2215,6ab ab a b +=+= 求xy y x -+222的值; 求2222a b a b -+和的值 25.摸索题:(x-1)(x+1)=21x - (x-1)23(1)1x x x ++=- (x-1)324(11)x x x x ++-+= (x-1)4325(1)1x x x x x ++++=-……试求654322122222++++++的值 断定200520042003...21222+++++的值末位数《乘法公式》演习题(三)1.盘算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;(2)(x+y)4(x-y)4;(3)(a+b+c)(a2+b2+c2-ab-ac-bc).2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z);(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)(x+y-z).3.已知z2=x2+y2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).4.已知,,a b c 知足0a b c ++=,8abc =,那么111a b c++的值是(A )正数; (B )零 (C )负数 (D )正负不克不及肯定5.若实数,,a b c 知足2229a b c ++=,则代数式222()()()a b a c b c -+-+-的最大值是( )(A )27; (B )18; (C )15; (D )12.6.已知21()()()4b c a b c a -=--,且0a ≠,则b c a+= 7.已知2223336,14,36,a b c a b c a b c ++=++=++=求abc 的值.。

第十四章整式的乘法与因式分解-题型

第十四章整式的乘法与因式分解-题型

第十四章整式的乘法与因式分解14.1整式的乘法题型一:整式乘法与整式加减的综合例1:计算:(1)(a+b)(a-2b)-(a+2b)(a-b)(2)5x(x2+2x+1)-(2x+3)(x-5)变式训练:(1)(x+3)(x+4)-x(x+2)-5 (2)(3a-2b)(b-3a)-(2a-b)(3a+b)题型二:整式乘法与方程的综合例2:解方程(3x-2)(2x-3)=(6x+5)(x-1)变式训练:解方程2x(x-1)-(x+1)(2x-5)=12题型三:整式乘法与表达不等式的综合例3:解不等式(3x+4)(3x-4)>9(x-2)(x+3)变式训练:解不等式(2x-1)÷(2x-1)>(2x+5)(2x-5)-2题型四:整式的化简求值例4:先化简,再求值(-2a4x2+4a3x3 -a2x4)÷(-a2x3),其中a=,x=-4.。

变式训练:已知2x-y=10,求代数式[(x2+y2)-(x-y)2+2y(x-y)]÷4y的值。

题型五:整式乘法的实际应用例5:西红柿丰收了,为了方便运输,小红的爸爸把一根长方形为a cm,宽为 a cm的长方形铁板做成了一个有底无盖的盒子。

在长方形铁板的四个角上各截去一个边长为b cm的小正方形(2b<a),然后沿虚线折起即可,如图14-1所示,现在要将盒子的外部表面贴上彩色花纸,小花任务至少需要彩色纸花的面积实际就是小盒子外部的表面积,可以用以下两种方法求得:①直接法,小盒子外部表面的面积=四个侧面的面积+底面的面积=2[(a-2b)b+(a-2b)b]+(a-2b)(a-2b);②间接法,小盒子外部表面的面积=原长方形的面积-四个小正方形的面积=a·a-4b2 。

请你就是一下这两种方法的结果是否一样。

变式训练:如图所示,有正方形卡片A类、B类和长方形卡片C类各若干张,若干要拼一个长为(a+2b),宽为(a+b)的大长方形,那么需要C类卡片多少张?题型六:逆用幂的运算法则例6:已知2x=m,2y=n,2z=mn,求证x+y=z变式训练:已知10m=5,10n=6,求102m+3n的值。

整式乘法公式练习题

整式乘法公式练习题

整式乘法公式练习题整式乘法公式专项过关训练一、用乘法公式计算1) $(-m+5n)(-m-5n)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:m+5n)(-m-5n)=(-m)^2-(5n)^2=m^2-25n^2$ 2) $(3x-1)(3x+1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:3x-1)(3x+1)=(3x)^2-(1)^2=9x^2-1$3) $(y-5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:y-5)^2=y^2-10y+25$4) $(-2x+5)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x+5)^2=(-2x)^2-2(-2x)(5)+5^2=4x^2-20x+25$ 5) $(3^2x-y)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:3^2x-y)^2=(9x)^2-2(9x)(y)+y^2=81x^2-18xy+y^2$ 6) $(y+3x)(3x-y)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:y+3x)(3x-y)=3x^2-y^2$7) $(-2+ab)(2+ab)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2+ab)(2+ab)=-4+a^2b^2$8) $(2x-3)^2$解:使用公式$(a-b)^2=a^2-2ab+b^2$,得到:2x-3)^2=4x^2-12x+9$9) $(-2x+3y)(-2x-3y)$解:使用公式$(a+b)(c+d)=ac+ad+bc+bd$,得到:2x+3y)(-2x-3y)=12x^2-9y^2$10) $(m-3)(m+3)$解:使用公式$(a-b)(a+b)=a^2-b^2$,得到:m-3)(m+3)=m^2-9$11) $(x+6y)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:x+6y)^2=x^2+12xy+36y^2$13) $(x+1)(x-3)-(x+2)^2+(x+2)(x-2)$解:先按照乘法公式计算:x+1)(x-3)=x^2-2x-3$x+2)^2=x^2+4x+4$x+2)(x-2)=x^2-4$代入原式得:x+1)(x-3)-(x+2)^2+(x+2)(x-2)=x^2-2x-3-x^2-4x-4+x^2-4=x^2-6x-11$14) $(a+2b-1)^2$解:使用公式$(a+b)^2=a^2+2ab+b^2$,得到:a+2b-1)^2=a^2+4ab-2a+4b^2-4b+1$15) $(2x+y+z)(2x-y-z)$解:使用公式$(a+b)(c-d)=ac-ad+bc-bd$,得到:2x+y+z)(2x-y-z)=4x^2-y^2-z^2$16) $(2x-1)(x+2)-(x-2)^2-(x+2)^2$解:先按照乘法公式计算:2x-1)(x+2)=2x^2+3x-2$x-2)^2=x^2-4x+4$x+2)^2=x^2+4x+4$代入原式得:2x-1)(x+2)-(x-2)^2-(x+2)^2=2x^2+3x-2-x^2+4x-4-x^2-4x-4=-2x^2-5$17) $12^2-12\cdot2\cdot4$解:使用公式$a^2-b^2=(a+b)(a-b)$,得到:12^2-12\cdot2\cdot4=(12+8)(12-8)=20\cdot4=80$18) $(2x+3)(2x-3)-(2x-1)^2$解:先按照乘法公式计算:2x+3)(2x-3)=4x^2-9$2x-1)^2=4x^2-4x+1$代入原式得:2x+3)(2x-3)-(2x-1)^2=4x^2-9-(4x^2-4x+1)=-9+4x$ 19) $(2x+y+1)(2x+y-1)$解:使用公式$(a+b)(a-b)=a^2-b^2$,得到:2x+y+1)(2x+y-1)=(2x+y)^2-1=4x^2+4xy+y^2-1$ 20) $(2x-1)(x-3)$解:使用公式$(a-b)(c-d)=ac-ad-bc+bd$,得到:2x-1)(x-3)=2x^2-7x+3$二、判断正误:对的画“√”,错的画“×”.1) $(a-b)(a+b)=a^2-b^2$ √2) $(b+a)(a-b)=a^2-b^2$ ×3) $(b+a)(-b+a)=a^2-b^2$ √4) $(b-a)(a+b)=a^2-b^2$ √5) $(a-b)(a-b)=a^2-b^2$ ×6) $(a+b)^2=a^2+b^2$ ×7) $(a-b)^2=a^2-b^2$ ×8) $(a-b)^2=(b-a)^2$ √三、填空题1.$(2x+5y)^2=4x^2+20xy+25y^2$2.$(2x+3y)(3x-y)=6x^2+5xy-3y^2$3.$(2x-3y)(3x-2y)=6x^2-13xy+6y^2$4.$(4x+6y)(2x-3y)=8x^2-6xy+18y^2$5.$(x-2y)^2=x^2-4xy+4y^2$6.$(x-3)(x+3)(x^2+9)=x^4-9$7.$(2x+1)(2x-1)+1=4x^2$8.$(x+2)(x-2)=x^2-4$9.$(2x-1)^2-(x+2)^2=x^2-6x-3$10.$(x+1)(x-2)-(x-3)(x+3)=2x-7$11.将(2x+ )( -y) = 4x^2 - y^2中的空格填上4x和y,得到(2x+4x)(y -y) = 4x^2 - y^2.小幅度改写为:将(2x+ )( -y) = 4x^2 - y^2转化为(2x+4x)(y -y) = 4x^2 - y^2.12.(1+x)(1-x)(1+x^2)(a+x^4)中间没有等号,无法求解,删除该段。

整式的乘除整章练习题(完整)

整式的乘除整章练习题(完整)
4.计算:(1) ____________;(2) _______.
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )

整式的乘法综合练习题(乘法公式三套)

整式的乘法综合练习题(乘法公式三套)

整式的乘法分解演习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=_____ _.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为天然数)等于______.(二)选择:27.下列盘算最后一步的根据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交流律)=-20(a2a3)·(x4x)(乘法联合律)=-20a5x5. ( )A.乘法意义;B.乘方界说;C.同底数幂相乘轨则;D.幂的乘方轨则.28.下列盘算准确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算成果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列盘算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.盘算-a2b2·(-ab3)2所得的成果是[ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列盘算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列盘算准确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的成果是 [ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不合错误.36.若0<y<1,那么代数式y(1-y)(1+y)的值必定是[ ]A.正的;B.非负;C.负的;D.正.负不克不及独一肯定.37.(-3)2·(-4m)3的盘算成果是[ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.假如b2m<b m(m为天然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列盘算中准确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列盘算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)准确;B.只有(1)与(3)准确;C.只有(1)与(4)准确;D.只有(2)与(3)准确.42.(-6x n y)2·3x n-1y的盘算成果是 [ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列盘算准确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列盘算准确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的盘算成果写成10的幂的情势,准确的是[ ] A.100×103=106; B.1000×10100=103000;C.1002n×1000=104n+3; D.1005×10=10005=1015.48.t2-(t+1)(t-5)的盘算成果准确的是 [ ]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分离是[ ] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不管m,n为奇数或偶数都可以;D.不管m,n为奇数或偶数都不成.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)盘算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(3b4)2·(-4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(-1.5b+1)(-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.盘算[(-a)2m]3·a3m+[(-a)3m]3(m为天然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,个中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,个中x= 106.光的速度每秒约3×105千米,太阳光射到地球上须要的时光约是5×102秒.问地球与太阳的距离约是若干千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字交流,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为天然数),求证:ab-cb=ac.120.求证:对于随意率性天然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z知足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证实(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算演习(进步27题)1.=2.若2x + 5y-3 = 0 则=3.已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4.已知,则x =5.21990×31991的个位数字是若干6.盘算下列各题(1)(2)(3)(4)7.盘算(-2x-5)(2x-5)8.盘算9.盘算,当a6 = 64时, 该式的值.10.盘算11.盘算12.盘算13.的值是n B.C.2n-1 D.22n-1A.14214.若, 求a2 + b2的值.15.求证: 不管x.y为何值, 多项式的值永弘远于或等于0.16.若,求: M-N的值是()A .正数B .负数C .非负数D .可正可负17.已知a = -2000 b = 1997 c = -1995那么的值是若干.18.已知由此求的值为? 19.实数a .b .c 知足a = 6-b , c 2 = ab -9,求证: a = b20.用公式解题,化简 21.已知x + y = 5, , 求x -y 之值由此可以得到 ①②22.已知a +b +c = 2,求的值 23.若a + b = 5,24.已知求a .b 的值 25.已知, 求xy 的值 26.已知的值27.已知的值《乘法公式》演习题(一)一.填空题1.(a +b )(a -b )=_____,公式的前提是_____,结论是_____.2.(x -1)(x +1)=_____,(2a +b )(2a -b )=_____,(31x -y )(31x +y )=_____.3.(x +4)(-x +4)=_____,(x +3y )(_____)=9y 2-x 2,(-m -n )(_____)=m 2-n 2 ×102=(_____)(_____)=( )2-( )2=_____.5.-(2x 2+3y )(3y -2x 2)=_____.6.(a -b )(a +b )(a 2+b 2)=_____.7.(_____-4b )(_____+4b )=9a 2-16b 2,(_____-2x )(_____-2x )=4x 2-25y 28.(xy -z )(z +xy )=_____,(65xy )(65xy )=_____. 9.(41x +y 2)(_____)=y 4-161x 210.不雅察下列各式:(x -1)(x +1)=x 2-1 ,(x -1)(x 2+x +1)=x 3-1 , (x -1)(x 3+x 2+x +1)=x 4-1 根据前面各式的纪律可得 (x -1)(x n +xn -1+…+x +1)=_____.二.选择题11.下列多项式乘法,能用平方差公式进行盘算的是( )A.(x +y )(-x -y )B.(2x +3y )(2x -3z )C.(-a -b )(a -b )D.(m -n )(n -m )12.下列盘算准确的是( )A.(2x +3)(2x -3)=2x 2-9B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 213.下列多项式乘法,不克不及用平方差公式盘算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +bx -y )(-yx )14.(4x 2-5y )需乘以下列哪个式子,才干应用平方差公式进行盘算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )215.a 4+(1-a )(1+a )(1+a 2)的盘算成果是( )A.-1B.1C.2a 4-1D.1-2a 4x 2-25y 2的是( )A.(x +5y )(-x +5y )B.(-x -5y )(-x +5y )C.(x -y )(x +25y )D.(x -5y )(5y -x )三.解答题×0.97 18.(-2x 2+5)(-2x 2-5)19.a (a -5)-(a +6)(a -6) 20.(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 21.(31x +y )(31x -y )(91x 2+y 2) 22.(x +y )(x -y )-x (x +y ) 23.3(2x +1)(2x -1)-2(3x +2)(2-3x )2×2001-20022《乘法公式》演习题(二) 1.222)(b a b a +=+--( ) 2.2222)(y xy x y x +-=----( ) 3.2222)(b ab a b a ++=----( ) 4.2229122)32(y xy x y x +-=-( ) 5.2294)32)(32(y x y x y x -=-+( )6______________)3)(32(=-+y x y x ;7._______________)52(2=+y x ;8.______________)23)(32(=--y x y x ; 9.______________)32)(64(=-+y x y x ;10________________)221(2=-y x 11.____________)9)(3)(3(2=++-x x x ;12.___________1)12)(12(=+-+x x ; 13.4))(________2(2-=+x x ;14._____________)3)(3()2)(1(=+---+x x x x ; 15.____________)2()12(22=+--x x ;16.224)__________)(__2(y x y x -=-+; 17.______________)1)(1)(1)(1(42=++-+x x x x ;18.下列多项式乘法中不克不及用平方差公式盘算的是( )(A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+(C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +- 19.下列多项式乘法中可以用平方差公式盘算的是( ) (A ) ))((b a b a -+-(B ))2)(2(x x ++ (C ) )31)(31(x y y x -+(D ) )1)(2(+-x x 20.下列盘算不准确的是( )(A ) 222)(y x xy = (B ) 2221)1(xx xx +=- (C ) 22))((b a a b b a -=+- (D ) 2222)(y xy x y x ++=-- 21.化简:))(())(())((a c a c c b c b b a b a +-++-++-22.化简求值:22)2()2()2)(12(+---+-x x x x ,个中211-=x 23.解方程:24.(1)已知2)()1(2-=---y x x x , (2)假如2215,6ab ab a b +=+=求xy y x -+222的值; 求2222a b a b -+和的值 25.摸索题:(x-1)(x+1)=21x - (x-1)23(1)1x x x ++=- (x-1)324(11)x x x x ++-+=(x-1)4325(1)1x x x x x ++++=-…… 试求654322122222++++++的值断定200520042003 (212)22+++++的值末位数《乘法公式》演习题(三)1.盘算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2; (2)(x+y)4(x-y)4;(3)(a+b+c)(a 2+b 2+c 2-ab-ac-bc). 2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z); (2)(a+3b)(a 2-3ab+9b 2)-(a-3b)(a 2+3ab+9b 2); (3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)(x+y-z).3.已知z 2=x 2+y 2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z). 4.已知,,a b c 知足0a b c ++=,8abc =,那么111abc++的值是(A )正数; (B )零 (C )负数 (D )正负不克不及肯定 5.若实数,,a b c 知足2229a b c ++=,则代数式222()()()a b a c b c -+-+-的最大值是( )(A )27; (B )18; (C )15; (D )12. 6.已知21()()()4b c a b c a -=--,且0a ≠,则b ca += 7.已知2223336,14,36,abc a b c a b c ++=++=++=求abc 的值.。

整式的乘法法则公式

整式的乘法法则公式

整式的乘法法则公式在代数学中,整式的乘法法则公式是指用来计算两个整式相乘的规则和公式。

整式是由数、变量和运算符号(加减乘除)组成的代数表达式。

整式的乘法法则公式是代数学中非常重要的一部分,它能够帮助我们简化复杂的代数表达式,解决各种数学问题。

本文将介绍整式的乘法法则公式,并通过一些例子来说明如何应用这些公式进行计算。

首先,让我们来看一下整式的基本形式。

一个整式通常由若干个单项式相加或相减而成。

例如,3x^2 + 2xy - 5y^2就是一个整式,其中3x^2、2xy和-5y^2分别是三个单项式。

整式的乘法法则公式适用于任意两个整式的相乘,无论它们是单项式还是多项式。

整式的乘法法则公式可以总结为以下几条规则:1. 单项式乘单项式:两个单项式相乘时,只需要将它们的系数相乘,并将它们的字母部分相乘。

例如,3x乘以4y等于12xy。

2. 单项式乘多项式:一个单项式与一个多项式相乘时,只需要将单项式的系数依次与多项式的每一项相乘,并将它们的字母部分相乘。

然后将得到的各项再相加。

例如,2x乘以(3x^2 + 4y)等于6x^3 + 8xy。

3. 多项式乘多项式:两个多项式相乘时,需要将一个多项式的每一项依次与另一个多项式的每一项相乘,并将它们的结果相加。

这其实就是分配律的运用。

例如,(3x + 2y)乘以(4x - 5y)等于12x^2 - 15xy + 8xy - 10y^2,再将相同项合并得到12x^2 - 7xy- 10y^2。

整式的乘法法则公式可以帮助我们快速准确地计算整式的乘法。

通过这些规则,我们可以将复杂的整式相乘的问题简化为一系列简单的乘法运算。

下面我们通过一些例子来演示如何应用整式的乘法法则公式进行计算。

例1:计算(3x + 2)(4x - 5)。

根据整式的乘法法则公式,我们将第一个多项式的每一项依次与第二个多项式的每一项相乘,并将结果相加。

即(3x乘以4x) + (3x乘以-5) + (2乘以4x) + (2乘以-5)。

初一整式的乘法(含答案)

初一整式的乘法(含答案)

整式的乘法一、基础知识1、整式的乘法:单项式与单项式相乘,把它们系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是把单项式与多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘,就是用多项式的每一项和另一个多项式的每一项相乘,再把所得的积相加。

2、乘法公式平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 二、课前预习 (5分钟训练) 1.计算下列各式:(1)(2×103)×(3×104)×(5×102); (2)(13×105)3(9×103)2;(3)45x 2(-53xy 3); (4)(-3ab)(2a 2-13ab+5b 2);2.若x m =3,x n =2,则x 2m+3n =________. 三、课中强化(10分钟训练) 1.下列计算正确的是( )A.(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a -1)(4a -1)=1-16a 2D.(x -2y)2=x 2-2xy+4y 22.计算:(1)2(a5)2·(a2)2-(a2)4·(a2)2·a2;(2)(b n)3·(b2)m+3(b3)n·b2·(b m-1)2;(3)(27×81×92)2.3.(1)化简求值:(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=-7 18;(2)已知|a-2|+(b-12)2=0,求-a(a2-2ab-b2)-b(ab+2a2-b2)的值.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2四、课后巩固(30分钟训练)1.化简(-2a)·a-(-2a)2的结果是( )A.0B.2a2C.-6a2D.-4a22.下列5个算式中,错误的有( )①a 2b 3+a 2b 3=2a 4b 6 ②a 2b 3+a 2b 3=2a 2b 3 ③a 2b 3·a 2b 3=2a 2b 3 ④a 2b 3·a 2b 3=a 4b 6 ⑤2a 2b·3a 3b 2=6a 6b 2A.1个B.2个C.3个D.4个3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( ) A.(45n+m)元 B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出 (2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出参考答案一、课前预习(5分钟训练)1.计算下列各式:(1)(2×103)×(3×104)×(5×102);(2)(13×105)3(9×103)2;(3)45x2(-53xy3);(4)(-3ab)(2a2-13ab+5b2);(5)(a+13)(a-14).答案:(1)3×1010; (2)3×1021;(3)-43x3y3; (4)-6a3b+a2b2-15ab3;二、课中强化(10分钟训练)1.下列计算正确的是( )答案:C2.计算:解:(1)原式=2a10·a4-a8·a4·a2=2a14-a14=a14.(2)原式=b3n·b2m+3b3n·b2·b2m-2=b3n+2m+3b3n+2m=4b3n+2m.(3)(27×81×92)2=(33×34×34)2=(311)2=322.3解:(1)(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13)=18x-93. 当x=-718时,原式=-100.(2)因为|a-2|+(b-12)2=0,所以a-2=0,b-12=0.因此a=2,b=12.-a(a2-2ab-b2)-b(ab+2a2-b2)=-a3+2a2b+ab2-ab2-2a2b+b3=-a3+b3.当a=2,b=12时,原式=-778.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2思路分析:利用长方形的面积公式.解:(1)空地面积为(ab-πr2)平方米.(2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π=(60 000-100π)平方米.答:广场空地的面积为(60 000-100π)平方米.三、课后巩固(30分钟训练)1.化简(-2a)·a -(-2a)2的结果是( ) 答案:C2.下列5个算式中,错误的有( )思路解析:掌握加法运算与乘法运算的法则,①运算错误,用合并同类项法则,应为a 2b 3+a 2b 3=2a 2b 3;②为合并同类项,运算正确;③为单项式的乘法,运算错误,正确的运算为a 2b 3·a 2b 3=a 4b 6;④正确;⑤为单项式的乘法,运算错误,正确的运算为2a 2b·3a 3b 2=6a 5b 3. 答案:C3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a 答案:B4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( )A.(45n+m)元B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 思路解析:原售价为120%n-+m. 答案:B8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出(2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出思路分析:这是一道混合化简求值题,由单项式和多项式相乘组成,运算顺序依然是先乘法后加减,化简时前后的单项式相乘可以同时进行.对于这类求代数式值的问题,不便直接将字母的值代入代数式,而应先将代数式化简成最简形式,然后再代入求值. (1)x2(x2-x+1)-x(x3-x2+x-1)=x4-x3+x2-x4+x3-x2+x=x,当x=12时,原式=12.(2)y[y-3(x-z)+y[3z-(y-3x)]=y(y-3x+3z)+y(3z-y+3x)=y2-3xy+3yz+3yz-y2+3xy=6yz,当x=-23337,y=-2,z=-5时,原式=6×(-2)×(-5)=60.答案:(1)12(2)60。

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

初一数学整式的乘除含答案

初一数学整式的乘除含答案

【答案】可直接计算求出结果,也可通过观察式子的特点,注意到
210 前面为“+”号,提取公因式,再
进行计算.
原式 210 29 28 27 26 25 24 23 22 2
29(2 1) 28 27 26 25 24 23 22 2 ……
22(2 1) 2 6
教师不防在此回忆巩固下面两个典型题目的计算:
⑹已知 P
999 99 , Q
119 90 ,比较 P 、 Q 的大小关系.
9
9
⑺已知 A
32006
2007
1, B
32007
2008
1 ,试比较 A 与 B 的大小.
31
31
⑻对于 a b c 0 , m n 0 ( m , n 是正整数 ) ,比较 cnam , ambn , bnc m 的大小关系.
a 的幂分别是
a 和 a 2 ,乘积中
a 的幂是
3
a ,同理,乘积中
b 的幂
是 b4 ,另外,单项式 ab中不含 c 的幂,而 3a 2b3c2 中含 c2 ,故乘积中含 c2 .
⑵单项式与多项式相乘: 单项式分别与多项式中的每一项相乘,然后把所得的积相加,
公式为: m(a b c) ma mb mc ,其中 m 为单项式, a b c 为多项式 .
积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示
为:
n
ab
anb n ( n 是正整数) .
⑷ 同底数幂相除.
同底数的幂相除,底数不变,指数相减.用式子表示为:
m
a
n
a
mn
a
( a≠ 0 , m , n 都是正整数)

《整式乘除100题》[大全]

《整式乘除100题》[大全]

《整式乘除100题》[大全]第一篇:《整式乘除100题》[大全]整式乘除计算 100 题使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。

大致分了三个模块:①单项式与单项式(34题);②单项式与多项式(33题);③多项式与多项式(33题);共题。

建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。

模块一单项式与单项式方法总结:单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.易错总结:相同字母相乘,注意是字母不变,指数相加;注意单项式相乘,他们的系数也是分别相乘,不是相加;系数里的负号要注意不要忘掉单独出现的字母最后要作为积的一个因式,不要遗漏例题解析:—ꅘy 2 · 2ꅘ2 y 2 .解:—ꅘy 2 · 2ꅘ2 y 2 =—ꅘ y 2· 4ꅘ4 y 2=— 4ꅘ5 y 4 .……【系数、相同字母分别相乘】巩固练习:1.计算:— 8a⺁·a 2 ⺁. 422ꅘ3 · —져ꅘ y 3 . 4.计算:a 4 ·—a 3÷ — a 2. 5.计算:——ꅘ2 3 · —ꅘ 2 2 —ꅘ· —ꅘ 3 3 . 6.计算:—ꅘ6—— 3ꅘ 3 2 — [ — 2ꅘ 2 ] 3 . 7.计算:—a 2 ·— a 3·— a+— a 2—— a 3. 8.计算:a —2 ⺁2 · a 2 ⺁—2 —3 . 9.计算:— 2ꅘ2 ·(ꅘ2)3 · —ꅘ 2 . 10.计算:— 21ꅘ2 y 4 ÷ — 3ꅘ 2 y 3 . 11.计算:2a 3 ⺁ 3— 8a⺁ 2÷ — 4a 4 ⺁ 3. 12—a 2 · a 4 ÷ a 3 . 13.计算:12a⺁ 2a⺁c 4 ÷ — 3a 2 ⺁3 c ÷ 2 a⺁c 3 . 17—a 3·— a 218.计算:(2a)3 —a · a 2 + 3a 6 ÷ a 3 . 19.(a 5)2·(a 2)2—(a 2)4·(a 3)2 . 20.ꅘ + 2ꅘ + 3ꅘ + ꅘ· ꅘ2 · ꅘ 3 + ꅘ 3 2 . 21.计算:ꅘm · ꅘn 3 ÷ ꅘ m—1 · 2ꅘ n—1 . 22.计算:— 2ꅘ2 y · 5ꅘy 3 ·— 3ꅘ 3 y 2. 523.ꅘ5 · ꅘ져 + ꅘ6 ·(—ꅘ 3)2 + 2(ꅘ 3)4 . 24.计算:— 1a⺁ 2·— 2a 3 ⺁c . 425.计算:— 2ꅘ— 3ꅘ2 y 2 3 · 1y 2 + t ꅘ져 y 8 . 32 3 4 14.计算:a 3 · a 5 · a 2 +a 5—a 2· a 2 . 15.化简:(4ꅘ2 y)2 ÷ 8y 2 . / 服务内核部-初数教研10.计算:6ꅘy ·ꅘ y — 1y+ 3ꅘ y2 . 211.计算:8a 2 ⺁— 4a⺁ 2÷ — 1a⺁ 2服务内核部-初数教研/ 28.— 2ꅘ2 y 2 3 · 3ꅘ y 4 . 29.计算:— 1a 3 · — 6a⺁ 2 . 330.计算:2ꅘ3 y — 2ꅘ y + — 2ꅘ 2 y 2 . 312a 2 ⺁·— 3⺁2 c ÷ 4a⺁ 3. 32.计算:— 3ꅘ2 y 3·— 2 ꅘ y 233.计算:—3a 2·a 2 ÷ — 1 a 22. 3 2 34.计算:(— 2ꅘm y n)2 ·(—ꅘ2 y n)3 ·(— 3ꅘ y 2).模块二单项式与多项式方法总结:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.易错总结:巩固练习:1.化简:—져ꅘ2 y 2ꅘ 2 y — 3ꅘ y 3 + ꅘ y . 22ꅘ y 5ꅘ y 2 + 3ꅘ y —1 . 3.计算:— a 2 ⺁c + 2a⺁ 2 — 3 ac·— 2 ac 2 . 5 3 4.计算:— 2ꅘ2 y — 3ꅘ y + 3ꅘ 2 y 3 — 6ꅘ 3 . 3 2 5.计算:ꅘn+1 · ꅘ 2n —ꅘ n+1 + ꅘ 2 . 6.计算:2 2 3a 2 2— 1 . 7.计算:a⺁2 · 2a 2 ⺁— 3a⺁2 . 282a 23a⺁ 2 — 5a⺁ 3. 9.计算:— 4 a⺁2 ·— ta 2 ⺁— 12a⺁ + 3⺁ 2. 3 2 4 12.化简3a 5 ⺁ 3 — a 4 ⺁ 2÷ — a 2 ⺁ 213.计算:2져ꅘ3 — 18ꅘ 2 + 3ꅘ÷ — 3ꅘ. 14.计算:45a 3 — 1a 2 ⺁ + 3a÷ — 1a . 6 3 15.计算:6m 2 n — 6m 2 n 2 — 3m 2÷ — 3m 2. 16.计算:—ꅘ2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ— 2 . 17.计算:— 1ꅘ y 2 3 — 2ꅘ y ꅘ y —ꅘ2 y 5 . 318.计算:a⺁ 2 — 2a⺁ + 4⺁· 1a⺁—a⺁ 2 . 3 3 2 2 19.计算:— 2a ⺁(6a ⺁— 3a + 3 ⺁).2 20.计算:2a a — 2a 3—— 3a 2. 21.化简 1单项式乘多项式中的每一项时,注意不要漏掉前面的符号注意多项式中的每一项都要和单项式相乘,不要漏项例题解析:计算:— 2ꅘy 2 2 ·y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 解:原式= 4ꅘ2 y 4 · 1y 2 — 1ꅘ 2 — 3ꅘ y 4 2 2 = ꅘ2 y 6 — 2 ꅘ 4 y 4 — 6 ꅘ 3 y 5 .……【用单项式去乘多项式的每一项】/ 服务内核部-初数教研3ꅘ2 — y — 22ꅘ2 + y . 24.计算:(— 2ꅘy 2)2 · 1y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 25.计算:(3ꅘ y)2(ꅘ2 — y 2)—(4ꅘ2 y 2)2 ÷ 8y 2 + t ꅘ 2 y 4 . 26.计算:4a ⺁(2a 2 ⺁ 2 — a ⺁+ 3)27.计算:2ꅘ—ꅘ2 + 3ꅘ— 4 — 3ꅘ 2ꅘ + 1 . 228.计算:ꅘꅘ2 —ꅘ— 1 + 3 ꅘ 2 + ꅘ— 1ꅘ 3ꅘ 2 + 6ꅘ. 329.化简:ꅘ 1ꅘ + 1— 3ꅘ 3ꅘ— 2 . 2 2 30.求值:ꅘ2 3ꅘ— 5 — 3ꅘꅘ 2 + ꅘ— 3,其中ꅘ= 1 . 231.先化简,再求值:ꅘꅘ2 —ꅘ— 1+ 2 ꅘ2 + 2 — 1ꅘ 3ꅘ 2 + 6ꅘ— 1,其中ꅘ =— 3. 333.先化简,再求值:ꅘ— 2 1 — 3ꅘ— 2ꅘ 2 —ꅘ,其中ꅘ = 4. 2 3 2 模块三多项式乘多项式方法总结:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.易错总结:在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号;计算时注意符号变化,不要丢掉单独的字母或数字;多项式与多项式相乘后如果出现同类项必须合并.合并同类项时,可以在同类项下边标上相同的符号,避免引起错误.例题解析:计算:ꅘ— aꅘ2 + aꅘ + a 2解:ꅘ— aꅘ2 + aꅘ + a 2= ꅘ3 + aꅘ 2 + a 2 ꅘ— aꅘ 2 — a 2 ꅘ—a 3 ……【用一个多项式的每一项乘另一个多项式的每一项】= ꅘ3 — a 3 .巩固练习:12ꅘ + 5y3ꅘ— 2y . 2a — 2⺁(a + ⺁). 332ꅘ— 1 . 6ꅘ + yꅘ— 2y . 72ꅘ + 3y3ꅘ— 2y . 8— 1ꅘ + — 3ꅘꅘ + 3 . 9.计算:ꅘ 1ꅘ— 2 . 10a + 32a + 5. 11m + 22m — 3 . 12ꅘ— 32ꅘ + 5 . 13.计算:4ꅘ2 y — 5ꅘ y 2· 져ꅘ 2 y — 4ꅘ y 2 . 14.计算:ꅘm — 2y n3ꅘ m + y n. 15.计算:ꅘ— 1ꅘ2 + ꅘ + 1 . 18.计算:ꅘ— aꅘ2 + aꅘ + a 2.19.计算:ꅘ + yꅘ2 —ꅘ y + y 2. 203ꅘ + 1ꅘ— 3 . 21ꅘ + y — 2ꅘ— y . 22.计算:2a —⺁ + c2a —⺁— c . 23.—ꅘ3 + 2ꅘ 2 — 5 2ꅘ 2 — 3ꅘ + 1 . 24.计算:ꅘ + 52ꅘ— 3 — 2ꅘꅘ2 — 2ꅘ + 3 . 25.计算:ꅘ2 — 2ꅘ + 3ꅘ— 1ꅘ + 1 . 26ꅘ 4ꅘ— 3 — 2 ꅘ— 3ꅘ + 1 . 272ꅘ— 3ꅘ + 4—ꅘ— 1ꅘ + 1 . 30— 1ꅘ + 2ꅘꅘ + 3 . 31ꅘ + 3ꅘ— 5— 3 ꅘ— 1ꅘ + 6 . 325ꅘ + 3y3y — 5ꅘ—4ꅘ— y4y + ꅘ. 33.计算:a⺁ a + ⺁—a —⺁a 2 + ⺁ 2. 4.计算:2ꅘ + 3yꅘ— 2y . 5.计算:(ꅘ2 y 3 —ꅘ3 y 2)·(ꅘ 2 — y 2). / 服务内核部-初数教研2 3 4 16.计算:(2m + n 2)(4m 2 — 2mn 2 + n 4). 17.化简:3ꅘ2 + 2ꅘ + 13ꅘ— 1 .服务内核部-初数教研/ 服务内核部-初数教研/第二篇:第一章整式的乘除单元测试第一章整式的乘除单元测试(时间120分钟,满分150分)A卷(100分)一、选择题:本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各题中计算错误的是()2.化简x(y-x)-y(x-y)得()A、x2-y2B、y2-x2C、2xyD、-2xy3.计算的结果是()A.B.-C.D.-4.是一个完全平方式,则a的值为()A.4B.8C.4或—4D.8或—85.三个数中,最大的是()A.B.C.D.不能确定6.化简(a+b+c)-(a-b+c)的结果为()A.4ab+4bcB.4acC.2acD.4ab-4bc7.已知,,则、、的大小关系是()A.>>B.>>C.<<D.>>8.若,则等于()A.-5B.-3C.-1D.19.边长为a的正方形,边长减少b以后所得较小正方形的面积比原来正方形的面积减少了()A.B.+2abC.2abD.b(2a—b)10.多项式的最小值为()A.4B.5C.16D.25二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中横线上.11.是_____次_____项式,常数项是_____,最高次项是_____.12.(1)(2)13.(1)(2)14.已知是关于的完全平方式,则=;15.若m2+n2-6n+4m+13=0,m2-n2=;16、如果时,代数式的值为2008,则当时,代数式的值是三、计算题:本大题共5小题,每小题4分,共20分,解答应写出必要的计算过程.17.;18.19.20.21.四、综合题:本大题共5小题,共32分,解答应写出必要的计算过程.22.(5分)已知,求的值[来23.(6分)简便计算:(1)(2)3.76542+0.4692×3.7654+0.23462.24.(5分)已知,,求代数式的值;25.(6分)若4m2+n2-6n+4m+10=0,求的值;26.(8分)若的积中不含与项,(1)求、的值;(2)求代数式的值;B卷(50分)1.若,则=;2.有理数a,b,满足,=;3.=;4.若那么=;5.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,…,请你将猜想到的规律用自然数n(n≥1)表示出来:__________.6.(6分)计算:.7.(7分)已知:,求-的值.8.(8分)已知a2-3a-1=0.求、的值;9.(9分)一元二次方程指:含有一个未知数,且未知数的最高次数为2的等式,求一元二次方程解的方法如下:第一步:先将等式左边关于x的项进行配方,第二步:配出的平方式保留在等式左边,其余部分移到等式右边,;第三步:根据平方的逆运算,求出;第四步:求出.类比上述求一元二次方程根的方法,(1)解一元二次方程:;(2)求代数式的最小值;答案:1-5.CBBCA;6-10.AABDC;11.12.(1)(2);13.(1)(2);14.;15.-5;16、-2006;17.;18.2;19.;20.;21.22.15;23.(1)1;(2)16;24.3;25.-8;26.;B卷:1.-2;2.6;3.;4.6;5.;6.2;7.30;8.3,13;9.(1);(2)2;第三篇:初中数学复习整式的乘除专题01整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,则等于()A.2B.1C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则=.2.(1)计算:=.(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则=.(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3B.2C.1(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1B.0C.—1D.28.如果有两个因式和,则()A.7B.8C.15D.21(奥赛培训试题)9.已知均为正数,又,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1B.2C.3D.411.设满足求的值.12.若为整数,且,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值;(3)若为整数,且.试比较的大小.(四川省竞赛试题)第四篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。

初中数学整式的乘法(含答案)

初中数学整式的乘法(含答案)

第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。

整式的乘法公式和分式的运算

整式的乘法公式和分式的运算

整式的乘法公式和分式的运算整式的乘法公式是数学中重要的内容之一,它们能够帮助我们简化复杂的算术操作,使得解题更加高效和准确。

与此同时,分式的运算也是我们在日常生活和学习中经常遇到的情况之一,掌握好分式的运算规则可以帮助我们解决许多实际问题。

本文将重点讲解整式的乘法公式和分式的运算,并通过例题帮助读者更好地理解和应用。

1. 整式的乘法公式整式是由常数和字母的积、和以及差构成的式子,例如2x² + 3xy + 4。

整式的乘法公式能够帮助我们将两个或多个整式相乘并进行简化。

下面是常见的整式乘法公式:①两个单项式相乘: (ax)(by) = abxy②单项式和多项式相乘: (ax)(b + cy + dz) = abx + acxy + adxz③两个多项式相乘: (a + bx + cy)(d + ex + fy) = ad + aex + afy + bdx + bex² + bfxy + cdy + cexy + cfy²使用整式的乘法公式,我们可以快速地计算出两个或多个整式的乘积。

举个例子,如果我们要计算(2x + 3)(4x - 5),根据公式我们可以展开并进行简化运算:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x² - 10x + 12x - 15= 8x² + 2x - 15通过整式的乘法公式,我们得到了(2x + 3)(4x - 5)的简化结果为8x²+ 2x - 15。

2. 分式的运算分式是由分子和分母构成的比值表达式,通常以a/b的形式表示。

在日常生活中,我们经常遇到各种各样的分式运算,例如分式的加减乘除。

下面我们将介绍分式的运算规则。

①分式的加减:要进行分式的加减,首先需要找到两个分式的公共分母,然后对分子进行相应的加减操作,最后将结果化简为最简分数。

初中数学-整式加减乘除运算

初中数学-整式加减乘除运算

初中数学 整式加减乘除运算1一、代数式与整式、分式;有理式与无理式(有理数与无理数) 二、整式分类:单项式与多项式 三、合并同类项(重点) 系数、次数、项数问题例1 代数式b a 231的系数是 次数是代数式-24mn 的系数 次数是代数式c b a ab 423-共有 项,它们的系数分别是 、 次数是12212++y y x 是____次_____项式 abc b a c ab -+2223 是____次_____项式 多项式23523m m m +--是 次 项式,其中二次项系数是 一次项是 ,常数项是变式训练1已知 –8x m y 2m+1+12x 4y 2+4是一个七次多项式,则m= 多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ( ) A 、等于6B 、不大于6C 、小于6D 、不小于6如果单项式3a 2b 43-m 的次数与单项式31x 3y 2z 2的次数相同,试求m 的值。

单项式与多项式例2 代数式:πabx x x abc ,213,0,52,17,52--+-中,单项式共有( )个. A.1个 B.2个 C.3个 D.4个下列语句正确的是( )(A )x 2+1是二次单项式 (B )-m 2的次数是2,系数是1 (C )21x是二次单项式 (D )32abc 是三次单项式 在代数式-231a ,52243b a -,ab,)(1y x a +,)(21b a +,712+x 中,其中单项式有________________ 它们各自的系数分别为___________多项式有______________________________变式训练2下列语句中错误的是( )A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式同类项和合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.
不能确定
二、填空题(共4小题;共16.0分)
13. 若 ,则 .
14. 已知 , ,则 .
15. 若 与 是同类项,则 .
16. 已知 , ,则 .
三、解答题(共6小题;共56.0分)
17. 计算:
(1) ;
(2) .
18. 计算:
(1) ;
(2) .
19. 计算:
(1) ;
(2) ;
(3) .
20. 化简: .
21. 先化简,再求值: ,其中 , .
22. 计算 .
答案
第一部分
1. B 2. C 3. A 4. B 5. A
6. A 7. D 8. C 9. D 10. C
11. B 12. B
A.
B.
C.
D.
4. 下列计算正确的是( )
A.
B.
C.
D.
5. 如图,阴影部分的面积是
A.
B.
C.
D.
6. 若 成立,那么( )
A.

B.
C.

D.

7. 已知长方形的面积是 ,一边长为 ,则其周长为( )
A.
B.
C.
D.
8. 已知 , ,则 ( )
A.
B.
C.
D.
9. 下列计算正确的是( )
A.
(初级)整式乘法、整式除法、乘法公式
总分:120分 答题时间:120分钟
班级:__________ 姓名:__________ 得分:__________
一、选择题(共12小题;共48.0分)
1. 若 ,则 的值是( )
A.
B.
C.
D.
2. 能被下列数整除的是( )
A.
B.
C.
D.
3. 下列各式的运算结果为 的是( )
B.
C.
D.
10. 在边长为 的正方形中挖去一个边长为 的小正方形 (如图),把余下的部分拼成一个矩形(如图),根据两个图形中阴影部分面积相等,可以验证
A.
B.
C.
D.
11. 已知 , ,则 的值为( )
A.
B.
C.
D.
12. 若 、 、 是三角形的三边,则代数式 的值是( )
A.Βιβλιοθήκη 正数B.负数C.
等于零
相关文档
最新文档