高中数学全参数方程知识点大全

合集下载

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

e 44
th
(
,
2
)或(或 (,-
2 ))
44
44
, 5
等多种形式,其中,只有
(
,
)
的极坐标满足方程
.
44
44
in 二、参数方程
gs 1.参数方程的概念
thin x f (t)
ll 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x,
y
都是某个变数
t
的函数
y
g
(t
)
①,并且对于
t
a 的曲线的参数方程的形式也不同。
ing 3.圆的参数
ir be 如图所示,设圆O 的半径为 r
,点 M
从初始位置
M0
出发,按逆时针方向在圆 O 上作匀速圆周运动,设
M
(x,
y)
x ,则
y
r cos r sin
(为参数)

the 这就是圆心在原点 O ,半径为 r 的圆的参数方程,其中 的几何意义是 OM0 转过的角度。
bein (1)极坐标系如图所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正 eir 方向(通常取逆时针方向),这样就建立了一个极坐标系. th 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系, in 而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. ings (2)极坐标:设 M 是平面内一点,极点 O 与点 M 的距离|OM|叫做点 M 的极径,记为 ;以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫做点 M 的极角,记 th 为 .有序数对 (, ) 叫做点 M 的极坐标,记作 M (, ) .

(完整word版)高中数学参数方程知识点大全

(完整word版)高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得 222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点极坐标与参数方程知识点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即x,f(t), ,y,f(t),并且对于t每一个允许值,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数( (二)常见曲线的参数方程如下:1(过定点(x,y),倾角为α的直线: 00,x,x,tcos0 (t为参数) y,y,tsin,0其中参数t是以定点P(x,y)为起点,对应于t点M(x,y)为终点的有向线段PM00的数量,又称为点P与点M间的有向距离(根据t的几何意义,有以下结论(ABt,t1(设A、B是直线上任意两点,它们对应的参数分别为t和t,则,,AB?BA 2(t,t),4t,t( BAABt,tAB2(线段AB的中点所对应的参数值等于( ?22(中心在(x,y),半径等于r的圆: 00,x,x,rcos0, (为参数) y,y,rsin,03(中心在原点,焦点在x轴(或y轴)上的椭圆:,,x,bcosx,acos, (为参数) (或 ) y,bsin,y,asin,中心在点(x0,y0)焦点在平行于x轴的直线上的椭圆的参数方程,x,x,acos,,0(,为参数) ,y,y,bsin.,0,4(中心在原点,焦点在x轴(或y轴)上的双曲线:1,,x,btgx,asec, (为参数) (或 ) y,btg,y,asec,5(顶点在原点,焦点在x轴正半轴上的抛物线:2x,2pt (t为参数,p,0)y,2pt直线的参数方程和参数的几何意义,x,x,tcos,0过定点P(x,y),倾斜角为的直线的参数方程是 (t为参数)( ,00,yytsin,,,0,(三)极坐标系1、定义:在平面内取一个定点O,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t +中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高中数学知识点大全

高中数学知识点大全

高中数学知识点大全一、代数部分1. 整式与分式1.1 定义与性质1.2 合并同类项1.3 四则运算法则1.4 分式的运算2. 方程与不等式2.1 一元一次方程2.2 一元一次不等式2.3 二次方程2.4 二次不等式2.5 一元高次方程3. 函数3.1 函数的基本概念3.2 常见函数类型3.3 函数的运算3.4 反函数与复合函数3.5 函数的图像与性质4. 数列与数列的表示4.1 等差数列4.2 等比数列4.3 通项公式与求和公式二、几何部分1. 几何基础知识1.1 点、线、面的基本概念 1.2 角的定义与性质1.3 相交线与平行线1.4 同位角与内错角2. 三角形与四边形2.1 三角形的分类与性质 2.2 三角形的面积和周长 2.3 直角三角形2.4 各类四边形的性质3. 圆的属性3.1 圆的基本概念3.2 圆心角与弧长3.3 切线与切圆3.4 圆的面积和周长4. 空间几何与立体图形4.1 空间图形的投影与展开 4.2 空间几何的基本概念4.3 空间几何的性质与计算4.4 立体图形的体积和表面积三、概率与统计1. 概率1.1 随机事件与样本空间1.2 概率的定义与性质1.3 事件的计算与排列组合1.4 条件概率与独立事件2. 统计2.1 统计数据的收集与整理2.2 统计量的计算2.3 随机变量与概率分布2.4 抽样与估计四、解析几何1. 平面与直线的相关知识1.1 平面与直线的方程1.2 平面与直线的位置关系1.3 两平面与两直线的位置关系1.4 空间中的平行与垂直关系2. 空间曲面与方程2.1 二次曲面的性质2.2 空间曲面的方程2.3 曲线的参数方程2.4 曲线在曲面上的投影与切线3. 空间解析几何相关定理3.1 距离公式与中点坐标3.2 空间点的投影与距离3.3 空间线段的位置关系3.4 空间角的计算与性质五、数学思维与方法1. 数学证明1.1 数学归纳法1.2 数学递推法1.3 反证法与逆否命题2. 问题解决与数学建模2.1 解决实际问题的数学模型2.2 优化问题与约束条件2.3 数学建模的基本步骤2.4 实际问题的数学求解方法这篇文章详细介绍了高中数学的各个知识点,包括代数、几何、概率与统计、解析几何以及数学思维与方法等内容。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高中数学公式——极坐标与参数方程

高中数学公式——极坐标与参数方程

极坐标与参数方程一、参数方程1.参数方程的概念重点体会参数t 与点M (x ,y )的一 一对应关系。

2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数得到普通方程.注意互化过程中必须使x 、y 的取值范围保持一致。

3.利用22cos sin 1θθ+=将圆、椭圆的普通方程化为参数方程如,圆229x y +=化为参数方程:x y =⎧⎨=⎩ 圆22(1)(2)5x y -++=化为:x y =⎧⎨=⎩ ,椭圆22143x y +=化为:x y =⎧⎨=⎩ 4.直线的参数方程(1)经过点M 00(,)x y ,倾斜角为α的直线l 的参数方程为: x y =⎧⎨=⎩(2)参数t 的几何意义:直线l 上的点P 对应的参数为t ,则||t =||PM 。

注:①P 必须是直线l 上的点,很多时候是l 与其他曲线的交点,M 必须是建立参数方程时使用的点M 00(,)x y ;②当点P 在M 的上方是0t >,当点P 在M 的下方是0t <,当点P 与M 重合时0t =。

(3)弦长与中点:直线l 上的点,A B 对应的参数分别为12,t t ,则12||||AB t t =-= , __________AB t =的中点所对应的参数(4) 1212||||||||||MA MB t t t t =⋅=||||MA MB +=1212121212||,0||||||,0t t t t t t t t t t +>⎧+=⎨-<⎩, (此处不能死记结论,要明白原因) 要通过图像或者韦达定理判断12,t t 的符号。

二、极坐标方程1.极坐标系的概念ρ=||OM 叫做点M 的极径, θ= xOM ∠叫做点M 的极角.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ。

一般地,不作特殊说明时, 0ρ≥(后面有过极点的直线另外规定R ρ∈) 2.极坐标和直角坐标的互化(建议结合图像)点 直角坐标 极坐标互化公式3.一类特殊的直线:过极点(坐标原点)的直线(0απ≤<)直线()R θαρ=∈化为直角坐标方程即表示过原点、倾斜角为α的直线. 如2()3R πθρ=∈,化为直角坐标方程:_______ 如_____________,化为直角坐标方程:3y x =如()2R πθρ=∈,化为直角坐标方程:______注:①对于(,)P ρθ点,0,0,P P ρρ><当时点在极轴上方,当时点在极轴下方②(,)'(,)P P ρθρθ-点与点关于极点对称。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全一、参数方程的定义和基本概念参数方程是指用一个或多个参数表示一个点在平面或空间上的坐标,一般形式为x=f(t),y=g(t)或x=f(u,v),y=g(u,v),z=h(u,v)等形式。

1. 参数的取值范围参数的取值范围是指t,u,v等参数的取值范围,有些问题中可能要求特定的参数取值范围,例如0≤t≤1。

2. 参数方程的解析式参数方程的解析式是指将参数方程中的参数用其他变量(如x,y,z)表示出来的式子,通常要具体分析题目所求的内容,才能得到具体的解析式。

二、参数方程表示的图形及其性质参数方程表示的图形是指用参数方程所描述的点的集合,常见的有平面曲线、空间曲线和曲面。

1. 平面曲线的参数方程平面曲线的参数方程一般形式为x=f(t),y=g(t),t∈[a,b],其中a,b为常数。

2. 空间曲线的参数方程空间曲线的参数方程一般形式为x=f(t),y=g(t),z=h(t),t∈[a,b],其中a,b为常数。

3. 曲面的参数方程曲面的参数方程一般形式为x=f(u,v),y=g(u,v),z=h(u,v),u,v∈D,其中D为平面区域。

三、参数方程在计算机绘制图形中的应用在计算机绘制图形中,参数方程可以方便地表示出各种曲线和曲面,并通过计算机程序实现绘制,除此之外还可以进行各种变换和操作。

1. 坐标变换坐标变换是指通过参数方程的变换操作实现图形的变形、旋转、平移等操作。

2. 光照模拟通过参数方程计算表面法向量、光照强度和光照颜色,实现真实的光照模拟。

3. 碰撞检测通过参数方程计算图形的表面或体积信息,实现碰撞检测的功能,以及物体的相交等计算。

四、参数方程的求导1. 参数方程的一阶导数参数方程的一阶导数是指对参数t求导数得到的结果,常用来表示曲线的斜率和切线方向。

2. 参数方程的二阶导数参数方程的二阶导数是指对参数t进行二次求导得到的结果,常用来表示曲线的曲率和弧度的变化率。

五、参数方程的应用示例1. 斜抛运动斜抛运动的轨迹可以用参数方程表示,通过求解初始速度、角度等参数可以得到斜抛运动的轨迹方程,从而计算两点之间的距离和时间等参数。

高中数学全参数方程知识点大全

高中数学全参数方程知识点大全

高中数学全参数方程知识点大全一、全参数方程的概念全参数方程是指带有n个参数的方程,分别为a1, a2, a3, …… an。

它可以表达成:ai xi + a2 x2 + a3 x3 + …… + an xn = 0其中xi(i=1,2,3…n)为未知数。

二、常见的全参数方程全参数方程可以分为几何全参数方程、数论全参数方程和分析函数全参数方程。

1.几何全参数方程几何全参数方程也被称为n次全参数方程,它以n次根式的形式表示,它具有如下形式:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为实数,x1,x2,x3……xn为未知数。

2.数论全参数方程数论全参数方程的定义与几何全参数方程相似,只是其中的系数a1,a2,a3……an不再只有实数,而是可以是任意位数的整数。

数论全参数方程的形式如下:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为任意位数的整数,x1,x2,x3……xn为未知数。

3.分析函数全参数方程分析函数全参数方程也是一种带有多个参数的方程,它的形式如下:a1f1(x,y,z…) + a2f2(x,y,z…) + a3f3(x,y,z…) +…… +anfn(x,y,z…) = 0其中a1,a2,a3……an是任意实数,f1,f2,f3……fn是函数,x,y,z…..是未知数。

三、全参数方程的解法1.待定系数法这种方法是将要求解的全参数方程中的系数和未知数中的其中一个参数留下来,然后将其化为低阶未知参数方程,再求解出其它参数的值。

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结

坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。

高中数学人教版选修4-4参数方程知识总结

高中数学人教版选修4-4参数方程知识总结

参数的分类讨论要严密.
【解】 (1)当 t≠±1 时, 由①得 sin θ=t+x 1t , 由②得 cos θ=t-y 1t . ∴t+x21t 2+t-y21t 2=1. 它表示中心在原点,长轴长为 2t+1t ,短轴长为 2t-1t , 焦点在 x 轴上的椭圆.
当 t=±1 时,y=0,x=±2sin θ,x∈[-2,2],它表示在 x 轴 上[-2,2]的一段线段.
已知参数方程x=t+1t sin θ,① y=t-1t cos θ②
(t≠0).
(1)若 t 为常数,θ 为参数,方程所表示的曲线是什么?
(2)若 θ 为常数,t 为参数,方程所表示的曲线是什么?
【分析】 形式相同的方程,由于选择参数的不同,可表示
不同的曲线,因此要注意区分问题中的字母是常数还是参数,对
x=2cos θ, y=4sin θ.
(θ 为参数)
(2)设 M(x,y)是方程 4x2+y2=16 上异于 A 的任一点,则y-x 4 =k(x≠0),
将 y=kx+4 代入方程,得 x[(4+k2)x+8k]=0.
所以yx==--444++k82k+kk22,16
(k≠0),另有一点xy==04,.
数;
(2)若把 C1,C2 上各点的纵坐标都压缩为原来的一半,分别 得到曲线 C′1,C′2,写出 C′1,C′2 的参数方程.C′1 与 C′2 公共点的个数和 C1 与 C2 公共点的个数是否相同?说明你的理 由.
【解】 (1)C1 是圆,C2 是直线,C1 的普通方程为 x2+y2=1, 圆心 C1(0,0),半径 r=1.C2 的普通方程为 x-y+ 2=0.因为圆心 C1(0,0)到直线 x-y+ 2=0 的距离为 1,所以 C1 与 C2 只有一个 公共点.

高中数学参数方程

高中数学参数方程

高中数学参数方程一、前言在高中数学中,参数方程是一个非常重要的概念,也是数学与实际问题相结合的杰出体现。

掌握参数方程的基本概念和求解方法对于高中学生的数学学习和理解具有重大的帮助。

本文将从参数方程的基本概念、常用的图形、求解方法和应用等方面进行详细介绍,帮助学生全面掌握该概念。

二、参数方程的基本概念1. 参数方程的定义参数方程是一种通过给定的参数变量,用参数的函数表示一个曲线或者一个曲面的方法。

在参数方程中,通常用参数t表示自变量。

例如,设有一条曲线C,可以用如下的参数方程表示:x=f(t), y=g(t)上述的式子就是一条经过点(x,y)的曲线C的参数方程。

参数t常常被称为参数变量,它是曲线C上的自变量。

2. 参数方程的优点与直角坐标系下表示曲线的函数相比,参数方程的优点在于它可以更加灵活地表示一些曲线,如椭圆、双曲线、螺线等等。

同时,参数方程也可以用来表示高维度的曲面,如三维曲面、四维曲面等等。

此外,参数方程在图像处理、计算机动画、自动控制、机器人控制等领域中也有广泛的应用。

三、参数方程的常用图形1. 抛物线抛物线是参数方程中最常见的图形之一。

抛物线的参数方程通常为:x = t, y = t^2其中,t是参数变量。

2. 椭圆椭圆是平面直角坐标系下的二次曲线,也可以用参数方程表示。

椭圆的参数方程通常为:x = a*cos(t), y = b*sin(t)其中,a和b分别是椭圆的长轴和短轴长度。

3. 双曲线双曲线也是平面直角坐标系下的二次曲线,与椭圆不同的是,它有两个分离的实部,能够在极值点处取到无穷大值。

双曲线的参数方程通常为:x = a*cosh(t), y = b*sinh(t)其中,a和b分别是双曲线的横轴和纵轴长度。

4. 螺线螺线是一种等腰斜螺线(又称Archimedean螺线),由希腊数学家阿基米德研究而得名。

螺线的参数方程通常为:x = a*cos(t), y = a*sin(t) + bt其中,a和b分别是螺线的宽度和高度。

高中数学选修4-4-参数方程

高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。

高中数学选修4-4知识点(最全版)

高中数学选修4-4知识点(最全版)

数学选修4-4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:两点间的距离公式中点P的坐标公式2+〔y |P1P2|=〔x1-x2〕1-y2〕2x1+x2x=y=2y1+y222.平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:x′=λx〔λ>0〕y′=μy〔μ>0〕的作用下,点P(x,y)对应到点P′x(′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),假设点M的极坐标是M(ρ,θ),那么点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).假设规定ρ>0,0≤θ<2π,那么除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如下图,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位一样,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).(1)极坐标化直角坐标x=ρcosθ,y=ρsinθW.(2)直角坐标化极坐标ρ2=x2+y2,tanθ=y〔x≠0〕. x三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)ρ=2rcos_θ 圆心在点(r ,0)(- π 2π ≤θ< 2 )π 圆心在点(r ,2)ρ=2rsin_θ (0≤θ<π) ρ=-2rcos_θ 圆心在点(r ,π)π ( 2 3π ≤θ< )23π 圆心在点(r , 2) ρ=-2rsin_θ (-π<θ≤0)(2)一般情形:设圆心C(ρ0,θ0),半径为r ,M(ρ,θ)为圆上任意一点,那么|CM|=r , ∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即r22220cos(0)3.直线的极坐标方程 (1)特殊情形如下表:直线位置极坐标方程图形 (1)θ=α(ρ∈R )或θ=α+π(ρ∈R ) 过极点,倾斜角为α (2)θ=α(ρ≥0)和θ=π+α(ρ≥0)ρcos_θ=a过点(a ,0),且与极轴ππ 垂直- 2<θ<2过点a ,π ,且与极轴2 平行ρsin_θ=a (0<θ<π)过点(a ,0)倾斜角为αρsin(α-θ)=asin α (0<θ<π)(2)一般情形,设直线l 过点P(ρ0,θ0),倾斜角为α,M(ρ,θ)为直线l 上的动点,那么 在△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).四柱坐标系与球坐标系简介〔了解〕1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz.设P是空间任意一点,它在Oxy平面上的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q在平面Oxy上的极坐标,这时点P的位置可用有序数组〔ρ,θ,z〕(z∈R)表示.这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,z∈R.x=ρcosθ(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为y=ρsinθ.z=z 2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz.设P是空间任意一点,连接OP,记|OP|=r,OP与Oz轴正向所夹的角为φ,设P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到O Q时所转过的最小正角为θ,这样点P的位置就可以用有序数组(r,φ,θ)表示,这样,空间的点与有序数组(r,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ),叫做点P的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π.x=rsinφcosθ(2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsinφsinθ.z=rcosφ第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f〔t〕y=g〔t〕①,并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x,y的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F(x,y)=0,直接给出了曲线上点的坐标x,y之间的关系,它含有x,y两个变量;参数方程x=f〔t〕y=g〔t〕(t为参数)间接给出了曲线上点的坐标x,y之间的关系,它含有三个变量t,x,y,其中x和y都是参数t的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t的一个值,就可以求出唯一对应的x,y的值.这两种方程之间可以进展互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r的圆的参数方程如图圆O与x轴正半轴交点M0(r,0).(1)设M(x,y)为圆O上任一点,以OM为终边的角设为θ,那么以θ为参数的圆O的参数方程是x=rcosθy=rsinθ(θ为参数).其中参数θ的几何意义是OM0绕O点逆时针旋转到OM的位置时转过的角度.(2)设动点M在圆上从M0点开场逆时针旋转作匀速圆周运动,角速度为ω,那么OM0经过时间t转过的角θ=ωt,那么以t为参数的圆O的参数方程为x=rcosωty=rsinωt(t为参数).其中参数t的物理意义是质点做匀速圆周运动的时间.2.圆心为C(a,b),半径为r的圆的参数方程圆心为(a,b),半径为r的圆的参数方程可以看成将圆心在原点,半径为r的圆通过坐标平移得到,所以其参数方程为x=a+rcosθ,y=b+rsinθ(θ为参数).3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x,y中的一个与参数t的关系,例如x=f(t),x=f〔t〕其次将x=f(t)代入普通方程解出y=g(t),那么(t为参数)就是曲线的参数方程.y=g〔t〕(4)在参数方程与普通方程的互化中,必须使x,y的取值X围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x轴上的椭圆22xy2+2=1(a>b>0)的参数方程是abx=acosφy=bsinφ(φ是参数),规定参数φ的取值X围是[0,2π).(2)中心在原点,焦点在y轴上的椭圆22yx2+2=1(a>b>0)的参数方程是abx=bcosφy=asinφ(φ是参数),规定参数φ的取值X围是[0,2π).(3)中心在(h,k)的椭圆普通方程为2〔x-h〕2+a2〔y-k〕2=1,那么其参数方程为bx=h+acosφy=k+bsinφ(φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x轴上的双曲线22xy2-2=1的参数方程是abx=asecφy=btanφ(φ为参数),规定参数φ的取值X围为φ∈[0,2π)且φ≠π23π,φ≠2.(2)中心在原点,焦点在y轴上的双曲线22yx2-2=1的参数方程是abx=btanφy=asecφ(φ为参数).2.抛物线的参数方程2=2px的参数方程为(1)抛物线y2x=2pt(t为参数).y=2pt(2)参数t的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M0(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsinα(t为参数).2.直线的参数方程中参数t的几何意义(1)参数t的绝对值表示参数t所对应的点M到定点M0的距离.→→与e(直线的单位方向向量)同向时,t取正数.当M0M(2)当M0M与e反向时,t取负数,当M与M0重合时,t=0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M0(x0,y0),倾斜角为α的直线,选取参数t=M0M得到的参数方程x=x0+tcosαy=y0+tsinα(t为参数)称为直线参数方程的标准形式,此时的参数t有明确的几何意义.一般地,过点M0(x0,y0),斜率k=ba(a,b为常数)的直线,参数方程为x=x0+aty=y0+bt(t为参数),称为直线参数方程的一般形式,此时的参数t不具有标准式中参数的几何意义.四渐开线与摆线〔了解〕1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O为原点,直线OA为x轴,建立如下图的平面直角坐标系.设基圆的半径为r,绳子外端M的坐标为(x,y),那么有x=r〔cosφ+φsinφ〕,y=r〔sinφ-φcosφ〕(φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为x=r〔φ-sinφ〕,(φ是参数).y=r〔1-cosφ〕。

高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)

 高中数学知识点总结( 坐标系与参数方程 第一节 坐标系)

坐标系与参数方程第一节 坐标系一、基础知识1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·xλ>0,y ′=μ·y μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对ρ,θ叫做点M 的极坐标,记为M ρ,θ.一般不作特殊说明时,我们认为ρ ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ), 极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0. 4.简单曲线的极坐标方程曲线极坐标方程 圆心为极点,半径为r 的圆 ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆 ρ=2r cos θ⎝⎛⎭⎫-π2≤θ≤π2 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆 ρ=2r sin θ(0≤θ<π)过极点,倾斜角为α的直线 θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线 ρcos θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线 ρsin θ=a (0<θ<π)考点一 平面直角坐标系下图形的伸缩变换[典例] 求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标. [解] 设曲线C ′上任意一点P (x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程, 可见仍是双曲线,则焦点(-5,0),(5,0)为所求. [解题技法] 伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx λ>0,y ′=μy μ>0的作用下的变换方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.[提醒] 应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的坐标(x ′,y ′).[题组训练]1.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎫x ′+π6得 3y =3sin ⎝⎛⎭⎫2x +π6,整理得y =sin ⎝⎛⎭⎫2x +π6, 故f (x )=sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.2.将圆x 2+y 2=1变换为椭圆x 225+y 216=1的一个伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0),求λ,μ的值.解:将变换后的椭圆x 225+y 216=1改写为x ′225+y ′216=1,把伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0)代入上式得:λ2x 225+μ2y 216=1即⎝⎛⎭⎫λ52x 2+⎝⎛⎭⎫μ42y 2=1,与x 2+y 2=1, 比较系数得⎩⎨⎧⎝⎛⎭⎫λ52=1,⎝⎛⎭⎫μ42=1,所以⎩⎪⎨⎪⎧λ=5,μ=4.考点二 极坐标与直角坐标的互化[典例] (2018·江苏高考)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.[解] 因为曲线C 的极坐标方程为ρ=4cos θ,化成直角坐标方程为(x -2)2+y 2=4, 所以曲线C 是圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6- θ=2, 化成直角坐标方程为y =33(x -4), 则直线l 过A (4,0),倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.如图,连接OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3.所以直线l 被曲线C 截得的弦长为2 3.[解题技法]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定由tan θ确定角θ时,应根据点P 所在象限取最小正角. (1)当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.(2)当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[题组训练]1.(2019·郑州质检)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为x -y +1=0.(2)将两直角坐标方程联立得⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1), 将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2即为所求. 2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝⎛⎭⎫θ-π4=2. (1)求圆O 1和圆O 2的直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4.因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 考点三 曲线的极坐标方程的应用[典例] (2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. [解] (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3=2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32. 即当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. [解题技法]1.求简单曲线的极坐标方程的方法(1)设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用三角函数及正、余弦定理求解|OM |与θ的关系.(2)先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.2.利用极坐标系解决问题的技巧(1)用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,其比直角坐标系中求最值的运算量小.[提醒] 在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性. [题组训练]1.(2019·青岛质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)设直线l 的极坐标方程是ρsin ⎝⎛⎭⎫θ+π3=2,射线OM :θ=π6与圆C 的交点为P ,与直线l 的交点为Q ,求线段P Q 的长.解:(1)圆C 的普通方程为x 2+(y -1)2=1,又x =ρcos θ,y =ρsin θ, 所以圆C 的极坐标方程为ρ=2sin θ. (2)把θ=π6代入圆的极坐标方程可得ρP =1,把θ=π6代入直线l 的极坐标方程可得ρQ =2,所以|P Q|=|ρP -ρQ |=1.2.(2018·湖北八校联考)已知曲线C 的极坐标方程为ρ2=9cos 2 θ+9sin 2 θ,以极点为平面直角坐标系的原点O ,极轴为x 轴的正半轴建立平面直角坐标系.(1)求曲线C 的直角坐标方程;(2)A ,B 为曲线C 上两点,若OA ⊥OB ,求1|OA |2+1|OB |2的值.解:(1)由ρ2=9cos 2θ+9sin 2θ得ρ2cos 2θ+9ρ2sin 2θ=9,将x =ρcos θ,y =ρsin θ代入得到曲线C 的直角坐标方程是x 29+y 2=1.(2)因为ρ2=9cos 2θ+9sin 2θ,所以1ρ2=cos 2θ9+sin 2θ, 由OA ⊥OB ,设A (ρ1,α),则点B 的坐标可设为⎝⎛⎭⎫ρ2,α±π2, 所以1|OA |2+1|OB |2=1ρ21+1ρ22=cos 2α9+sin 2α+sin 2α9+cos 2α=19+1=109.[课时跟踪检测]1.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即(x -3)2=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎫2,π6. 2.在极坐标系中,已知圆C 经过点P ⎝⎛⎭⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝⎛⎭⎫2,π4, 所以圆C 的半径|PC |=22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.在直角坐标系xOy 中,圆C 的方程为(x -3)2+(y +1)2=9,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线OP :θ=π6(ρ∈R)与圆C 交于点M ,N ,求线段MN 的长.解:(1)(x -3)2+(y +1)2=9可化为x 2+y 2-23x +2y -5=0, 故其极坐标方程为ρ2-23ρcos θ+2ρsin θ-5=0. (2)将θ=π6代入ρ2-23ρcos θ+2ρsin θ-5=0,得ρ2-2ρ-5=0,所以ρ1+ρ2=2,ρ1ρ2=-5, 所以|MN |=|ρ1-ρ2|=4+20=2 6.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎫θ-π3=1得ρ⎝⎛⎭⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎫0,233.所以点P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6, 所以直线OP 的极坐标方程为θ=π6(ρ∈R).5.(2018·南昌摸底调研)在平面直角坐标系xOy 中,曲线C 1的方程为(x -3)2+(y -2)2=4,直线C 2的方程为y =33x ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP |·|O Q|的值. 解:(1)∵曲线C 1的普通方程为(x -3)2+(y -2)2=4, 即x 2+y 2-23x -4y +3=0,∴曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0. ∵直线C 2的方程为y =33x , ∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P (ρ1,θ1),Q(ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0,得ρ2-5ρ+3=0,∴ρ1ρ2=3,∴|OP |·|O Q|=ρ1ρ2=3.6.(2019·山西八校联考)在直角坐标系xOy 中,曲线C 的方程为(x -3)2+(y -4)2=25.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 分别交于异于原点的A ,B 两点,求△AOB的面积.解:(1)∵曲线C 的普通方程为(x -3)2+(y -4)2=25, 即x 2+y 2-6x -8y =0.∴曲线C 的极坐标方程为ρ=6cos θ+8sin θ. (2)设A ⎝⎛⎭⎫ρ1,π6,B ⎝⎛⎭⎫ρ2,π3. 把θ=π6代入ρ=6cos θ+8sin θ,得ρ1=4+33,∴A ⎝⎛⎭⎫4+33,π6. 把θ=π3代入ρ=6cos θ+8sin θ,得ρ2=3+43,∴B ⎝⎛⎭⎫3+43,π3. ∴S △AOB =12ρ1ρ2sin ∠AOB=12(4+33)(3+43)sin ⎝⎛⎭⎫π3-π6 =12+2534.7.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.8.(2019·郑州一中模拟)在平面直角坐标系中,曲线C 1的普通方程为x 2+y 2+2x -4=0,曲线C 2的方程为y 2=x ,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 1,C 2的极坐标方程;(2)求曲线C 1与C 2交点的极坐标,其中ρ≥0,0≤θ<2π.解:(1)依题意,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2+2x -4=0可得ρ2+2ρcos θ-4=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y 2=x ,得ρsin 2θ=cos θ. 故曲线C 1的极坐标方程为ρ2+2ρcos θ-4=0,曲线C 2的极坐标方程为ρsin 2θ=cos θ. (2)将y 2=x 代入x 2+y 2+2x -4=0,得x 2+3x -4=0,解得x =1,x =-4(舍去), 当x =1时,y =±1,所以曲线C 1与C 2交点的直角坐标分别为(1,1),(1,-1),记A (1,1),B (1,-1),所以ρA =1+1=2,ρB =1+1=2,tan θA =1,tan θB =-1, 因为ρ≥0,0≤θ<2π,点A 在第一象限,点B 在第四象限,所以θA =π4,θB =7π4,故曲线C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,7π4.。

【高中数学】高中数学知识点:参数方程的概念

【高中数学】高中数学知识点:参数方程的概念

【高中数学】高中数学知识点:参数方程的概念参数方程的概念:通常,在给定的平面直角坐标系中,如果曲线上任意点的坐标x和y是某个变量t的函数且对于t的每一个允许值,由这个方程组所确定的点m(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.参数方程和一般方程之间的相互作用:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。

(1)将参数方程转化为一般方程的过程是一个参数消除过程。

有三种常见的方法:①代入法:利用解方程的技巧求出参数t,然后代入消去参数;② 三角法:利用三角恒等式消除参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去.(2)将一般方程转换为参数方程需要引入参数如:①直线的普通方程是2x-y+2=0,可以化为参数方程② 在一般方程xy=1中,让可以化为参数方程关于参数的说明:(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.(2)当同一条曲线的参数不同时,曲线参数方程的形式也不同(3)在实际问题中要确定参数的取值范围.参数方程的几种常用方法:方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等.方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程。

记住曲线参数方程的形式和参数的重要性方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题.方法4用圆的渐开线参数方程解点:用参数方程解点时,可将参数代入方程中求得。

方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式可以看出,只需要R,即摆线的参数方程由圆的半径唯一确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习之参数方程一、考纲要求1. 理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法. 会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念 . 会正确进行点的极坐标与直角坐标的互化 . 会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程 . 不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1) 标准式过点Po(x0,y0),倾斜角为α的直线l( 如图 ) 的参数方程是x x0t cosa为参数 )(ty y0t sin a(2) 一般式过定点 P0(x 0,y 0) 斜率 k=tg α = b的直线的参数方程是ax x0at(t 不参数 )②y y0bt在一般式②中,参数 t不具备标准式中t 的几何意义,若 a2+b2=1, ②即为标准式,此时,| t |表示直线上动点P 到定点 P0的距离;若a2+b2≠ 1,则动点 P 到定点 P0的距离是a2b2|t|.直线参数方程的应用设过点 P (x ,y), 倾斜角为α的直线 l 的参数方程是000x x0t cosa( t 为参数)y y0t sin a若 P、P是 l上的两点,它们所对应的参数分别为t ,t,则1212(1)P 1、 P2两点的坐标分别是(x 0+t 1cos α,y 0+t 1sin α)(x 0+t 2cos α,y 0+t 2sin α) ;(2)| P1P2|=| t 1-t 2| ;(3)线段 P1P2的中点 P所对应的参数为 t ,则t=t1t 22中点t1t 2|P 到定点 P 的距离| PP |=| t | =|002(4)若 P0为线段 P1P2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆x a r cos圆心在 (a,b) ,半径为 r 的圆的参数方程是b( φ是参数 )y r sinφ是动半径所在的直线与x 轴正向的夹角,φ∈[ 0,2π] ( 见图 ) (2)椭圆椭圆 x2y 21(a>b>0)的参数方程是a 2b2x a cosy bsin(φ为参数)椭圆y 2y2(a >b> 0) 的参数方程是a12b2x b cos( φ为参数 )y asin3.极坐标极坐标系在平面内取一个定点 O,从 O引一条射线 Ox,选定一个单位长度以及计算角度的正方向 ( 通常取逆时针方向为正方向 ) ,这样就建立了一个极坐标系, O 点叫做极点,射线 Ox 叫做极轴 .①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .点的极坐标设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox 到OM的角度,那么ρ叫做 M点的极径,θ叫做 M点的极角,有序数对 ( ρ , θ ) 叫做 M点的极坐标.( 见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位 .(2)互化公式x cos2x2y2 yy sin 'tg0)( xx三、知识点、能力点提示( 一 ) 曲线的参数方程,参数方程与普通方程的互化例 1在圆x2+y2-4x-2y-20=0上求两点 A 和 B,使它们到直线4x+3y+19=0 的距离分别最短和最长 .解:将圆的方程化为参数方程:文档大全x 2 5 cos ( 为参数)y 1 5sin则 圆 上 点P 坐 标 为 (2+5cos, 1+5sin) , 它 到 所 给 直 线 之 距 离120 cos15 sin 30d=4232故当 cos( φ - θ)=1 ,即φ =θ时 ,d 最长,这时,点 A 坐标为 (6 ,4) ;当 cos( φ - θ)=-1,即θ =φ - π时, d 最短,这时,点 B 坐标为 (-2 , 2).( 二 ) 极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自 1986 年以来每年都有一个小题,而且都以选择填空题出现.例 2极坐标方程ρ =1 所确定的图形是()23 sincosA. 直线B. 椭圆C. 双曲D.抛物线111解: ρ =231cos2[1 ()] 1sin()2 26( 三 ) 综合例题赏析例 3x3 cos( 是参数 )的两个焦点坐标是椭圆1( )y 5sinA.(-3 , 5) , (-3 , -3)B.(3 , 3) , (3 , -5)C.(1 ,1) , (-7 , 1)D.(7 , -1) ,(-1 , -1)解:化为普通方程得( x3) 2( y 1)29125∴ a 2=25,b 2=9, 得 c 2=16 ,c=4.∴ F(x-3,y+1)=F(0, ± 4)∴在 xOy 坐标系中,两焦点坐标是 (3,3) 和(3 ,-5).应选 B.例 4 参数方程xcos sin22(02 )表示y1(1sin )2A. 双曲线的一支,这支过点(1,1)B. 抛物线的一部分,这部分过(1 ,21 ) 2C. 双曲线的一支,这支过(-1 ,1) D.抛物线的一部分,这部分过(-1 ,21)2解:由参数式得x2=1+sin θ=2y(x > 0)即y= 1x2(x > 0). 2∴应选 B.例 5x sin( )在方程( θ为参数 ) 所表示的曲线一个点的坐标是y cosA.(2,-7)B.(1,2) C.(1,1) D.(1 ,0) 3322解: y=cos2 =1-2sin2=1-2x 2将x= 1代入,得 y=1 22∴应选 C.例 6下列参数方程(t为参数)与普通方程x2-y=0 表示同一曲线的方程是( )x t x cost x tgtC.A. B.y cos2 t1cos 2t y t y1cos2t x tgtD.1 cos2t y1 cos2t解:普通方程x2-y 中的 x∈ R, y≥ 0, A. 中 x=| t |≥ 0, B. 中 x=cost ∈〔 -1,1 〕,故排除A.和 B.2cos2 t2t=112C. 中 y=2t =ctg2t x2=,即 x y=1,故排除 C.2sin tg∴应选 D.例 7曲线的极坐标方程ρ=4 sinθ化成直角坐标方程为 ( )A.x 2+(y+2) 2=4B.x2+(y-2)2=4C.(x-2) 2+y2=4D.(x+2) 2+y2=4解:将ρ =x2y 2,sinθ=y代入ρ =4sin θ,得 x2+y2=4y,即 x2+(y-2) 2=4.x2y2∴应选 B.例 8极坐标ρ =cos() 表示的曲线是( )4A. 双曲线B. 椭圆C.抛物线D.圆实用标准解:原极坐标方程化为ρ =12(cos θ +sin θ ) 22=ρcos θ +ρsin θ,∴普通方程为2 (x 2+y 2)=x+y ,表示圆 .应选 D. 例 9在极坐标系中,与圆ρ =4sin θ相切的条直线的方程是 ( )A. ρ sin θ =2B. ρcos θ =2C. ρ cos θ =-2D.ρcos θ =-4例 9 图解:如图 .⊙ C 的极坐标方程为ρ =4sin θ, CO ⊥ OX,OA 为直径,| OA | =4,l 和圆相切,l 交极轴于 B(2, 0) 点 P(ρ , θ ) 为 l 上任意一点,则有cos θ =OB2,得ρ cos θ =2,OP∴应选 B.例 10 4ρsin 22 =5 表示的曲线是 ()A. 圆B. 椭圆C.双曲线的一支D.抛物线解: 4ρ sin 2 2 =54ρ·cos2 122 cos5.把ρ = x 2y 2ρ cos θ =x ,代入上式,得2 x 2 y 2 =2x-5.平方整理得 y 2=-5x+25. . 它表示抛物线 .4∴应选 D.例 11极坐标方程 4sin 2θ =3 表示曲线是 ()A. 两条射线B.两条相交直线C.圆D.抛物线2y 2223x , 它表示两相交直线 .解:由 4sin θ =3, 得 4· x 2 y 2 =3, 即 y =3 x ,y=± ∴应选 B.四、能力训练( 一) 选择题1. 极坐标方程ρ cos θ = 4表示 ( )3A. 一条平行于 x 轴的直线B. 一条垂直于 x 轴的直线C. 一个圆D.一条抛物线2. 直线: 3x-4y-9=0 与圆:x 2 cos ( 为参数 ) 的位置关系是 ( ) y 2 sin,A. 相切B.相离C. 直线过圆心D.相交但直线不过圆心3. 若 (x , y) 与 ( ρ,θ )( ρ∈ R)分别是点 M 的直角坐标和极坐标, t 表示参数,则下列各组曲 线:①θ =和 sin θ = 1;②θ =和 tg θ =3,③ρ 2-9=0 和ρ = 3 ;④6263x22t2和x2 2ty 3 1ty3 t2其中表示相同曲线的组数为 ( )A.1B.2C.3D.44. 设 M(ρ 1,θ 1) ,N(ρ 2,θ 2) 两点的极坐标同时满足下列关系:ρ 1+ρ 2=0 ,θ1+θ 2=0,则 M , N 两点位置关系是 ()A. 重合B. 关于极点对称C.关于直线θ =D.关于极轴2对称5. 极坐标方程ρ =sin θ +2cos θ所表示的曲线是 ( )A. 直线B. 圆C.双曲线D. 抛物线6. 经过点 M(1,5) 且倾斜角为的直线, 以定点 M 到动点 P 的位移 t 为参数的参数方程3是( )x 1 1tx 1 1tx 1 1tA .2 B.2 C.23 3 3yt t t5y 5y 5222y1 3 tD.2 x51t2m 2 2m7. 将参数方x am 2 2m 2y b2m 2 m 2 2m 2(m 是参数, ab ≠ 0) 化为普通方程是 ( )x 2y 21( x a)x 2 y 2 1( xa)A.b 2B.b 2a 2a 2C. x 2 y 21( x)x 2 y 2 1( x a)a 2b 2aD.b 2a 28. 已知圆的极坐标方程ρ =2sin( θ+) ,则圆心的极坐标和半径分别为 ( )6A.(1,),r=2 B.(1,),r=1C.(1,),r=1 D.(1,363-),r=23x1t为参数 ) 所表示的曲线是 ( )9. 参数方程t (ty2A. 一条射线B.两条射线 C.一条直线 D. 两 条直线x 2 tg10. 双曲线( θ为参数 ) 的渐近线方 程为 ( )y 1 2 secA.y-1=1( x 2)B.y=1 x C.y-1=2(x 2)22D.y+1= 2(x2)11. 若直线x 4 at( (t 为参数 ) 与圆 x 2+y 2-4x+1=0 相切,则直线的倾斜角为( )y btA.B.2 C.或2D.333 3 3或 53x 2 pt 2 为参数 ) 上的点 M ,N 对应的参数分别为 t 1,t 2,且 t 1+t 2=0,12. 已知曲线(ty2 pt那么 M , N 间的距离为 ()A.2p(t 1+t 2)B.2p(t 22 C.│2p(t 1-t 2)│1+t 2)D.2p(t 1-t 2) 213. 若点 P(x ,y) 在单位圆上以角速度ω按逆时针方向运动,点 M(-2xy ,y 2-x 2) 也在单位圆上运动,其运动规律是( )A. 角速度ω,顺时针方向B. 角速度ω,逆时针方向C. 角速度 2ω , 顺时针方向D.角速度 2ω,逆时针方向14. 抛物线 y=x 2-10xcos θ +25+3sin θ-25sin2θ与 x 轴两个交点距离的最大值是( )A.5B.10C.23D.315. 直线ρ =3 与直线 l 关于直线θ =( ρ∈ R)对称,则 l 的方程是 ( )2cossin4A .3B .3sin2 coscos 2 cosC .3D .32 sincos2sincos( 二)填空题x3 4 t16. 若直线 l的参数方程为5 (t 为参数 ) ,则过点 (4 ,-1) 且与 l 平行的直线3 ty25在 y 轴上的截距为.xcoscos17. 参数方程1 (为参数)化成普通方程为.sinycos118. 极坐标方程ρ =tg θ sec θ表示的曲线是.19. x 1 3t(t 为参数 ) 的倾斜角为;直线上一点 P(x , y) 与点 M(-1 ,直线2 3ty 2) 的距离为.( 三) 解答题20. 设椭圆x 4 cos( θ为参数 ) 上一点 P ,若点 P 在第一象限, 且∠ xOP=,求y 2 3 sin3点 P 的坐标 .21. 曲线 C 的方程为x 2 pt 2y(p > 0, t 为参数 ) ,当 t ∈[ -1 , 2]时 ,曲线 C 的端2 pt点为 A , B ,设 F 是曲线 C 的焦点,且 S =14,求 P 的值 .△ AFB22. 已知椭圆 x2y 2 =1 及点 B(0 ,-2) ,过点 B 作直线 BD ,与椭圆的左半部分交于 C 、2D 两点,又过椭圆的右焦点F 2 作平行于 BD 的直线,交椭圆于G ,H 两点 .(1) 试判断满足│2BD 是否存在 ?并说明理BC │·│ BD │ =3│ GF │·│ F 2H │成立的直线由 .(2) 若点 M 为弦 CD 的中点, S △ BMF2=2,试求直线 BD 的方程 .x 8 4sec23. 如果椭圆的右焦点和右顶点的分别是双曲线( θ为参数 ) 的左焦点y 3tg和左顶点,且焦点到相应的准线的距离为9,求这椭圆上的点到双曲线渐近线的最短距离. 424.A ,B 为椭圆x222y2 =1,(a > b> 0)上的两点,且 OA⊥ OB,求△ AOB的面积的最大a b值和最小值 .25. 已知椭圆x2y 2=1,直线 l ∶xy=1,P 是 l 上一点,射线 OP交椭圆于点 R,24161282又点 Q在 OP上且满足│ OQ│·│ OP│ =│OR│ ,当点P在l上移动时,求点Q的轨迹方程.实用标准参考答案( 一 )1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D( 二 )16.-4 ; 17.y 2=-2(x- 1),(x≤ 1);18.抛 物线; 19.135 °,|32 t|22 ( 三 )20.(8 5 , 415);21.2 3 ;5 5322.(1) 不存在, (2)x+y+2=0 ; 23. 1(27-341 ) ;24.S max =ab, s max = a 2 b 2;5 2a 2b 2(x 1) 2 ( y1) 2不同时为零 )25.5=1(x,y)522文档大全。

相关文档
最新文档