高一数学方程的根与函数的零点教案

合集下载

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标:1. 让学生理解方程的根与函数的零点的概念,掌握它们之间的关系。

2. 培养学生运用函数的零点定理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 方程的根与函数的零点的定义。

2. 函数的零点定理及应用。

3. 方程的根与函数的零点之间的关系。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念,函数的零点定理。

2. 难点:方程的根与函数的零点之间的关系,函数的零点定理在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点之间的关系。

2. 利用实例分析,让学生直观地理解函数的零点定理。

3. 运用小组讨论法,培养学生的团队合作精神,提高解决问题的能力。

五、教学过程:1. 导入:引导学生回顾方程的解与函数的零点的概念,为新课的学习做好铺垫。

2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。

3. 实例分析:分析具体例子,让学生理解函数的零点定理及应用。

4. 练习:布置练习题,让学生巩固所学知识。

6. 作业布置:布置作业,让学生进一步巩固所学知识。

7. 课后反思:教师对本节课的教学进行反思,为学生下一步的学习做好准备。

六、教学评价:1. 课后作业:检查学生对课堂所学知识的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在团队合作中的参与程度,以及他们的问题解决能力。

4. 期中期末考试:全面评估学生在整个学期的学习成果。

七、教学资源:1. 教学PPT:提供直观的教学演示,帮助学生更好地理解概念。

2. 练习题库:为学生提供丰富的练习资源,帮助他们巩固知识。

3. 教学视频:为学生提供额外的学习资源,帮助他们从不同角度理解知识点。

4. 网络资源:利用互联网为学生提供更多相关知识的学习资料。

八、教学进度安排:1. 第1周:介绍方程的根与函数的零点的概念。

方程的根与函数的零点教学教案

方程的根与函数的零点教学教案

方程的根与函数的零点教学教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及它们之间的关系。

2. 培养学生运用函数的零点判断方程根的存在性及个数的能力。

3. 通过对实际问题的探究,提高学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的定义。

2. 函数的零点的判定定理。

3. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及它们之间的关系,函数的零点的判定定理。

2. 教学难点:函数的零点的判定定理在实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生通过自主探究、合作交流来掌握方程的根与函数的零点的概念及它们之间的关系。

2. 利用数形结合的方法,帮助学生直观地理解函数的零点的判定定理。

3. 通过实际问题的引入,培养学生运用数学知识解决实际问题的能力。

五、教学过程1. 引入:通过简单的一次方程、二次方程的求解,引导学生思考方程的根与函数的零点的关系。

2. 讲解:介绍方程的根与函数的零点的定义,讲解函数的零点的判定定理,并通过示例进行说明。

3. 实践:让学生尝试解决一些实际问题,如判断函数的零点个数,求解方程的根等。

5. 作业:布置一些相关的练习题,巩固所学知识。

六、教学评价1. 评价目标:检查学生对方程的根与函数的零点的概念的理解,以及运用函数的零点判断方程根的存在性及个数的能力。

2. 评价方法:通过课堂提问、练习题和课后作业进行评价。

3. 评价内容:a. 方程的根与函数的零点的定义;b. 函数的零点的判定定理的应用;c. 实际问题中的应用。

七、教学反思1. 反思内容:a. 学生对方程的根与函数的零点的概念的理解程度;b. 学生运用函数的零点判断方程根的存在性及个数的能力;c. 教学方法的使用及效果;d. 学生的学习兴趣和参与程度。

2. 改进措施:a. 针对学生的薄弱环节,加强相关知识的讲解和练习;b. 调整教学方法,以更有效地帮助学生理解和掌握知识;c. 关注学生的学习兴趣,增加实际问题的引入,提高学生的学习积极性。

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其关系。

2. 培养学生运用数形结合的方法分析问题、解决问题的能力。

3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的关系。

3. 求解方程根的方法。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其关系,求解方程根的方法。

2. 教学难点:运用数形结合的方法分析问题、解决问题的能力。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。

2. 利用数形结合的方法,帮助学生直观地理解问题。

3. 通过实际问题,培养学生的应用能力。

五、教学过程1. 导入:讲解方程的根与函数的零点的概念,引导学生理解两者之间的关系。

2. 新课:讲解方程的根与函数的零点的关系,引导学生掌握求解方程根的方法。

3. 案例分析:分析实际问题,让学生运用方程的根与函数的零点的关系解决问题。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调方程的根与函数的零点的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学活动1. 课堂讨论:让学生举例说明方程的根与函数的零点在实际问题中的应用,分享解题心得。

2. 小组合作:分组让学生探讨如何利用方程的根与函数的零点的关系解决实际问题,并进行汇报。

七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的理解程度。

2. 课后作业:评估学生运用所学知识解决问题的能力。

3. 小组汇报:评价学生在团队合作中的表现及对问题的分析、解决能力。

八、教学反馈1. 课后收集学生作业,分析存在的问题,为下一步教学提供参考。

2. 听取学生对教学内容的反馈,了解学生的学习需求,调整教学方法。

九、教学拓展1. 深入研究方程的根与函数的零点的相关理论,如代数基本定理等。

数学《方程的根与函数的零点》教案

数学《方程的根与函数的零点》教案

数学《方程的根与函数的零点》教案一、教学目标:1. 了解方程的定义,掌握求解方程的基本方法。

2. 掌握函数的零点的概念,了解函数的零点与方程的根的关系。

3. 能够应用所学知识解决实际生活中的问题。

二、教学内容:1. 方程与根2. 函数与零点三、教学重难点:1. 方程解法2. 函数的零点四、教学方法:1. 讲授法2. 互动探究法3. 课堂演示法五、教学过程及时间安排:1. 导入(5分钟)可以用一些有趣的问题引导学生思考,例如:1+1=?答案是不是唯一的?讲解方程在数学中的重要性,方程的不等式是数学研究的基础。

2. 方程与根(15分钟)1)引入方程的定义,方程的形式及一元一次方程的解法。

2)讲解方程解的唯一性和存在性。

3)引入方程的根的概念,讲解如何将解代入原方程验证。

3. 函数与零点(20分钟)1)讲解函数的定义及函数的图像。

2)引入函数的零点的概念和求解方法。

3)展示一些函数的图像,并找出它们的零点。

4、应用实例(15分钟)举一些实际例子,引导学生如何将所学知识应用于实际生活中。

比如:一家工厂的生产成本为y = 3x2 + 2x + 12(其中y为成本,x为产量),如果该工厂希望能够获得最大的利润,应该选择什么样的产量?根据利润的公式L = 10x - y,求得利润最大时的产量和利润。

5、巩固练习(20分钟)提供一些练习题,让学生巩固所学内容。

六、板书设计:1. 方程与根方程的定义方程的形式一元一次方程的解法等式和不等式方程解的唯一性和存在性方程的根的概念2. 函数与零点函数的定义函数的图像函数的零点七、教学反思:本次教学采用讲授法、互动探究法和课堂演示法相结合的方法,使学生更好地理解了方程与根、函数与零点的概念及求解方法,学生能够较好地将所学知识应用于实际生活中。

在教学的过程中,要注意学生的参与性,在教学中保持与学生的互动,让学生更好地掌握所学知识。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1.了解方程与函数的概念;2.理解方程的根和函数的零点的概念;3.能够根据给定的方程或函数,求解其根或零点;4.掌握方程与函数的根和零点的性质。

二、教学重难点:1.方程与函数的概念;2.方程的根和函数的零点的概念;3.方程与函数的根和零点的性质。

三、教学准备:1.教材:教科书、课本、笔记本。

2.教具:黑板、白板、彩色笔、多媒体投影仪。

3.教学资源:视频教学素材、互动教学软件。

四、教学步骤:步骤一:导入(15分钟)1.引入学生的经验:请学生列举一些关于方程和函数的例子,让他们了解方程和函数的概念。

2.通过展示一些方程和函数的图片,让学生能够直观地理解方程和函数的关系。

步骤二:讲解方程的根和函数的零点(20分钟)1.讲解方程的根的概念:方程的根是使得方程等式成立的未知数的值,比如方程x^2-4=0的根是2和-22.讲解函数的零点的概念:函数的零点是使得函数为0的自变量的值,比如函数f(x)=x^2-4的零点是2和-23.通过数学符号和实际例子的对比,让学生能够理解方程的根和函数的零点之间的关系。

步骤三:方程的根与函数的零点的计算(30分钟)1.教学方程的根的计算方法:讲解解一元二次方程和解线性方程的方法,让学生能够掌握求解方程的根的技巧。

2.教学函数的零点的计算方法:讲解求解函数的零点的方法,包括图像法、试值法、代数法等,让学生能够灵活运用不同的方法求解函数的零点。

步骤四:方程与函数的根和零点的性质(30分钟)1.讲解方程与函数的根和零点的性质:包括根与零点的个数、根与零点的关系,以及根与零点与方程或函数的图像的关系等内容。

2.通过示例和练习,让学生能够熟练理解和运用方程与函数的根和零点的性质。

步骤五:小结和巩固(15分钟)1.总结本课的内容:方程与函数的概念,方程的根和函数的零点的概念,方程与函数的根和零点的计算方法,方程与函数的根和零点的性质。

2.布置课后作业:要求学生用所学的知识解决一些练习题,巩固所学的内容。

人教版高中必修13.1.1方程的根与函数的零点教学设计 (2)

人教版高中必修13.1.1方程的根与函数的零点教学设计 (2)

人教版高中必修13.1.1方程的根与函数的零点教学设计一、课程背景方程的根和函数的零点是高中数学中非常重要的内容,本文设计的教学方案适用于人教版高中必修13.1.1中的方程的根与函数的零点一章。

在学习本章课程前,学生已经学习过一元二次方程和一元二次函数的基本概念和性质,并通过解一元二次方程和求一元二次函数的图象掌握了方程的根和函数的零点的相关概念和解法。

二、教学目标1.了解方程、函数、根、零点的概念与性质。

2.掌握一元高次方程一般形式的解法及其应用。

3.掌握高次方程、无理方程、三角方程的解法及其应用。

4.掌握一元高次函数的零点的求法及其应用。

5.培养解决实际问题的能力。

三、教学重难点1.一元高次方程的一般解法,包括因式分解法、配方法、根与系数的关系、综合法等。

2.高次方程、无理方程、三角方程的解法与应用。

3.一元高次函数的零点的求法与应用。

四、教学过程设计1. 导入模块(1)引入问题:如果现在你有一个函数f(x)=x3+5x2−3x−9,你如何求它的零点?通过这个问题,引出本节课将讲解的方程的根与函数的零点的相关概念。

(2)概念解释:引导学生预习本章的课程内容,包括方程、函数、根、零点等的相关概念。

2. 一元高次方程的解法(1)讲解一元高次方程的一般形式及其解法。

(2)通过习题的讲解,让学生掌握因式分解法、配方法、根与系数的关系、综合法等一元高次方程的解法及其应用。

3. 高次方程、无理方程、三角方程的解法(1)通过例题的讲解,让学生掌握高次方程、无理方程、三角方程的解法及其应用。

(2)通过一些实际问题的解决,训练学生运用高次方程、无理方程、三角方程的解法解决实际问题的能力。

4. 一元高次函数的零点的求法与应用(1)通过例题的讲解,让学生掌握一元高次函数的零点的求法及其应用。

(2)通过一些实际问题的解决,训练学生运用一元高次函数的零点的求法解决实际问题的能力。

5. 综合练习通过一些习题的讲解,帮助学生加深对本节课程的理解。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 培养学生运用函数性质解决方程问题的能力。

3. 渗透数学的转化思想,提高学生的数学思维能力。

二、教学内容:1. 方程的根与函数的零点的概念。

2. 函数的零点的判定定理。

3. 方程的根与函数的零点的关系。

三、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及其联系,函数的零点的判定定理。

2. 教学难点:函数的零点的判定定理的应用。

四、教学方法与手段:2. 利用多媒体课件,展示函数的零点的判定定理的证明过程,帮助学生直观理解。

五、教学过程:1. 导入新课:通过复习一元二次方程的根的判别式,引导学生思考方程的根与函数的零点的关系。

2. 探究新知:a) 引导学生观察函数图像,发现函数的零点与方程的根的关系。

c) 讲解函数的零点的判定定理,并通过多媒体课件展示证明过程。

3. 巩固新知:通过例题讲解,让学生掌握运用函数的零点的判定定理解决方程问题的方法。

4. 练习巩固:布置适量习题,让学生独立完成,检验对知识的掌握程度。

6. 课后作业:布置相关作业,让学生进一步巩固所学知识。

七、教学反思:在课后,对教学效果进行反思,观察学生对知识的掌握程度,针对存在的问题,调整教学策略,为后续的教学做好准备。

八、教学评价:通过课堂表现、作业完成情况、课后反馈等方式,对学生的学习情况进行全面评价,为下一步教学提供依据。

九、教学资源:1. 多媒体课件。

2. 教学习题。

3. 相关教学参考资料。

十、教学时间安排:1课时(45分钟)六、教学拓展与延伸:1. 引导学生思考方程的根与函数的零点在实际应用中的意义,例如在物理学、工程学等领域的应用。

2. 探讨函数的零点存在性定理的条件,引导学生了解函数零点存在性定理的局限性。

七、课堂小结:1. 回顾本节课所学内容,强调方程的根与函数的零点的概念及其联系。

八、课后自主学习任务:1. 复习本节课所学内容,整理笔记。

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 培养学生运用函数的性质解决方程问题的能力。

3. 渗透数学思想方法,提高学生的逻辑思维能力。

二、教学内容1. 方程的根与函数的零点的定义。

2. 方程的根与函数的零点的联系。

3. 利用函数的性质求解方程的根。

三、教学重点与难点1. 重点:方程的根与函数的零点的概念及其联系。

2. 难点:利用函数的性质求解方程的根。

四、教学方法1. 采用问题驱动的教学方法,引导学生探索方程的根与函数的零点的关系。

2. 利用数形结合的思想,让学生直观地理解函数的零点与方程的根的联系。

3. 采用小组讨论与合作交流的方式,培养学生的团队协作能力。

五、教学过程1. 导入:引导学生回顾方程的根的概念,引导学生思考方程的根与函数的关系。

2. 新课导入:介绍函数的零点的概念,引导学生理解函数的零点与方程的根的联系。

3. 案例分析:给出具体例子,让学生分析函数的零点与方程的根的关系。

4. 方法讲解:讲解如何利用函数的性质求解方程的根。

5. 练习与讨论:布置相关练习题,让学生巩固所学知识,并进行小组讨论。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用函数的性质解决实际问题。

7. 作业布置:布置适量的作业,巩固所学知识。

六、教学评价1. 学生能理解方程的根与函数的零点的概念及其联系。

2. 学生能运用函数的性质解决方程的根的问题。

3. 学生能积极参与课堂讨论,提高团队协作能力。

七、教学反思教师在课后应对本节课的教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。

八、教学拓展1. 引导学生思考方程的根与函数的零点在实际应用中的意义。

2. 引导学生探索其他求解方程根的方法。

九、教学资源1. PPT课件。

2. 相关练习题。

3. 数形结合的图形资料。

十、教学时间1课时(40分钟)六、教学内容1. 方程的根的判别式。

2. 利用判别式求解方程的根。

高一数学-方程的根与函数的零点教案

高一数学-方程的根与函数的零点教案

§3.1.1方程的根与函数的零点第一课时教案 高一级-丁文洁一,教学目的:(1)理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系;(2)掌握求函数零点的方法;(3)在函数与方程的联系中体验数学中的转化思想的意义和价值.二,重点:零点的概念难点:求函数零点的方法.三,课堂教学1,预备练习:求以下方程的根无实数根32(3)1012-(2)3,1-03-2-(1)222=+-=+=x x x x x x一元二次方程()002≠=++a c bx ax 的根与二次函数0)(a 2≠++=c bx ax y 的图象有什么关系?判别式ac b 4-2=∆ 0>∆ 0=∆ 0<∆cbx ax y ++=2()0≠a 的图象02=++c bx ax 的根两个不相等的实数根21,x x两个相等的实数根21x x =没有实数根函数的图象与x轴的交点 ()()0,0,21x x ,()⎪⎭⎫⎝⎛0,2-0,1a b x 即 没有交点(1) 定义 (2) 等价关系方程()0=x f 有实数根函数()x f y =的图象与x 轴有交点函数()x f y =有零点(3) 求函数零点或零点个数的方法a. 定义法:解方程()0=x f ,得出函数的零点b.图象法:画出()x f y =的图象,其图象与x 轴的交点的横坐标 5,相关例题例1,已知二次函数3-2-2x x y =的图象如右,求该函数的零点 解:由图可知,该函数图象与X 轴有两个交点,为(-1,0)和(3,0),所以该函数的零点为-1和3。

xyx 1x 20 xy0 x1xy注意:若函数图象与X 轴有n 个交点,则该函数有n 个零点,且零点为交点的横坐标例2,求二次函数3-2-2x x y =的零点解:令 03-2-2=x x ,则该一元二次方程的根为:3,1-21==x x 故该二次函数的零点为-1和3注意:求函数零点的步骤: (1)令f(x)=0;(2)解方程f(x)=0; (3)写出零点四,课堂练习练习:求下列函数的零点答案:五,课堂小结● 一元二次方程的根及其相应二次函数的图象与x 轴交点的关系;● 函数零点的概念;● 函数零点与方程的根的关系.六,布置作业求下列函数的零点:()()()1log )(342)(234)(122-=-=+-=x x f x f x x x f x31)1(21==x x ,2)2(=x 2)3(=x 1)(+=x x f。

高中数学必修一教材《方程的根与函数的零点》教学设计

高中数学必修一教材《方程的根与函数的零点》教学设计

课题:3.1.1方程的根与函数的零点(一)教学目标1.本节课学生通过函数零点概念的形成过程,能初步认识到函数零点与相应方程根的关系,会用零点存在性判定条件判断函数在指定区间是否存在零点;2. 在探究函数零点的存在性判定过程中,让学生感悟、体验由特殊到一般,一般到特殊,数形结合和转化的思想方法,培养学生敢于想象,善于联想的思维品质.3.培养学生认真、耐心、严谨的数学品质;让学生在自我解决问题的过程中,体验成功的喜悦.(二)教学重点理解函数的零点与方程根的关系,初步形成用函数观点处理问题的意识.(三)教学难点函数零点存在性定理的理解及初步应用(四)教学方式发现、合作、讲解、演练相结合(五)教学过程1.问题引入:某天的气温随时间变化图象是一个近似抛物线(如图所示),但是图象中间被一段墨迹遮挡.现想了解当天12时至24时具体哪个时刻的温度为0℃,你能帮助解决这个问题吗?这个问题实际求什么?(师生交流)预答:求二次函数使函数值为0的x的值.教师引导学生回答:(1)求二次函数图象与x轴交点的横坐标,(2)求一元二次方程的根.二次函数与一元二次方程能建立联系,这种联系就是一元二次方程的根就是二次函数的图象与x轴交点的横坐标,它能使二次函数的函数值为0.这个数能起一个桥梁作用,它能连结二次函数与一元二次方程,很重要,我们今天来专门研究它.既然专门研究,就可以给他起个名字,它能使二次函数的函数值为0,于是就叫做函数的零点.那么这节课我们就来研究方程的根与函数的零点.(板书本节课课题)回到例子,这是某一天温度与时间的变化图象.如果从某天开始计算的0-36时温度随时间的变化图象是近似三次函数图象(如下图所示),那哪个时刻温度为0℃呢?预答:所求时刻是图象与x轴交点的横坐标,也是三次方程的根.同样的,这个值能使函数值为0,是这个三次函数的零点.对于二次函数和三次函数,我们发现函数与对应方程有关系,函数的零点建立了函数与对应方程根的关系.这种联系能否推广到一般情况呢?2.师生交流过程中不断完善学生提出的定义.函数零点:对于函数 y=f (x ) ,我们把使 f (x )=0的实数 x 叫做函数 y=f (x )的零点. 函数y=f (x )的零点⇔方程f (x )=0的实数根⇔函数y=f (x )图象与x 轴交点的横坐标.问题1:你能根据定义的双重功能(判定功能和性质功能),来出两个练习吗? (1)函数f (x )=x 3-8x 的一个零点是( ).A .(0,0)B .(-,0) C .(0, D.(2)若函数 f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值. (3)函数f (x )= x 2-2x -3有 个零点; 问题2:可以有些什么方法?预答:a 解方程,b 求判别式,… 问题3:如何判断二次函数零点个数?当△>0时,有两个零点;△=0时,有一个零点;△<0时,没有零点.(4)函数 f (x )= x 2-2x +a 的零点位于区间(-2,0)和区间(0,3)之间,则a 的取值范围是 . 师生交流:(2)0(0)030(3)0f f a f ->⎧⎪<⇒-<<⎨⎪>⎩(2)0(0)0f f ->⎧⇒⎨<⎩()20f x 在(-,)内有零点 (0)0(3)0f f <⎧⇒⎨>⎩()03f x 在(,)内有零点 发现:二次函数在区间端点函数值异号,则在区间里一定存在零点.图象上表现在区间里一定穿过x 轴.对于三次函数y=x 3-3x 2+2x ,观察图象,我们发现,在零点附近左右两侧的函数值是异号的.问题4:对于一般的函数,我们如何判断在某一区间上一定零点存在呢? 猜想:f(a )·fy = f (x )在区间(a,b )上存在零点数学语言:函数y = f (x)在区间[a,b]上有f (a)·f (b)<0,那么函数y = f (x)在区间(a,b)上存在零点.猜想对吗?演示反例修改猜想通过比较下列两组情况:修改猜想:通过比较下列两组情况:修改猜想:零点存在性判定:函数 y = f (x )在区间[a,b ]上的图象是连续不断的一条曲线, 并且有 f (a ) · f (b )<0 ,那么,函数 y = f (x )在区间(a,b )内存在零点. 初步认识判定方法:零点存在性判定表明定理能判断存在零点,只存在1个零点吗? 零点个数有规律吗? 演示各种零点存在情况:3.应用例 求函数ln 26y x x =+-的零点个数? 探究解法 法1:图象法法2:存在性判定+单调性 法3:函数图象交点问题ln 26y xy x =⎧⎨=-+⎩总结:判断存在唯一零点的方法: 存在性判定+单调性4.课堂小结:函数图象连续不断 f (a )·f (b )<0y = f (x )在区间[a,b ]上存在唯一的零点 y = f (x )在 [a,b ]上是严格单调的yooab a b y o yoa ba b 函数图象连续不断f(a )·fy = f (x )在区间(a,b )上存在零点同学们通过这节课的学习在知识上、方法上、思想上有些什么收获?知识上:函数的零点,函数的零点与方程根的关系,如何判断函数零点存在,有几个? 方法思想上:数形结合,函数思想,从特殊到一般,转化思想. (六)课后作业 1.填空题:(1)若方程210x ax --=在(1,2)内恰有一解,则实数a 的取值范围是 .(2)若函数2()f x x ax b =--的两个零点是2和3,则函数2()1g x bx ax =--的零点是.(3)二次函数2,()y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是 . 2.解答题(4)函数2()2(3)214f x x m x m =++++有两个零点,且都在[0,4)内,求实数m 的取值范围. 答案: (1)302a <<. (2)11,23--. (3)(,2)(3,)-∞-+∞. 三、解答题(4)解:142)3(2)(2++++=m x m x x f . 对称轴)3(+-=m x ,画图象可知5527735277510}]3([40)]3([00)4(0)0(0-<≤-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧->-<-≥-≥-<>⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>+--<+--≥≥>∆m m m m m m m m m f f 或.。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 理解方程的根与函数的零点的概念及它们之间的关系。

2. 学会利用函数的零点判断方程的根的情况。

3. 掌握求解一元二次方程的方法,并能够应用到实际问题中。

二、教学内容:1. 方程的根与函数的零点的概念。

2. 函数的零点的判断方法。

3. 一元二次方程的求解方法。

三、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及它们之间的关系,一元二次方程的求解方法。

2. 教学难点:函数的零点的判断方法,一元二次方程的求解方法的运用。

四、教学方法与手段:1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究来理解方程的根与函数的零点的关系。

2. 利用多媒体课件,生动形象地展示函数的零点的判断方法和一元二次方程的求解过程。

五、教学过程:1. 导入:通过展示一个实际问题,引导学生思考如何求解方程的根,从而引出方程的根与函数的零点的关系。

2. 教学内容与活动:a. 讲解方程的根与函数的零点的概念,并通过示例让学生理解它们之间的关系。

b. 讲解函数的零点的判断方法,并通过示例让学生学会如何判断函数的零点的情况。

c. 讲解一元二次方程的求解方法,并通过示例让学生掌握求解一元二次方程的步骤。

3. 巩固练习:给出一些练习题,让学生运用所学知识解决问题,巩固对方程的根与函数的零点的理解。

4. 总结与反思:通过总结本节课所学内容,让学生明确方程的根与函数的零点的关系,以及如何利用函数的零点判断方程的根的情况。

教学评价:通过课堂讲解、练习题和课后作业的完成情况,评价学生对方程的根与函数的零点的理解和掌握程度。

六、教学准备:1. 教学课件:制作包含动画、图表和例题的课件,以便直观展示概念和原理。

2. 练习题库:准备一系列针对不同知识点的练习题,用于课堂练习和课后作业。

3. 教学工具:准备白板和标记笔,以便在课堂上进行板书和解释。

七、教学过程设计:1. 导入新课:通过一个实际问题,如物理中的振动问题,引入方程的根与函数的零点的重要性。

(完整)《方程的根与函数的零点》教案

(完整)《方程的根与函数的零点》教案

《方程的根与函数的零点》教案一、设计理念按照新课程教学理念,“数学教学是数学活动的教学;在这个活动中,使学生掌握一定的数学知识和技能,同时身心获得一定的发展,形成良好的思想品质。

”数学课已不仅仅是一些数学知识的学习,更要体现知识的认识和发展过程,引导学生积极探索,在探索过程中获得对数学的积极体验和应用.二、教材分析本节课选自《普通高中课程标准实验教科书>人教版必修一第三章第一节第一课时《方程的根与函数的零点》,主要内容是函数零点的概念、函数零点与相应方程根的关系、函数零点的存在性定理,是一节概念课。

函数是中学数学的核心概念,核心的原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链接点,它从不同的角度,将数与形,函数与方程联系在一起,本节课是在学生学习了基本初等函数及其相关性质,具备初步数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续的学习垫底基础。

因此本节课内容具有承前启后的作用,地位至关重要。

三、学情分析本节课的授课对象是普通高中高一学生,学生已经学习了函数的概念,对初等函数的性质,图象已经有了比较系统的认识与理解,特别是对一元二次方程和二次函数在初中的学习已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入起到了很好的铺垫作用,但针对高一学生,刚进入高中不久,学生的动手,动脑能力,以及观察、归纳能力都还没有很全面,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生总结结论,将学生置于主动参与的地位.四、 教学目标1、知识与技能:理解函数零点的概念;领会函数零点与相应方程根之间的关系;掌握零点存在的判断条件.2、过程与方法:由二次函数的图象与x 轴的交点的横坐标和对一元二次方程的根为突破口,探究方程的根与函数的零点的关系,以探究的方法发现函数零点存在的条件;在课堂探究中体会数形结合的数学思想,从特殊到一般的归纳思想.3、情感、态度与价值观:在函数与方程的联系中体验数形结合思想,培养学生的辨证思维能力,以及分析问题解决问题的能力。

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其关系。

2. 引导学生掌握求解方程根的方法,以及利用函数零点判断方程根的存在性。

3. 培养学生的数学思维能力和问题解决能力。

二、教学内容1. 方程的根与函数的零点的定义。

2. 求解一元二次方程的根的方法。

3. 利用函数零点判断方程根的存在性。

4. 实际例子分析与应用。

三、教学过程1. 导入:通过简单的数学问题引入方程的根与函数的零点的概念。

2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。

3. 演示:利用数学软件或板书演示求解一元二次方程的过程。

4. 练习:让学生尝试求解一些一元二次方程,并判断其根的存在性。

5. 应用:通过实际例子分析,让学生理解方程的根与函数的零点在实际问题中的应用。

四、教学方法1. 讲授法:讲解方程的根与函数的零点的概念及其关系。

2. 演示法:利用数学软件或板书演示求解方程的过程。

3. 练习法:让学生通过练习求解方程,判断其根的存在性。

4. 实例分析法:分析实际问题,展示方程的根与函数的零点的应用。

五、教学评价1. 课堂问答:检查学生对方程的根与函数的零点的概念的理解。

2. 练习题:评估学生求解方程根的能力,以及利用函数零点判断方程根的存在性。

3. 实例分析:评估学生在实际问题中应用方程的根与函数的零点的能力。

六、教学资源1. 教学课件:制作包含图文并茂的课件,用于讲解和展示概念、例题及动画演示。

2. 数学软件:如MATLAB、GeoGebra等,用于演示方程求解和函数图像。

3. 练习题库:准备一定数量的练习题,包括不同难度层次的题目。

4. 实际案例:收集相关的实际问题,用于引导学生将理论知识应用于实际。

七、教学环境1. 教室:确保教室内的多媒体设备正常运行,便于展示课件和演示。

2. 计算机实验室:为学生提供实际操作数学软件的环境。

3. 网络:确保教学过程中可以访问相关教育资源和在线工具。

方程的根与函数的零点教案【人教版】高中数学必修

方程的根与函数的零点教案【人教版】高中数学必修

§3.1.1方程的根与函数的零点一、教学要求:结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.二、教学重点:体会函数的零点与方程根之间的联系,掌握零点存在的判定条件.三、教学难点:恰当的使用信息工具,探讨函数零点个数.四、教学过程:(一)创设情景,揭示课题1、提出问题:一元二次方程a x 2+bx+c=0 (a ≠0)的根与二次函数y=a x 2+bx+c(a ≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:①方程0322=--x x 与函数322--=x x y②方程0122=+-x x 与函数122+-=x x y③方程0322=+-x x 与函数322+-=x x y根据函数图象,分析方程的根与图象和x 轴交点坐标有何关系?上述结论推广到一般的一元二次方程和二次函数的关系:一元二次方程2ax +bx+c=o(a ≠0)的根就是相应二次函数y=ax 2+bx+c 的图象与x 轴交点横坐标.(二) 互动交流 研讨新知1.函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=零点.2.函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3.练习:求下列函数的零点 244y x x =-+;243y x x =-+小结:二次函数零点情况(由一元二次次方程的判别式去确定)4.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:① 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>=). ② 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>=).(Ⅱ)观察下面函数)(x f y =的图象① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=).② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=).③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).由以上两步探索,你可以得出什么样的结论?定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b )内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.思考?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?(三)、巩固深化,发展思维例1.求函数f(x)=㏑x +2x -6的零点个数。

高中数学必修1《方程的根与函数的零点》优秀教学设计

高中数学必修1《方程的根与函数的零点》优秀教学设计

3.1.1 方程的根与函数的零点『教材分析』:1. 知识与技能:理解方程的根和函数的零点的关系,函数零点的定义,学会判断零点存在的条件。

2. 过程与方法:通过学习,培养学生自主探究和独立思考的能力。

培养学生函数和方程结合思想的能力。

3. 思想方法:培养学生数形结合的意识与思想。

『重点。

难点。

关键点』:1. 重点:理解方程的根和函数零点之间的联系,判断函数零点的存在及其个数的方法。

2. 难点:理解探究发现函数零点的存在性。

理解函数的零点就是方程的根及利用函数的图像和性质判别零点的个数。

3. 关键点:帮助学生寻找方程和函数图像之间的联系。

『教学方法和手段』:教学方法:探究式教学(“启发—探究—讨论”的教学模式)教学手段:教学软件PPT 和几何画板辅助教学。

『教学进程构思及说明』:置前作业:1、求下列方程的根并画出对应的函数的图像。

2(1)230x x --= 2(2)210x x -+= 2(3)230x x -+=通过观察,你能得到上面三个一元二次方程的根与其相应的二次函数的图像有什么关系吗?(表格见资料)课前完成,观察上面三个一元二次方程的根与其相应的二次函数的图像有什么关系吗?激发学生探究问题的兴趣。

(反馈课前作业,抽学生回答。

)分析:1. 方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0),观察猜想方程0322=--x x 的两实根对应与函数与x 轴的交点坐标的横坐标。

2. 根据函数图像和方程对应的实根,观察可得到:方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0);方程0122=+-x x 的 根为121==x x ,函数122+-=x x y 与x 轴的交点坐标为(1,0);方程0322=+-x x 无实根,函数 322+-x x 与x 轴没有交点坐标。

人教版高中必修13.1.1方程的根与函数的零点教学设计

人教版高中必修13.1.1方程的根与函数的零点教学设计

人教版高中必修13.1.1方程的根与函数的零点教学设计一、教学目标1.了解函数的零点与方程的根的定义及其在实际生活中的应用;2.掌握方程的根与函数的零点的求解方法;3.能够应用所学知识解决实际问题。

二、教学重点1.函数的零点与方程的根的概念;2.方程的根与函数的零点的求解方法。

三、教学难点1.如何将方程转化为函数,从而求得函数的零点;2.如何将函数转化为方程,从而求得方程的根。

四、教学方法1.讲授法:通过讲授基础知识、解题技巧等,让学生掌握相关知识;2.实践法:通过实例演练、课堂讨论等方式,让学生深入理解所学知识并进行实践操作;3.合作学习法:通过小组讨论、合作完成任务等方式,培养学生合作精神和实际操作能力。

五、教学过程1. 导入(5分钟)介绍人教版高中必修13.1.1方程的根与函数的零点的教学内容,引入本课讲授目的和教学重点。

2. 讲授(30分钟)1.介绍函数的零点与方程的根的定义及其在实际生活中的应用;2.讲解方程的根与函数的零点的求解方法;3.通过范例演示,让学生掌握相关解题技巧。

3. 实践(30分钟)1.将给定方程转化为函数,并求出函数的零点;2.将给定函数转化为方程,并求出方程的根;3.学生自主解决实际问题。

4. 合作学习(20分钟)组成小组,进行合作学习,通过合作完成相关任务,培养学生合作精神和实际操作能力。

5. 总结(5分钟)回顾本节课所学内容,概括所学知识点及解题方法,引导学生进行课后巩固和练习。

六、教学工具黑板、白板、笔记本电脑、投影仪等。

七、教学评估1.课堂练习:通过课堂练习,检测学生掌握情况;2.作业与考试:通过作业和考试,评估学生对所学知识的掌握程度。

八、教学后记本节课的教学内容需要结合具体实际问题进行讲解,帮助学生更好地理解相关概念及应用。

在讲解过程中要注意引导学生掌握解题思路,培养学生分析问题、解决问题的能力,提高学生的实践操作能力。

同时,在教学结束后要及时复习巩固所学内容,并对学生的评估结果进行分析和总结,为下一步的教学提供参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 《方程的根与函数的零点》
一、教学目的: 1、知识与技能:
(1)、了解函数零点的概念:能够结合具体方程(如一次函数、二次方程、复合函数……),说明方程的根、函数的零点、函数图象与x 轴的交点三者的关系;
(2)、理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点可能不止一个;
(3)、能利用函数图象和性质判断某些函数的零点个数,及所在区间; (4)、体会函数与方程和数形结合的思想。

2、过程与方法:
培养学生观察 、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。

3、情感态度与价值观:
在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。

二、教学重难点
重点:体会函数零点与方程根之间的联系,掌握零点的概念及零点判断方法; 难点:探究并发现零点存在性定理及其应用
三、教学过程
1、创设问题情境,引入新课 问题1 求下列方程的根
(1)、3x +2=0; (2)、0322=--x x ; (3)、062=-+x Inx ;
师生互动:问题1让学生通过自主解前2小题,复习一元一次方程与一元二次方程根情形。

第3小题学生自主完成遇到困难,合作交流用所学的知识也无法解决
设计意图:问题1(4)引发认知冲突,激起学生强烈的求知欲,认识到学习新知识,探索新方法的必要性,同时为后面引出零点存在判定方法埋下伏笔。

问题2
设计意图:利用表格,有利于学生进行横向、纵向观察得出它们的关系。

并通过上表得出:
一元二次方程的实数根=二次函数图像与x 轴交点的横坐标(方程根的个数是对应函数图像与X 轴交点的个数)。

问题3:完成表格,并观察一元二次方程)0(02
≠=++a c bx ax 的根与相应二函数
)0(2≠++=a c bx ax y 图象与x 轴交点的关系?
师生互动:让学生通过探究,归纳概括所发现结论,并能用相对准确的数学语言表达。

设计意图: 采用表格有利于帮助学生对知识进行疏理,从而初步体会利用二次函数图像判断相应方程根的存在性和个数,体现数形结合的思想方法。

问题2到问题3创设符合学生从特殊到一般的认知过程,注重数形结合。

以学生已有的认知为生长点,得到函数零点新知识,使新旧知识顺利的衔接并有机联系起来。

并得到结论:一元二次方程的实根就是相应二次函数图像与X 轴的交点的横坐标。

2、建构函数零点概念
函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x 叫做函数y=f(x)的零点。

等价关系 (1)方程f(x)=0有实数根⇔(2)函数y=f(x)有零点⇔(3)函数y=f(x)的图
象与x 轴有交点
问题4:(1)、函数)3)(2)(1()(-+-=x x x x f 的零点为() A 、(1,0),(-2,0),(3,0) B 、1,3 C 、(0,1)(0,-2)(0,3) D 、1,-2,3 (2)、求函数的零点:32)(-=x x f
师生互动:让学生思考回答,并请两位同学回答。

设计意图: 为了帮助学生正确理解并掌握零点概念问题设置2个问题(1)强调:零点指的是
一个实数(2)揭示函数()
x f 的零点0x ()0
0=⇔x f 并把概念符号化(3)让学生从数与
形两个方面去寻找零点,既能让学生巩固零点的概念又经历三个等价的过程,从而很自然得出3个命题的等价关系,让学生体会到由具体到抽象的数学思想,并学会求函数零点的步骤格式。

问题5:(1)、思考现有两组图,哪一组图能说明他的行程一定曾渡河第一组第二组
(2)、第一组情况,若将河流抽象成X轴,前后的两个位置视为A、B两点。

请大家用连续不断的曲线画出他的可能路径。

若所画曲线能表示为函数,设A点的横坐标为a,B点的横坐标为b,问:函数在区间(a,b)内一定存在零点么?
3、发现零点存在性定理
如果函数
()x f
y=
在区间
[]b a,
上的图像是连续不断的一条曲线,并且有
()()0<
•b
f
a
f
,那么,函数
()x f
y=
在区间
()b a,
内有零点,即存在
()b a
c,

使得()0=
c
f
这个c也就是方程
()0=
x
f
的根。

思考1:你能说出应用零点存在性定理应注意哪几个条件?
思考2:如何判断闭区间上零点存在且唯一?
师生互动:
借助以上4个图形,引导学生注意应用定理时三个条件缺一不可(1)闭区间;(2)图像连续;(3)端点函数值异号。

注意强调区间中零点不一定唯一。

通过观察图(3)(4)完成思考2通过图(2)B点的运动让学生明白零点存在性定理不可逆。

(若函
()x f

()b a,
内有
(4)
零点,不一定得出()0)(<•b f a f 的结论)
设计意图: 引导学生理解函数零点存在性定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解定理的本质.从而突出本节的重点,突破难点。

思考:当定理增加什么条件时,函数在区间(a,b )上只有一个零点?
4、零点存在性定理应用
问题6:求函数f(x)=lnx+2x-6的零点的个数?
思考:试判断这个函数的单调性并加以证明。

师生互动:给学生充分的时间让学生先独立思考再合作交流,教师利用几何画板作出函数图象让学生直观感知零点的存在性及零点存在的大概区间,学生利用计算器列表找出大概的区间,利用函数的单调性判断零点存在且唯一。

设计意图: 本道例题让学生体会如何运用零点存在性定理及函数图象和函数基本性质(特别是函数单调性)在确定零点 中的作用,学生用计算器得出大致区间,既培养学生的估算能力也为下节课用二分法求方程近似解做好准备,思考题为了进一步让学生体会:用零点存在性定理判断零点存在,用单调性证明零点唯一。

四、归纳小结
1、函数零点的概念;
2、方程的根与函数的零点等价关系;
3、函数的零点判断方法:(1)、方程法;(2)、图像法;(3)、定理法;
4、函数零点的存在性定理;
5、体会函数与方程和数形结合的思想。

相关文档
最新文档