北师版八年级数学上册第二章实数教案实数21认识无理数29
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例

2.案例分析:让学生分析一些实际问题,如测量物体长度、计算圆的面积等,运用无理数解决实际问题。
3.小组分享:各小组向全班分享自己的讨论成果和案例分析,促进学生之间的交流和合作。
(四)总结归纳
1.无理数的定义和性质:引导学生总结无理数的定义和性质,加深学生对无理数概念的理解。
北师大版八年级数学上册第二章实数第1节认识无理数优秀教学案例
一、案例背景
本节内容是北师大版八年级数学上册第二章实数的第一节——认识无理数。在学习了有理数的基础上,本节课引导学生认识无理数,理解无理数的概念和性质,体会数学的广泛应用。无理数是数学中的一个重要概念,它在生活中和学科领域中有着广泛的应用。如圆周率π就是一个无理数,它在几何学、物理学等领域有着重要应用。另外,无理数在数学分析、高等数学等领域也是基本概念。因此,本节课对于学生理解和掌握数学知识体系,培养学生的数学思维能力具有重要意义。
5.注重学生的反思与评价:在教学过程中,我注重学生的反思与评价,及时反馈,指导学生的改进方向。通过引导学生进行自我反思和相互评价,我帮助学生检查自己对无理数概念的理解和掌握程度,发现自己的不足,明确改进的方向。这种教学方式能够培养学生的评价能力和批判性思维,提高学生的自我认知和自我改进能力。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我努力将教学内容与学生的生活实际和学科领域相结合,采用多种教学方法和手段,关注学生的个体差异,创设生动有趣的情境,引导学生在问题导向的过程中自主探究和合作交流,培养学生的数学思维能力和问题解决能力。同时,我注重学生的反思与评价,及时反馈,调整教学策略,以达到最佳教学效果。
(二)讲授新知
1.无理数的定义:详细讲解无理数的定义,并通过实例进行说明,让学生理解和掌握无理数的概念。
北师大版八年级数学上册:21认识无理数优秀教学案例

1.划分学习小组:将学生分为若干小组,鼓励他们相互讨论、交流,共同解决问题。
2.设计小组活动:让学生结合教材,探讨无理数在实际生活中的应用,如测量、计算等,培养学生的实践能力。
3.小组合作探究:组织学生进行合作探究,如共同探究无理数的估算方法,培养学生团队协作能力和沟通能力。
(四)总结归纳
本节课的教学内容主要包括:了解无理数的定义,理解无理数与有理数的区别和联系,学会用估算方法求无理数的大小,以及掌握实数的概念。在教学过程中,我以生活实际为导入,激发学生的学习兴趣,通过自主探究、合作交流的学习方式,引导学生理解无理数的定义,感知无理数的存在,并体会数学与生活的紧密联系。在教学设计上,我注重培养学生的抽象思维能力,通过丰富的教学活动,让学生在实践中感受无理数的魅力,提高他们的数学素养。
三、教学策略
(一)情景创设
1.生活导入:以日常生活中的实例为切入点,如测量物体长度、计算建筑物高度等,引发学生对无理数的兴趣,激发学习欲望。
2.情境创设:通过展示历史上数学家对无理数的研究过程,让学生了解无理数的发展历程,感受数学的趣味性和严谨性。
3.实践操作:让学生亲自动手进行实验,如测量圆的周长、计算根号下的平方等,从而感知无理数的存在,提高实践能力。
(二)问题导向
1.设计具有启发性的问题,引导学生思考无理数的定义和性质,如:“无理数和有理数有什么区别?”,“如何判断一个数是无理数还是有理数?”等。
2.通过问题驱动,引导学生探究无理数的运算规律,提高学生的逻辑思维能力。
3.鼓励学生提出问题,培养他们独立思考和解决问题的能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,共同解决问题。
2.设计小组合作活动,如共同探究无理数的估算方法,培养学生团队协作能力和沟通能力。
北师大版八年级上册2.1认识无理数(教案)

-近似值的理解和应用:在实际问题中,学生需要学会如何使用无理数的近似值,并理解近似值与精确值之间的差异。难点在于如何让学生在保证精确度的同时,合理选择和使用近似值。
在学生小组讨论环节,我努力扮演好引导者的角色,引导学生发现问题、分析问题和解决问题。从成果分享来看,学生们对于无理数的应用有了更深入的认识。但我也发现,他们在提出问题和解决问题时,有时会陷入思维定式。因此,在今后的教学中,我将注重培养学生的创新思维,引导他们从多角度审视问题。
总体来说,今天的课堂教学取得了一定的效果,但也暴露出了一些问题。在今后的教学中,我需要关注以下几个方面:
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是指不能表示为两个整数比例的数,即无限不循环小数。无理数在数学中具有重要地位,它是实数的一个重要组成部分,帮助我们更准确地描述世界。
2.案例分析:接下来,我们来看一个具体的案例。通过计算正方形的对角线长度,我们发现它是一个无理数,这展示了无理数在实际中的应用。
北师大版八年级上册2.1认识无理数(教案)
一、教学内容
本节课选自北师大版八年级上册第二章《实数与平方根》的第一节“认识无理数”。教学内容主要包括以下三个方面:
1.无理数的定义:通过介绍无限不循环小数的概念,引导学生理解无理数的本质,并能够识别无理数。
2.无理数的性质:探讨无理数的性质,如无理数与有理数的运算规律、无理数的近似值等。
5.培养学生的数学探究精神:鼓励学生主动探究无理数的性质和规律,培养学生的创新意识和探究能力。
北师大版八年级数学上册:2.1《认识无理数》教学设计

北师大版八年级数学上册:2.1《认识无理数》教学设计一. 教材分析《认识无理数》是北师大版八年级数学上册第二章的第一节内容。
本节内容是在学生学习了实数、有理数的基础上,引入无理数的概念,使学生了解无理数在生活中的应用和实际意义,培养学生运用数学解决实际问题的能力。
教材通过丰富的实例和探究活动,让学生感受无理数的存在,体验数的概念的扩展,培养学生的数感。
二. 学情分析八年级的学生已经学习了实数和有理数,对数的概念有一定的了解。
但是,学生对无理数的理解可能还比较模糊,需要通过具体的实例和实践活动来加深对无理数概念的理解。
此外,学生可能对无理数的存在感到困惑,需要教师通过讲解和引导,让学生逐渐接受无理数的存在。
三. 教学目标1.了解无理数的概念,理解无理数的存在和实际意义。
2.能够识别常见的无理数,如π、√2等。
3.能够运用无理数解决实际问题,提高运用数学解决实际问题的能力。
4.培养学生的数感,提高学生的数学思维能力。
四. 教学重难点1.重点:无理数的概念和实际意义的理解。
2.难点:无理数的识别和运用。
五. 教学方法1.实例教学法:通过具体的实例,让学生感受无理数的存在和实际意义。
2.实践活动法:通过实践活动,让学生加深对无理数概念的理解。
3.问题驱动法:通过提问和引导,让学生主动探索无理数的性质和运用。
六. 教学准备1.教材和教案。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用投影仪展示生活中的实例,如圆的周长和面积的关系,引出无理数的概念。
2.呈现(10分钟)讲解无理数的定义,通过具体的实例,让学生感受无理数的存在。
如π、√2等。
3.操练(10分钟)让学生进行练习,识别常见的无理数,加深对无理数概念的理解。
4.巩固(10分钟)讲解无理数的性质和运用,让学生通过实践活动,加深对无理数概念的理解。
5.拓展(10分钟)引导学生思考无理数在生活中的应用和实际意义,培养学生的数感。
北师大版八年级上册第二章实数第一节认识无理数教案

第二章实数第一节认识无理数教案一、教学目标1. 理解无理数的概念,掌握实数的概念及其性质。
2. 能够正确地进行无理数的运算,掌握实数大小的比较方法。
3. 培养学生对数学的兴趣和探究精神,提高逻辑思维能力。
二、教学重点和难点教学重点:1. 无理数的概念和实数的性质。
2. 无理数的运算和大小比较。
教学难点:1. 如何理解无理数的概念。
2. 如何正确进行无理数的运算。
三、教学过程1. 引入新知:通过问题导入,引导学生思考有理数无法表示的数,进而引出无理数的概念。
2. 概念讲解:详细讲解无理数的概念和实数的性质,让学生理解无理数的含义和特点。
3. 例题讲解:选取具有代表性的例题,引导学生进行无理数的运算和大小比较,掌握无理数的运算法则和实数大小的比较方法。
4. 练习与检测:让学生进行课堂练习和自我检测,加深对无理数的理解和掌握。
5. 巩固知识:通过提问、小组讨论等方式,让学生回顾所学知识,巩固记忆。
6. 拓展延伸:介绍无理数在其他数学领域的应用,引导学生了解数学的实际应用价值。
四、教学方法和手段1. 讲解与演示:教师通过讲解和演示,让学生理解无理数的概念和性质。
2. 练习与讨论:学生进行课堂练习和小组讨论,加深对无理数的理解和掌握。
3. 多媒体辅助:使用多媒体设备展示无理数和实数的图形关系,帮助学生更好地理解概念。
五、课堂练习、作业与评价方式1. 课堂练习:选取适当的练习题,让学生在课堂上进行无理数的运算和大小比较,检验学习效果。
2. 课后作业:布置适量的作业题,让学生在家中继续巩固无理数的知识和技能。
3. 互动评价:学生之间互相评价课堂练习和作业,互相学习和帮助,共同提高。
六、辅助教学资源与工具1. PPT讲解:提供详细的PPT讲解,帮助学生更好地理解无理数的概念和性质。
2. 数学软件:使用数学软件展示无理数和实数的图形关系,帮助学生更好地理解概念。
3. 参考资料:提供相关的数学参考资料,供学生自主学习和研究。
北师版八年级上册第二章2.1.1 认识无理数(教案)

2.1.1认识无理数感受无理数产生的实际背景和引入的必要性.经历动手拼图过程,发展动手能力和探索精神.通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.【重点】感受无理数产生的背景.【难点】会判断一个数是不是无理数.【教师准备】两张边长为1的正方形纸片,多媒体课件.【学生准备】两张边长为1的正方形纸片,复习有理数的运算法则及勾股定理有关知识.导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?探究活动1.已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方 ,并提出问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 -1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的正方形是什么样的呢?问题2:拼成后的大正方形面积是多少?问题3:若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a 可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展]正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA的对角线长度就不是有理数,数轴上的点P表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.通过生活中的实例,证实了确实存在不是有理数的数.1.在直角三角形中两个直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.4答案:B2.下列面积的正方形,边长不是有理数的是 ()A.16B.25C.2D.4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为,长度不是有理数的线段为.答案:略2.1.1认识无理数1.拼接正方形.2.做一做.3.a,b存在,但不是有理数.一、教材作业【必做题】教材随堂练习及教材习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 .【拓展探究】3.把下列小数化成分数.(1)0.6;(2)0. ·;(3)0. · ·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2. (解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6= ; (2)设0. ·=x ,则10x =7. ·,∴9x =7,从而x = ;(3)设0. · ·=x ,则100x =34. · ·,∴99x =34,从而x =. 解:(1)0.6= . (2) 0. · . (3) 0. · · .4.略大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解.设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.随堂练习(教材第21页)解:因为等边三角形中BC边上的高平分BC,所以h2=22-12=3,所以h不可能是整数,也不可能是分数.习题2.1(教材第22页)1.解:答案不唯一.如图(1)所示,线段AB,AD,AE,DE,BD,BC的长度都是有理数;线段AC,CE,BE的长度都不是有理数.2.解:答案不唯一.如图(2)所示的是几个符合要求的直角三角形.一个正方形木块的面积为8平方厘米,那么它的边长满足什么条件?可能是整数吗?可能是分数吗?解:它的边长的平方为8,没有整数的平方为8,所以边长不可能为整数,也没有一个分数的平方为8,所以边长不可能为分数.。
八年级数学上册《实数2》教案北师大版

八年级数学上册《实数2》教案北师大版一、教学内容本节课选自北师大版八年级数学上册《实数2》。
教学内容主要包括第四章实数的第一节“无理数的概念和性质”以及第二节“实数的分类和运算”。
详细内容涉及无理数的定义、性质、分类;实数的概念、分类及实数的四则运算。
二、教学目标1. 理解无理数的概念,掌握无理数的性质和分类。
2. 掌握实数的概念和分类,了解实数与有理数的关系。
3. 学会实数的四则运算,并能够熟练运用到实际问题中。
三、教学难点与重点教学难点:无理数的理解和实数的四则运算。
教学重点:无理数的性质、实数的分类和实数的运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、计算器。
五、教学过程1. 导入:通过展示实际情景(如黄金分割、圆的周长与直径的比等),引出无理数的概念。
2. 新课讲解:① 无理数的概念、性质和分类;② 实数的概念、分类及实数与有理数的关系;③ 实数的四则运算规则及运算方法。
3. 例题讲解:讲解典型例题,分析解题思路和方法。
4. 随堂练习:让学生独立完成相关练习,巩固所学知识。
5. 小组讨论:针对练习中的难点和疑问,进行小组讨论,共同解决问题。
六、板书设计1. 无理数的概念、性质、分类;2. 实数的概念、分类、实数与有理数的关系;3. 实数的四则运算规则及运算方法;4. 例题及解题思路;5. 练习题目。
七、作业设计1. 作业题目:a. √2 + √3b. (3+√5)×(2√5)c. 1/√2 2/√3a. √3、√4b. 3/2、√2c. √9、32. 答案:八、课后反思及拓展延伸2. 拓展延伸:(1)探索更多关于无理数在实际生活中的应用;(2)学习实数的更多运算性质和技巧,提高运算能力。
重点和难点解析1. 无理数的概念、性质和分类;2. 实数的四则运算规则及运算方法;3. 例题及解题思路;4. 作业设计。
一、无理数的概念、性质和分类1. 性质:a. 无理数是无限不循环的小数;b. 无理数与有理数的并集构成实数集;c. 无理数的平方是有理数。
最新北师大版八年级数学上册 第二章 实数 教案教学设计(含教学反思)

第二章实数2.1 认识无理数 (1)2.2平方根 (5)第1课时算术平方根 (5)第2课时平方根 (8)2.3 立方根 (12)2.4 估算 (15)2.5 用计算器开方 (18)2.6 实数 (21)2.7 二次根式 (25)第1课时二次根式 (25)第2课时二次根式的四则运算 (29)第3课时二次根式的混合运算 (33)第二章归纳总结 (36)2.1 认识无理数【知识与技能】1.通过拼图活动,让学生感受无理数产生的必要性.2.借助计算器探索无理数是无限不循环小数.3.会判断一个数是有理数还是无理数.【过程与方法】让学生亲自动手做拼图活动,培养学生的动手能力和合作精神,通过辨别一个数是有理数还是无理数,训练大家的思维判断能力.【情感态度】1.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.2.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.【教学重点】1.无理数的探索过程.2.了解无理数与有理数的区别,并能正确判断.【教学难点】把两个边长为1的正方形拼成一个大正方形的动手操作过程.一、创设情境,导入新课同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.在初一我们还学过负数.对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.【教学说明】随着学习的深入,知识层次的提高,有理数的范围不能适应现代生活的需要,这就要对数进行扩充,为学生学习新知识作准备.二、思考探究,获取新知无理数的概念拼一拼:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?【教学说明】通过小组合作交流,动手操作得到一个大的正方形,学生非常高兴地投入到活动中,调动了学生的积极性.同学们展示,拼图的结果.下面大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?【教学说明】探索拼图的过程,对于学生理解大正方形的边长是a是不是有理数很有帮助.【归纳结论】因为12=1,22=4,32=9,……整数的平方越来越大,所以a应在1和2之间,故a不可能是整数,又(1/2)2=1/4,(1/3)2=1/9,(2/3)2=4/9,…两个相同因数的乘积都为分数,所以a不可能是分数.做一做:大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.【教学说明】结合图形,让学生进一步理解面积为2的正方形边长不是有理数,而是一种新数.同学们能不能确定一下面积为2的正方形的边长为a的大致范围呢?请大家用计算器探索,用表格的形式整理如下.还可以进行下去吗?a是有限小数吗?【教学说明】教师引导学生探索,让学生对这种不是有理数的新数有了初步的认识,为下面引出无理数的概念打下了基础.【归纳结论】像这种无限不循环小数就叫做无理数.如:圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数..,它们都能化成有限小数或循环小数,这些数都是有理而3,45,0.38,017数.三、运用新知,深化理解1.判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.2.下列各数中,哪些是有理数?哪些是无理数?0.351,-23,4.9·6·,3.14159,-5.2323332…,123456789101112…(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.【教学说明】学生自主完成,加深了对无理数的理解以及有理数与无理数的区别所在,让学生的疑难及时得到矫正与强化.【答案】1.(1);(2);(3)√;(4)√;2. 0.351,-2/3,496.,3.14159;-5.2323332…,123456789101112…(由相继的正整数组成).四、师生互动,课堂小结通过本节课的学习,你是如何判断一个数是有理数还是无理数?还有哪些困难?【教学说明】引导学生寻找知识点间的区别和联系,加深对易错点的理解,有助于学生正确解题.1.习题2.2第1、2、3题.2.完成练习册中本课时相应练习.这节课的内容是无理数的概念以及判断一个数是有理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是很好,只能在以后的教学过程中不断的完善.2.2平方根第1课时算术平方根【知识与技能】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.【过程与方法】经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.【情感态度】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲.【教学重点】了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】理解算术平方根的概念、性质.一、创设情境,导入新课上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、思考探究,获取新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:x 2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w 不是有理数,而是无理数,即2,3,5 .因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.a”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是00=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30,900;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/8,即4964=7/8;(4)14的算术平方根是14 . 【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.三、运用新知,深化理解1.填空题.(1)若一个数的算术平方根是5,则这个数是 .(2)49的算术平方根是 .(3)正数 的平方为144/25,719的算术平方根为 . (4)(-1.44)2的算术平方根为 .(5)81 的算术平方根为 ,004. =2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124. 3.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h=4.9t 2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1)274().=7.4;(2)()239.-=3.9;(3)225. =1.5;(4)124=3/2. 3.解:将h=19.6代入公式h=4.9t 2得t 2=4,所以t=4 =2(秒)即铁球到达地面需要2秒.四、师生互动,课堂小结本节课你学习了哪些新知识?还有什么困难?请与同学们交流.【教学说明】教师引导学生回顾所学知识,加深印象.找出不足,共同提高.1.习题2.3第1、2、3题.2.完成练习册中本课时相应练习.本节课从一个数的平方入手,用逆向思维求一个数的算术平方根,学生容易接受,解决问题起来应该说是得心应手,但要注意算术平方根的符号表示方法.第2课时平方根【知识与技能】1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的区别与联系.【过程与方法】经历求一个数的平方根与平方互为逆运算的过程,培养学生求同和求异的思维方法,能从相似的事件中找到它们的共同点和不同点.【情感态度】通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走向社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.【教学重点】1.了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平方根与平方根.2.平方根与算术平方根的区别和联系.【教学难点】1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行开平方运算.一、创设情境,导入新课上节课我们学习了算术平方根的概念、性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作a,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.【教学说明】通过回顾算术平方根是一个正数正的平方根,从而顺其自然引出还有一个负数的平方等于这个正数,为下面学习平方根做了心理准备.二、思考探究,获取新知1.平方根、开平方的概念请大家思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?【教学说明】学生很容易看出有正负两个数的平方为一个正数,让他们对平方根的概念有了初步认识.【归纳结论】3的平方等于9,-3的平方也等于9,3是9的算术平方根,-3是9的平方根.平方等于4/25的数有两个,即2/5和-2/5,平方等于0.64的数也有两个,即0.8和-0.8.一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【教学说明】让学生找出平方根和算术平方根的相同点与不同点,对于正确理解两个不同的概念和学生准确解题很有帮助.【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根、算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为±a,正数a的算术平方根表示为a.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?【教学说明】使学生明白加与减、乘与除、平方与开平方都是互为逆运算.2. 平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?【教学说明】通过前面的学习,学生不难得出一个正数有两个平方根,且它们互为相反数; 0有一个平方根是0;负数没有平方根,加深对平方根概念的理解.【教学说明】由平方根的定义,学生不难得出结果,对于平方根的求法再次加深,以达到熟练运用.三、运用新知,深化理解1.求下列各数的平方根.1.44,0,8,100/49,441,196,10-42.填空(1)25的平方根是;(2)(-5)2= ;(3)(5)2= .3.判断下列各数是否有平方根?并说明理由.(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a2;(6)a2-2a+2【教学说明】学生自主完成,加深对平方根概念的理解和检测学生对平方根求法的掌握情况,及时点拨,得以强化.【答案】1.±1.2,0,±22,±107,±21,±14,±11002.(1)±5,(2)5,(3)53.有平方根的是:(-3)2,0,a2-2a+2,因为它们都是非负数;-0.01,-52没有平方根,因为它们都是负数;-a2,只有当a=0时它才有平方根.四、师生互动,课堂小结1.师生共同回顾平方根和开平方的概念以及只有非负数才有平方根.2.本节课你有哪些收获?还存在哪些不足?【教学说明】引导学生回顾知识点,找出它们之间的联系与区别以及学习过程中存在的不足,便于进一步深化和查漏补缺.1.习题2.4第1、2、3、4题.2.完成练习册中本课时相应练习.这节主要是算术平方根与平方根的区别与联系,其中表示方法,求式子的值都是很容易混淆的.大部分的学生还是能勉强的掌握.但还是要在以后的教学过程中再多让学生分清他们.2.3 立方根【知识与技能】1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,明白开立方与立方互为逆运算.3.正确区分立方根与平方根的不同.【过程与方法】在学习平方根的基础上,用类比的方法学习立方根的有关知识.【情感态度】结合本节课的特点,训练学生类比思想的养成,发展他们求同求异思维,使他们能在复杂的环境中明辨是非.【教学重点】1.立方根的概念.2.会求一个数的立方根.【教学难点】区分立方根与平方根的不同之处.一、创设情境,导入新课上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=a正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那么a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a 的什么呢?【教学说明】学生比较容易由平方根的定义类推得出立方根的定义,他们心目中已经对立方根有了初步认识.二、思考探究,获取新知1.立方根的概念及求法下面大家能不能根据平方根的定义和记法来类推立方根的定义和记法呢?【教学说明】由于学生在前面对于立方根的由来有了初步接触,应该来说学生接受比较快,容易掌握.【归纳结论】若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根).记为3a,读作x等于三次根号a,如2是8的立方根,-2/3是-8/27的立方根,0是0的立方根.大家能否由开平方的定义,再类推开立方的定义呢?【教学说明】学生在已学的开平方的基础上不难得出开立方的定义,有利于加深立方根概念的理解.【归纳结论】求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.2.立方根的性质(1)2的立方等于多少?是否有其他的数,它的立方也是8?(2)-3的立方等于多少?是否有其他的数,它的立方也是-27?(3)0的立方等于多少?0有几个立方根?【教学说明】从立方入手,让学生对立方根的求法再次得到加深.【归纳结论】正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.3.平方根与立方根的区别与联系我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.【教学说明】让学生找出平方根与立方根的联系与区别.对于正确理解两个不同而又容易混淆的概念和准确解题有很大帮助.【归纳结论】联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根”.(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.(3)表示法不同正数a,a(4)被开方数的取值范围不同a.例1求下列各数的立方根:(1)-27,(2)8/125;(3)0.216;(4)-5.请大家思考下列问题:a3例2求下列各式的值:【教学说明】由立方根的定义,学生不难得出结果,对于立方根的求法再次加深,以达到熟练运用.三、运用新知,深化理解【教学说明】学生独立完成,加深对立方根概念的理解和检测学生对于立方根求法的掌握情况,及时指导、点拨,得以强化提高.四、师生互动,课堂小结1.师生共同回顾立方根和开立方的概念以及立方根的性质.2.本节课你有哪些收获?还有哪些疑问?【教学说明】引导学生回顾所学知识,找出它们的相同点和不同点以及学习过程中存在的疑惑,便于进一步深化提高.1.习题2.5第1、2、3题.2.完成练习册中本课时相应练习.本节的内容最好在学生熟练掌握平方根的内容的前提下进行.这样就能让学生用类推的方法得出立方根的相关结论.很容易理解与掌握.从学生上课的反映来看,这节课应该是比较成功的.2.4 估算【知识与技能】1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小.2.掌握估算的方法,形成估算的意识,发展学生的数感.【过程与方法】通过一系列实际问题的解决让学生逐步掌握估算的基本方法.【情感态度】培养学生把数学应用于日常生活中的能力,对结果合理性的觉察能力,近似估算能力.【教学重点】掌握估算的方法,能通过估算检验计算结果的合理性.【教学难点】掌握估算的方法,形成估算的意识.一、创设情境,导入新课在前面我们已经了解了估算一个根号表示的无理数一般是采用夹逼的方法.例如要估算20的大小,首先要找出20邻近的完全平方数.在日常生活中,往往要遇到估算一个比较大的数的平方根或立方根,我们怎么办呢?通过下面的学习你就明白了.【教学说明】由于第二章第一节内容已经初步接触到估算,为他们后面学习估算比较大的数作好了铺垫.二、思考探究,获取新知估算和数的大小比较某地开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400000米21.公园的宽大约是多少?它有1000米吗?2.如果要求误差小于10米,它的宽大约是多少?与同伴交流.3.该公园中心有一个圆形花圃,它的面积是800米2,你能估计它的半径吗?(误差小于1米)【教学说明】从实际问题出发,关注学生能否主动从事估算等活动.对于较复杂的计算可用计算器.议一议:(1)下列计算结果正确吗?你是怎样判断的?与同伴进行交流.(239001).【教学说明】通过估算检验计算结果的合理性,在活动过程中能否向同伴清晰的解释自己的想法,并从中得到启发.例1根据生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的1/3,则梯子比较稳定.现在有一个长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.6米高的墙头吗?例2在公园两侧分别有一柱状雕塑,高度分别是512(米)与12(米),通过估算,试比较它们的高矮.你是怎么样想的?与同伴交流.【教学说明】让学生体验生活中无处不在的数学,用数学语言有条理地表达自己估算思考过程.三、运用新知,深化理解1.估算下列数的大小:(1)589. (精确到0.01) (2)31285- (精确到-1)2.通过估算,比较下面各组数的大小;(1)14 ,3.85;(2)512+,7/8. 3.下列估算正确吗?说说你的理由.(1)8956 ≈9.5;(2)312345 ≈232.4.如图,一旗杆高10米,旗杆顶部A 与地面一固定点B 之间要拉一笔直的铁索,已知固定点B 到旗杆底部的距离是7米,一工人准备了长约12.5米的铁索,你认为这一长度够吗?【教学说明】教师可以引导学生先猜想然后再验证,让他们逐步掌握精确估算的方法.教学中宜采用分析法,不同的学生可能有不同的做法.四、师生互动,课堂小结通过本课的学习,你有什么收获?我们一起共享;你有什么问题?我们一起解决.【教学说明】引导学生回顾所学知识,总结得出,便于及时矫正强化,达到共同提高.1.习题2.6第1、2、5题.2.完成练习册中本课时相应练习.计算器的缺乏使这节课上的比较困难.不过问题与实际结合的很好,学生思考比较积极,大胆猜想,最终还是较好的完成了学习任务.2.5 用计算器开方【知识与技能】1.会用计算器求平方根和立方根.2.经历运用计算器探求数学规律的活动,发展合情推理的能力.【过程与方法】通过使用计算器求一个数的平方根与立方根操作过程,弄清计算器的操作方法.【情感态度】让学生亲自使用计算器,培养他们的动手能力,激发他们的求知欲望,调动他们学习的兴趣.【教学重点】用计算器求平方根和立方根;运用计算器探求数学规律.【教学难点】探求规律,发展合情推理的能力.一、创设情境,导入新课出示科学计算器教学模板.利用科学计算器怎样进行开方运算呢?【教学说明】使用科学计算器教学模板这一教学用具,直观、易于操作,调动了学生学习的兴趣,为这一节课的学习做了个良好的开端.二、动手操作,获取新知用计算器进行开方运算下面给大家说明一下开平方、开立方运算的方法.(1)开方运算要用到乘方运算键x2第二功能“”和∧第二功能“x”(2)对于开平方运算,按键顺序为:2nd x2被开方数 =(3)对于开立方运算,按键顺序为:3 2nd∧被开方数 =【教学说明】用不同型号的计算器进行开方运算,按键顺序可能有所不同.如用有些计算器进行开平方运算时,先按被开方数,然后按“”.1.让学生跟随教师按步骤利用计算器计算下列各数:【教学说明】让学生跟随教师尝试着使用计算器进行开平方或立方运算,达到熟练掌握使用计算器的方法和步骤.2.做一做.利用计算器,求下列各式的值.(结果精确到0.01)(1800;(23225;(3058.;(430432.【教学说明】教师让学生交流完成上述各题,加深他们使用计算器的操作方法的理解,使所学知识得到强化.【展示结果】(1)28.28;(2)1.64;(3)0.76;(4)-0.76.例332的大小.(1)让学生讨论得出如何比较两数大小的方法.(2332的过程在教学模板上演示.(3)教师演示P37例题的解答过程.【教学说明】通过学生多次使用计算器,以提高他们的运算速度和正确率.【归纳结论】我们利用计算器不仅可以进行开方运算,还可以比较两个无理数的大小.三、运用新知,深化理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数§2.1 认识无理数(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数. [生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?b 是有理数吗? [师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。
§2.1认识无理数(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一、创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二、讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a <1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1<a<2 1<S<4**<a<1.5 **<S<2.25**<a<1.42 **<S<2.0164**<a <1.415**<S <2.002225**<a <1.4143**<S <2.00024449[师]还可以继续下去吗? [生]可以.[师]请大家继续探索,并判断a 是有限小数吗?[生]a =1.41421356…,还可以再继续进行,且a 是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b =2.236067978…,还可以再继续进行,b 也是一个无限不循环小数. [生]边长b 不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0,54=0.8,95=•5.0,•=71.0458,••=818.1112[生]3,54是有限小数,112,458,95是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数. 无限不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数. (2)任何一个有理数都可以化为分数的形式,而无理数则不能. 4.例题讲解下列各数中,哪些是有理数?哪些是无理数? **,-,,0.1010010001…(相邻两个1之间0的个数逐次加1).解:有理数有3.14,-34,••75.0. 无理数有0.1010010001….三、课堂练习 (一)随堂练习下列各数中,哪些是有理数?哪些是无理数?**,,-π,-,18. 解:有理数有0.4583,•7.3,-71,18. 无理数有-π. (二)补充练习投影片(§2.1.2 A)判断题(1)有理数与无理数的差都是有理数. (2)无限小数都是无理数. (3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.解:(1)错.例π-1是无理数. (2)错.例•5.1是有理数.(3)对.因为无理数就是无限不循环小数,所以是无限小数. (4)对.因为两个符号相反的无理数之和是有理数.例π-π=0. 投影片(§2.1.2 B)下列各数中,哪些是有理数?哪些是无理数?**,-,3.14159,-5.2323332…,XX1112…(由相继的正整数组成).解:有理数有0.351,-••69.4,32,3.14159,无理数有-5.2323332…,XX1112…. 投影片(§2.1.2 C)在下列每一个圈里,至少填入三个适当的数.[生]有理数集合填0,115,-3. 无理数集合填-π,-23π,0.323323332…. 四、课时小结本节课我们学习了以下内容. 1.用计算器进行无理数的估算. 2.无理数的定义.3.判断一个数是无理数或有理数. 五、课后作业:见作业本。