高等数学8-1

合集下载

高等数学习题详解-第8章 二重积分

高等数学习题详解-第8章 二重积分

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)22220()aa y dy x y dx -+⎰⎰;(2)21220;xxdx x y dx +⎰⎰解:(1)224422320()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 600001sin 3cos x x dx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)222DR x y d σ--其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)222DR x y d σ--3cos 2222222022cos 12()230R R d R r rdr R r d ππθππθθθ--=-=--⎰⎰⎰3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与22z x y =+所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:21222220[()]().6DV x y x y d d r r rdr ππσθ=++=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x ⎰⎰;(2)d d 2220(,)a ax x x f x y y -⎰⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 211d (,)d d (,)d y x yxy f x y x x f x y y =⎰⎰⎰⎰.(2) 222222200d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 2222000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰. 解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b x bn n a a adx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()b x b bn n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1bn b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。

高等数学八章无穷级数及其应用-精选文档

高等数学八章无穷级数及其应用-精选文档
n
1
第 一 节 数 项 级 数 的 概 念
但它是发散的。 现用反证法证明如下: 假设
n 1
1 n
Sn ( ), 请思考: 收敛,部分和为 S n ,且 S
n
2 n
Sn ( ) , 显然,该级数的部分和S 2 n 也有 S
u n 0 ,级 若 lim n
S S 0 ( n ) 2 n n S 于是 S ,但



n 1


n 1
n
n 1
n
n 1
vn
收敛,由
n 1
n
第 二 节 数 项 级 数 的 审 敛 法
比较审敛法,比较的是两个级数一般项的大小;得出的 结论是一般项大的级数如果收敛,则小的也收敛。而要判断 发散只需要写出上述命题的逆否形式即可,就是“一般项小 的级数如果发散,则大的也发散。”
+ u + n
其中第 n 项 u n 叫做级数

u
n1
n
的一般项。
第 一 节 数 项 级 数 的 概 念
无穷级数是无穷多个数累加的结果。前面 关于计算圆面积的方法告诉我们,可以先求有 限项的和,然后应用极限的方法来解决这个无 穷多项的累加问题。 既然用到了极限,就必然要探讨敛散性的 问题:什么是一个级数收敛(或发散)?如何判 定一个级数是收敛的(或发散的)?一个收敛 请思考: 的级数具有什么性质?

例 证明级数1 2 3 n 是发散的。
n ( n 1 ),显 证明:此级数的部分和为S 123 n n
Sn ,因此所给的级数是发散的。 然 lim n
2
二、数项级数的性质
性质1

高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初  郭安学主编、复旦大学出版社、课后习题答案

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-40)2(10)2(7z)2(30)2(50)2(-2z)2解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。

高等数学-第七版-课件-8-1 不定积分概念与基本积分公式

高等数学-第七版-课件-8-1 不定积分概念与基本积分公式



高等教育出版社
dx 1 x
2
2
ln( x 1 x ) C ,
2
1 2 1 x dx x 1 x arcsin x C . 2


数学分析 第八章 不定积分
不定积分的几何意义
像是 f (x) 的一条积分曲线. y 所有的积分曲线都是
由其中一条积分曲线 沿纵轴方向平移而得 到的.
f ( x ) f ( x ) 0.
由第六章拉格朗日中值定理的推论, 即知
F ( x ) G( x ) C .
数学分析 第八章 不定积分
高等教育出版社
§1 不定积分概念与基本积分公式
原函数
不定积分
定义2
不定 积分
不定积分的 几何意义
基本积分表
函数 f 在区间 I 上的全体原函数称为 f 在 I 上
5. e dx e C . x a x 6. a dx C. ln a
x x
数学分析 第八章 不定积分
高等教育出版社
§1 不定积分概念与基本积分公式
原函数
不定 积分
不定积分的 几何意义
基本积分表
8. sin xdx cos x C .
9. sec xdx tan x C .
定理8.1(原函数存在性定理)
若函数 f 在区间 I 上连续, 则 f 在 I 上存在原函
数 F, 即
F ( x ) f ( x ).
在第九章中将证明此定理.
数学分析 第八章 不定积分
高等教育出版社
§1 不定积分概念与基本积分公式
原函数
不定 积分
不定积分的 几何意义

济南大学高等数学C(一)6多元函数微分学-疑难解答

济南大学高等数学C(一)6多元函数微分学-疑难解答

第八章 多元函数微分学习题8-13*. :证明下列极限不存在332)0,0(),(lim)1(y x yx y x -→ 证:时,有趋向于为任意常数,沿直线当)0,0()1(),(≠=k k kx y y x,1)1(im ),(lim 3333kxy 0x kx y 0x k kx k kx y x f -=-==→=→ .lim 332)0,0(),(不存在的不同而不同,因此显然极限值随斜率y x y x k y x -→yx xyy x +→)0,0(),(lim)2( 证:时,有趋向于为任意非零实常数沿曲线当)0,0()(-),(2k x kx y y x =,1k im ),(lim 223x-kx y 0x x-kx y 0x 22k x x kx y x f -=-==→=→ .lim)0,0(),(不存在的不同而不同,因此显然极限值随斜率yx xyk y x +→4. :求下列极限 11xy lim)1()3,1(),(-+→xy y x解:;原式31-13131=+⨯⨯= xyxy y x 42lim)2()0,0(),(+-→解:;)(原式41-42lim)0,0(),(=++-=→xy xy xyy x )1sin 1sin (lim )3()0,0(),(xy y x y x +→解:量仍为无穷小量);(利用无穷小量乘有界原式0= 2233)0,0(),(*lim)4(y x y x y x ++→ 解:,则,令θρθρsin cos ==y x.0)s cos (lim s cos lim 330233330=+=+=→→θρθρρθρθρρρin in 原式习题8-22. .5,4,2,4)(4122轴的倾角)处切线对于在点(求曲线x y y x z ⎪⎩⎪⎨⎧=+= 解:轴的)处的切线对于即表示在点()处,,在点(x z x z x x 5,4,2,15,4,221==.4,1tan .1πθθ轴的倾角为故所求切线对于,则有设相应的倾角为斜率为x =4. ,证明:设222z y x r ++=.2)2(;11222222222r zr y r x r z r y r x r =∂∂+∂∂+∂∂=∂∂+∂∂+∂∂)()())((证:,,,)(rzz r r y y r r x z y x x x r =∂∂=∂∂=++=∂∂222221 ;1222=∂∂+∂∂+∂∂)()()故(z r y r x r.11)1(1)2(22222r x r r r x rx r x r ⋅-=⋅-⋅+=∂∂,11,1122222222r z r r z r r y r r y r ⋅-=∂∂⋅-=∂∂ .2222222r zr y r x r =∂∂+∂∂+∂∂故7. .0zz 2)2(cos 22222=∂∂∂+∂∂-=t x tt x z ,证明:设 证:),2sin(2)2sin()2cos(4t x tx t x x z --=-⋅--=∂∂ ),2cos(22t x tx z-=∂∂∂ ),2sin()2())2sin(()2cos(22t x tt x t x t z -=-⋅--⋅-⋅=∂∂ ).2cos()1()2cos(22t x t x tz--=-⋅-=∂∂ .0z z 2222=∂∂∂+∂∂t x t故8. 的竞争对手,这两家公司公司是机床行业的两个公司和Y X 别为主要产品的供给函数分.41600;51000Y Y X X Q P Q P -=-=.250100个单位个单位和是公司现在的销售量分别公司和Y X 多少?公司当前的价格弹性是公司和)(Y X 1下降的销售量个单位,同时导致增加到降价后,使)假定(X Y Q X Q Y 3002 性是多少?公司产品的交叉价格弹个单位,试问到X 75 证:,100,5001==X X Q P X 公司)( ,51||XXX X X X X Q P Q P dP dQ =⨯=η .110050051=⨯公司当前的价格弹性为故X,250,600==Y Y Q P Y 公司,51||Y YY Y YY Y Q P Q P dP dQ =⨯=η.6.025060041=⨯公司当前的价格弹性为故Y,时时,)(625,75;4003002====X X Y Y P Q P Q .7.0600400600-40010075100-75=++性为公司产品的交叉价格弹X习题8-41. .求下列函数的全导数.,4,3),arctan()2(3dtdzt y t x y x z 求而设==-= 解:dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂= 22212)(113)(11t y x y x ⋅-+-+⋅-+=.)43(1123232t t t -+-= 2. :具有一阶连续偏导数)数(其中求下列函数的一阶偏导f );,()4(zyy x f u =解:.,1,1222121f zy z u f z f y x y u f y x u '-=∂∂'+'-=∂∂'=∂∂ ).,,()5(xyz xy x f u =解:.,,332321f xy zu f xz f x y u f yz f y f x u '=∂∂'+'=∂∂'+'+'=∂∂ 3. .11,)(,)(222y zy z y x z x u f y x f y z =∂∂⋅+∂∂⋅-=验证为可导函数其中设解:,))(()(22)())((2222222222y x f y x f xy x y x f y x f y x z --'-=⋅-'⋅--=∂∂ ,))(()(2)(1)2()())(()(1222222222222222y x f y x f y y x f y y x f y x f y y x f y z --'+-=-⋅-'⋅---=∂∂代入左式,化简得2222222222222))(()(2)(1))(()(2y x f y x f y y x f y x f y x f xy --'+-+--'-=左式.)(1222右式==-=yzy x yf 5. 数:求下列函数的二阶偏导).ln()2(22y x y z ++=解:,)(22122222222y x y x y xy x x y x y x z +++=+⋅++=∂∂,)1)221(1222222y x yx yy x y y z +=++⋅++=∂∂,)()()2()(1322222222222222y x y x y y x y x y x y x y x z +++++-+++=∂∂,)(3222y x x y x z +-=∂∂∂ .)(32222y x y y z +-=∂∂习题8-53. .,,0)tan()cos()sin(yzx z yz xz xy ∂∂∂∂=++求设 解:.,,的函数为为独立变量,由题意知,y x z y x求导,得等式两边对x,0)(sec )()sin()cos(2=∂∂⋅⋅+∂∂⋅+⋅-xz y yz x z x z xz xy y 整理得;)(sec )sin()sin()cos(2yz y xz x xz z xy y x z --=∂∂ 求导,整理得同理,等式两边对y .)(sec )sin()(sec )cos(22yz y xy x yz z xy x y z -+=∂∂ 5. 所确定的)(都是由方程设0,,),(),,(),,(====z y x F y x z z z x y y z y x x.1-=∂∂⋅∂∂⋅∂∂xzz y y x 证明有连续偏导数的函数,解:的函数,则方程为为独立变量,,视)(方程中z y x z y z y x F ,,0,,= .-,0xy y x F F y xF y x F y =∂∂=+∂∂⋅从而求导得两边对.-,-zx y z F F x z F F z y=∂∂=∂∂同理可求.1)(-)(---=⋅⋅=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x 故7. .2yx zxyz e z∂∂∂=,求设 解:求导,得等式两边对x ;xye yzx z x z xy yz x z e z x -=∂∂⇒∂∂⋅+=∂∂⋅(1) 求导,得等式两边对y;xye xz y z y z xy xz y z e z x -=∂∂⇒∂∂⋅+=∂∂⋅(2) 求导得式对y )1()];())([()(122x yz e yz xy e y z y z xy e y x z z z z -∂∂⋅--∂∂+-=∂∂∂ 得代入)2(.12-322)(-=∂∂∂z y x y x z习题8-62. .)2()(22的极值求函数y y x ex,y f x++=解:).1(2)1422(222+=+++=y e f y y x e f x y x x ,.1-2101014222),,求得驻点(解方程组⎩⎨⎧=+=+++y y y x 再求出二阶偏导.2)44(2)4844(2222x yy x xy x xx e f y e f y y x e f =+=+++=,,,004.2,0,21-2122>>--===A e B AC e C B e A ,因)处,,在驻点( .2-1-21),(e y x f )处取得极小值,在点(所以函数3. .442222上的最大值和最小值在闭区域求函数≤+-=y x y x z 解:0,2,2.4422令其等于时,求出所有的驻点当y z x z y x y x -==<+.0,0)得驻点(.4422的点求出所有可能取得最值时,由拉格朗日乘数法当=+y x ),44(),,(2222-++-=y x y x y x L λλ设拉格朗日函数⎪⎩⎪⎨⎧=-+==+-==+=0440*******y x L y y L x x L y x λλλ令 .0,2;1,0=±=±==y x y x 解得.41-,最大值为值为的点的函数值,得最小比较所有可能取得最值4. ,和售价分别为同时在两个市场销售,某厂家生产的一种产品 21P P ;5.0-10 ,2.0-24 221121P Q P Q Q Q ==,需求函数分别为和销售量分别为 市场的售价,问厂家如何确定两个总成本函数为 )(403421Q Q C ++= 大?最大利润为多能使得获得的总利润最 解:,则设利润函数为L,13945.02.030322221212211---+=-+=P P P P C Q P Q P L ,,,联立解得,令其为,又30800-304.0-32212121====P P P L P L P P .此为唯一驻点 .336308021时取得为,定存在,故又由题意知最大利润一==P P .最大利润7. .角形求有最大周长的直角三的一切直角三角形中,从斜边长为l 解:,,,222l y x C l y x y x ++==+,周长则设另两边长分别为.222下的极值问题在约束条件题目即为求l y x l y x C =+++=设拉格朗日函数),(),,(222l y x l y x y x F -++++=λλ⎪⎩⎪⎨⎧=-+==+==+=,0,021,021222l y x F y F x F y x λλλ令周长一定存在,,为唯一驻点,且最大解方程组得l y x 22== .22时有最大周长故当l y x == 7. 品的广告,根据统计资纸两种方式做销售某商某公司可通过电台及报 (万元)用(万元)及报纸广告费用(万元)与电台广告费料,销售收入21x x R验公式:之间的关系有如下的经 222121211028321415x x x x x x R ---++= ;况下,求最优广告策略)在广告费用不限的情(1 .5.12告策略万元,求相应的最优广)若提供的广告费用为(解:)利润函数(1 22212121211028311315)(x x x x x x x x R L ---++=+-=.25.175.003102-8-0138-4-21212121(万元)(万元),解得,,令==⎩⎨⎧=+==+=x x x x L x x L x x.2084222212212-=∂∂=-=∂∂∂=-=∂∂=x LC x x L B x L A ,,又 .25.1,75.000162)为极大值点,故点(,<>=-A B AC时的最优广告策略为:,它为最大值点,即此由问题的实际意义可知 .25.175.0万元作报纸广告万元作电台广告,用用 做拉格朗日函数)2(),5.1(),(),,(212121-++=x x x x L x x F λλ),5.1(10283113152122212121-++---++=x x x x x x x x λ,05.10208310481321211221⎪⎩⎪⎨⎧=-+==+--==+--=x x F x x F x x F x x λλλ令.5.15.1,021,可使利润最大万元全部用于报纸广告,即广告费用解得==x x 10. .022之间的最短距离和直线求抛物线=--=y x x y解:的距离的求抛物线上的点到直线由题意,问题可转化为02=--y x .最小值的距离为)到直线任意点(02,=--y x y x.2|2|)1(1|2|2--=-+--=y x y x d.|2|2下的最值在约束条件先求函数x y y x =--设拉格朗日函数,)()2()(|2|22x y y x x y y x L -+---=-+--=λλ ,下,(注:在约束条件))2(|2|2---=--=y x y x x y ⎪⎩⎪⎨⎧=-==+==--=,0,01,0212x y L L x L y x λλλ令最短距离,为唯一驻点,故所求,解方程组得4121==y x.8272|24121|=--=d 11.的有最大体积试求内接于椭球面)0,0,0(1222222>>>=++c b a cz b y a x.的长方体解:),则按题意,我们,设其一个顶点为(此长方体的中心为原点z y x ,, ).0,0,0(18222222>>>=++=z y x cz b y a x xyz V 下的极值在约束条件应考虑函数设拉格朗日函数),1(222222-++++=cz b y a x xyz F λ,01020222222222⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++==⋅+==⋅+=c z b y a x F byxz F a xyz F yx λλλ令体的长、宽、高分别为故具有最大体积的长方解得,3,3,3c z b y a x ===.33832,32,32abc V c z b y a x ====,且最大体积12. 这椭圆截成一椭圆,求原点到被平面求抛物面122=+++=z y x y x z.的最长与最短距离解:作拉格朗日函数)1()(22222-+++--+++=z y x y x z z y x L μλ ,022=+-=μλx x L x 令 (1),022=+-=μλy y L y (2) ,02=++=μλz L z (3).01,022=-++==--=z y x L y x z L μλ,得由或,故有)()得(()由(01.10)-12-1=====-μλλλy x y x ,得和代入将,不合题意,故舍去22221.21-x z z y x y x z y x z ==+++===,得到两,,得得;消去32231122122 =±-===+=+z y x x x z z x ),于是,,()和,,(个点3223-123-13-223123121+--+-+-M M .35-9359,最短距离为求得最长距离为+总习题八1. 填入下列三者中选择一个正确的充分必要和必要、充分在""""""空格内:.),(),(),(.),(),(),()1(件在该点可微分的必要条连续是在点条件充分在该点连续的可微分是在点y x f y x y x f y x f y x y x f.),(),(),()2(条件必要在该点可微分的存在是及的偏导数在点y x f y zx z y x y x f z ∂∂∂∂=.),(),(条件充分存在的的及偏导数可微分是函数在该点的在点yzx z y x y x f z ∂∂∂∂=.),(),(),()3(条件充分在该点可微分的存在且连续是在点及的偏导数y x f y x y zx z y x f z ∂∂∂∂=.),()4(22条件充分内相等的混合偏导数在内连续是这两个二阶在区域及的两个二阶混合偏导数D D x y z y x z y x f z ∂∂∂∂∂∂=4. ).,(),(1),(),(222x x f x x x f x x f y x f y x ,求,有一阶连续偏导数,且设== 解:,求导得,,等式两端对由0211),(22=⋅+⋅=x f f x x x f x x .21-),(21-2-2-22=====x x f x x x f f x f y x x x ,即代入将8. )处连续且在点(证明设0,0),(,0,00,)(),(2222232222y x f y x y x y x y x y x f ⎪⎩⎪⎨⎧≠+≠++=.分偏导数存在,但不可微 解:)处连续,在(先证0,0),(y x f232222)0,0(),()0,0(),()(lim),(limy x y x y x f y x y x +=→→)sin ,cos (sin cos lim 32240θρθρρθθρρ===→y x ).0,0(0sin cos lim 220f ===→θθρρ.0,0),()处连续在(故y x f)处偏导数存在,在(再证0,0),(y x f,)(),(),(000,00lim 00=--=→x f x f f x x.000,00lim 00=--=→y f y f f y y )(),(),()处不可微,在(最后证0,0),(y x f 22)0,0(),()0,0()0,0()0,0(),(limyx yf x f f y x f y x y x +---→22222)0,0(),()(lim y x y x y x +=→ )sin ,cos (sin cos lim 42240θρθρρθθρρ===→y x .sin cos lim 220θθρ→=.0,0),()处不可微在(显然,极限不存在,故y x f12. .2),(222220-2y fx y y x f x f y x dt e y x f xyt ∂∂+∂∂∂-∂∂=⎰,求设解:,,x e yfy e x f y x y x ⋅=∂∂⋅=∂∂2222-- ,2222-22-22y x y x e y x e yx f-=∂∂∂ ,2222-32-222-)2-(y x y x e xy xy e y x f =⋅⋅=∂∂,22-3222-y x ye x yf =∂∂ .2-222-22222y x e yf x y y x f x f y x =∂∂+∂∂∂-∂∂代入所求式子得 13. .124522的面积试求椭圆=++y xy x解:原点的距离的最大值与在原点,故先求椭圆至由题意知,椭圆的中心 设乘数法最小值,利用拉格朗日.),()(1245,,2222-++++=y xy x y x y x F λλ,令⎪⎩⎪⎨⎧=-++==++==++=012450)44(20)410(222y xy x F y x y F y x x F y x λλλ ,)()()(即⎪⎩⎪⎨⎧=++=++=++3124520)22(10)25(522y xy x y x y y x x λλ )得,代入()得()(232-1xxy -=λ ,))((02223222=-+=--y x y x y xy x .22x y y x -==,因而,30430112820)3(222222===++=x y y y y y x ,因而,解之得得代入将 .61301304,2221=+=+==y x y x f d )(于是 ,54511885)3(222222===+--=y x x x x x y ,因而,解之得得代入将.15154,2222=+=+==y x y x f d )(于是 .66611611611ππ=⋅⋅,故椭圆的面积为和短半轴的长分别为,即椭圆的长半轴与,最短距离为距离为因而椭圆至原点的最长15.底平所围圆锥体内所作出的和平面求在圆锥面33222=+=z y x z .面的最大长方体体积值面平行于xOy解:,且长方体的一,高为底面半径为由题设知直圆锥面的上32==H R 上,,四个顶点在直圆锥面和重合,两个边长为个面域直锥面的上底面y x 22面,则体底面的对角线作一截,过直圆锥的高和长方高为Z,,,,22y x CD EC R CB AC Z DG EF H DC +=======.)(22y x H R Z H +=-在约束条件问题转化为求函数xyz V 4=.0,0,0)(22)下的极值问题(>>>+=-z y x y x HR Z H设拉格朗日函数,])([22R Z H y x H xyz F --++=λ,令⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+==+==++==++=)4(0)()3(0)2(0)1(0222222R Z H y x H F R xy F y x Hy xz Fy y x Hx yz F z x λλλλ ,)可得又由()得,代入()得)、(由(RH z R y x y x λλλ21.321--=-===.313292-4,,H z R y x R z y x ====,,从而有)得代入(将λ时得到最大体积值,高分别为故当长方体的长、宽、322322.932132232244=⨯⨯⨯==xyz V。

高等数学 第八章 数列与无穷级数 8-1常数项级数的基本概念和性质

高等数学 第八章 数列与无穷级数 8-1常数项级数的基本概念和性质

故 lim Sn 3, 原级数收敛, 其和为 3 .
n
1 nn
1
0,
故原级数发散.
故所给级数发散.
小结:
un 0
收敛 发散
例7 判断敛散性, 若收敛求其和:
解令

en1(n1)!
un1 un
(n1)n1
enn! nn
1 (n 1,2, )
故级数发散.
备用题
例2-1

Sn
1 1 2
1 23
1 34
n
1 (n
1)
1
1 2
1 2
1 3
不影响级数的敛散性.
证 un 去掉前 k 项, 新级数
n1
n
和为 σn ukl Skn Sk
l 1
的部分 有限项不影响
同敛散, 级数的敛散性
故新旧级数敛散性相同. 收敛时, 其和 σ S Sk .
证毕.
性质4 收敛级数加括弧后 所成的级数仍收敛于 原级数的和.
推论2 若加括弧后的级数发散, 则原级数必发散.
1 0.33 0.3 , 且 0.3 3
3
10
0.33
0.3
0.03
3 10
3 102
0.333
0.3
0.03
0.003
3 10
3 102
3 103
一般地,
0.333
n个
3 10
3 102
3 10n
于是
1 3
0.33
3 10
3 102
3 10n
将 1 表示成无穷多项之和 3
引例2 求极限 lim (1 a a2 an ) ( a 1) ,

高数同济第六版下高等数学2第八章解答

高数同济第六版下高等数学2第八章解答

习题8-1向量及其线性运算1.在yOz 平面上,求与三点(3,1,2)A 、(4,2,2)B --和(0,5,1)C 等距离的点。

2.设已知两点1M 和2(3,0,2)M ,计算向量12M M的模、方向余弦和方向角。

3. 设向量r的模是4,它与u 轴的夹角是3π,求r在u 轴上的投影。

4. 设358m i j k =++,247n i j k =-- 和54p i j k =+- ,求向量43a m n p =+- 在x 轴上的投影以及在y 轴上的分向量。

5. 从点()2,1,7A -沿向量8912a i j k =+-方向取长为34的线段AB ,求点B 的坐标。

解 设点B 的坐标为(),,x y z ,则()2,1,7AB x y z =-+-,且AB a λ= ,即28,19,712x y z λλλ-=+=-=-,34AB ==从而2λ=,所以点B 的坐标为()18,17,17-习题8-2数量积 向量积1. 设32a i j k =--,2b i j k =+- ,求(1)a b 及a b ⨯ ;(2)(2)3a b - 及2a b ⨯;(3)a 、b 的夹角的余弦。

2.已知1(1,1,2)M -、2(3,3,1)M 和3(3,1,3)M ,求与12M M 、23M M同时垂直的单位向量。

3.求向量(4,3,4)a =-在向量(2,2,1)b = 上的投影。

4. 已知3OA i k =+ 、3OB j k =+ ,求OAB ∆的面积。

5. 设()()3,5,2,2,1,4a b =-= ,问λ与μ有怎样的关系能使a b λμ+与z 轴垂直?解 ()32,5,24a b λμλμλμλμ+=++-+ ,在z 轴上取单位向量()0,0,1e =, 要使它与a b λμ+互相垂直,只须()0a b e λμ+⋅=,即()()()320502410,240,2λμλμλμλμλμ+⨯++⨯+-+⨯=∴-+==,即为所求λ与μ的关系习题8-3曲面及其方程1.一动点与两定点(2,3,1)和(4,5,6)等距离,求这动点的轨迹方程。

高等数学-第8章-空间解析几何与向量代数

高等数学-第8章-空间解析几何与向量代数

-。

b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。

、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。

a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。

由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。

当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。

上的射影。

投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。

向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。

向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。

推论:相等矢量在同一轴上的射影相等。

性质2:Prj(12a a +)=Prj 1a +Prj 2a 。

性质2可推广到有限个向量的情形。

性质3:Prj u λa =λPrj u a 。

向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。

向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。

高等数学A-8.1向量及其线性运算

高等数学A-8.1向量及其线性运算

, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且

b
故b =a
再证数 的唯一性 . 设又有 b= a , 则 ( ) a 0
故 0, 即 .
8-1 向量及其线性运算
“ ” 已知 b= a , 则 b=0 a , b 同向
8-1 向量及其线性运算
第一节 向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
8-1 向量及其线性运算
一、向量的概念
1.向量: 既有大小, 又有方向的量称为向量 (又称矢量).
2.表示法: 有向线段 M1 M2 , 或 a ,
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
8-1 向量及其线性运算
例8 设点A 位于第一卦限,向径 OA 与 x 轴 y 轴的夹
角依次为

3
,

4
,

OA
6, 求点A
的坐标
.
解:
已知


3
,


4
,

cos2 1 cos2 cos2
8-1 向量及其线性运算
杂诗 (东晋)陶渊明
盛年不再来,一日难再晨. 及时当勉励,岁月不待人. 日月掷人去,有志不获聘. 眷眷往昔时,忆此断人肠.
8-1 向量及其线性运算
第八章 向量代数与空间解析几何
向量,也称为矢量,在几何、物理、力学和工程技术中 有着广泛的应用.
本章内容分为两部分: 1.向量代数 2.空间解析几何:把代数方程与空间几何图形对应起来, 从而可以用代数的方法研究几何问题. 空间解析几何的知识为多元函数微积分的学习作了准备.

8-高等数学第八讲 微分积分中值定理和极值

8-高等数学第八讲 微分积分中值定理和极值

第八讲 微分与积分中值定理和函数极值§8.1 微分与积分中值定理一、知识结构 1、微分中值定理(1) 罗尔(Rolle )中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导;(iii))()(b f a f =,则在()b a ,内至少存在一点ξ,使得0=')(ξf .(2)拉格朗日(Lagrange)中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导,则在()b a ,内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.(3)柯西中值(Cauchy)定理 若函数)(x f 和)(x g 满足下列条件:(i) )(x f 和)(x g 在闭区间[]b a ,上连续; (ii) )(x f 和)(x g 在开区间()b a ,内可导,(iii))(x f '和)(x g '不同时为零; (iv))()(b g a g ≠, 则在()b a ,内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ.2、积分中值定理 (1)积分第一中值定理若函数)(x f 在[]b a ,上连续,则至少存在一点[]b a ,∈ξ,使得()⎰-=baa b f dx x f )()(ξ.(2)推广的积分第一中值定理若函数)(),(x g x f 在[]b a ,上连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ.3、积分第二中值定理 若函数)(x f 在[]b a ,上连续,(i)若函数)(x g 在[]b a ,上单调递减, 且0≥)(x g , 则存在[]b a ,∈ξ,使得⎰⎰=baadx x f a g dx x g x f ξ)()()()(.(ii)若函数)(x g 在[]b a ,上单调递增, 且0≥)(x g , 则存在[]b a ,∈η,使得⎰⎰=ba bdx x f b g dx x g x f η)()()()(.3、泰劳公式(微分中值定理的推广)麦克劳林公式 (1) 一元函数)(x f y =泰劳公式泰劳公式产生的背景: 将函数)(x f ()(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数) 近似的表示为关于)(0x x -的一个n 次多项式,由于多项式的算法是好算法,我们可以用关于)(0x x -的一个n 次多项式来求函数)(x f 在某点(()b a x ,∈)的近似值.定理1 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个余项)(x R n 之和:(x)R )x (x n!)(x f)x )(x (x f )f(x f(x)n n(n)+-++-'+=00000!11 ,其中()()()()101!1)(++-+=n n n x x n fx R ξ(拉格朗日型余项),这里ξ是属于x 与0x 之间的某个值.或, 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个当0x x →时的n )x (x 0-的高阶无穷小之和:()()nn(n)x x o )x (x n!)(x f)x )(x (x f )f(x f(x)000000!11-+-++-'+=其中()n )x (x o 0-为当0x x →时n)x (x 0-的高阶无穷小.(2)麦克劳林公式定理2 如果函数)(x f 在含有0的某个开区间()b a ,内具有直到1+n 阶地导数,则当()b a x ,∈时, )(x f 可以表示为x 的一个n 次多项式与一个余项)(x R n 之和:(x)R x n!)(x fx !)(f )x (f )f(f(x)n n(n)+++''+'+=022000 ,其中()()()11!1)(+++=n n n x n x fx R θ,(10<<θ).2、二元函数),(y x f z =的泰劳公式和麦克劳林公式 (1)泰劳公式定理3 如果函数),(y x f 在含有()00,y x 的某一领域内连续且有直到1+n 阶的连续偏导数,()k y h x ++00,为此邻域内任一点,则有()200000000100001,,,,2!11,,,1nn f(x h y k)f(x y )h k f(x y )h k f(x y )x y x y h k f(x y )h k f(x h y k)n!x y n !xy θθ+⎛⎫⎛⎫∂∂∂∂++=++++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂+++++++ ⎪ ⎪∂∂+∂∂⎝⎭⎝⎭ 其中10<<θ,记号()()000000,,,y x kf y x hf )y f(x y k x h y x +=⎪⎪⎭⎫⎝⎛∂∂+∂∂, ()()()00200002002,,2,,y x f k y x hkf y x f h )y f(x y k x h yy xy xx ++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂, ……)y f(x yx kh C)y f(x y k x h pm pm pm p mp pmm00000,,--=∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∑,()k)y h f(x y k x h !n x R n n θθ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=+001,11)(, 10<<θ 称为拉格朗日型余项.(2)麦克劳林公式定理4 如果函数),(y x f 在含有()0,0的某一领域内连续且有直到1+n 阶的连续偏导数,()k h ,为此邻域内任一点,则有+⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=)f y y x x )f(y y x x )f(y)f(x 0,0!210,00,0,2()y)x f(y y x x !n )f(y y x x n!n nθθ,110,011+⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+,其中10<<θ.二、解证题方法1、微分中值定理例1 (山东师范大学2006年)设)(x P 为多项式函数,试证明:若方程0=')(x P 没有实根,则0=)(x P 至多有一个实根.证明 用反证法.因为)(x P 为多项式函数, 所以)(x P 在()+∞∞-,上连续并且可导. 如果0=)(x P 至少有两个实根, 不妨设为21ξξ<,则021==)()(ξξP P .在闭区间上用罗尔定理得,存在()21ξξη,∈,使得0=')(ηP . 这与方程0=')(x P 没有实根发生矛盾, 所以0=)(x P 至多有一个实根.例2 (河北大学2005年)设)(x f 可导,λ为常数,则)(x f 的任意两个零点之间必有0='+)()(x f x f λ的根.证明 不妨设)(x f 的任意两个零点为ηξ<. 令x e x f x F λ)()(=,则0==)()(ηξF F . 因为)(x F 在[]ηξ,上连续, 在()ηξ,内可导,且0==)()(ηξF F , 所以, 由罗尔定理得:存在()ηξ,∈x ,使得0=')(x F ,即0='+='xxe xf ex f x F λλλ)()()(,进而有0='+)()(x f x f λ, 所以()ηξ,∈x 是0='+)()(x f x f λ的根.例3(电子科技大学2002年))(x f 在[]10,上二次可导,010==)()(f f ,试证明:存在()10,∈ξ,使得()())(ξξξf f '-=''211.证明 因为)(x f 在[]10,上连续, )(x f 在()10,内可导, 且010==)()(f f ,所以由罗尔定理得:存在()10,∈ξ,使得0=')(ξf .令⎪⎩⎪⎨⎧=∈'=-101011x x ex f x g x ,),[,)()(. 因为)(x g 在[]10,上连续,在()10,内可导, 且()()01==g g ξ, 所以由罗尔定理知, 存在()1,ξξ∈', 使得()0='ξg ,即()())(ξξξf f '-=''211.例4(山东科技大学2005年)设()x f 在整个数轴上有二阶导数,且00=→xx f x )(lim,01=)(f ,试证明: 在()10,内至少存在一点β,使得()0=''βf .证明 因为()x f 在整个数轴上有二阶导数,所以()x f 在整个数轴上连续. 进而0lim )(lim )(lim)(lim )0(0000=⋅=⎥⎦⎤⎢⎣⎡==→→→→x x x f x x x f x f f x x x x . 又因为01=)(f , 所以函数在()10,内满足罗尔定理的条件, 进而存在()10,∈α,使得0=')(αf . 又因00000=-=-='→→xx f xf x f f x x )(l i m)()(l i m)(, 并且()x f '在[]α,0上连续, 在()α,0内可导, 所以()x f '在[]α,0上满足罗尔定理的条件, 进而存在()αβ,0∈,使得()0=''βf .例5(汕头大学2005年) 设()x f 在闭区间[]b a ,上有二阶导数,且)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 试证明: 存在()b a ,∈ξ,使得0='')(ξf .证明 由于)(x f 在[]b a ,上连续, 所以)(x f 在[]b a ,上取得最大值和最小值. 又因为)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值,所以存在()b a ,,∈21ξξ, 不妨设21ξξ<,使得()21ξξf f ),(是)(x f 在[]b a ,上的最大值和最小值. 进而()021='='ξξf f )(.由()x f 在闭区间[]21ξξ,上有二阶导数, 所以()x f '在闭区间[]21ξξ,上连续, 在开区间()21ξξ,内可导. 由罗尔定理知, 存在()21ξξξ,∈,使得0='')(ξf . 进而存在()b a ,∈ξ,使得0='')(ξf .例6(北京工业大学2005年)设)(x f 在()+∞∞-,上可导, 试证明:0=')(x f 当且仅当)(x f 为一常数.证明 (1)充分性 因为)(x f 为一常数C , 所以()0000==∆-=∆-∆+='→∆→∆→∆x x x xC C xx f x x f x f lim lim)(lim)(.(2)必要性对任意的()+∞∞-∈,,21x x , 不妨设21x x <. 显然()x f 在闭区间[]21x x ,上满足拉格朗日中值定理的条件, 所以存在()21x x ,∈ξ, 使得()()()()2121x f x f x x f -=-'ξ.因为()0='ξf , 所以()()21x f x f =. 进而)(x f 为一常数.例7(南京大学2001年)设)(x f 在()10,内可导, 且1<')(x f , ()10,∈x .令⎪⎭⎫⎝⎛=n f x n 1(2≥n ), 试证明n n x ∞→lim 存在且有限.分析 ()1111n m n m x x x x f f f n m n m εξ⎛⎫⎛⎫⎛⎫'-<⇐-=-=-⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()11111n f nmnmnmmξε'=-<-<=<.证明 对0>∀ε, 存在⎥⎦⎤⎢⎣⎡=11,εN ,当Nm n >>时, 有ε<=<-=-=-mnmn nmm n mn x x m n 111, 所以()()εξξ<=<-<-'=⎪⎭⎫ ⎝⎛-'=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-m nm n m n m n f m n f m f n f x x m n 111111111,进而由柯西收敛准则知, n n x ∞→lim 存在且有限.例8(华东师范大学2001年)证明: 若函数)(x f 在有限区域()b a ,内可导, 但无界,则其导函数)(x f '在()b a ,内必无界. 证明 用反证法 若函数)(x f '在()b a ,内有界, 则存在正数M ,使得M x f ≤')(,()b a x ,∈. 由拉格朗日中值定理得:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=22)(22)()(b a f b a f x f b a f b a f x f x f ()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-'=2222b a f b a M b a f b a x f ξ,所以函数)(x f 在有限区域()b a ,内有界. 与已知矛盾.例9(天津工业大学2005年)设R x n ∈, ()1arctan -=n n ky y (10<<k ), 证明: (1)11-+-≤-n n n n y y k y y ; (2)n n y ∞→lim 收敛.证明 (1)令kx x f arctan )(=, ()+∞∞-∈,x ,则221xk k x f +=')(,于是k x f ≤')(,从而由拉格朗日中值定理得:()()1111---+-≤-'=-=-n n n n n n n n y y k y y f y f y f y y ξ)()(, 其中ξ介于1-n y ,n y 之间.(2)由(1)的递推关系知,011y y ky y nn n -≤-+,又因为级数∑∞=-101n ny y k收敛,所以由比较判别法知, 级数()∑∞=+-11n n n y y 绝对收敛,所以n n S ∞→lim 收敛, 其中()1111y y y yS k nk k k n -=-=+=+∑, 进而n n y ∞→lim 收敛.例10(湖南师范大学2004年)设)(x f 在),[+∞0上连续, 在()+∞,0内可导且00=)(f , )(x f '在()+∞,0内严格单调递增, 证明:xx f )(在()+∞,0内内严格单调递增.分析 关键是证明02>-'='⎪⎭⎫⎝⎛x x f x f x x x f )()()(. 证明 因为()[]000>'-'=⎥⎦⎤⎢⎣⎡---'=⎥⎦⎤⎢⎣⎡-'=-'ξf x f x x f x f x f x x x f x f x x f x f x )()()()()()()()(, 其中()+∞∈,0x , ()x ,0∈ξ, 所以xx f )(在()+∞,0内内严格单调递增.练习[1](辽宁大学2005年)设)(x f 在],[b a 上可导,且b x f a <<)(,1)(≠'x f . 证明: 方程x x f =)(在()b a ,内存在惟一的实根.[2] (南京农业大学2004年) 设函数)(x f 在]1,0[上可微, 0)0(=f , 当10<<x 时, 0)(>x f , 证明: 存在()1,0∈ξ,使得)1()1()()(2ξξξξ--'='f f f f .[3] (陕西师范大学2002年,武汉大学2004年) 设)(x f ,)(x g 是[]b a ,上的可导函数, 且0)(≠'x g . 证明: 存在()b a c ,∈使得)()()()()()(c g c f b g c g c f a f ''=--.[4] (西南师范大学2005年)设函数)(x f 在()+∞∞-,内可导,)(2)(x f x x f -=', 0)0(=f .证明: 42)(xex f -=,()+∞∞-∈,x .[5] (北京工业大学2004年)设函数)(x f 在0x 的某邻域)(0x N 内连续, 除0x 外可导,若l x f x x ='→)(lim 0,则)(x f 在0x 可导且l x f =')(0.[6] (辽宁大学2004年) 设函数)(x f 在()+∞∞-,内可导, 且0)0(>f ,1)(<≤'k x f ,证明: 方程x x f =)(有实根.[7] (厦门大学2004年) 设函数)(x f 在),[+∞a 上二阶可微, 且0)(>a f ,0)(<'a f , 当a x >时, 0)(<''x f . 证明: 方程0)(=x f 在),[+∞a 上有惟一的实根.[8] (北京化工大学2004年) 设函数)(x f 在]1,0[上连续, 在()1,0内可导,0)0(=f , 1)1(=f . 证明: 对于∀的正数a 和b , 存在()1,0,21∈ξξ, 使得()()b a f b f a +='+'21ξξ.[9] (中科院武汉物理与数学研究所2003年) 设函数)(x f 在闭区间[]b a ,上连续, 在开区间()b a ,内可微, 并且)()(b f a f =. 证明: 若函数)(x f 在闭区间[]b a ,上不等于一个常数, 则必有两点()b a ,,∈ηξ, 使得()0>'ξf , ()0<'ηf .[10] (中山大学2006年) 证明: 当0≥x 时, 存在()1,0)(∈x θ, 使得)(211x x x x θ+=-+, 并且)(lim 0x x θ+→和)(lim x x θ+∞→(答案:41)(lim 0=+→x x θ,21)(lim =+∞→x x θ ).2、积分中值定理例1(上海大学2005年)已知)(),(x g x f 在[]b a ,上连续,0>)(x f ,)(x g 不变号,求⎰∞→bann dx x g x f )()(lim.解 因为)(),(x g x f 在[]b a ,上连续, )(x g 在[]b a ,上不变号,所以由积分第一中值定理得⎰⎰=banb andx x g f dx x g x f )()()()(ξ,其中[]b a ,∈ξ. 又因为()0>ξf , 所以1=∞→nn f )(li m ξ,进而⎰⎰⎰=⎥⎦⎤⎢⎣⎡=∞→∞→baba n n bann dx x g dx x g f dx x g x f )()()(lim )()(limξ.例2(河北大学2005年)证明:dx xx dx xx ⎰⎰+≤+222211ππcos sin .分析0111222222≤+-⇐+≤+⎰⎰⎰dx xx x dx xx dx xx πππcos sin cos sin .证明 当⎥⎦⎤⎢⎣⎡∈4,0πx 时, 0≤-x x cos sin 在⎥⎦⎤⎢⎣⎡4,0π上不变号,当⎥⎦⎤⎢⎣⎡∈2,4ππx 时, 0≥-x x cos sin 在⎥⎦⎤⎢⎣⎡2,4ππ上不变号. 由推广的积分第一中值定理得:dx xx x dx xx x dx x x x ⎰⎰⎰+-++-=+-24242221cos sin 1cos sin 1cos sin ππππ()()dx x x dx x x ⎰⎰-++-+=242402cos sin11cos sin11πππηξ01121121121212222≤+--+-=+-++-=ξηηξ,其中⎥⎦⎤⎢⎣⎡∈40πξ,, ⎥⎦⎤⎢⎣⎡∈24ππη,, 进而dx xx dx x x ⎰⎰+≤+2220211ππcos sin .例3(电子科技大学2005年)设)(x f 在[]10,上可导,且⎰-=211221dx ex f f x)()(,证明: 存在()10,∈ξ,使得())(ξξξf f 2='.证明 令2)()(x e x f x F -=, []10,∈x . 由积分中值定理知, 存在⎪⎭⎫ ⎝⎛∈210,η,使得()⎰--=⎪⎭⎫ ⎝⎛-211122021dx ex f ef x)(ηη即()⎰--=211122)(2dx ex f ef xηη. 因为⎰-=2101221dx ex f f x)()(, 所以())(121f ef =-ηη, 进而()112--=ef ef )(ηη. 又因为112--==e f e f F )()()(ηηη, 111-=ef F )()(, 所以, 在区间[]1,η上由微分中值定理(罗尔)得:()0='ξF , 其中()1,ηξ∈. 因为222ξξξξξξ---'='ef ef F )()()(,所以())(ξξξf f 2='.例4(山东科技大学2004年)设()x f 在[]π,0上连续, 在()π,0内可导, 且()⎰-=ππππ1dx x f ef x)(,证明: 至少存在一点()πξ,0∈, 使得()()ξξf f ='.证明:令)()(x f ex F x-=,由()⎰-=ππππ1)(dx x f ef x和)()(πππf e F -=,得:()()⎰⎰⎰====----πππππππππππ111)()()(dx x F dx x f edx x f eef eF xx.由积分中值定理: ()()11()0()F F x dx F F ππππηηπ⎛⎫==-= ⎪⎝⎭⎰,其中⎥⎦⎤⎢⎣⎡∈πξ10,.在()πη,内应用微分中值定理(罗尔)得: 0=')(ξF ,其中()πηξ,∈.由)()(x f e x F x -=得: )()()(ξξξξξf e f e F '+-='--,所以()()ξξf f ='.例5(西安电子科技大学2003年)设()x f 在[]b a ,上二阶连续可导, 证明:存在()b a ,∈ξ使得()()()32412a b f b a f a b dx x f ba -''+⎪⎭⎫⎝⎛+-=⎰ξ)(. 证明: 由分部积分公式得⎰⎰⎰+++=baba ab b a dx x f dx x f dx x f 22)()()(()()⎰⎰++-+-=22)()(ba ab b a b x d x f a x d x f ()[]()()[]()⎰⎰++++'---+'---=bb a b ba ba ab a adxx f b x x f b x dx x f a x x f a x 2222)()()()(()()()⎰⎰++-'--'-⎪⎭⎫⎝⎛+-=b b a ba ab x d x f a x d x f b a f a b 22222)(2)(2()()()⎰++''-+⎥⎦⎤⎢⎣⎡'--⎪⎭⎫ ⎝⎛+-=2222)(22)(2ba aba a dx x f a x x f a xb a f a b()()⎰++''-+⎥⎦⎤⎢⎣⎡'--bba bb a dx x f b x x f b x 2222)(22)(()()()⎰⎰++''-+''-+⎪⎭⎫ ⎝⎛+-=b b a ba adx x f b x dx x f a x b a f a b 2222)(2)(22()()())(2)(2)(2222221积分中值定理⎰⎰++-''+-''+⎪⎭⎫⎝⎛+-=bba b a adx b x c f dx a x c f b a f a b()()[]312()()()248b a a bb a f fc f c -+⎛⎫''''=-++⎪⎝⎭介值性定理()()3()224b a a bb a f fc -+⎛⎫''=-+⎪⎝⎭, 其中c 介于21c c ,之间. 即()b a c ,∈. 3、泰劳公式(微分中值定理的推广)例1(西安电子科技大学2004年) 设)(x f 在[]1,0上有二阶导数,且满足条件a x f ≤)(,b x f ≤'')(,a 和b 为非负常数,证明不等式22)(b a x f +≤', )1,0(∈x .分析:要熟练运用Taylor 展开. 证明:在)1,0(∈x 处做Taylor 展开有21)1(2)()1)(()()1(x f x x f x f f -''+-'+=ξ,222)()()()0(x f x x f x f f ξ''+'-=上面两式相减有 22212)()1(2)()0()1()(x f x f f f x f ξξ''+-''--=',所以[]22)1(22)(22b a xx b a x f +≤+-+≤'.例2(陕西师范大学2003年,中国地质大学2004年)设函数f 在区间[]b a ,上有二阶导数且,0)()(='='-+b f a f 则必存在一点),(b a ∈ξ使得)()()(4)(2a fb f a b f --≥''ξ.分析:关键是做Taylor 展开. 证明:应用Taylor 公式,将)2(b a f +分别在b a 、点展开,注意0)()(='='-+b f a f ,故存在1ξ和2ξ,b b a a <<+<<212ξξ,使得212)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f a f b a f ξ,222)(21)(2⎪⎭⎫ ⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f b f b a f ξ.两式相减得: []0)()()(81)()(221=-''-''+-a b f f a f b f ξξ, 故[])()()(21)()()(4212ξξξf f f a f b f a b ''≤''+''≤--.其中 ⎩⎨⎧''<''''≥''=)()(,)()(,212211ξξξξξξξf f f f .例3(北京交通大学2005年)设函数)(x f 在区间),0(+∞内有二阶函数,0)(lim =+∞→x f x ,并当),0(+∞∈x 时,有1)(≤''x f . 证明:0)(lim ='+∞→x f x .分析:关键是做Taylor 展开.证明:要证明0)(lim ='+∞→x f x ,即要证明对任意的0>ε,存在0>A ,当A x >时有ε<')(x f . 利用Taylor 公式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+, ()h ,0∈ξ,即[]h f x f h x f hx f )(21)()(1)(ξ''--+='. 从而[]hx f h x f hhf x f h x f hh f x f h x f hx f 21)()(1)(21)()(1)(21)()(1)(+-+≤''+-+≤''--+='ξξ, 取ε<h , 因为0)(li m =+∞→x f x , 所以21)()(1lim )(lim0=⎭⎬⎫⎩⎨⎧+-+≤'≤+∞→+∞→h x f h x f hx f x x , 其中2)()(ε<-+x f h x f . 即0)(lim ='+∞→x f x .例4(上海大学2005年、中国科学院2007年)设函数)(x f 在[]20,上有1)(≤x f ,1)(≤''x f . 证明:2)(≤'x f .分析:关键是做Taylor 展开. 证明:在)2,0(∈x 处做Taylor 展开有212)()()()0(xf x x f x f f ξ''+'-=,22)2(2)()2)(()()2(x f x x f x f f -''+-'+=ξ,将上面两式相减有[]21224)()2(4)()0()2(21)(x f x f f f x f ξξ''+-''--=',所以[][][].21)1(211)2(411)(4)2()(4)0()2(21)(22222212≤+-+≤+-+≤''-+''++≤'x xx f x f x f f x f ξξ.例5(江苏大学2004年)已知函数)(x f 在区间()1,1-内有二阶导数,且0)0()0(='=f f , )()()(x f x f x f '+≤'', 证明:存在0>δ,使得在()δδ,-内0)(≡x f .分析:关键是做Taylor 展开.证明:将)()()(x f x f x f '+≤''右端的)(x f ,)(x f '在0=x 处按Taylor 公式展开. 注意到0)0()0(='=f f ,有222)(2)()0()0()(x f x f x f f x f ξξ''=''+'+=, x f f x f )()0()(η''+'=',其中ηξ,是属于0与x 之间的某个值.从而x f x f x f x f )(2)()()(2ηξ''+''='+.现令⎥⎦⎤⎢⎣⎡-∈41,41x ,则由)()(x f x f '+在⎥⎦⎤⎢⎣⎡-41,41上连续知,存在⎥⎦⎤⎢⎣⎡-∈41,410x ,使得{}M x f x f x f x f xx ='+='+≤≤-)()(max )()(14100.下面只要证明0=M 即可. 事实上⎥⎦⎤⎢⎣⎡''+''≤''+''='+=)(2)(41)(2)()()(000020000ηξηξf f x f x f x f x f M ()()()()[]000041ηηξξf f f f +'++'≤(由()()x f x f x f x f ηξ''+''='+22)()()11242M M ≤⋅=,即M M 20≤≤, 所以0=M . 在⎥⎦⎤⎢⎣⎡-41,41上0)(≡x f . 例6(辽宁大学2005年)求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→x x x x 1sin1lim 2. 分析:利用Taylor 展开式计算函数极限. 解: 将x1sin展开成带Peano 余项的二阶Taylor 公式⎪⎭⎫ ⎝⎛+-=3316111s i n x o x x x ,则 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→→∞→332216111lim 1sin 1lim x o x x x x x x x x x x ()61161lim 16111lim 322=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅-+-=∞→∞→o x o x x x x x . 例7(山东师范大学2006年)求422cos lim xex xx -→-.分析:利用Taylor 展开式计算函数极限. 解 进行带Peano 余项的Taylor 展开()5422421cos xo xxx ++-=, )(82154222x o xxex++-=-,所以)(12cos 5422x o xex x+-=--, 进而121cos lim422-=--→xex xx .例8(浙江大学2005年、华南理工大学2005年)设)(x f 在),[+∞a 上有连续的二阶导数,且已知(){}+∞∈=,0)(sup 0x x f M 和(){}+∞∈''=,0)(sup 2x x f M 均为有限数. 证明:(1)2022)(M t tM t f +≤' ,对任意的0>t ,),0(+∞∈x 成立;(2){}),0()(sup 1+∞∈'=x x f M 也是有限数,且满足不等式2012M M M ≤ .分析:Taylor 展开式.证明(1)考虑)(t x f + 在t 处的Taylor 展开式,,2)()()()(2>''+'+=+t t f t t t t f t t f ξ,则t f tt f t f t f 2)()()2()(ξ''--=',所以++≤'tt f t f t f )()2()(2)(ξf ''t ,有题设条件可得t M tM t f 22)(2+≤' .(2)同理由Taylor 展开式知,t M tM t f 22)(2+≤'成立,从而t M tM M 2221+≤,取202M M t = 即得证.例9(哈尔滨工业大学2006年)设)(x f 在[)+∞,0内二阶可微,0)(lim =+∞→x f x ,但)(lim x f x '+∞→不存在.证明:存在00>x ,使1)(0>''x f .分析 Taylor 展开式.证明 反证法,设对任意的),0(+∞∈x ,均有1)(≤''x f .利用Taylor 展开式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+,因此有2)()(1)(h x f h x f hx f +-+≤' ,取ε=h ,由0)(lim =+∞→x f x 知,存在0>A ,当A x > 时,有4)(2ε≤'x f ,于是ε<')(x f ,A x > ,即0)(lim ='+∞→x f x ,矛盾.例10 (华中科技大学2007年)设 )(x f 在(0,1) 上二阶可导且满足1)(≤''x f ,10(≤≤x ,又设)(x f 在()1.0 内取到极值41 .证明:1)1()0(≤+f f .分析 极值点,Taylor 展开式.证明 因为)(x f 在)1,0(上二阶可导,假设ξ在极值点,则41)(=ξf 、0)(='ξf .对)(x f 关于0=x 、1=x 在ξ点Taylor 展开有21)(2)())(()()0(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.又有2)1(2)()1)(()()1(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.所以有2221)1(2)(0)(2)(0)()1()0(ξηξξηξ-''+++''++=+f f f f f f[]2221)1()()(21)(2ξηξηξ-''+''+≤f f f[]22)1(121ξξ-++≤12121=+≤.这里另22)1()(x x x g -=,)1,0(∈x ,则最大值1)1(=g . 练习[1](华中科技大学2005年)设)(x f 在[]1,0上有二阶连续导数,0)1()0(==f f ,58)(≤''x f ,58)(≤'x f ,给出)10()(≤≤x x f 的一个估计.[2](华中科技大学2004年)设)10(,2)(,0)1()0(≤≤≤''==x x f f f ,证明:1)(≤'x f .[3](北京航空航天大学2005年)证明:对任意的n ,有)!1(1!)1(!31211+<⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+---n n en. [4](华南理工大学2004年)设)(x f 在[]1,1-上三次可微,1)1(,0)0()0()1(=='==-f f f f .证明:存在)1,1(-∈x ,使得3)()3(≥x f.[5](大连理工大学2006年) 将2)1(1)(x x f += 在0=x 展开成Taylor 级数.[6](同济大学1999年)求⎥⎦⎤⎢⎣⎡+-→)11ln(lim 20x x x x (答案:21).[7](大连理工大学2004年)设)(x f 在[]1,0上二阶可导,且有,0)1()0(==f f []21)(m i n 1,0-=∈x f x ,证明:存在)1,0(∈ξ,使得4)(≥''ξf .[8] (东南大学2004年)(1)设)(x f 在[]2.0上二阶可导,0)2()0(='='f f .证明:存在)2,0(∈ξ使得[])(4)2()0(3)(320ξf f f dx x f ''++=⎰.(2)若在(1)中只假定)(x f 在[]2,0上存在二阶导数而不要求二阶导数连续,那么(1)的结论是否成立?[9](东南大学2003年) 求42cos lim2xx exx --→(答案:81-).[10](同济大学1999年)求xx x xx x x arcsin )1ln(cos sinlim222+-→(答案:61).§8.2 函数的极值和最值 函数的凸性与拐点一、知识结构 1、函数的极值和最值函数)(x f y =的极值是一个局部概念,而函数)(x f y =的最值是一个整体概念. 如函数)(x f y =在区间[]b a ,上有定义, 如果[]b a x ,0∈的某个邻域),(0δx U 内有)()(0x f x f ≤()()(0x f x f ≥), 则我们称函数)(x f y =在点0x 取得极大值(极小值). 函数)(x f y =在区间[]b a ,上的最大值)(0x f 满足)()(0x f x f ≥, 其中[]b a x ,∈.函数)(x f y =在区间[]b a ,上的最小值)(0x f 满足)()(0x f x f ≤, 其中[]b a x ,∈.(1) 一元函数)(x f y =的极值和最值定理1(必要条件) 设函数)(x f 在点0x 处可导,且在0x 处取得极值,那未这函数在0x 处的导数为零,即0)(0='x f .定理2(第一种充分条件) 设函数)(x f 在点0x 的一个邻域内可导且0)(0='x f .(1)如果当x 取0x 左侧邻近的值时,)(x f '恒为正;当x 取0x 右侧邻近的值时,)(x f '恒为负,那未函数)(x f 在0x 处取极大值;(2)如果当x 取0x 左侧邻近的值时,)(x f '恒为负;当x 取0x 右侧邻近的值时,)(x f '恒为正,那未函数)(x f 在0x 处取极小值;(3)如果当x 取0x 左右两侧邻近的值时,)(x f '恒为正或恒为负;那未函数)(x f 在0x 处没有极值.定理3 (第二种充分条件)设函数)(x f 在点0x 处具有二阶导数且0)(0='x f 0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在点0x 处取极大值; (2)当0)(0>''x f 时,函数)(x f 在点0x 处取极小值. 一元函数)(x f y =在闭区间[]b a ,上的最值:(1)一元函数)(x f y =在()b a ,内的极大值与)(),(b f a f 中最大的为一元函数)(x f y =在闭区间[]b a ,上的最大值;(2)一元函数)(x f y =在()b a ,内的极小值与)(),(b f a f 中最小的为一元函数)(x f y =在闭区间[]b a ,上的最小值.(2) 二元函数()y x f z ,=的极值和最值定理1(必要条件) 设函数),(y x f 在点()00,y x 处可导,且在()00,y x 处取得极值,那未这函数在()00,y x 处的偏导数为零,即0),(00=y x f x ,0),(00=y x f y .定理2 (充分条件)设函数),(y x f 在点()00,y x 某邻域内连续且有一阶、二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则函数),(y x f 在点()00,y x 是否取得极值的条件如下:(1)02>-B AC 时具有极值, 且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论. 利用拉格朗日函数求极值和最值(条件极值)求函数),(y x f z =的极值,其中()y x ,满足条件0),(=y x F . 构造拉格朗日函数),(),(),,(y x F y x f y x L λλ+=, 解方程⎪⎩⎪⎨⎧===0),,(0),,(0),,(λλλλy x L y x L y x L y x 得⎪⎩⎪⎨⎧===000λλy y x x ,则()00,y x 为函数),(y x f z =的极值点(根据实际问题确定),进而求得函数),(y x f z =的极值),(00y x f z =.2、函数的凸性与拐点定义1 若曲线)(x f y =在某区间内位于其切线的上方, 则称该曲线在此区间内是凸的, 此区间称为凸区间. 若曲线位于其切线的下方, 则称该曲线在此区间内是凹的, 此区间称为凹区间.定义 2 设函数)(x f y =在区间I 上连续,如果对区间I 上任意两点21,x x ,恒有2)()(22121x f x f x x f +<⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凹(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凸(或凸弧).定理1 设函数)(x f y =在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么(1) 若在()b a ,内0)(>''x f ,则)(x f y =在区间[]b a ,的图形是凹的; (2) 若在()b a ,内0)(<''x f ,则)(x f y =在区间[]b a ,的图形是凸的. 3、函数)(x f y =图像的描绘主要用函数)(x f y =的一阶导数)(x f y '='和二阶导数)(x f y ''=''的性质和曲线)(x f y =的渐进线描绘函数)(x f y =图像.如果0)(>''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向下凸. 如果0)(<''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向上凸. 如果0)(0=''x f , 且)(x f ''在()0,x a ,()b x ,0上异号, 则0x 为函数)(x f y =图像的拐点.如果0)(>'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递增. 如果0)(<'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递减.二、解证题方法 1、函数的极值和最值例1(南京大学2003年)对任意00>y , 求)1()(00x x y x y -=ϕ在()1,0中的最大值, 并证明该最大值对任意00>y , 均小于1-e .解 由于000120)1()(y y xy x xy x --='-ϕ ,令0)1()(000120=--='-y y xy x xy x ϕ得函数)(x ϕ的稳定点100+=y y x , 所以函数)(x ϕ的最大值为10000111)1(+⎪⎪⎭⎫⎝⎛+-=+y y y y ϕ.因为()x x -<-1ln , 10<<x , 所以()11111000000111)1(-⎪⎪⎭⎫⎝⎛+-++<=⎪⎪⎭⎫⎝⎛+-=+eey y y y y y ϕ .例2(复旦大学2000年, 北京理工大学2003年)在下列数,,,4,3,2,143n n 中,求出最大的一个数.解 构造辅助函数xx x f =)(, 1≥x , 则222ln 1ln 1ln 1ln 1)(xxx x x x x e e x f xxx x x x -=⎪⎭⎫⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xx x f =)(, 1≥x 的稳定点e x =. 当e x <≤1, 0)(>x f ,当e x ≥,0)(<x f , 所以函数)(x f 在点e x =取得最大值ee . 从而下列数,,,4,3,2,143n n 中最大的一个数只可能是33,2中的一个, 又因332<, 所以下列数 ,,,4,3,2,143n n 中最大的一个数是33.例3(北京化工大学2004年)在下列数,2004,,4,3,2,12004242322中,求出最大的一个数.解构造辅助函数xxx f 2)(=, 1≥x , 则22222ln 2ln 1ln 222ln 2)(x x x x x x x e e x f x x x x xx⋅-⋅=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xxx f 2)(=, 1≥x 的稳定点e x =. 当e x <≤1,0)(>x f ,当e x ≥, 0)(<x f , 所以函数)(x f 在点e x =取得最大值ee 2.从而下列数 ,2004,,4,3,2,12004242322中最大的一个数只可能是3223,2中的一个,又因32232<,所以下列数,2004,,4,3,2,12004242322中最大的一个数是323.例4(中山大学2006年)设S 为由两条抛物线12-=x y 与12+-=x y 所围成的闭区域,椭圆12222=+by ax 在S 内, 确定b a ,(0>b a 、), 使椭圆的面积最大.解 两条抛物线12-=x y 与12+-=x y 的交点为()0,1-,()0,1,()1,0-,()1,0.S 为1122+-≤≤-x y x ,因为椭圆12222=+by ax 在S 内, 所以1,0≤<b a . 椭圆的参数方程为⎩⎨⎧==t b y ta x s i n c o s ,π20≤≤t ,由椭圆12222=+by ax 和区域S 的对称性知,椭圆12222=+by ax 的面积最大时, 必须有ta tb 22cos 1sin -= ,20π≤≤t 有惟一解. 即0cos 1sin 22=+-t a t b ,20π≤≤t 有惟一解.令01sin sin cos 1sin )(22222=-++-=+-=a t b t a t a t b t f ,20π≤≤t .则01)0(2≤-=a f , 012≤-=⎪⎭⎫⎝⎛b f π ,0)1(4222=-+=∆a a b ,()122sin 22≤=--=ab ab t . 于是212aa b -=,122≤≤a . 椭圆12222=+by ax 的面积2221212)(aaa a a ab a f -=-==πππ,122≤≤a . 即01214)(232=---='aaa a a f ππ, 得36=a , 322=b , 故最大面积为934π.例5(湖南师范大学2005年)设q p b a ,,,都是正数,(1)求()q px xx f -=1)(在区间[]1,0上最大值;(2)证明:qp qpq p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.解(1)因为()qpx xx f -=1)(, 所以()()1111)(-----='q pq p x qxx pxx f ,令()()011)(11=---='--q pqp x qxx pxx f 得稳定点qp p x +=. 又0)1()0(==f f , ()qp qp q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+, 进而函数()qpx x x f -=1)(在区间[]1,0上最大值为()qp qpq p qp q p p f ++=⎪⎪⎭⎫⎝⎛+.(2)因为()1,q p p qp q p qa a a ab p p qf f a b a b a b a b a b p q p q +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=≤= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎝⎭⎝⎭所以qp q p q p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.例6(南京农业大学2004年)试问方程033=+-q px x 在实数域内有几个实根.解 由于()+∞=+-+∞→q px x x 3lim 3, ()-∞=+--∞→q px x x 3lim 3, 所以方程033=+-q px x 在实数域内至少有一个实根. 令q px x x f +-=3)(3, 则()p x p x x f -=-='22333)(.(1)当0<p 时, 有0)(>'x f , 进而)(x f 单调递增, 方程033=+-q px x 在实数域内只有一个实根.(2) 当0>p 时, 得q px x x f +-=3)(3的稳定点p x =, p x -=. 上述稳定点将()+∞∞-,分成三个区间()p -∞-,, ()p p ,-, ()+∞,p . 当()p x -∞-∈,时, )(x f 严格单调递增, 当()pp x ,-∈时, )(x f 严格单调递减, 当()+∞∈,p x 时, )(x f 严格单调递增. 进而,在p x -=时, )(x f 取得极大值q p p +2.在p x =时, )(x f 取得极小值q p p +-2. 所以, 当()()042232>-=+-+p q q p pq p p时,方程33=+-q px x 只有一个实根, 当()()042232=-=+-+p q q p pq p p时, 方程033=+-q px x 有两个实根, 当()()042232<-=+-+p q q p pq p p时, 方程。

同济大学(高等数学)-第八章-向量代数与解析几何

同济大学(高等数学)-第八章-向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。

8_1_2 第二型曲线积分 高等数学 微积分 考研数学

8_1_2 第二型曲线积分 高等数学 微积分 考研数学

F d s P(x, y, z)dx Q(x, y, z)dy R(x, y, z)dz
Page 6
3. 性质
(1) 若 L 可分成 k 条有向光滑曲线弧 Li ( i 1, , k),
则 P(x, y)dx Q(x, y)dy L
k
P(x, y)dx Q(x, y)dy
1
5
Page 10
例2. 求I (z y) d x (x z) dy (x y) dz, 其中
x2 x
y
y2 z
1 2
,

z
轴正向看为顺时针方向.
解: 取 的参数方程 x cos t, y sin t, z 2 cost sin t
I 2 [(2 cost)( sin t) 0
弧, 在L 上定义了一个向量函数
F (x, y) (P(x, y), Q(x, y))
若对 L 的任意分割和在局部弧段上任意取点, 极限
n
lim
0
k 1
P(k , k )xk Q(k , k )yk
记作 P(x, y)dx Q(x, y)dy
L
都存在, 则称此极限为函数 F (x, y) 在有向曲线弧 L 上
Page 3
3) “近似和”
n
W P(k , k )xk Q(ξk , k )yk k 1
4) “取极限”
n
W
lim
0 k 1
P(ξk
,
ηk
)Δxk
Q(ξk ,
ηk
)Δyk
(其中 为 n 个小弧段的
最大长度)
y F (k , k )
L
M ykk B
Mxkk1
A

国家开放大学《高等数学基础》形考任1—4答

国家开放大学《高等数学基础》形考任1—4答

(一)单项选择题1-1.()1-2.(3xf=,x)(xln)(=)3g lnx2-1.()。

2-2.()。

3-1.()。

3-2.()。

4-1.()。

5-1.().5-2.().6-1.(y轴)6-2.设函数)f(xx(x-的图形关于(坐标原点)对)f-f的定义域为)(,(+∞-∞,则函数)称.7-1.()。

7-2.()。

8-1.()。

8-2.()。

9-1.()9-2.(1)ln(+x)10-1.()第二套1-1.()。

1-2.()。

2-1.()s。

2-2.()s。

3-1.(e)。

3-2.(4)4-1.(0)。

4-2.(-99!)5-1.()。

5-2.下列结论中正确的是()6-1.()()6-2.()7-1.下列结论中()不正确.7-2. 下列结论中()不正确.8-1.()()8-2.()9-1.()。

9-2.()10-1.()。

10-2.()。

(第三套1-1. ()。

1-2.()。

2-1.()。

2-2.()。

3-1.()。

3-2.()。

4-1.()。

4-2.()。

5-1.()。

5-2.()。

6-1.()。

6-2.()。

7-1.()。

7-2.()。

8-1.()。

8-2.()。

9-1.(1)。

9-2.()。

10-1.()。

10-2.(4)。

(二)判断题11-1.(×)11-2.(×)12-1.已知函数f(x+1)=x2+2x+9,则f(x)=-x2+8.(×)12-2.(√)13-1.(√)13-2.(√)14-1.(√)14-2.(×)15-1.(×)15-2.(√)16-1.(×)16-2.(×)17-1.(√)17-2.(×)18-1.(√)18-2.(√)19-1.(√)19-2.(×)20-1.(√)20-2.(√)(第二套)11-1.(×)11-2.(√)12-1.12-2.(×)13-1.(×)13-2.(√)14-1.(×)14-2.(×)15-1.(√)15-2.(√)16-1.(√)16-2.(×)17-1.(×)17-2.(√)18-1.(×)18-2.(√)19-1.(×)19-2.(√)20-1.(×)20-2.(×)(第三套11-1.(√)11-2.(×)12-1.(√)12-2.(√)13-1.(×)13-2.(√)14-1.(×)14-2.(√)15-1.(√)15-2.(×)16-1.(√)16-2.(×)17-1.(×)17-2.(√)18-1.(√)18-2.(×)19-1.(×)19-2.(√)20-1.(√)20-2.(×)三计算题1.解:limx→0tanx2x=limx→0sinx2xcosx=limx→012cosx=122.解:limx→3sin⁡(x−3)x2−5x+6=limx→3sin⁡(x−3)(x−2)(x−3)=limx→31(x−2)=13.解:y′=2x ln2−2xcosx2 4.解:y′=3cos3x+2lnxx 5.解:∫1xlnx dx=∫1lnxd(lnx)=ln(lnx)+c6.解:∫sin1xx2dx=−∫sin1xd1x=cos1x+c7.解:∫5xe x dx =5xe x ∣01−∫e x d5x =5e −(5e −5)=5110 8.解:∫xcosxdx=xsins ∣0π2−∫cosxdx =π2−sinx π20π0∣0π2=π2−1(四)应用题9. 某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底面半径与高各为多少时用料最省?解:设容器的底半径为r ,高为h ,则其表面积为S =2πr 2+2πrℎ=2πr 2+2V rS ′=4πr −2V r 2由S ′=0,得唯一驻点r =√V2π3,由实际问题可知,当r =√V2π3时可使用料最省,此时h =√4Vπ3,即当容器的底半径与高分别为√V2π3、√V2π3时,用料最省。

高等数学:定积分的计算与证明(8-1)

高等数学:定积分的计算与证明(8-1)

0
2 esint sint dt t u esin u sinu du
0
F x esin t sint dt esint sint dt
0
0
sint esin t e2sin t 1 dt 0
当0 t 时sint 0 e2sint 1 F x 0
4
1
sin 2 x
dx
0 1 sin2x
4
0
1 1
sin( 2
sin(
2 x) dx
2 x)
4
1
cos
2x
dx
0 1 cos 2x
2
4
0
2 sin2 2 cos 2
x x
dx
4
(s e c2
x
1)dx
1
0
4
13
3、积分不等式的证明
例1
证明:
6
1 0
dx
4 x2 x3 4 2
17
例5 设f ( x)在[0,1]上连续,在(0,1)内可导,且f (0) 0,
0 f ( x) 1,证明:[ 1 f ( x)dx]2 1 f 3( x)dx
0
0
证明: 令F ( x) [ x f (t )dt]2 x f 3 (t )dt
0
0
则F(0) 0
F ( x) 2 f ( x) x f (t )dt f 3 ( x) 0 f ( x)[2 x f (t )dt f 2 ( x)] 0
12
例4 设f ( x)在[0,a](a 0)连 续 , 证 明 :
a
f ( x)dx
a f (a x)dx,并 利 用 此 式 计 算
0

大学高等数学上册:8-1(1)

大学高等数学上册:8-1(1)

则sn
n
bk
k 1
1
1 2
(n 1)
n 1, 2
由于lim n 1 , n 2

lim
n
sn
,
于是级数 bn发散.
n1
由于加括弧后所成的级数 bn发散,
n1
所以原级数即调和级数
1发散.
n1 n
例:讨论级数
n1
n
0.001,
n1
1, 50(n 1)
4
n
1000
3
n
,
a 2n1 2n1 a (a 0)的敛散性.
bn
n1
1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 1
9
16
其中b1 1,
b2
1 2
,
b3
1 3
1 4
1 4
1 4
1 2
,
b4
1111 5678
14 8
1, 2
bn
1 2n2 1
1 2n2
2
1 2n1
1 2n1
2n2
1 2
,
设级数 bn的部分和数列为 sn, n1
1 2
n 2
,
由于lim n
sn
,
故 1 发散 . n1 2
(3). (1)n1 n1
sn
n k 1
(1) k 1
1, 0,
由于lim n
sn
不存在,
故 (1)n1 发散 . n1
n为奇数 n为偶数
注意:
(i).每个级数 un都涉及到两个数列un 与sn , n1

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

高等数学A-第1章-8-1(函数及其性质修改)

高等数学A-第1章-8-1(函数及其性质修改)

由有限个单调函数组成的函数,称为分段单调函数. 如 y x
2. 函数的有界性
若X D, M 0, x X , 有 f ( x ) M 成立,
则称函数 f ( x) 在X 上有界否则称无界 . .
即若X D, M 0, x1 X , 有 f ( x1 ) M 成立,
2. 函数定义域的确定
(1)由实际问题决定.
(2)自然定义域. 理论研究中, 对应法则是用数学公式表示的 函数, 这种函数的定义域是使数学公式有意义的自变量的所 有值构成的实数集. 即当函数由公式(表达式)给出时,使 公式有意义的自变量的取值范围就是函数的定义域. 如:
分式的分母不为0;
2n
f ( x ), n为正整数, 要求f ( x ) 0;
o
x
o
x
(6) 整标函数
以自然数为自变量的函数: y f ( n) 图形为一些离散的点构成.
1.1.6 函数的特性 1. 函数的单调性
对任意 x1 , x2 I , 若 x1 x2 , 有 f ( x1 ) f ( x2 ) (或f ( x1 ) f ( x2 ))
设函数y f ( x )在区间I (有限或无限 , 开或闭)上有定义,
2 例 求函数的定义域 (1) y 4 x
2 4 x 0 解: (1) 要求 1 x 2 x 1 0
1 1 ( 2) f ( x ) . 1 x 1 1 1 1 x
所以函数的定义域为(1,2].
1 1 0 x 0, 1, 1 . (2) 要求 x 2 1 1 0
故若两个函数的定义域相同, 对应法则也相同, 则这 两个函数就是相同的, 否则就是不同的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| PQ | ( y1 x1 )2 ( y2 x2 )2 ( yn xn )2 .
特殊地当 n 1, 2, 3 时,便为数轴、平面、 空间两点间的距离.
n维空间中邻域、区域等概念
邻域: U ( P0 , ) P | PP0 | , P R n


内点、边界点、区域等概念也可定义.
▲多元初等函数:由多元多项式及基本初等函数 经过有限次的四则运算和复合步骤所构成的可用 一个式子所表示的多元函数叫多元初等函数.
▲一切多元初等函数在其定义区域内是连续的. ▲定义区域是指包含在定义域内的区域或闭区域.
一般地,求 lim f ( P ) 时,如果 f ( P ) 是初等函
P P0
6、 二元函数 z f ( x , y ) 的图形
D 设函数 z f ( x , y ) 的定义域为 ,对于任意 取定的 P ( x , y ) D ,对应的函数值为 y x z f ( x , y ) ,这样,以 为横坐标、 为纵坐 标、 z 为竖坐标在空间就确定一点M ( x , y , z ) , 当 x 取遍D 上一切点时,得一个空间点集 {( x , y , z ) | z f ( x , y ), ( x , y ) D },这个点集称 为二元函数的图形.
0
三、多元函数的连续性
定义3
设n 元 函 数 f (P ) 的 定 义 域 为 点 集D ,
P P0
n P0 D , 如果 lim f ( P ) f ( P0 ) 则称 元函数
f (P ) 在点P0 处连续.
设 P0 是函数 f (P ) 的定义域的聚点,如果 P f (P ) 在点P0 处不连续,则称 0 是函数f (P ) 的 间断点.
y kx
其值随k的不同而变化, 故极限不存在.
◆确定极限不存在的方法:
(1)令 P ( x , y ) 沿 y kx 趋向于P0 ( x 0 , y0 ) ,若
k 极限值与 有关,则可断言极限不存在;
(2) 找两种不同趋近方式,使 lim f ( x , y ) 存在,
x x0 y y0
有界闭区域;
o
x {( x , y ) | x y 0}
无界开区域.
3 、聚点
设 E 是平面上的一个点集 P 是平面上的一个点 , ,
若在点P的任何一个去心邻域内 都含有E的点,
则称P为E的聚点.
说明: (1) 内点一定是聚点; (2) 边界点可能是聚点; 例 {( x , y ) | 0 x 2 y 2 1} (0,0)既是边界点也是聚点.
3 2 2
但是
( x , y )( 0 , 0 )
lim
f ( x , y ) 不存在.
y6 y2 原因为若取 x y 2 , f ( y 2 , y ) 4 4 2 1 . 4 (y y )
习题 8-1 ( P12 ): 6(3).
5、二元函数的定义
设 D 是平面上的一个点集,如果对于每个点 z P ( x , y ) D ,变量 按照一定的法则总有确定的 z 值和它对应,则称 是变量x, y 的二元函数,记为 z f ( x , y ) (或记为z f ( P ) ).
类似地可定义三元及三元以上函数.
n 当n 2 时, 元函数统称为多元函数.
数,且 P0 是 f ( P ) 的定义域的内点,则 f ( P ) 在 点 P0 处连续,于是 lim f ( P ) f ( P0 ).
P P0
xy 1 1 例6 求 lim . x 0 xy y0

xy 1 1 原式 lim x 0 xy( xy 1 1) y0 1 1 lim . x 0 xy 1 1 2 y0
(如下页图)
二元函数的图形通常是一张曲面
例如
z sin xy
例如 x 2 y 2 z 2 a 2
z
D {( x , y ) x 2 y 2 a 2 }.
单值分支: z a x y
2 2 2
o
x
y
z a2 x2 y2 .
二、多元函数的极限
定义 1 设 函 数 z f ( x, y) 的 定 义 域 为 D , P0 ( x 0 , y 0 ) 是其聚点,如果对于任意给定的 正数 ,总存在正数 ,使得对于适合不等式 0 | PP0 | ( x x 0 ) 2 ( y y 0 ) 2 的 一 切 点,都有| f ( x , y ) A | 成立,则称 A 为函数 z f ( x , y ) 当 x x 0 , y y 0 时的极限, lim 记为 x x f ( x , y ) A (或 f ( x , y ) A ( 0)这里 | PP0 | ).
例如 E1 {( x , y ) 1 x 2 y 2 4}
E
P P P
即为开集.
2.2、边界点、边界、连通
如果点 P 的任一个邻域内既有属 E 的点, 于 也有不属于 E 的点(点 P 本身可以属于 E ,也 可以不属于 E ),则称 P 为 E 的边界点.
E 的边界点的全体称为E 的边界.
lim
f ( x, y) A?
思考题解答
不能.
x3 y2 例 f ( x , y ) 2 4 2 , ( x , y ) (0,0) (x y )
x k x k2x 0, 取 y kx , f ( x , kx) 2 4 4 2 4 2 2 ( x k x ) (1 k x )
sin( x 2 y ) x2 y 1 x x 0 0, lim x 2 y 2 0. 2 2 x 0 x y 2 y 0
x3 y 例4 证明 lim 6 2 不存在. x 0 x y y 0

3 取 y kx ,
x3 y x 3 kx 3 k lim 6 , 2 lim 2 6 2 6 x 0 x y x 0 x k x 1 k 3 y0
四、小结
◆多元函数的定义
◆多元函数极限的概念
(注意趋近方式的任意性)
◆多元函数连续的概念 ◆闭区域上连续函数的性质
思考题
若点( x , y ) 沿着无数多条平面曲线趋向于 点( x0 , y0 ) 时,函数 f ( x , y ) 都趋向于 A,能否 断定
( x , y )( x0 , y0 )


U ( P0 , ) P | 0 | PP0 | , 称为P0的去心邻域.
o
2 、区域
2.1、内点、开集
设 E 是平面上的一个点集, 是平面上的一个点 P ,
若邻域 U ( P ) E , 则称 P 为 E 的内点.
E 的内点属于 E .
若点集 E 的点都是内点 则称 E 为开集. ,
但两者不相等,此时也可断言 f ( x , y ) 在点
P0 ( x 0 , y0 ) 处极限不存在.
◆利用点函数的形式定义n元函数的极限:
定 义 2 设n 元 函 数 f (P ) 的 定 义 域 为 点 集 D , P0 是其聚点,如果对于任意给定的正数 , 总 存 在 正 数 , 使 得 对 于 适 合 不 等 式 0 | PP0 | 的 一 切 点 P D , 都 有 n | f ( P ) A | 成立,则称 A 为 元函数f (P ) 当 P P0 时的极限,记为 lim f ( P ) A . PP
(3) 点集E的聚点可以属于E,也可以不属于E.
例如 {( x , y ) | 0 x 2 y 2 1}
(0,0) 是聚点但不属于集合. 例如 {( x , y ) | x 2 y 2 1}
边界上的点都是聚点也都属于集合.
4、n维空间
n 设n 为取定的一个自然数,我们称 元数组 n n ( x1 , x 2 , , x n ) 的全体为 维空间,而每个 元数 n 组 ( x 1 , x 2 , , x n ) 称为 维空间中的一个点,数 x i 称为该点的第i 个坐标.
y y0
0
说明:
(1)定义中 P P0 的方式是任意的; (2)二元函数的极限也叫二重极限 lim f ( x , y );
x x0 y y0
(3)二元函数的极限运算法则与一元函数类似.
sin( x y ) . 例3 求极限 lim 2 2 x 0 x y y0
2

sin( x 2 y ) sin( x 2 y) x 2 y lim 2 lim 2 , 2 2 x0 x y 2 x 0 x y x y y0 y0 sin( x 2 y ) u x 2 y sin u lim lim 1, 其中 x 0 2 x y u0 u y0
xy 2 2 x2 y2 , x y 0 例5 讨论函数 f ( x , y ) 2 2 0, x y 0
在(0,0)的连续性.

取 y kx
xy k kx 2 lim 2 2 lim 2 2 2 x 0 x y x 0 x k x 1 k2 y0 y kx
第八章 多元函数微分法及其应用
第一节 多元函数的基本概念
一、多元函数的概念 1、 邻域


P0
设P0是xoy平面上的一个点 是一个正数, ,
称点集 U ( P0 , ) P | PP0 | 为点P0的邻域,
U ( P0 , ) ( x , y ) | ( x x0 )2 ( y y0 )2 .
例如 {( x, y ) | 1 x 2 y 2 4}.
o
x
2.4、有界区域、无界区域
相关文档
最新文档