南京大学2011年上学期线代期中试卷答案

合集下载

线性代数参考题1-6答案

线性代数参考题1-6答案

线性代数参考题一答案:(注:为了大家共同的利益,我做了每一道题,希望你发现有做错处及时告诉我,谢谢,你的朋友冯国晨 gcfeng@ )一. 填空题(每小题3分,满分30分)1.42342311a a a a 与44322311a a a a -;2.b a =;3.)(211E A A -=-;4.可逆阵或满秩阵或非奇异阵;5.特征根为0;6.1-=α;7.)()(T r A r =;8.3R ;9.负定;10.25≠t二. 陈治中版《线性代数》例题1.5.7(p.26)答案:nn bc ad D )(2-=三. 令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=130231,3512,343122321C B A 则⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----=--2115.053,2153,1115.235.123111X BA四. 令),,,(4321αααα=A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==0000310020101013130631120140121),,,(4321ααααA 因而3)(=A r ,321,,ααα构成一个极大无关组,且321432αααα+-=五. 陈治中版《线性代数》习题4.6(p.121)答案:p.211 六. 将二次型f 化成矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=211121112A ,显然A 为实对称阵,可以正交对角化的,即 由特征方程0||=-E A λ,得01=λ,33,2=λ当01=λ 对应的特征向量为T)1,1,1(1=α,标准化为T)1,1,1(311=η;当33,2=λ 对应的特征向量为T)0,1,1(2-=α和T)1,0,1(3-=α正交化T)0,1,1(22-==αβ,标准化为T)0,1,1(212-=ηT)1,1,0(,,2222333-=⋅><><-=ββββααβ,标准化T)1,1,0(213-=η因而),,(321ηηη=P ,且232233y y f += 七. 令αααααααααααααααβββββL n nn=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3213213212113211111111111............由 1||=L 以及n αα,,1 线性无关得n ββ,,1 线性无关。

南京大学2011-2012学年第二学期《微积分II(第一层次)》期中考试试题参考答案

南京大学2011-2012学年第二学期《微积分II(第一层次)》期中考试试题参考答案

x2 z2 y 2 1 的约束下求函数 f ( x, y, z) 9d 2 (2 x 2 y z 5)2 的 2 4
2
条件极值.构造 Laglange 函数: F ( x, y, z, ) (2 x 2 y z 5) (
x2 z2 y 2 1) . 2 4
dx ( x y)dx 2 dx
0 2 0 2 2
( x y) dx 8 8 8+8 = 8 .
x2 y 2 z 2 六、计算三重积分 I ( x xy )dxdydz ,其中Ω是椭球体 2 2 2 1 .(9 分) a b c

(2 | x y |)dxdy + ( | x y | 2)dxdy
D3
( 2 x y )d x d + y
D1 D D2
(2 x y) dxdy
D2
2 2 x x
+
( x y 2) dxdy
D3
( x y)dxdy 2 ( x y)dxdy +8
(1)
(a 4b ) (7a 2b ) = 0, 即7a 2 +8b 2 30a b 0.
联立(1),(2)两式解得: a 2 b 2 =0.
2. 求二重极限
(2)
( x , y ) (0,0)
lim (1 2ln(1 x 2 y 2 )) cot ( x
界,且取逆时针方向 .
2
1 1 20 .(积分曲线图略) dxdy 5( x 2 dx 2 1) D 0 2 3
解:由格林公式,原式 = 5 二 .

(完整)线性代数习题集(带答案)

(完整)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。

(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。

(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。

(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。

(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。

若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。

南京大学数学2011-2012学年第一学期《微积分I(第一层次)》期中考试

南京大学数学2011-2012学年第一学期《微积分I(第一层次)》期中考试

答 题
第三页(共四页)第四页(共四页)Fra bibliotek姓名:




四、 (18 分,每小题 6 分)计算下列各题:
⎧ x = ln(1 + t 2 ) d2y (1) 设 y = y ( x) 由 ⎨ 所确定,求 ; dx 2 ⎩ y = t − arctan t
二、 (24 分,每小题 6 分)求下列极限: (1) lim n 2
n →∞


线

(
密 (1)欲使 f ( x) 在 x = 0 处连续,求 a 的值; (2)在(1)的条件下,求 f ′( x) ,并讨论 f ′( x) 在 x = 0 处的连续性.
封 线 内 不 要
八、 (8 分)已知 lim ⎜
⎛ x2 ⎞ − ax − b ⎟ = 0 ,求常数 a, b 的值. x →∞ x + 1 ⎝ ⎠
n
a − n +1 a (a > 0) ;
)
(2) lim
班级:
1 − cos x ; x →0 + x (1 − cos x )
(2) 设 y =
1 ,求 y ( n ) (n > 1) ; x −x−2
2
系别:
(3) 设 y = arcsin
1 ,求 dy . x
第一页(共四页)
第二页(共四页)
(1) 证明存在 c ∈ (0,1), 使得 f (c) = c; (2) 证明存在 ξ ∈ (0,1), (ξ ≠ c) 使得 f ′(ξ ) = f (ξ ) − ξ + 1 .
⎧ g ( x) − e − x , x ≠ 0, ⎪ 六、 (12 分)设函数 f ( x) = ⎨ 其中 g ( x) 具有二阶连续导数,且 g (0) = 1, g ′(0) = −1. x ⎪a , x = 0. ⎩

线性代数专科2011级期中试题讲评

线性代数专科2011级期中试题讲评

杉达专科2011级线性代数期中考试讲评一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共16分。

)1. 设D=|a ij |为5阶行列式,问D 的展开式中,下列哪一项取负号 ( )A 、a 15a 24a 33a 42a 51B 、a 12a 23a 34a 45a 51C 、a 11a 23a 34a 45a 52D 、a 51a 42a 33a 24a 15【讲评】考点:D=|a ij |的展开式中项a 1j 1 a 2j 2 …a nj n 的符号为 (-1)N(j 1,j 2,…,j n ),排列的逆序数的计算。

N(j 1,j 2,…j n )=m 1+m 2+…+m n ,其中m k 表示数码k 前面比k 大的数码的个数。

本题:N(54321)=4+3+2+1+0=10, N(23451)=4+0+0+0+0=4,N(13452)=0+3+0+0+0=3, D 与A 一样。

选:C 。

2.三阶行列式 ⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3= ( ) A 、-20 B 、70 C 、-70 D 、20【讲评】考点:行列式计算的性质。

行列式可依行(列)提出公因子;将行列式某行(列)乘以一个数加到另一行(列)上去,行列式的值不变。

本题:D=⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3=20×⎪⎪⎪⎪⎪⎪1 2 21 1 -11 2 3=20×(3-2+4 –2-6+2)= -20 选:A 。

3. 行列式⎪⎪⎪⎪⎪⎪b 0 0 a0 b a 00 a b 0a 0 0 b = ( )A 、a 4- b 4B 、(b 2-a 2)2C 、b 4- a 4D 、a 4b 4 【讲评】考点:四阶行列式计算无对角线法则,必须用展开与降阶的方法。

本题:第一行展开⎪⎪⎪⎪⎪⎪b 0 0 a 0 b a 00 a b 0a 0 0 b = b ⎪⎪⎪⎪⎪⎪b a 0a b 00 0 b - a ⎪⎪⎪⎪⎪⎪0 b a 0 a b a 0 0=b 2(b 2-a 2) – a 2(b 2-a 2)= (b 2-a 2)2 选:B 。

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。

线性代数习题参考答案

线性代数习题参考答案

第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含324314516625a a a a a a 的项的符号为 。

2. 用行列式的定义计算下列行列式的值(1) 1122233233000a a a a a解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)12,121,21,11,12,1000000n n nn n n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

段正敏主编《线性代数》习题解答

段正敏主编《线性代数》习题解答

线性代数习题解答1张应应胡佩2013-3-1目录第一章行列式 (1)第二章矩阵 (22)第三章向量组的线性相关性 (50)第四章线性方程组 (69)第五章矩阵的相似对角化 (91)第六章二次型 (114)附录:习题参考答案 (129)1教材:段正敏,颜军,阴文革:《线性代数》,高等教育出版社,2010。

第一章 行列式1.填空题:(1)3421的逆序数为 5 ;解:该排列的逆序数为00235t =+++=. (2)517924的逆序数为 7 ;解:该排列的逆序数为0100337t =+++++=. (3)设有行列式2311187001234564021103152----=D =)(ij a ∆, 含因子543112a a a 的项为 -1440,0 ; 解:(23154)31223314554(1)(1)526831440t a a a a a -=-⋅⋅⋅⋅⋅=-(24153)41224314553(1)(1)506810t a a a a a -=-⋅⋅⋅⋅⋅=所以D 含因子543112a a a 的项为-1440和0.(4)若n 阶行列式=-∆==∆=)(,)(ij ij n a D a a D 则()1na-;解:行列式D 中每一行可提出一个公因子1-,()()()1()1nnij ij D a a a ∴=∆-=-∆=-.(5)设328814412211111)(x xx x f --=,则0)(=x f 的根为 1,2,-2 ;解:()f x 是一个Vandermonde 行列式,()(1)(2)(2)(21)(22)(21)0f x x x x ∴=--+-----=的根为1,2,-2.(6)设321,,x x x 是方程03=++q px x 的三个根,则行列式=132213321x x x x x x x x x 0 ; 解:根据条件有332123123123()()()()x px q x x x x x x x x x x x ax x x x ++=---=-+++-比较系数可得:1230x x x ++=,123x x x q =-再根据条件得:311322333x px q x px q x px q⎧=--⎪=--⎨⎪=--⎩原行列式333123123123=3()33()0x x x x x x p x x x q q ++-=-++--⋅-=.(7)设有行列式10132x x x-=0,则x = 1,2 ; 解:2231032(1)(2)001xx x x x x x -=-+=--= 1,2x ∴=.(8)设=)(x f 444342343331242221131211a a a xa a x a a x a a xa a a ,则多项式)(x f 中3x 的系数为 0 ; 解:按第一列展开11112121313141()f x a A a A a A xA =+++,112131,,A A A 中最多只含有2x 项,∴含有3x 的项只可能是41xA()()12134141222433343123413242233132234122433(1)a a x xA x a x a xa a x x a a a a a a x a a a a a a +=-⎡⎤ =-++-++⎣⎦41xA 不含3x 项,∴()f x 中3x 的系数为0.(9)如果330020034564321x =0,则x = 2 ;解:12346543122(512)(63)000265330033xx x =⋅=--= 2x ∴=.(10)00000000000dcb a= -abcd ;解:将行列式按第一行展开:1400000000(1)0000000000a b b a cabcd cdd+=⋅-=-.(11)如果121013c ba =1,则111425333---c b a = 1 ;解:1323323133301302524121111111Tr r AA r r a a b c a b c bc -=+---=.(12)如333231232221131211a a a a a a a a a =2,则333232312322222113121211222222222222a a a a a a a a a a a a ---= -16 , 332313231332221222123121112111323232a a a a a a a a a a a a a a a ------= -4 ,3212000332313322212312111a a a a a a a a a= -4 ; 解:1112131121312122231231222321233132331323332T a a a a a a A a a a A a a a a a a a a a αααβββ======()()1112121332122222312231223313232331221232222222222222222288016a a a a a a a a a a a a A αααααααααααααα--=-=-- =+-=-=-()1121112131122212223212123121231323132333122311232323232323232a a a a a a a a a a a a a a a ββββββββββββββββββ----=--=---- =-+-- =()1223122123224T A ββββββββββ-=- =-=-11213114122232132333000212423T a a a A a a a a a a + ⋅=-按第一行展开(-1).(13)设n 阶行列式D =0≠a ,且D 中的每列的元素之和为b ,则行列式D 中的第二行的代数余子式之和为=a b;解:11121111211112121222121212111=n n n n n n nnn n nnn n nna a a a a a a a a a a ab b b ba a a a a a a a a 每行元素加到第二行()212220n b A A A a+++=≠按第二行展开∴212220,0n b A A A ≠+++≠且 21222n a A A A b∴+++=实际上,由上述证明过程可知任意行代数余子式之和12,1,2,,i i in aA A A i n b+++==.(14)如果44434234333224232214131211a a a a a a a a a a a a a =1,则2423121144434234333224232200a a a a a a a a a a a a a = -1 , 443424433323423222a a a a a a a a a =111a ;解:令222324323334424344a a a B a a a a a a =,则111213142223241111113233341142434401(1)10,000a a a a a a a a B a B a a a a a a a +=⋅-= ⇒ ≠=≠且 2223243233344111114243441112232400(1)10a a a a a a a B a B a a a a a a a +=⋅-=-=-223242233343112434441T a a a a a a B B a a a a ===. (15)设有行列式101321x x -,则元素1-的余子式21M2的代数余子式12A(16)设3214214314324321=D =)(ij a ∆,ij ij a A 表示元素的代数余子式,则=+++44342414432A A A A 0 ;解:方法一:14243444234A A A A +++可看成D 中第一列各元素与第四列对应元素代数余子式乘积之和,故其值为0.方法二:11424344412312342234034134124A A A A +++=推论.(17)设cdb a a cbda dbcd c ba D ==)(ij a ∆,ij ij a A 表示元素的代数余子式,则=+++44342414A A A A 0 ;解:1424344411011a bc c bd A A A A dbc a bd +++=推论4.(18)设6000000000000002000230023402345)(x x x x x x f --=,则5x 的系数为 6 ;解:方法一:54255254320543243200432032000()66(1)(1)6320020000200000000000006x x x x x f x x x x x x x x ⨯--===⋅-⋅-⋅=--方法二:()f x 只有一项非0()()54321615243342516610255543204320032000()1200000000000006(1)(1)66t x x x f x a a a a a a x x x x -∴==-- =-⋅-⋅⋅= 综上所述:5x 的系数为6.(19)设111212122212111211112121222212221212m m m m mm n m n m n n nnn n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =, 且111212122212m m m m mma a a a a a a a a a =111212122212n n n n nnb b b b b b b b b b =,则D =()1mnab - ;解:方法一:令111212122212m m m m mma a a a a a A a a a a ==,111212122212n n n n nnb b b b b b B b b b b ==则1A O D A B ab CB==⋅=,()()211mnmnO AD A B ab B C==-⋅=-证明:根据行列式性质2和5,将行列式A 变成下三角行列式,得到:11112121222212121212m m m m m mmm m ma a a a a a a a a A a a a a a a a a a a '====''行列式1D 、2D 的变换和行列式A 的变换完全相同,得到:1212121111211112121222212221212m m m m n m n n n nm n n nna a a a a a D c c cb b bc c c b b b c c c b b b '''='''''''''1212122111211112121222212221212m m m n m n m n n nnn n nm a a a a a a D b b b c c c b b b c c c b b b c c c '''='''''''''分别将1D 、2D 第一次按第一行展开(2a 变成第一行),第二次按第二行展开(3a 变成第一行),……,总共进行m 次第一行展开,得到:112m D a a a B A B ab ==⋅=;()()()()()11111121211111n n n mn mnm D a a a B A B ab ++++++=-⋅--⋅=-⋅⋅=-证毕.方法二:设()ij m m A a ⨯=,()pq n n B b ⨯=,()()()ij m n m n A O D d C B +⨯+⎛⎫== ⎪⎝⎭其中:(), 1:,1:, 1:,1:,, , 1:,1:, ij ij pq pja i m j m db i m m n j m m n p i m q j mc i m m n j m p i m ==⎧⎪==++=++=-=-*⎨⎪=++==-⎩那么:()(){}{}1111111,,,,1,,1m m m n m m m n m n t p p p p p mp m p m n p p p m n A OD d d d d C B +++++++=+==-∑()()()()(){}{}{}{}()()()(){}{}{}{}()(){}{}()(){}11111111111111111111,,1,,,,1,,11,,1,,,,1,,11,,1,,,,11111m n m n m m n n m n m m n n m n mm t p p m l m l p mp l nl p p m l l n t p p t l l p mp l nl p p m l l n t pp t l l p mp l nl p p m l l a a b b a a b b a a b b *++=====-⎡⎤=-⋅-⎣⎦⎛⎫=-⋅- ⎪ ⎪⎝⎭∑∑∑由{}1,,n A B ab=⎛⎫⎪ ⎪⎝⎭=⋅=∑1112121222122111211112121222212221212m m m m mmn m n m n n nnn n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =2D 中m a 依次与12,,,n b b b 对换,使得m a 在n b 下面;()1m a - 依次与12,,,n b b b 对换,使得()1m a - 在n b 下面,在m a 上面;……1a 依次与12,,,n b b b 对换,使得1a 在n b 下面,在a 2 上面;总共进行了mn 次对换。

线性代数习题及答案

线性代数习题及答案

线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 9; (2) 1;(3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2.【解】(1) τ(9)=11; (2) τ(1)=36;(3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项. 解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2) abac ae bdcd de bfcfef-------; (3)1011001101a b c d ---; (4) 1234234134124123.【解】(1) 12562312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------; 2111111(3)(1)11101100111;b c D a a b cd cc d d d d abcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.10412022200441012301114r r c c r r c c r r r r c c r rD -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++; (3) 232232232111()111a a a a bb ab bc ca b b c c c c =++(4) 20000()000n n a b a b D ad bc c d cd==-ONN O;(5)121111111111111nn i i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏L L M M M . 【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n a b aba b a b D abc dc dc d c d d c ad D bc D ad bc D ---=-=⋅-⋅=-ONONN O NO据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-L 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n 1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+L L LL L L L L L L L L L LL LLL但由归纳假设11121111,n n n i iD a a a a ---=⎛⎫+= ⎪⎝⎭∑L 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏L L L8. 计算下列n 阶行列式.(1) 111111n x x D x=LL M M ML(2) 122222222232222n D n=L L L LL L L L L; (3)000000000000n x y x y D x y y x=L L LL L L L L L L . (4)n ij D a =其中(,1,2,,)ij a i j i j n =-=L ;(5)2100012100012000002100012n D =L L L M M M M ML L.【解】(1) 各行都加到第一行,再从第一行提出x +(n1),得11111[(1)],11n x D x n x=+-LL M M M L将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---L L M M M L(2) 213111222210000101001002010002n r r n r r r r D n ---=-MLL LL M M M M M L按第二行展开222201002(2)!.00200002n n =---L LL M M M M L(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)000000000000(1)(1).n n n n n n n n x y y x y xy D x y xy x y yxx yx x y y x y +-+-+=+-=⋅+⋅-⋅=+-L L L L M M M M M M LL M M M M M LL(4)由题意,知1112121222120121101221031230nnn n n nnn a a a n a a a D n a a a n n n --==----L L L LL M M MM M MM LL122111111111111111111111n n ------------LL L M M M M M L L后一行减去前一行自第三行起后一行减去前一行012211221111112000020000200000000022n n n n --------=-L L L LL LM M M M M M MM M L LL按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---LL M M M L按第列展开. (5) 210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+L L L L L L L L L M M M M M M M M M M M M MM ML L L LLL122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=L 由 ()()()112211n n n n D D D D D D n ----+-++-=-L 得 11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n nn na a a a a a D a a a ++=+LL M M M L【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑LL L M M M M L将第一行乘(1)后加到其余各行,得23111010011.00100001n nnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑L L LM M M M L10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=L ).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=L L MM M M L L. 【解】行列式的各列提取因子1(1,2,,)n j a j n -=L ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏L LL L L L L L LL11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩【解】方程组的系数行列式为1110111013113121110131180;121052121101211231401230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA(3) 由于AB ≠BA ,故(A +B )(A B )≠A 2B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A L 5. 100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =. 【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= 1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a bc d ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A =A A =A E 于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A ,所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明:(1) B 2是对称矩阵.(2) AB BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= B ,故(B 2)′=B ′·B ′= B ·(B )=B 2;(AB BA )′=(AB )′(BA )′=B ′A ′A ′B ′= BA A ·(B )=AB BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= BA +A ·(B )= (AB +BA ).所以B 2是对称矩阵,AB BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0nn a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦L O ,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2) 121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠- 故112311101111122.02211130122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *.(2) 若A 可逆,则A *可逆且(A *)1=(A 1)*.(3) 若AA ′=E ,则(A *)′=(A *)1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A *=(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0,∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A 1,从而(A 1) *=|A 1|(A 1)1=|A |1A . 于是A * (A 1) *=|A |A 1·|A |1A =E ,所以(A 1) *=(A *)1.(3) 因AA ′=E ,故A 可逆且A 1=A ′.由(2)(A *)1=(A 1) *,得(A *)1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O (k 为正整数),证明:121()k ---L E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,L L L 从而EA 可逆,且121()k ---L E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A 1及(A +2E )1.【证】因为A 2A 2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E. 由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B . 【解】由AB =A +2B 得(A2E )B =A .而22310,1102121==-≠---A E即A2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++L ,记01()mm f a a a =+++L A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦L L L L A E +A++A ++++++ (2) 由(1)与A =P 1BP ,得B =PAP 1.且B k =( PAP 1)k = PA k P 1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A P P A P L L L24. a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)1=E ,由此又得A =AE =AA *( A *)1=|A |( A *)1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0.(2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n,若|A |≠0,则| A *|=|A |n 1若|A |=0,由(1)知也有| A *|=|A |n 1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) AB ; (2)BA ; (3) 1-A ;(4)|A |k(k 为正整数). 【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3) 11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A 同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r L ααα线性无关,证明向量组12,,,r L βββ也线性无关,这里12.i i +++L β=ααα【证明】 设向量组12,,,r L βββ线性相关,则存在不全为零的数12,,,,r k k k L 使得1122.r r k k k +++=L 0βββ把12i i +++L β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0L L L ααα.又已知12,,,r L ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩L L L L L 该方程组只有惟一零解120r k k k ====L ,这与题设矛盾,故向量组12,,,r L βββ线性无关.7. 略.见教材习题参考答案.8. 12(,,,),1,2,,i i i in i n ααα==L L α.证明:如果0ij a ≠,那么12,,,n L ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=L α1,2,,i n =L 组成的,所以12,,,n L ααα线性无关.9. 设12,,,,r t t t L 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==L L α是线性无关的.【证明】任取n r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n r r r n r r r n nn nt t t t t t t t t t t t ---+++-≠LM MMM L L M M M ML从而其n 个行向量线性无关,由此知其部分行向量12,,,r L ααα也线性无关. 10. 设12,,,s L ααα的秩为r 且其中每个向量都可经12,,,r L ααα线性表出.证明:12,,,r L ααα为12,,,s L ααα的一个极大线性无关组.【证明】若 12,,,r L ααα (1)线性相关,且不妨设12,,,t L ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s L ααα的一个极大无关组,这与12,,,s L ααα的秩为r 矛盾,故12,,,r L ααα必线性无关且为12,,,s L ααα的一个极大无关组. 11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,n L ααα为一组n 维向量.证明:12,,,n L ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n L ααα线性表示,则单位向量12,,,n L εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n L ααα的秩为n ,因此线性无关.必要性:设12,,,n L ααα线性无关,任取一个n 维向量α,则12,,,n L ααα线性相关,所以α能由12,,,n L ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案.16. 设向量组12,,,m L ααα与12,,,s L βββ秩相同且12,,,m L ααα能经12,,,s L βββ线性表出.证明12,,,m L ααα与12,,,s L βββ等价.【解】设向量组12,,,m L ααα (1)与向量组12,,,s L βββ (2)的极大线性无关组分别为12,,,r L ααα (3)和12,,,r L βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑L αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =L β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir L ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jk L βββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir L ααα表示,若α属于B 的行向量组,则它可由12,,,j j jk L βββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir L ααα,12,,,j j jk L βββ线性表示,故 ()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r .【证明】设A =(A s ,P s ×(n s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n s ))=(KA s ,KP s ×(n s)) 知R (B )=r ,即B 行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案.22. 集合V 1={(12,,,n x x x L )|12,,,n x x x L ∈R 且12n +++L x x x =0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y L L αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=L L αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=L L L L L 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα ∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦M A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩(2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b M 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)1231231232222524246x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ① ② ③解②①×2得 x 22x 3=0③① 得 2x 3=4 123233222 20 24x x x x x x ++=⎧⎪-=⎨⎪=⎩④ ⑤ ⑥由⑥得 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=22x 3 2x 2 = 10,得 (x 1,x 2,x 3)T =(10,4,2)T. 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩(3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩【解】(1)。

线性代数课后答案

线性代数课后答案

b2 c2
(b 1)2 (c 1)2
(b 2)2 (c 2)2
(b 3)2 (c 3)2
(c4c3
c3c2
c2c1 得)
d 2 (d 1)2 (d 2)2 (d 3)2
a2 2a 1 2a 3 2a 5
b2 c2
2b 1 2c 1
2b 3 2c 3
2b 5 2c 5
(c4c3
c3c2
得)
d 2 2d 1 2d 3 2d 5
7 计算下列各行列式(Dk 为 k 阶行列式) a1
(1) Dn , 其中对角线上元素都是 a 未写出的元素都 1a
是 0 解
a 0 0 0 1
0 a 0 0 0
Dn
0
0
a
0
0
(按第
n
行展开)
0 0 0 a 0
1 0 0 0 a
0 0 0 0 1
a (1)n1 0
0
an an1 an2 a2 x a1
证明 用数学归纳法证明
当 n2 时
D2
x a2
1 x a1
x2
a1x
a2
命题成立
假设对于(n1)阶行列式命题成立 即
Dn1xn1a1 xn2 an2xan1
则 Dn 按第一列展开 有
1 0 0 0
Dn
xDn1 an(1)n1
x Biblioteka 1 0 0
Dn
ax
0
xa
0
ax 0 0 0 xa
再将各列都加到第一列上 得
x (n1)a a a a
0
Dn
0
xa 0 0 xa
0 0

2011硕士研究生入学考试高等代数试题答案

2011硕士研究生入学考试高等代数试题答案

济 南 大 学2011年攻读硕士学位研究生入学考试试题(A 卷)答案及评分标准一、(20分)⑴.设p 是奇素数,试证1++px x p 在有理数域上不可约.设()1p f x x px =++.令1x y =-,()(1)g y f y =-,那么()(1)(1)(1)1p g y f y y p y =-=-+-+1122221(1)(1)(1)(1)1221p p p p p p p p p y y y y p y p p p ----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+-++-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,取素数p ,则()g y 满足Eisenstein 判断法的条件,故()g y 在有理数域上不可约. 由于()g y 与()f x 在有理数域上有相同的可约性,故()f x 有理数域上不可约.⑵.判断2=x 是8122116)(2345+--+-=x x x x x x f 的几重根.作综合除法可知,2是()f x 的三重根,且3()(2)(1)(1)f x x x x =-+-.二、(10分)如果1()n x f x -,则1()n nx f x -.()1()()1()(1)01()1()n n n n x f x f x x g x f x f x x f x -⇒=-⇒=⇒-⇒-三、(10分)()111(1)x x x n x x x ααααααααααα=-+()()()()(1)12111(1)1(1)n n n x n x n x x x ααααα---=-+=--+--四、(20分)向量组I 与II 等价⇔I 与II 的极大无关组等价⇔I 与II 的极大无关组为III 的极大无关组123r r r ⇔==.五、(20分)求证:⑴设12,,,s ηηη 是齐次线性方程组0AX =的基础解系,12,,,s ηηη 与12,,,t εεε 等价,由于它们都线性无关,所以s t =;12,,,t εεε 由12,,,s ηηη 表示,i ε为12,,,s ηηη 的线性组合,当然是0AX =的解,又因为任何一个解可由12,,,s ηηη 表示,当然也可由12,,,t εεε 表示,故12,,,t εεε 也是基础解系.⑵显然12,,,,s ξξηξηξη+++ 为AX b =的解,12,,,s ηηη 线性无关,ξ不能由它们表示,12,,,,s ηηηξ 线性无关,秩为1s +;12,,,,s ξξηξηξη+++ 与12,,,,s ηηηξ 等价,12,,,,s ξξηξηξη+++ 的秩也为1s +,从而无关,故为AX b =的线性无关解.试题科目:六、(10分)设n 阶半正定矩阵A ,存在可逆矩阵P ,0'00rE A P P ⎛⎫=⎪⎝⎭,矩阵000rE C P ⎛⎫= ⎪⎝⎭,则'A C C =.七、(15分)作初等行变换'''''123111312121052(,,,,)1111221153A αααββ--⎛⎫ ⎪⎪== ⎪---- ⎪---⎝⎭100017170100349001032500013B -⎛⎫⎪ ⎪-⎪⎪→=- ⎪⎪⎪⎪⎝⎭由于对矩阵施行初等行变换不改变列向量间的线性关系,从B 知1231,,,αααβ线性无关,且2123117492517333βαααβ=---+.显然dim 13W =,dim 22W =,而dim 12()W W +=dim 12312(,,,,)L αααββ=dim 1231(,,,)4L αααβ=.由维数公式得dim12()W W ⋂=dim1W +dim2W -dim12()3241W W +=+-=.由于211231225174917333W W γββααα=-=---∈⋂,且0γ≠,故γ是12W W ⋂的一个基. 八、(10分)设上三角的正交矩阵为A ,上三角1'A A -=下三角,A 必为对角矩阵,又因为2122'n A A A E λλ⎛⎫ ⎪=== ⎪⎪⎝⎭,21i λ=,1i λ=±,即对角线元素为1±. 九、(15分)⑴对于()()1211,,22V αααααααα∀∈=-A ++A =+()()1211,,22αααααα=-A =+A1122A ,A αααα=-=,112111,,V V V V V αα--∴∈∈=+;又因为{}1111,,0,0V V V V γαααα--∀∈⋂=A =-=⋂=,11V V V -=⊕;⑵线性变换A 在1V 某组基下矩阵为s E ,在1V -某组基下矩阵为n s E --,设11V V -,的基构成V 的基,故线性变换A 在V 的某组基下矩阵为s n s E E -⎛⎫⎪-⎝⎭. 十、(20分)证明:⑴设欧氏空间V 的一组标准正交基为1,,n εε ,()()11A ,,,,n n A εεεε= ,(A ,)(,A )αβαβ= ,(A ,)(,A )ji i j i j ij a a εεεε∴===,'A A ∴=为对称矩阵;反之,A 在一组标准正交基1,,n εε 下的矩阵A 为实对称矩阵,()()11,,,,,n n X Y αεεβεε== ,()()()11(A ,),,,,,n n AX Y αβεεεε=()'''AX Y X A Y ==()()()()11',,,,,(,A )n n X AY X AY εεεεαβ=== ,线性变换A 为对称的.(2)对于11,V V αβ⊥∀∈∀∈,此时1A V β∈,()()A ,=,A 0αβαβ=,1A V α⊥∴∈,则1V ⊥也是A 的不变子空间.。

江苏科技大学2010-2011第一学期线性代数试卷(A)及参考答案

江苏科技大学2010-2011第一学期线性代数试卷(A)及参考答案

学 专业 班级 学 姓名密封线内不要答题 密封线内不要答题江 苏 科 技 大 学 2010-2011学年第一学期线性代数课程试题 (A)卷一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。

1. 设有行列式1222,22a b a bc d c d==D D ,则下面等式成立的是( ) A.122=D D B. 212=D D C. 124=D D D. 214=D D2.已知四阶行列式D 的第3列元素分别为2,2,3,1-,它们对应的代数余子式分别为1,1,2,1-, 则行列式=D ( )A.5-B.3-C.3D. 53.下列叙述中,正确的结论是( )A.一个不可逆矩阵经过适当的初等变换可以化成可逆矩阵B.一个可逆矩阵经过任何初等变换后,得到的仍然是可逆矩阵C.一个可逆矩阵经过适当的初等变换可以化成不可逆矩阵D.一个不可逆矩阵有可能等价于单位矩阵4.设矩阵A 和B 都是n 阶方阵,且0=AB ,则必有( ) A.222)(B A B A +=+ B.0=A 或0=B C.0=T T B A D.0=A 或0=B 5.设向量组α1,α2,…,αs 线性相关,则必可推出( ) A .α1,α2,…,αs 中至少有一个向量为零向量 B .α1,α2,…,αs 中至少有两个向量成比例C .α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合D .α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合6. 当下列条件( )成立时,向量组1010,,2012k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭线性相关。

A. 1k =B. 1k ≠C. 2k =D. 2k ≠.7 .若n 阶行列式D =0(n )2≥,则这个行列式( )A.一定有一行(列)元素全为零B.一定有两行元素对应成比例C.所对应的矩阵的秩小于nD.所对应矩阵的秩等于n8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|1B -|=( ) A .121 B .71C .7D .129.设A 为n 阶矩阵,且1-=n A r )(,21αα,是两个不同的解,则0=Ax 的通解为(其中k 为任意常数)( )A.1αkB.2αkC.)(21αα-kD.)(21αα+k10.二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( )A.1;B.2;C.3;D.4二、填空题(本大题共10小题,每空2分,共20分)11. 已知2223331111123412341234= 。

(完整)南京师范大学考研高等代数2008——2011

(完整)南京师范大学考研高等代数2008——2011

(完整)南京师范大学考研高等代数2008——20112008年硕士研究生招生入学考试试卷高等代数一、判断题(共60分,每小题6分;若正确,打钩并给出证明,若错误,打叉并给出反例或说明理由)1.对多项式18+x 来说,不存在素数p 满足艾森斯坦()Eisenstein 判别法的条件,故18+x 不是有理数域上的不可约多项式。

2.若数域P 上的多项式)(x f 在复数域上有重根,则在P 上一定有重因式。

3.设向量组(I )的秩大于向量组(II )的秩,则(I )不能由(II )线性表出。

4.设B A ,都是n 阶方阵,A 是对角矩阵,BA AB =,则B 也是对角矩阵。

5.设B A ,都是半正定矩阵,则AB 的特征值大于或等于0。

6.设),2,1(s i V i Λ=是n 维线性空间V 的子空间,n s <≤2,若{}0=j i V V I()j i ≠,则s V V V +++Λ21是直和。

7.实矩阵n m R A ?∈的秩为n 的充要条件是对任意的n 阶实矩阵C B ,,有AC AB =可推得C B =。

8.设b a ,属于数域P ,[]{}{}0))((,)()(Y n x f x P x f x f V10.在n 维欧几里得空间中,正交变换在一组基下的矩阵是正交矩阵。

二、计算题(每小题10分,共40分)1.设()n j i a ji nj n i ij Λ,2,1,=--=βαβα,n 阶方阵()ij a A =,求A 的行列式A 。

2.求--=143021002A 的所有不变因子,初等因子以及若尔当()Jordan 标准形。

3.设[]4x P 是所有次数小于4的多项式和零多项式构成的线性空间,求线性变换()()()()()x f x f x f x x f ++='''2?的特征值,求最大特征值的特征向量。

4.已知三维欧几里得空间V 中有一组基321,,ααα,其度量矩阵为--=110121012A ,求向量312ααβ-=的长度。

2016-2017线性代数期中试卷答案(2)

2016-2017线性代数期中试卷答案(2)

(
A

2E)1



3
3
5

2
2
1 1 1
(7 分)
3
5 1
X


5 2
21
(10 分)
七、设方阵 A 满足 A2 2A 4E 0 ,证明 A 及 A E 都可逆,并求 A1 及 A E 1 . (8 分)
证明:由 A2 2A 4E 0 得 A A 2E 4E ,即 A A 2E E ,

1
1
1
3

1 1 1
1 1
1 0
1 1 1

r3 r21r1 r1

0


3

0 2 1
1 1 1

r3 r2

0


3
3、

A, B 为两个 3 阶方阵,且
A

1,
B

2 ,则

2


AT
0
0
Hale Waihona Puke B1
32
.
1 4 5
4、

A


0
2
3 ,则 A3
0 0 3
216 .
1 2 2
5、

A=

4
a
1


B
为三阶非零矩阵,且
AB
0 ,则 a

1
.
3 1 1
(12 分)
4
2、对于 n 元方程组,下列命题正确的是( C ) A. 若 AX 0 只有零解,则 AX b 有唯一解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档