人教版八年级数学下册第16章二次根式章节测试卷
人教版八年级下册数学第16章 二次根式 章节综合测试卷(含答案)
人教版八年级下册数学第16章 二次根式 章节综合测试卷(含答案)(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在函数y =x +4x 中,自变量x 的取值范围是( )A .x>0B .x≥-4C .x≥-4且x≠0D .x>0且x≠-42.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a≠1;⑧x≤3.A .7个B .6个C .5个D .4个3.与-5可以合并的二次根式的是( )A.10B.15C.20D.254.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有()A .4个B .3个C .2个D .1个5.化简24的结果是( )A .4 6B .2 6C .6 2D .836.若xy <0,则x 2y 化简后的结果是( )A .x yB .x -yC .-x -yD .-x y7.下列计算正确的是( )A .-(7)2=-7B .(5)2=25C .(9)2=±9D .-⎝⎛⎭⎫-9162=9168. 下列运算正确的是( )A.2+3= 5B .22×32=6 2 C.8÷2=2D .32-2=3 9.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定10.已知x +1x =7,则x -1x的值为( ) A. 3 B .±2C .± 3 D.7二.填空题(共8小题,3*8=24)11.若xy <0,则x 2y 化简后的结果是_______.12.计算5÷5×15所得的结果是_______. 13. .要使(8-x)2=x -8,则x =________.14. 计算:32-82=_______. 15.在实数范围内分解因式:x 4-9=______________________. 16. 如图,数轴上点A 表示的数为a ,化简:a +a 2-4a +4=__________.17.已知x =5-12,则x 2+x +1=________ 18.能使得(3-a )(a +1)=3-a·a +1成立的所有整数a 的和是________.三.解答题(共6小题, 46分)19.(8分) 计算:(1) 2×(1-2)+8; (2)(43+36)÷23;20.(8分)计算:(1)1232-275+0.5-3127; (2)(32-23)(32+23).21.(8分) 两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)22.(10分) 计算: (1)(3+1)(3-1)-16+(12)-1; (2)(3+2-6)2-(2-3+6)2.23.(10分) 已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.24.(10分)已知x +y =-8,xy =8,求y y x +x x y的值.25.(12分) 已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.参考答案1-5CCCCB 6-10 DACAC11.-x y12. 113. 814. 215. (x 2+3)(x +3)(x -3)16. 217. 218. 519. 解:(1)原式=2-22+22=2.(2)原式=43÷23+36÷23=2+322. 20. 解:(1)原式=22-103+22-33=(2+12)×2+(-10-13)×3 =522-313 3. (2)原式=(32)2-(23)2=9×2-4×3=6.21. 解:d =50.243.14-25.123.14=16-8=4-22≈1.17.答:圆环的宽度d 约为1.17.22. 解:(1)原式=3-1-4+2=0.(2)原式=(3+2-6+2-3+6)×(3+2-6-2+3-6) =22×(23-26)=46-8 3. 23. 解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.24. 解:∵x +y =-8,xy =8,∴x<0,y<0. ∴-x>0,-y>0. ∴原式=y xy x 2+x xy y 2=y xy (-x )2+x xy (-y )2 =-y x xy -x y xy =-(x +y )2-2xy xy xy =-(-8)2-2×88×8 =-12 2.25. 解:(1)由题意,得a -8=0,b -5=0,c -18=0, 即a =22,b =5,c =3 2.(2)∵22+32=52>5,∴以a ,b ,c 为边能构成三角形.三角形的周长为22+32+5=52+5.。
人教版八年级数学下册《第16章 二次根式》 章节测试卷含答案
人教版八年级数学下册《第16章二次根式》章节测试卷一.选择题(共10小题)1.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x62.下列各式的计算结果一定为正的是()A.B.a2﹣1 C.|a|﹣1 D.2a+13.式子有意义的条件是()A.a≥﹣2且a≠﹣3 B.a≥﹣2 C.a≤﹣2且a≠﹣3 D.a>﹣24.实数a、b在数轴上的位置如图所示,化简:|a﹣b|+的结果是()A.2a+b B.﹣3b C.﹣2a﹣b D.3b5.在、、、中,最简二次根式的个数为()A.1个B.2个C.3个D.4个6.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣4)cm2B.(4﹣2)cm2C.(16﹣8)cm2D.(﹣12+8)cm27.设,则可以表示为()A.B.C.D.8.若4与可以合并,则m的值不可以是()A.B.C.D.9.已知,则的值为()A.1 B.C.D.10.若两个二次根式化为最简二次根式后被开方数相同,则称这样的二次根式为同类二次根式,那么下列各组二次根式,不是同类二次根式的一组是()A.与B.与C.与D.与二.填空题(共5小题)11.计算:=,=,=,(x>0,y>0)=.12.若最简二次根式与是同类二次根式,则x=.13.当x=时,与既是最简根式又是同类根式.14.若是正整数,则正整数n的最小值为.15.已知2<a<3,化简:|a﹣2|+=.三.解答题(共6小题)16.计算(1)3+﹣4;(2)2a﹣+3ab.17.若x,y为实数,且y=++.求x+y的值.18.如图,实数a、b在数轴上的位置,化简﹣﹣.19.已知x=,y=,求下列代数式的值x2y+xy2.20.形如:==|1+x|,我们形象地定义:2x是的“缺子”,其系数为正,用《》表示,记为《》=2x.(1)计算:《》=;写出一个“缺子”为6x的根式.(2)解方程:≪≫﹣2=x2+16x.21.观察下列各式及其变形过程:a1==1﹣,a2==﹣,a3==﹣(1)按照此规律,写出第五个等式a5=.(2)按照此规律,若S n=a1+a2+a3+………+a n,试用含n的代数式表示S n(3)若x=S2+a1,试求代数式2x4+4x3﹣12x2﹣4x+2的值参考答案一.选择题(共10小题)1. C.2. A.3. B.4. B.5. A.6. D.7. D.8. D.9. D.10. D.二.填空题(共5小题)11. 4,﹣,,3xy.12. 2.13. x=4.14. 4.15. 1.三.解答题(共6小题)16.解:(1)3+﹣4=3×3+×5﹣4×=9+﹣2=8;(2)2a﹣+3ab当b≥0时,原式=2ab﹣×3a+3ab×=ab;当b<0时,原式=﹣2ab﹣×3a+3ab×=﹣ab.17.解:由题意,得1﹣4x≥0,4x﹣1≥0,解得x=,y=.x+y=+=.18.解:由数轴可得:a<0,b>0,a﹣b<0,则﹣﹣=﹣a﹣b+(a﹣b)=﹣2b.19.解:依题意得:xy=×=1,x+y=+=,x2y+xy2=xy(x+y)=1×=.20.解:(1)由题意可得出:《》=4x;写一个“缺子”为6x的根式为:《》.故答案为:4x,《》;(2)∵≪≫=12x∴原式=12x﹣2=x2+16x,整理得出:x2+4x+2=0,解得:x1=﹣2+,x2=﹣2﹣.21.解:(1)a5=﹣;故答案为﹣;(2)用含字母n(n为正整数)的等式表示(1)中的一般规律为:a n==﹣,∴S n=a1+a2+a3+………+a n=1﹣+﹣+﹣+………+﹣=1﹣;(3)∵S2=1﹣,a1=1﹣,∴x=S2+a1=﹣+﹣1=﹣1,∴2x4+4x3﹣12x2﹣4x+2=2x2(x+1)2﹣14x2﹣4x+2=2x2(﹣1+1)2﹣14x2﹣4x+2=12x2﹣14x2﹣4x+2=﹣2x2﹣4x﹣2+4=﹣2(x+1)2+4=﹣2(﹣1+1)2+4=﹣12+4=﹣8.。
人教版八年级下数学《第16章二次根式》单元测试(含答案)
第16章二次根式一、选择题1.下列式子中,属于最简二次根式的是()A. B. C. D.2.下列各式中3 ,,,,,二次根式有()个.A. 1B. 2C. 3D. 43.下列计算结果正确的是()A. + =B. 3 ﹣=3C. × =D. =54.=()A. ﹣1B. 1C. ﹣D. ﹣5.说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。
A. 1个B. 2个C. 3个D. 4个6.若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 17.若与化成最简二次根式是可以合并的,则m、n的值为()A. m=0,n=2B. m=1,n=1C. m=0,n=2或m=1,n=1D. m=2,n=08.二次根式中x的取值范围是()A. x>2B. x≥2C. x<2D. x≤29.把m根号外的因式适当变形后移到根号内,得()A. B. - C. - D.10.在实数范围内,有意义,则x的取值范围是()A. x≥0B. x≤0C. x>0D. x<011.如果成立,那么实数a的取值范围是()A. B. C. D.12.一个长方形的长和宽分别是、,则它的面积是()A. B. 2(3 +2 ) C. D.二、填空题13.计算:(2 )2=________.14.计算:-=________15.代数式有意义的条件是________.16.化简 ________.17.当x取________时,的值最小,最小值是________;当x取________时,2-的值最大,最大值是________.18.已知x=+,y=-,则x3y+xy3=________ .19.若x、y都是实数,且y= 则x+y=________20.使式子有意义的x的取值范围是________ .21.填空:﹣1的倒数为________.22.比较大小________.(填“>”,“=”,“<”号)三、解答题23.(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.24.若x、y都是实数,且y=++8,求x+y的值.25.已知y= +9,求代数式的值.参考答案一、选择题B BCD B D C D C A B C二、填空题13.2814.215.x≥﹣316.17.-5;0;5;218.1019.1120.x是实数21.22.>三、解答题23.解:(1)原式=()2﹣2××+()2+(2)2﹣()2 =2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.25.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
人教版八年级数学下册第16章_二次根式单元测试卷+答案
第1页,总12页第16章 二次根式单元测试卷班级:__________ 姓名:__________ 分数:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1. 下列各式不是最简二次根式的是( ) A.√0.5B.√10C.√a 2+b 2D.√222. 已知函数y =√x +3+1x−2,自变量x 的取值范围是( ) A.x ≠2 B.x ≥−3 C.x >−3且x ≠2 D.x ≥−3且x ≠23. 若√4−x x−2=√4−x√x−2,则x 的值可以是( ) A.2B.−2C.3D.−34. 已知√(2a −1)2=1−2a ,那么a 的取值范围是( ) A.a <12B.a >12C.a ≤12D.a ≥125. 已知√a −3+√2−b =0,则√a+√6√b的值为( ) A.1B.√2C.√3D.4√336. 对于任意的正数m ,n ,定义运算※为:m ※n ={√m −√n(m ≥n),√m +√n(m <n),则计算(3※2)×(8※12)的结果为( ) A.2−4√6B.2C.2√D.207. 二次根式√5x 5,√√x2,2√11a ,√12a ,√a 4(x ≥0, a ≥0)中,最简二次根式的个数是( ) A.5B.4C.3D.28. 已知a>b>0,a+b=6√ab,则√a−√b√a+√b的值为()A.√22B.2 C.√2 D.129. 下列运算中,正确的是()A.√3(√3+√13)=3 B.(√12−√27)÷√3=−1C.√32÷12√2=2 D.(√2+√3)×√3=√6+2√310. 设S1=1,S2=1+112+122,S3=1+122+132,S4=1+132+142,…,按照此规律,则√n n≥2,n为正整数)的值等于()A.nn−1 B.n+1nC.(n−1)n+1(n−1)n D.n(n+1)+1n(n+1)二、填空题(本题共计 6 小题,每题 3 分,共计18分)11. 已知y=√x−2+√2−x+34,则xy=_______.12. 式子√x+3有意义时x的取值范围为________.13. 若最简二次根式√4a2+1与√6a2−1是同类二次根式,则a的值为________.14. 计算|√2−√3|+2√2的结果是________.15. 下列运算中错误的有________.(只写序号即可)①√3+√2=√5;②√27=±3√3;③√3−√12=−√3;④√52−32=√52−√32=5−3=2.16. 把(a−1)√−1a−1中根号外的(a−1)移入根号内得________.三、解答题(本题共计 6 小题,共计52分)试卷第2页,总12页17.(6分)计算:√48−√27+√13.18. (8分)(1)计算:√3−√3116+√(−18)23;(2)先化简,再求值:x2(3−x)+x(x2−2x)+1,其中x=√3.第3页,总12页19. 阅读例题:计算:√2+1=√2−1)(√2+1)(√2−1)=√2−12−1=√2−11√3+√2=1×(√3−√2)(√3+√2)(√3−√2)=√3−√23−2=√3−√2同理可得:2+√3=________.√11−√7=________.4−√11=________.从计算结果中找出规律,并利用这一规律计算:(√2+1+√3+√2+√4+√3√2020+√2019)×(√2020+1)试卷第4页,总12页20. 观察下列等式,解答后面的问题:①√1+13=√3+13=√4×13=2√13,②√2+14=3√14,③√3+15=4√15,…(1)请直接写出第④个等式是________(不用化简);(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明;(3)利用(2)的结论化简:√2019+12021×√2021 .第5页,总12页试卷第6页,总12页21. 小明在解方程√24−x −√8−x =2时采用了下面的方法:由 (√24−x −√8−x)(√24−x +√8−x)=(√24−x)2−(√8−x)2=(24−x)−(8−x)=16,又有√24−x −√8−x =2,可得√24−x +√8−x =8,将这两式相加可得{√24−x =5,√8−x =3,将√24−x =5两边平方可解得x =−1,经检验x =−1是原方程的解.请你学习小明的方法,解下面的方程: 解方程:√x 2+42+√x 2+10=16.22. 阅读下面的文字,解答问题:大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√−1来表示√同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是________,小数部分是________;(2)如果√5的小数部分为a,√13的整数部分为b,求a+b−√5的值;(3)已知:10+√3=x+y,其中x是整数,且0<y<1,求x−y的相反数.第7页,总12页参考答案与试题解析第16章二次根式单元测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】B7.【答案】D8.【答案】A9.【答案】B10.试卷第8页,总12页【答案】C二、填空题(本题共计 6 小题,每题 3 分,共计18分)11.【答案】3212.【答案】x>−313.【答案】±114.【答案】√3+√215.【答案】①②④16.【答案】−√1−a三、解答题(本题共计 6 小题,共计52分)17.【答案】解:√48−√27+√13=4√3−3√3+√3 3=4√33. 18.【答案】解:(1)原式=0.5−74+14=−1.第9页,总12页(2)=x2(3−x)+x(x2−2x)+1,=3x2−x3+x3−2x2+1,=x2+1,当x=√3时,原式=(√3)2+1=3+1=4.19.【答案】解:依题意,得2+√3=√3(2+√3)(2−√3)=2−√3,√11−√7=√11+√7)(√11−√7)(√11+√7)=√11+√7,4−√11=√11)(4−√11)(4+√11)=4+√11,(1√2+1+1√3+√2+1√4+√3+...+1√2020+√2019)(√2020+1)=(√2−1+√3−√2+√4−√3+...+√2020−√2019)(√2020+1) =(√2020−1)(√2020+1)=2020−1,=2019.20.【答案】√4+16=5√16试卷第10页,总12页第11页,总12页(2)根据题意得:√n +1n+2=(n +1)√1n+2. 证明:√n +1n+2=√n (n+2)+1n+2=√(n+1)2n+2=(n +1)√1n+2.(3)√2019+12021×√2021 =2020√12021×√2021=2020.21.【答案】 解:(√x 2+42+√x 2+10)(√x 2+42−√x 2+10) =(√x 2+42)2−(√x 2+10)2=(x 2+42)−(x 2+10) =32,∵ √x 2+42+√x 2+10=16, ∴ √x 2+42−√x 2+10=32÷16=2,∴ {√x 2+42=9,√x 2+10=7,∵ (√x 2+42)2=x 2+42=92=81, ∴ x =±√39,经检验x =±√39都是原方程的解, ∴ 方程√x 2+42+√x 2+10=16的解是:x =±√39. 22.【答案】4,√17−4(2)∵ 2<√5<3,∴ a =√5−2.∵ 3<√13<4,∴b=3,∴a+b−√5=√5−2+3−√5=1.(3)∵1<3<4,∴1<√3<2,∴11<10+√3<12.∵10+√3=x+y,其中x是整数,且0<y<1,∴x=11,y=10+√3−11=√3−1,∴x−y=11−(√3−1)=12−√3,∴x−y的相反数是−12+√3.试卷第12页,总12页。
人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)
第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12.2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14.231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。
人教版八年级数学下册第16章《二次根式》测试卷(含答案)
人教版八年级数学下册第16章《二次根式》测试卷学校:___________姓名:___________班级:___________一、选择题(本大题共10小题,共30分)1.在二次根式、、、、,中,能与合并的有A. 1个B. 2个C. 3个D. 4个2.化简二次根式的结果是A. B. C. D.3.下列计算中,不正确的是.A. B.C. D.4.下列代数式中,二次根式为A. B. C. D.5.等式成立的条件是A. B.C. D. 或6.已知,则代数式的值是A. 0B.C.D.7.下列计算正确的是A. B.C. D.8.已知,则m的取值范围是.A. B. C. D.9.如果式子有意义,那么x的取值范围在数轴上表示出来正确的是A.B.C.D.10.如果,那么的值为A. B. 1 C. 2 D. 3二、填空题(本大题共5小题,共15分)11.若,则代数式的值为__________.12.把根号外的因式移到根号内后,其结果是________.13.若最简二次根式与能合并,则结果是.14.已知,,则代数式的值是________.15.如果最简二次根式与能够合并为一个二次根式,则________.三、计算题(本大题共2小题,共14分)16.在实数范围内分解因式:;.17.化简:;.四、解答题(本大题共5小题,共61分)18.当时,求二次根式的值.19.已知,,求的值.20.因为,所以,因为,所以,因为,所以,请你根据以上规律,结合你的经验化简下列各式:;.21.自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?22.已知化简和后是可以合并的二次根式,求m的值.参考答案一、选择题(本大题共10小题,共30分)1-5 CBBCA 6-10 CBCCC二、填空题(本大题共5小题,共15分)11.112.13.14.315.5三、计算题(本大题共2小题,共14分)16.解:原式;原式17.【答案】解:原式;原式.四、解答题(本大题共5小题,共61分)18.【答案】解:当时,.19.【答案】解:.20.【答案】解:,;,.21.【答案】解:刘敏说得不对,结果不一样.按计算,则且或且,解之得,或;而按计算,则只有且,解之得,.22.【答案】解:,且化简后与是可以合并的二次根式,,即.经检验,符合题意.的值为1.。
第16章 二次根式-人教版数学八年级下册达标检测(含答案)
人教版初中数学八年级下册第十六章二次根式达标检测一、单选题:1.在中,是最简二次根式的有()A.2个B.3个C.4个D.5个【答案】B【分析】根据最简二次根式的两个特点“(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式”进行解答即可得.【详解】解:不是二次根式,不符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,是最简二次根式,符合题意,不是最简二次根式,不符合题意,不是最简二次根式,不符合题意,综上,是最简二次根式的有3个,故选B.【点睛】本题考查了最简二次根式,解题的关键是熟记二次根式的两个特点.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【答案】C【分析】各项化简后,利用同类二次根式定义判断即可.【详解】A选项:,与的被开方数不同,故不是同类二次根式,故A错误;B选项:与的被开方数不同,故不是同类二次根式,故B错误;C选项:与的被开方数相同,是同类二次根式,故C正确;D选项:与的被开方数不相同,故不是同类二次根式,故D错误.故选C.【点睛】此题考查了同类二次根式,以及最简二次根式,熟练掌握各自的性质是解本题的关键.3.下列各式中,一定能成立的有()①②③④A.①B.①④C.①③④D.①②③④【答案】A【分析】根据开算术平方和平方的概念对4个等式逐一判断.【详解】A.,则A成立;B.当a<0时,不存在,则B等式不成立;C.当x<1时,不存在,则C等式不成立;D.当x<-3时,不存在,则D等式不成立.故选A.【点睛】本题考查开算术平方根和平方之间的等量关系,注意算术平方根下的式子不能小于零的情况,掌握这一点是本题解题关键.4.计算的结果估计在( )A.与之间B.与之间C.与之间D.与之间【答案】C【分析】先根据二次根式的混合运算计算得到,进而估算即可.【详解】解:===,∵∴,故选:C.【点睛】此题考查了二次根式的混合运算和无理数的估算,熟练掌握二次根式混合运算的法则是解题的关键.5.若,则()A.B.C.D.【答案】D【分析】直接利用二次根式的性质求解即可.【详解】解:∵,,∴解得,,故选:D.【点睛】本题主要考查了二次根式的性质,熟练掌握是解答本题的关键.6.若是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】B【分析】先将45写成平方数乘以非平方数的形式,再根据二次根式的基本性质即可确定出n的最小整数值.【详解】解:.由是整数,得,故选:B.【点睛】本题考查了二次根式的基本性质,利用二次根式的基本性质是解题关键.7.如图,在长方形ABCD中无重叠放入面积分别为和的两张正方形纸片,则图中空白部分的面积为().A.B.C.D.【答案】B【分析】先求得大正方形的边长和小正方形的边长,进而得出空白的长和宽,再计算面积即可.【详解】解:∵大正方形的面积为,∴大正方形的边长=,∵小正方形的面积为,∴小正方形的边长=,∴空白的长为:,空白的高为:,∴空白面积=故选:B.【点睛】本题考查了二次根式及其应用,掌握二次根式的性质是解题关键.8.已知,,则代数式的值为()A.9B.C.3D.5【答案】C【分析】计算出m−n及mn的值,再运用完全平方公式可把根号内的算式用m−n及mn的代数式表示,整体代入即可完成求值.【详解】∵,,∴,mn=-1,∴=3.故选:C.【点睛】本题考查了求代数式的值,二次根式的混合运算,完全平方公式的应用,对被开方数进行变形并运用整体代入法求值是关键.9.已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【详解】解:∵,,,又,∴.故选:A.【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.10.设S=,则不大于S的最大整数[S]等于( ) A.98B.99C.100D.101【答案】B【分析】由,代入数值,求出S=+++ …+ =99+1-,由此能求出不大于S的最大整数为99.【详解】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为99.故选B.【点睛】本题主要考查了二次根式的化简求值,知道是解答本题的基础.二、填空题:11.如果分式有意义,那么x的取值范围是_______.【答案】且x≠4【分析】根据分式的分母不等于零和二次根式的被开方数是非负数进行解答.【详解】∵二次根式的被开方数是非负数,∴2x+3≥0,解得x≥-,又分母不等于零,∴x≠4,∴x≥-且x≠4.故答案为x≥-且x≠4.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,该题属于易错题,同学们往往忽略了分母不等于零这一条件,错解为x≥-.12.计算:______.【答案】##【分析】利用二次根式的混合运算法则计算即可.【详解】解:==.故答案为:.【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.若的整数部分是a,小数部分是b,则的值是___________.【答案】【分析】首先根据的取值范围得出a,b的值进而求出即可.【详解】解:∵,的整数部分是a,小数部分是b,∴a=1,b=∴故答案为:【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.14.若,则的值是_________.【答案】4【分析】根据被开方数大于等于0列式求x,再求出y,然后相加计算即可得解.【详解】解:由题意得,﹣2﹣x≥0且3x+6≥0,解得x≤﹣2且x≥﹣2,∴x=﹣2,∴y=6,∴x+y=﹣2+6=4.故答案为:4.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,熟练掌握二次根式有意义的条件是解决本题的关键.15.若最简二次根式与是同类根式,则2a﹣b=___.【答案】9【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【详解】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点睛】此题考查了同类二次根式的定义,熟记定义是解题的关键.16.计算的值为__________.【答案】2【分析】先根据积的乘方的逆运算,再合并同类二次根式即可;【详解】解:原式==;故答案为:2【点睛】本题考查了积的乘方的逆运算、二次根式的混合运算,熟练掌握运算法则是解题的关键17.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.18.设、、是的三边的长,化简的结果是________.【答案】【分析】根据三角形的三边关系:两边之和大于第三边,依此对原式进行去根号和去绝对值.【详解】解:∵a,b,c是△ABC的三边的长,∴a<b+c,a+c>b,∴a-b-c<0,a-b+c>0,∴故答案为:.【点睛】本题考查了二次根式的化简和三角形的三边关系定理,关键是根据三角形的性质:两边之和大于第三边去根号和去绝对值解答.19.观察下列各式:,,,……请你将发现的规律用含自然数n (n≥1)的等式表示出来_________.【答案】【分析】根据等式的左边根号内整数部分为自然数加上,右边为,据此即可求解.【详解】解:∵第1个式子为:,第2个式子为:,第3个式子为:,……∴第个式子为:.故答案为:.【点睛】本题考查了二次根式的规律题,找到规律是解题的关键.20.已知,化简得____________.【答案】【分析】根据完全平方公式结合二次根式的性质进行化简即可求得答案.【详解】∵0<a<1∴>1∴===故答案为【点睛】本题考查了二次根式的性质与化简,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:21.当x是怎样的实数时,下列各式在实数范围内有意义?(1);(2);(3);(4).【答案】(1);(2);(3);(4)【分析】(1)根据二次根式有意义的条件可得不等式3+x≥0,再解不等式即可;(2)根据二次根式有意义及分式有意义的条件可得不等式2x-1>0,再解不等式即可;(3)根据二次根式有意义及分式有意义的条件可得不等式2-3x>0,再解不等式即可;(4)根据二次根式有意义及分式有意义的条件可得不等式x≠0.【详解】解:(1)根据题意,3+x≥0,解得:x≥-3;(2)根据题意,2x-1>0,解得:x>;(3)根据题意,≥0且2-3x≠0,即2-3x>0,解得:x<;(4)根据题意,≥0且x-1≠0,即x≠1.【点睛】本题主要考查了二次根式有意义及分式有意义的条件,关键是掌握二次根式中的被开方数是非负数和分式的分母不为0.22.化简:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3);(4);(5);(6)【分析】(1)把500因数分解为5×102即可;(2)把12分解为3×22即可;(3)先把被开方数中带分数化为假分数,利用分数的基本性质将分母变平方即可(4)将被开方式中即可;(5)将被开方式即可;(6)将被开方式即可.【详解】解:(1);(2);(3);(4);(5);(6).【点睛】本题考查二次根式化为最简二次根式,掌握最简二次根式定义与化简方法是关键.23.计算:(1);(2);(3);(4);(5);(6).【答案】(1);(2);(3)6;(4);(5);(6)【分析】(1)先化简二次根式,再根据二次根式加减运算法则计算即可;(2)先化简二次根式,再根据二次根式乘除运算法则计算即可;(3)利用平方差公式计算即可;(4)先化简二次根式,再合并后计算乘除运算即可;(5)利用完全平方公式进行计算即可;(6)利用完全平方公式进行计算即可;【详解】(1)原式;(2)原式;(3)原式;(4)原式;(5)原式;(6)原式【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.24.先化筒.再求值:,其中,.【答案】,【分析】按照异分母分式运算法则计算即可.【详解】解:原式当,时,原式.【点睛】此题考查了分式的化简求值,掌握异分母分式运算法则是解题的关键.25.已知实数a,b,c在数轴上的位置如图所示,化简:.【答案】【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.26.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【答案】(1)16;(2)﹣8【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【详解】(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.【点睛】本题考查了二次根式的化简求值、完全平方公式、平方差公式,熟记完全平方公式和平方差公式,利用整体思想方法解决问题是解答的关键.27.已知等式|a-2 018|+=a成立,求a-2 0182的值.【答案】2019【分析】由二次根式的意义得到a的范围,再将原等式化简变形.【详解】由题意,得a-2 019≥0.∴a≥2 019.原等式变形为a-2 018+=a.整理,得=2 018.两边平方,得a-2 019=2 0182.∴a-2 0182=2 019.【点睛】本题考查了非负数的性质,代数式求值,二次根式有意义的条件,得到=2 018是解题的关键.28.观察下列等式:①;②;③…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:.【答案】(1);(2)【详解】试题分析:根据分母有理化的性质,由各式的特点,结合平方差公式化简计算即可.试题解析:(1)==;(2)=+…+=.。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
人教版八年级下册数学第16章 二次根式 第十六章达标检测卷
第十六章达标检测卷一、选择题(每题3分,共30分)1.【教材P5练习T1改编】若二次根式x-5有意义,则x的取值范围是( )A.x>-5 B.x≥5 C.x≤5 D.x>5 2.下列二次根式中,能与23合并的是( )A.8 B.18 C.24 D.27 3.下列二次根式中,是最简二次根式的是( )A. 2 B.12 C.12D.94.关于8的叙述正确的是( )A.在数轴上不存在表示8的点 B.8=2+ 6C.8=±2 2 D.与8最接近的整数是3 5.下列计算错误的是( )A.2+22=3 2 B.12-3= 3C.3×6=2 3 D.6÷2= 36.【教材P19复习题T8改编】若75n是整数,则正整数n的最小值是( ) A.2 B.3 C.4 D.5 7.已知x<2,化简x2-10x+25的结果是( )A.x-5 B.x+5 C.-x-5 D.5-x 8.已知一等腰三角形的周长为125,其中一边长为25,则这个等腰三角形的腰长为( )A.2 5 B.5 5 C.25或5 5 D.无法确定9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为( )A.1 B.17 C.4 2 D.-4 210.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A. 2 B.2 C.2 2 D.6 二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.若y=2x-3+3-2x+1,则x-y=________.14.计算(5-2)2 022(5+2)2 023的结果是__________.15.在△ABC中,a,b,c为三角形的三边长,化简(a-b+c)2-2|c -a-b|=____________.16.实数a,b在数轴上对应点的位置如图所示,化简a2-b2+(a -b )2的结果是________. 17.若xy >0,则式子x-yx2化简的结果为__________. 18.已知a ,b 是正整数,若有序数对(a ,b)使得2(1a+1b)的值也是整数,则称(a ,b)是2(1a+1b)的一个“理想数对”,如(1,4)使得2(1a+1b)=3,所以(1,4)是2(1a+1b)的一个“理想数对”. 请写出2(1a +1b)其他所有的“理想数对”: ________________.三、解答题(19题16分,其余每题10分,共66分) 19.【教材P 19复习题T 3变式】计算:(1)(6+8)×3÷32;(2)⎝ ⎛⎭⎪⎫-12-1-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.如果最简二次根式2m+n+3与m-n-1m+10是可以合并的,求正整数m,n的值.21.已知等式|a-2 023|+a-2 024=a成立,求a-2 0232的值.22.【教材P19复习题T5拓展】先阅读材料,再回答问题:已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m 3的土,可修多长的拦河坝?24.【教材P 20复习题T 10变式】观察下列各式:①2-25=85=225; ②3-310=2710=3310; ③4-417=6417=4417; …(1)根据你发现的规律填空:5-526=__________=__________;(2)猜想n -nn 2+1(n≥2,n 为自然数)等于什么,并通过计算验证你的猜想.答案一、1.B 2.D 3.A 4.D 5.C 6.B 7.D8.B :当腰长为25时,底边长为125-25-25=85,此时25+25<85,无法构成三角形;当底边长为25时,腰长为(125-25)÷2=55,此时55+55>25,55-55<25,能构成三角形. 故选B.9.C 10.B二、11.> 12. 6 13.2314.5+215.-a -3b +3c :∵a ,b ,c 为三角形的三边长,∴a +c >b ,a +b >c , 即a -b +c >0,c -a -b <0.∴(a -b +c )2-2|c -a -b|=(a -b +c)+2(c -a -b)=-a -3b +3c.16.-2a :由题中数轴可以看出,a <0,b >0,∴a -b <0.∴a 2-b 2+(a -b )2=-a -b +[-(a -b)]=-a -b -a +b =-2a.17.--y :由题意知x <0,y <0,∴x-yx2=--y. 解此类题要注意二次根式的隐含条件:被开方数是非负数.18.(1,1),(4,1),(4,4),(16,16),(9,36),(36,9)三、 19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;(3)原式=⎝⎛⎭⎪⎪⎫6-412+38×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:根据题意,得⎩⎪⎨⎪⎧m -n -1=2,2m +n +3=m +10,解得⎩⎪⎨⎪⎧m =5,n =2.即m ,n 的值分别为5,2.21.解:由题意得a -2 024≥0,∴a≥2 024.原等式变形为a -2 023+a -2 024=a. 整理,得a -2 024=2 023. 两边平方,得a -2 024=2 0232, ∴a -2 0232=2 024.22.解:由x =5+2,得x -2=5,∴(x -2)2=5. 整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.23.解:(1)S =12(8+32)×3=12(22+42)×3=12×62×3=36(m 2).答:横断面的面积为3 6 m 2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m 长的拦河坝.24.解:(1)12526;5526(2)猜想:n -nn 2+1=n n n 2+1. 验证:当n≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1.。
人教版数学八年级下册第16章专题01 二次根式测试试卷(含答案)
人教版数学8年级下册第16章专题01 二次根式一、选择题(共12小题)1.(2022x的取值范围是( )A.x≥0B.x≥﹣2C.x>2D.x≤22.(2022秋•门头沟区期末)下列代数式能作为二次根式被开方数的是( )A.x B.3.14﹣πC.x2+1D.x2﹣13.(2022秋•x的取值范围在数轴上表示正确的是( )A.B.C.D.4.(2021春•光山县期末)下列各式中,一定是二次根式的是( )B C DA5.(2022x的取值范围为( )A.x>0B.x≥﹣1C.x≥0D.x>﹣16.(2021春•番禺区期末)下列运算正确的是( )A=B=C=D=x7.(2021春•海珠区期末)下列各式中,最简二次根式的是( )A B C D8.(2021A.2B C.D.9.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是( )A B C D10.(2022秋•静安区校级期中)下列二次根式中,最简二次根式是( )A B C D11.(2021秋•惠民县期末)下列二次根式中属于最简二次根式的是( )A B C D12.(2022秋•徐汇区校级期中)下列根式中,最简二次根式有( )个.A.2B.3C.4D.5二、填空题(共12小题)13.(2022秋•吉林期末)代数实数范围内有意义,则x的取值范围是 .14.下列代数式中,是二次根式的有 (填序号).x<0).15.(2021春•黄埔区期末)计算:= ,= ,③(―2= .16.(2017.17.(2020•梧州一模)计算:2= .18.(2021春•花都区期末)已知x<2= .19.(2022 .20.(2022•南阳二模)写出一个实数x x可以是 .21.(2022秋•的是 .22.(2022秋•晋江市校级期中) .23.(2022a>0,b>0)化为最简二次根式: .24.(2022秋•虹口区校级月考),最简二次根式有 个.三、解答题(共13小题)25.(2021a>0,b>0).26.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=++2,求x y的值.27.(2022秋•昌平区期中)已知y=++5,求x+y的平方根.28.(2022秋•奉贤区期中)已知x,y为实数,且y=―+1,求xy的平方3根.29.(2022秋•湖口县期中)已知y=+++2.(1)求y x的值;(2)求y的整数部分与小数部分的差.30.(2022秋•洛宁县月考)已知a,b,c为实数,且c=+―+2―c2+ab的值.31.(2022春•岑溪市期中)已知实数x,y满足y=++5,求:(1)x与y的值;(2)x2﹣y2的平方根.32.(2022春•龙岩期中)已知|2022﹣a|+=a,求a﹣20222的值.33.(2021春•花都区期末)计算:―+34.(2022春•灵宝市期中)把下列二次根式化简最简二次根式:(1(2(3(435.(2021•中原区开学)(1)把下列二次根式化为最简二次根式:(2)解方程:(3x﹣2)2﹣4=036.(2021•黄岛区校级开学)把下列二次根式化简成最简二次根式:(1(2(337.(2022秋•西安月考)若a=2,b=3,c=﹣6参考答案一、选择题(共12小题)1.D2.C3.A4.D5.B6.B7.C8.C9.C10.C11.D12.C;二、填空题(共12小题)13.x≥514.①③⑥15.5;4;316.>17.318.2﹣x19.420.5(答案为不唯一)21.22.223.24.1;三、解答题(共13小题)25.解:原式==2a >0,b >0).26.解:由题意得:2x ―1≥01―2x ≥0,∴2x ﹣1=0,解得x =12,所以y =2,所以x y =(12)2=14.27.解:由二次根式有意义可得:3―x ≥0x ―3≥0,解得x =3.∴y =5.∴x +y =3+5=8.故x +y 的平方根为±28.解:由题意得,x ―27≥027―x ≥0,解得x =27,则y =13,∴xy =27×13=9,∴9=±3.29.解:∵y =+++2,∴x ―2≥02―x ≥0,解得x =2,∴y =+2.(1)y x =2=6++4=10+(2)∵y =+2,23,∴y 的整数部为4+2―4=―2,∴y的整数部分与小数部分的差为:4―2)=6―30.解:∵c=+―+2―∴a﹣2=0,b﹣1=0,c=2―∴a=2,b=1,∴c2+ab=(2―2+2×1=4+3﹣+2=9﹣31.解:(1)根据题意得:x﹣13≥0,13﹣x≥0,∴x=13,∴y=5;(2)x2﹣y2=132﹣52=169﹣25=144,144的平方根为±12,∴x2﹣y2的平方根为±12.32.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,=2022,∴a﹣2023=20222,∴a﹣20222=2023.33.解:原式=―+=34.解:(1==(2==(3===(4==35.解:(1)=====∴(3x﹣2)2=4,∴3x﹣2=±2,即3x﹣2=2或3x﹣2=﹣2,或x=0.解得x=4336.解:=====37.解:∵a=2,b=3,c=﹣6,===。
人教版八年级下册数学 第十六章 二次根式 单元检测题
人教版八年级下册数学第十六章 二次根式 单元检测题一.选择题(每小题3分,共30分)1. 计算:67x 3121÷23的结果是( ) A.-4 B.-23 C.40. D.72. 二次根式y +x 的一个有理化因式是( ) A. y -x B.x +y C. y +x D.x -y3. 若2)a -1(=a-1,则a 的取值范围是( )A.a>1B.a≥lC. a<lD. a≤l4. 下列计算中,正确的是( ) A.7-5=2 B.2X 8=4 C.2+3=23 D. 210=55.若,则( )A .x≥6B .x≥0C .0≤x≤6D .x 为一切实数6.下列二次根式中属于最简二次根式的是( )A .B .C .D .7.已知长方形ABCD 中,,则长方形ABCD 的面积是()A .B .C .D .8.将 )A B C D 9)A B C D 10.东东的作业本上有以下四题:做错的题是( )A .B .C .D .二.填空题(每小题3分,共24分)11. 若y-2017x -=x -2017-2 018,则(x+y)2018=12. 计算: (24-21)-(81+6)=13. 如果最简二次根式1x 2-与x -5能进行合并,则x 的值为14. 已知a 满足|2017-a|+2018a -=a ,则a-20172的值是 15.若a 、b 是实数,且|a|,则a+b=_____.16.规定运算:(a*b)=|a -b |,其中a 、b)17. 观察下列各式:①311+=231,②412+=341,③513+=451,……根据以上规律,第n个等式应为:18. 在数轴上表示实数a|a -2|的结果为_____.三.解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(8分)计算:(1)2×÷ (2)(+)(﹣4)(3)(2﹣3)÷ (4)4+﹣+420.(6分)已知:x =+1,y =﹣1,求下列各式的值. (1)(2)x 2﹣y 221.(8分)已知y =x -2+2-x +5,求x +2y 2的值.22. (8分)已知1x =+,x 的整数部分为a ,小数部分为b ,求ab 的值.23. 若A,B 分别代表两个多项式,且A+ B=2a 2 ,A- B= 2ab.(1)求多项式A 和B;(2)当a=3+1,b=3-1时,求分式BA 的值.24. 在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件。
人教版八年级下册数学第十六章 二次根式测试题含答案
人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。
化简后为( )A . 7B . -7C . 错误!未找到引用源。
D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。
人教版数学八年级下册:第16章《二次根式》单元测试(附答案)
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。
人教版八年级下册数学 第 16章 二次根式 单元测试卷
人教版八年级下册数学第 16章 二次根式 单元测试卷一、选择题(本大题共10小题,共30分)1. 化简√27的结果是( ) A. 4√3 B. 3√3 C. 3 D. 92.当x =−3时,二次根式√6−x 的值为( ) A. 3 B. −3 C. ±3 D. √33. 等式√a−3a−1=√a−3√a−1成立的条件是( ) A. a ≠1 B. a ≥3且a ≠−1 C. a >1 D. a ≥34. 使代数式√x−78−x 有意义的自变量x 的取值范围是( )A. x ≥7B. x >7且x ≠8C. x ≥7且x ≠8D. x >75.( ) A. 4 B. ±4 C. 2 D. ±26.下列各式正确的是( )A. √4=±2B. √a 2=aC. √(−2)2=√−83D. √273=37.对于√3的理解错误的是( )A. 是实数B. 是最简二次根式C. √3<2D. 能与√18进行合并8. 若√b 2−6b +9=3−b ,则b 的值为( )A. 0B. 0或1C. b ≤3D. b ≥3 9. 二次根式√2a 3,√12,√35,√4a +4,√x 2+y 2中,是最简二次根式的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个10.若√(x +2)2=x +2,则下列x 的取值范围正确的是( )A. x <−2B. x ≤−2C. x >−2D. x ≥−2二、填空题(本大题共5小题,共15分)11. 若代数式√x+3 x+3有意义,则x 应满足______ .12. 当______时,二次根式√2+3x 有意义.13. 计算:√12−3√3= ______ ;√(√3−2)2= ______ ;√12×√100= ______ . 14.已知最简二次根式√2y −1x−2和√x +3是同类二次根式,则x +y =______.15. 已知实数在数轴上的对应点如图所示,化简:√a 2−√b 2+|b −a|=______.三、解答题(本大题共5小题,共55分)16. 求式中x的值:(1)x2−36=0;(2)(x−2)3+29=2.17. 若实数x、y满足y<√x−1+√1−x+1.(1)x=______,y<______;(2)化简:√(y−2)2+√(3−2y)2.18. 计算:(4√2−3√6)÷2√2.19. 计算:√m+√n√mn√m−√n.20. 在等腰△ABC中,AB=AC,周长为27cm,且AC边上的中线BD把△ABC分成周长差为3cm的两个三角形,求△ABC各边的长.。
人教版八年级数学第十六章二次根式测试题(含答案)
人教版八年级数学第十六章二次根式测试题(含答案)人教版八年级数学第十六章二次根式测试题(含答案)一、单选题(共20题;共40分)1.下列二次根式中,最简二次根式是()XXX.下列根式中,属于最简二次根式的是()A.﹣XXX下列根式中,不是最简二次根式的是()XXX.下列计算正确的是()XXX.函数中自变量的取值范围是()A.≥-2B.≥-2且≠1C.≠1D.≥-2或≠16.下列各式一定是二次根式的是()XXX.(2015•黄冈)下列结论正确的是()A.C.使式子B.单项式的系数是﹣1的值等于,则a=±1有意义的x的取值范围是x>﹣1 D.若分式8.以下式子没成心义的是()A.9.式子B.C.D.有意义的条件是()A.x≥3B. x>3C.x≥﹣3D. x>﹣310.的值是()A. 3B.﹣3C. ±3D. 611.要使式子在实数规模内成心义,字母a的取值必需满意A.a≥2B.a≤2C.a≠2D.a≠012.二次根式成心义的前提是()A. x>3B. x>﹣3C.x≥﹣3D.x≥3第1页13.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10B.x≥10C. x<10D. x>1014.以下运算精确的选项是()A.﹣=B.=2C.﹣=D.=2﹣15.计算A. 6B. 4的成效是()C. 2;(2)+6 D. 12;(3);(4);(5).16.下列各式是二次根式的有1)()A. 4个B. 3个C. 2个D. 1个17.二次根式中,x的取值范围是()A.x≤3B. x=3C.x≠3D. x<318.下列二次根式中,是最简二次根式的是()XXX.以下式子中,属于最简二次根式的是()XXX.已知a为实数,下列各式是二次根式的是()XXX、填空题(共9题;共10分)21.当________时,22.计算23.将24.函数25.若代数式26.计算XXX。
的结果是________.化成最简二次根式的成效为________.中,自变量x的取值范围是________.成心义,则x的取值规模为________.+()2=________.,则其面积为________.的平行四边形的周长是________.27.一个等边三角形的边长为28.相邻两边长分别是2+29.当x取________时,2﹣与2﹣的值最大,最大值是________.第2页3、计较题(共4题;共25分)30.若a,b为有理数,且31.计较:32.化简:×(+=).,求的值.33.计较:(1)(2)×+-;4、解答题(共2题;共15分)34.计较题(1)(2)35.如图,在四边形ABCD中,∠A=∠BCD=90°,∠B=45°,,.求四边形ABCD的面积.五、综合题(共1题;共10分)36.一个三角形的三边长划分为、、.(1)求它的周长(请求成效化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值第3页谜底剖析局部一、单选题1.C2.B3.B4.D5.B6.C7.B8.B9.C10.A11.A12.C13.A14.A15.D16.C17.A18.D19.B20.B二、填空题21.-2≤x≤22.223.324.25.x≥2且x≠326.627.28.829.5;2三、计算题30.解:b=131.解:原式=32.解:原式==2﹣=4.33.(1)解:(2)解:四、解答题+2+﹣=6﹣2=4.+=|2﹣|+|2+|++=2+3+=,因为a、b都为有理数,所以a=0,b=,所以第4页34.(1)解:原式=(2)解:原式=。
人教版八年级数学下第16章二次根式测试题附答案
人教版八年级数学下第16章二次根式测试题含答案 班别: 姓名:__________一、选择题(每小题3分,共30分)1. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +2. 若1a ≤ )A. (1a -B. (1a -C. (1a -D. (1a -3. )A. 0B. 42a -C. 24a -D. 24a -或42a -4. 下列二次根式中,最简二次根式是( )A .23aB .31 C .5.2 D .22b a -5. 若12x -<< )A. 21x -B. 21x -+C. 3D. -36. 10=,则x 的值等于( ) A. 4 B. 4± C. 2 D. 2±7. 的整数部分为x ,小数部分为y y -的值是( )A. 38. 下列运算正确的是( )=a b =-C. (a b =-D. 22==+9=成立的x 的取值范围是( ) A .2x ≠ B .2x > C .2x ≥ D . 0x ≥10n 的最小值是( )A.7B.6C.5D. 4二、填空题(每小题3分,共24分).11. 当__________x .12. 已知x =21________x -+=.13. 把的根号外的因式移到根号内等于 .14. _____,______m n ==.15. 是同类二次根式的是 .16. ,则它的周长是 cm.17. 已知x y ==33_________x y xy +=.18. 在实数范围内分解因式:429__________,6__________x x -=-+=.三、解答题(共52分)19. (6分)当a 1取值最小,并求出这个最小值.20. (6分)已知,a b (10b -=,求20152016ab -的值.21. 计算:(每题4分,共16分)()1(2(231⎛+ ⎝(3((((22221111++-(4)22. (6分)已知:11a a -=+21()a a +的值.23. (6分)已知:,x y 为实数,且3y <,化简:3y -24. (6分)03x =+,的值.答案:一、选择题1A 2B 3D 4D 5C 6C 7C 8C 9B 10B二、填空题11. 12≤; 12. 2-; 13.14. 1、2;15.; 16. (+; 17. 10;18.()((23;(x x x x x +-三、解答题19. 12a =-,最小值为1; 20. -221. ()1.6,;()()()232,4.4;22. 解:22222111()24(14a a a a a a ⎛⎫+=++=-+=++= ⎪⎝⎭15+23.解:由已知有:1010x x -≥⎧⎨-≥⎩由此得1x = ,所以33y <=所以33(4)y y y -=---=-1;24.解:290x -=且3x ≠- ,由此得3,1x y ==,2==。
人教版八年级下册《第16章二次根式》单元测试(含答案)
第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( ) A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-∙x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =∙=112;④a a a =-23。
做错的题是( ) A. ① B. ② C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=a B. 34=aC. 1=aD. 1-=a10. 若n 75是整数,则正整数n 的最小值是( ) A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12.2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14.231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式章节测试
(满分100分,考试时间60分钟)
学校____________ 班级_________ 姓名___________
一、选择题(每小题3分,共30分)
1. 在实数范围内有意义,则x 的取值范围是( )
A . x >0
B .x >3
C .x ≥3
D .x ≤3 2. 下列各式中,正确的是( )
A 3=-
B .3=-
C 3=±
D 3=±
3. ,,其中是最简二次根式的有( ) A .1个
B .2个
C .3个
D .4个
4. 合并的是( )
A B . C D 的是( )
A =
B =
C =
D .
-= 5. 两个正方形的面积分别为2cm 2,8cm 2,则这两个正方形的边长的和为( )
A .
B .
C .10cm D
6. 计算的值是( )
A .-1
B .0
C .1
D .2x -1
7. 已知a ,b ,c 为△ABC 2c a b ---的结果为
( ) A .3a b c +- B . 2a C .33a b c +- D .33a b c --+
8. 已知n n 的最小值是( ) A .0
B .3
C .6
D .12
9. 当0ab < )
A .-
B .
C .-
D .二、填空题(每小题3分,共15分)
10.
计算:1)
-=_______________.
11.
有意义,则x的取值范围是__________________.
12.
10
a b
+++=,则b a=________.
13.
=,则x的取值范围是__________.
14.如图,数轴上A,B两点对应的实数分别为
,点B关于点A的对称点
为C,设点C所表示的数为x
,则
2
x
x
=__________.
三、解答题(本大题共4小题,满分55
15.(30分)计算.
(1;(2)
(3(4.
16.(13分)先化简,再求值:
2
21
111
x x
x x x
⎛⎫
-÷
⎪
+--
⎝⎭
,其中x=.
17. (12分)已知12x =,1
2
y =,求下列各式的值
(1)22x xy y -+; (2)x y
y x
+.。