[精品]2019高考数学二轮复习专题四概率与统计规范答题示范练习
12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)
第1讲概率与统计(小题)热点一随机抽样1.随机抽样的各种方法中,每个个体被抽到的概率都是相等的.2.系统抽样又称“等距”抽样,被抽到的各个号码间隔相同.3.分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.例1(1)(2019·汉中联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n等于()A.12 B.16 C.20 D.24(2)(2019·上饶联考)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.跟踪演练1(1)(2019·漳州质检)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A .522B .324C .535D .578(2)(2019·合肥质检)某工厂生产的A ,B ,C 三种不同型号的产品数量之比为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A ,B ,C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有10件,则n 的值为( ) A .15 B .25 C .50 D .60 热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.4.对于其他的统计图表,要注意结合问题背景分析其所表达的意思,进而解决所给问题. 例2 (1)(2019·厦门质检)下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份(2)(2019·临沂质检)已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C.中位数为64.5 D.平均数为64跟踪演练2(1)已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A.乙班的理科综合成绩强于甲班B.甲班的文科综合成绩强于乙班C.两班的英语平均分分差最大D.两班的语文平均分分差最小(2)(2019·黄冈模拟)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸热点三变量间的相关关系、统计案例高考中解决变量间的相关关系问题时需注意:(1)回归直线一定过样本点的中心(x,y).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.例3(1)(2019·皖江联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x (℃) 18 13 10 -1 用电量y (度)24343864由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当温度为-5 ℃时,用电量的度数约为( )A .64B .66C .68D .70(2)某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机不使用智能手机总计 学习成绩优秀 4 8 12 学习成绩不优秀16 2 18 总计201030附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828经计算K 2的观测值k =10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响跟踪演练3 (1)(2019·长春质检)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),上图为选取的15名志愿者身高与臂展的折线图,下图为身高与臂展所对应的散点图,并求得其回归方程为y ^=1.16x -30.75,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米(2)(2019·泸州模拟)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关”真题体验1.(2019·全国Ⅰ,文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2018·全国Ⅰ,文,3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2018·全国Ⅲ,文,14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.押题预测1.某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 2.给出如下列联表患心脏病 患其他病 总 计 高血压 20 10 30 非高血压 30 50 80 总 计5060110P (K 2≥10.828)≈0.001,P (K 2≥6.635)≈0.010,参照公式k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得到的正确结论是( )A .有99%以上的把握认为“高血压与患心脏病无关”B .有99%以上的把握认为“高血压与患心脏病有关”C .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” 3.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:使用年数x (单位:年) 2 3 4 5 6 维修总费用y (单位:万元)1.54.55.56.57.5根据上表可得线性回归方程为y ^=1.4x +a ^.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用________年.A 组 专题通关1.(2019·河北省五个一名校联盟联考)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中中年人数为12人,则n 等于( ) A .30 B .40 C .60D .802.某校李老师本学期负责高一甲、乙两个班的数学课,两个班都是50个学生,如图反映的是两个班的本学期5次数学测试中的班级平均分对比情况,根据图中信息,下列结论不正确的是( )A .甲班的数学平均成绩高于乙班B .乙班的数学成绩没有甲班稳定C .下次测试乙班的数学平均分高于甲班D .在第1次测试中,甲、乙两个班总平均分为783.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.84.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2 400名学生中抽取30人进行调查.现将2 400名学生随机地从1~2 400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2 321~2 400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( ) A .416 B .432 C .448 D .4645.(2019·郑州质检)若1,2,3,4,m (m ∈R )这五个数的平均数等于其中位数,则m 等于( ) A .0或5 B .0或52 C .5或52 D .0或5或526.(2019·长春质检)下列命题:①在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在线性回归方程y ^=-0.5x +2中,当解释变量x 每增加一个单位时,预报变量y ^平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的个数是( ) A .1 B .2 C .3 D .47.(2019·衡水质检)某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为658.(2019·济宁模拟)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A .0B .1C .2D .39.(2019·广东天河区普通高中测试)为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位:cm),其茎叶图如图所示,则下列描述正确的是( )A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐10.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好该项运动,得出2×2列联表,由计算可得K 2≈8.806.P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是( )A .有99.5%以上的把握认为“爱好该项运动与性别无关”B .有99.5%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”11.已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组数据如下表所示,则下列说法中错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈现负相关关系 B .可以预测当x =20时,y ^=-3.7 C .m =4D .由表格数据知,该回归直线必过点(9,4)12.(2019·江淮质检)为了了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人员中,男性人数与女性人数相同D .倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数13.(2019·河南省九师联盟质检)为了了解世界各国的早餐饮食习惯,现从由中国人、美国人、英国人组成的总体中用分层抽样的方法抽取一个容量为m 的样本进行分析.若总体中的中国人有400人、美国人有300人、英国人有300人,且所抽取的样本中,中国人比美国人多10人,则样本容量m =________.14.某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为________.15.(2019·成都模拟)节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号1 2 3 4 5 年生产利润y (单位:千万元)0.70.811.11.4预测第8年该国企的生产利润约为________千万元.参考公式及数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2;a ^=y -b ^x ,∑i =15(x i -x )(y i-y )=1.7, i =15(x i -x )2=10.根据该折线图,下列结论正确的是________(填序号). ①月接待游客量逐月增加;②年接待游客量逐年增加; ③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.B 组 能力提高17.(2019·葫芦岛模拟)近日,据媒体报道称,“杂交水稻之父”袁隆平及其团队培育的超级杂交稻品种“湘两优900(超优千号)”再创亩产世界纪录,经第三方专家测产,该品种的水稻在实验田内亩产1 203.36公斤.中国工程院院士袁隆平在1973年率领科研团队开启了杂交水稻王国的大门,在数年的时间内就解决了十多亿人的吃饭问题,有力回答了世界“谁来养活中国”的疑问.2012年,在袁隆平的实验田内种植了A ,B 两个品种的水稻,为了筛选出更优的品种,在A ,B 两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:10 kg),通过茎叶图比较两个品种的平均数及方差,并从中挑选一个品种进行以后的推广,有如下结论:①A 品种水稻的平均产量高于B 品种水稻,推广A 品种水稻;②B 品种水稻的平均产量高于A 品种水稻,推广B 品种水稻;③A 品种水稻的产量比B 品种水稻更稳定,推广A 品种水稻;④B 品种水稻的产量比A 品种水稻更稳定,推广B 品种水稻;其中正确结论的编号为( )A .①②B .①③C .②④D .①④18.(2019·南昌模拟)已知具有线性相关的五个样本点A 1(0,0),A 2(2,2),A 3(3,2),A 4(4,2),A 5(6,4),用最小二乘法得到回归直线l 1:y ^=b ^x +a ^,过点A 1,A 2的直线l 2:y =mx +n ,那么下列说法中,正确的有________.(填序号) ①m >b ^,a ^>n ; ②直线l 1过点A 3;③∑i =15(y i -b ^x i -a ^)2≥∑i =15 (y i -mx i -n )2; ④∑i =15|y i -b ^x i -a ^|≥∑i =15|y i -mx i -n |.⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2= ∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x。
2019高考数学二轮复习 专题三 概率与统计 规范答题示例4 概率与统计的综合问题学案 文
规范答题示例4 概率与统计的综合问题典例4 (12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.审题路线图利用分层抽样的特征确定各层的抽样比→求出样品中各层的数量→列举基本事件空间→利用古典概型公式求解评分细则(1)各层抽样数量每个算对给1分;(2)没有列举基本事件只求对基本事件个数给1分;(3)求对样本事件个数而没有列出的给1分;(4)最后没下结论的扣1分.跟踪演练4 (2018·全国Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解(1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头50天日用水量的平均数为x2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).。
专题4第2讲 统计和概率-2019年高考数学二轮复习题型总结与必刷题含答案
考情速递:1(2018•新课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.3【答案】:B2. (2018•新课标Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,【解析】:(1)根据茎叶图中的数据知,第一种生产方式的工作时间主要集中在72~92之间,第二种生产方式的工作时间主要集中在65~85之间,所以第二种生产方式的工作时间较少些,效率更高;(2)这40名工人完成生产任务所需时间按从小到大的顺序排列后,排在中间的两个数据是79和81,计算它们的中位数为m==80;由此填写列联表如下;(3)根据(2)中的列联表,计算K2===10>6.635,∴能有99%的把握认为两种生产方式的效率有差异.例1(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【分析】如图:设BC=2r1,AB=2r2,AC=2r3,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到答案.【答案】A变式训练题:(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.【答案】:C【解析】:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P==,故选:C.例2(2018•天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【分析】(Ⅰ)利用分层抽样,通过抽样比求解应从甲、乙、丙三个部门的员工中分别抽取人数;(Ⅱ)若(i)用X表示抽取的3人中睡眠不足的员工人数,的可能值,求出概率,得到随机变量X的分布列,然后求解数学期望;(ii)利用互斥事件的概率求解即可.所以随机变量的分布列为:随机变量X的数学期望E(X)==;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C为抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人,则:A=B∪C,且P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以事件A发生的概率:.变式训练题:(2018•和平区二模)甲、乙、丙均两次参加英语高考,取两次成绩中较高的为最终成绩,三人第一次成绩不低于130分的概率依次为、.甲若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;乙若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;丙第二次成绩不受第一次成绩的影响,不低于130分的概率为.(Ⅰ)设A为事件“甲的英语高考最终成绩不低于130分”,B为事件“乙的英语高考最终成绩不低于130分”,C为事件“丙的英语高考最终成绩不低于130分”,分别求出事件A、事件B、事件C发生的概率;(Ⅱ)设甲、乙、丙中英语高考最终成绩不低于130分的人数为X,求X的分布列与数学期望.丙第二次成绩不受第一次成绩的影响,不低于130分的概率为.设A为事件“甲的英语高考最终成绩不低于130分”,事件A发生的概率P(A)=+(1﹣)×=,B为事件“乙的英语高考最终成绩不低于130分”,事件B发生的概率P(B)==,C为事件“丙的英语高考最终成绩不低于130分”,事件C发生的概率P(C)==.∴X的分布列为:数学期望E(X)==2.例3(2018•新课标Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【分析】(1)求出f(p)=,则=,利用导数性质能求出f (p)的最大值点p0=0.1.(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.例4(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【分析】(1)根据模型①计算t=19时的值,根据模型②计算t=9时的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.3.新题快递1(2018•保定一模)已知具有线性相关的变量x,y,设其样本点为A i(x i,y i)(i=1,2,……,8),回归直线方程为,若,(O为原点),则a=()A.B.C.D.【答案】:B统计与概率的交汇(2018•丰台区二模)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A组的客户,“⊙”表示B组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(Ⅰ)记A,B两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m,n,根据图中数据,试比较m,n的大小(结论不要求证明);(Ⅱ)从A,B两组客户中随机抽取2位,求其中至少有一位是A组的客户的概率;(III)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”.从A,B两组客户中,各随机抽取1位,记“驾驶达人”的人数为ξ,求随机变量ξ的分布列及其数学期望Eξ.【分析】(Ⅰ)m<n.(Ⅱ)设“从抽取的20位客户中任意抽取2位,至少有一位是A组的客户”为事件M,利用古典概型及排列组合能求出从抽取的20位客户中任意抽取2位至少有一位是A组的客户的概率.(III)依题意ξ的可能取值为0,1,2.分别求出相应的概率,由此能求出随机变量ξ的分布列和数学期望.(III)依题意ξ的可能取值为0,1,2.则,,.…………………(10分)所以随机变量ξ的分布列为:所以随机变量ξ的数学期望.…………………(12分)即.…………………(13分)必刷题:1. (2018•新乡一模)连掷一枚均匀的骰子两次,所得向上的点数分别为a,b,记m=a+b,则()2(安徽合肥高三2018一模)已知在边长为2的正方形内,有一月牙形图形,向正方形内随机地投射100个点,恰好有15个点落在了月牙形图形内,则该月牙形图形的面积大约是()A.3.4B.0.3C.0.6D.0.15【答案】C3. (河南开封2018高三一模)如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则乙的平均成绩超过甲的平均成绩的概率为A.110B.15C.710D.45【答案】:A【解析】茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,甲的平均成绩为:x甲= 1 5(88+89+90+91+92)=90,∵乙的平均成绩超过甲的平均成绩,设数字被污损为x,∴83+83+87+(90+x)+99>450,x>8,∴x=9,∴乙的平均成绩超过甲的平均成绩的概率为p=110.故选A.4. (河北唐山2018•高三二模)甲乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是A.B.C.D.【答案】:D【解析】甲不跑第一棒共有133318A A=种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)若乙跑第一棒,则共有A33=6种情况;(2)若乙不跑第一棒,则共有1122228A A A=种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+87= 189.故选D.6 (天津南开2018高三模拟)一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率是.【答案】:2 3【解析】设此射手每次射击命中的概率为p,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为1﹣801=8181.则(1﹣p)4=181,解可得p=23;故答案为:23.7. (黑龙江哈尔滨香坊区2018•高三三模)某学校高三年级有1000名学生,按分层抽样从高三学生中抽取30名男生,20名女生分析期末某学科的考试成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图.(Ⅰ)试计算男生、女生考试成绩的平均分;(Ⅱ)若由直方图可以认为,男生考试成绩服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ为10,利用该正态分布,求:(ⅰ)P(62<Z<82);(ⅱ)若全校所有男生考试成绩在区间(62,82)人数记为X,利用(ⅰ)的结果,求E(X).(Ⅲ)若从50名学生中任意抽取两名考试优秀的(90分以上为优秀包括90分)学生参加该学科的竞赛,若两名男生参加可以获A奖励;若两名女生参加可以获B奖励;若一名男生和一名女生参加可以获C奖励,试判断三种奖励的哪种奖励的可能性大?参考数据:若Z~(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826.【解析】:(Ⅰ)设男生考试成绩的平均分,女生考试成绩的平均分, ∴=72,120y =(44+51+52+60+65+74+74+75+76+81+82+84+84+85+87+89+90+90+91+93)=76.35; (Ⅱ) (ⅰ)由已知,Z 服从正态分布N (72,100), ∴P (62<Z <82)=P (72﹣10<Z <72+10)=0.6826;(ⅱ)根据分层抽样可知,男生与女生人数的比为3:2,可知男生有600人,女生有400人, 依题意知X ~N (600,0.6826),∴E (X )=600×0.6826=409.56;(Ⅲ)由图可知,男生考试优秀人数为30×0.1=3,女生考试优秀人数为4,∴任意抽取两名男生参加即获A 奖励的概率为2312717C P C ==, 任意抽取两名女生参加即获B 奖励的概率为,任意抽取一名男生和一名女生参加即获C 奖励的概率为,∵>>,∴获C 奖励的可能性较大.8 (天津和平区2018•高三二模)甲、乙、丙均两次参加英语高考,取两次成绩中较高的为最终成绩,三人第一次成绩不低于130分的概率依次为、.甲若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;乙若第一次成绩不低于130分,则第二次成绩不低于130分的概率为,若第一次成绩在130分以下,则第二次成绩不低于130分的概率为;丙第二次成绩不受第一次成绩的影响,不低于130分的概率为.(Ⅰ)设A为事件“甲的英语高考最终成绩不低于130分”,B为事件“乙的英语高考最终成绩不低于130分”,C为事件“丙的英语高考最终成绩不低于130分”,分别求出事件A、事件B、事件C发生的概率;(Ⅱ)设甲、乙、丙中英语高考最终成绩不低于130分的人数为X,求X的分布列与数学期望.(Ⅱ)设甲、乙、丙中英语高考最终成绩不低于130分的人数为X,则X的可能取值为0,1,2,3,P(X=0)=P()==,P(X=1)=P(++)==,P(X=2)=P()==,P(X=3)=P(ABC)==,∴X的分布列为:数学期望E(X)==2.9(河南洛阳2018•高三二模)某市共有户籍人口约400万,其中老人(60岁及以上)约66万,为了解老人们的身体健康状况,相关部门从这些老人中随机抽取600人进行健康评估.健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,由样本数据制得如下条形图t(1)根据条形图完成下表:并估算该市80岁及以上老人占全市户籍人口的百分比;(2)据统计,该市大约有五分之一的户籍老人无固定收入,该市政府计划给这部分老人每月发放生活补贴,标准如下:①80岁及以上老人每人每月发放生活补贴200元,②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元,试估算该市政府为执行此计划每年所需资金的总额(单位:亿元,保留两位小数)【解析】:(1)80岁及以上老人大约为:66×=11万人,∴该市80岁及以上老人占全市户籍人口的百分比为=2.75%.(2)设某户籍老人每月享受的生活补助为X元,则P(X=0)=,P(X=120)=×=,P(X=200)==,P(X=220)==,P(X=300)==.∴X的分布列为:∴E(X)=0×+120×+200×+220×+300×=28.∴该市政府为执行此计划每年所需资金的总额为28×12×66×104=2.2176×108元.∴该市政府为执行此计划每年所需资金的总额约为2.2亿元.10(江西师大附中2018.10月月考)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.②根据题意得,;;;;.∴的分布列为∴.11(内蒙古赤峰市2018•高三一模)如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在A市的普及情况,A市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了300人进行抽样分析,得到表格:(单位:人)(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为A市使用网络外卖的情况与性别有关?(2)①现从所抽取的女网民中利用分层抽样的方法再抽取6人,再从这6人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人偶尔或不用网络外卖的概率;②将频率视为概率,从A市所有参与调查的网民中随机抽取5人赠送礼品,记其中经常使用网络外卖的人数为X,求X的数学期望和方差.参考公式:,其中n=a+b+c+d.参考数据:则这3人中至少有2人偶尔或不用网络外卖的基本事件是Acd、Ace、Acf、Ade、Adf、Aef、Bcd、Bce、Bcf、Bde、Bdf、Bef、cde、cdf、cef、def共16种;故所求的概率为P==;②由列联表知,抽到经常使用网络外卖的网民的频率为=,将频率视为概率,即从A市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为;由题意得X~B(5,),所以数学期望为E(X)=5×=;方差为D(X)=5××(1﹣)=.。
2019年高考数学(理)二轮专题练习:概率与统计(含答案)
高考数学精品复习资料2019.5概率与统计1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[问题1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________. 答案 24解析 由抽样比例可知6x =480-200-160480,则x =24.2.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [问题2] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.答案 203.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数. 众数为频率分布直方图中最高矩形的底边中点的横坐标.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).平均数等于频率分布直方图中每个小矩形的面积乘以小距形底边中点的横坐标之和. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[问题3] 已知一个样本中的数据为0.12,0.15,0.13,0.15,0.14,0.17,0.15,0.16,0.13,0.14,则该样本的众数、中位数分别是________. 答案 0.15、0.145 4.变量间的相关关系假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).回归方程y ^=b ^x +a ^,其中⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y∑i =1n x 2i-n x2,a ^=y -b ^x .[问题4] 回归直线方程y ^=b ^x +a ^必经过点________. 答案 (x ,y )5.独立性检验的基本方法一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表如表:根据观测数据计算由公式k =n (ad -bc )(a +b )(a +c )(b +d )(c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[问题5] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则至少有________附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )答案 6.互斥事件有一个发生的概率P (A +B )=P (A )+P (B ) (1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[问题6] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.答案 237.古典概型P (A )=mn (其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数)[问题7] 若将一枚质地均匀的骰子先后抛掷2次,则出现向上的点数之和为4的概率为________. 答案1128.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等. 即P (A )=构成事件A 的区域长度(面积和体积)试验的全部结果所构成的区域长度(面积和体积)[问题8] 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B .1-π12C.π6 D .1-π6答案 B解析 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12. 9.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列、组合问题的规律是:相邻问题捆绑法;不相邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配分步法;综合问题先选后排法;至多至少问题间接法. (1)排列数公式A m n =n (n -1)(n -2)…[n -(m -1)]=n !(n -m )!,其中m ,n ∈N *,m ≤n .当m =n 时,A n n =n ·(n -1)·……·2·1=n !,规定0!=1. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…[n -(m -1)]m !=n !m !(n -m )!.(3)组合数性质C m n =C n-mn,C m n +C m -1n =C m n +1,规定C 0n =1,其中m ,n ∈N *,m ≤n .[问题9] (1)将5封信投入3个邮筒,不同的投法共有________种.(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有________种. 答案 (1)35 (2)70 10.二项式定理(1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n -1n ab n -1+C n n b n (n ∈N *).通项(展开式的第r +1项):T r +1=C rna n -r b r ,其中C r n (r =0,1,…,n )叫做二项式系数.(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n .②二项式系数的和等于2n (组合数公式),即C 0n +C 1n +C 2n +…+C n n =2n .③二项式展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.特别提醒:二项式系数最大项与展开式系数最大项是两个不同的概念,在求法上也有很大的差别,往往因为概念不清导致出错. [问题10] 设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________. 答案 4∶1解析 T r +1=C r 6x6-r(-1)r ⎝⎛⎭⎫2x r=C r 6(-1)r 2r362r x-,6-32r =3,r =2,系数A =60,二项式系数B =C 26=15,所以A ∶B =4∶1.4∶1.11.要注意概率P (A |B )与P (AB )的区别:(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[问题11] 设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.答案 3512.求分布列,要检验概率的和是否为1,如果不是,要重新检查修正.还要注意识别独立重复试验和二项分布,然后用公式.如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k ·(1-p )n -k . [问题12] 若随机变量ξ的分布列如下表,则E (ξ)的值为________.答案209解析 根据概率之和为1,求出x =118,则E (ξ)=0×2x +1×3x +…+5x =40x =209.13.一般地,如果对于任意实数a <b ,随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.9974.[问题13] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3 D .0.2 答案 C解析 ∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2, P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3.易错点1 统计图表识图不准致误例1 如图所示是某公司(共有员工300人)20xx 年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的大约有________人.错解 由频率分布直方图,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10+0.10+0.08)=0.62.∴估计年薪在1.4万元~1.6万元之间约有300×0.62=186(人).找准失分点 本题主要混淆频率分布直方图与条形图纵轴的意义,频率分布直方图中,纵轴(矩形高)表示“频率组距”,每个小矩形的面积才表示落在该区间上的频率,由于概念不清,识图不准导致计算错误.正解 由所给图形可知,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24.所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人). 答案 72易错点2 在几何概型中“测度”确定不准致误例2 如图所示,在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.错解 记AM <AC 为事件E ,设CA =CB =a ,因为△ABC 是直角三角形, 所以,AB =2a ,在AB 上取一点D ,使AD =AC =a ,那么对线段AD 上的任意一点M 都有AM <AD ,即AM <AC , 因此AM <AC 的概率为P (E )=AD AB =a 2a =22. 找准失分点 据题意,过直角顶点C 在∠ACB 内部作一条射线CM ,射线CM 在∠ACB 内部均匀分布,但是点M 在AB 上的分布不是均匀的.正解 在AB 上取一点D ,使AD =AC ,因为AD =AC =a ,∠A =π4,所以∠ACD =∠ADC =3π8,则P (E )=∠ACD ∠ACB =3π8π2=34.易错点3 分不清是排列还是组合致误例3 如图所示,A ,B ,C ,D 是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有多少种?错解 对于有一个中心的结构形式有A 44,对于四个岛依次相连的形式有A 44,∴共有2A 44=48(种).找准失分点 没有分清是排列还是组合. 正解 由题意可能有两种结构,如图:第一种:,第二种:对于第一种结构,连接方式只需考虑中心位置的情况,共有C 14种方法.对于第二种结构,有C 24A 22种方法. ∴总共有C 14+C 24A 22=16(种).易错点4 均匀分组与非均匀分组混淆致误例4 4个不同的小球放入编号为1、2、3、4的4个盒中,则恰有1个空盒的放法共有________种.(用数字作答) 错解 288错误!未找到引用源。
(全国通用版)2019高考数学二轮复习 专题三 概率与统计 规范答题示例4 概率与统计的综合问题学案 文
规范答题示例4 概率与统计的综合问题典例4 (12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.审题路线图利用分层抽样的特征确定各层的抽样比→求出样品中各层的数量→列举基本事件空间→利用古典概型公式求解评分细则(1)各层抽样数量每个算对给1分;(2)没有列举基本事件只求对基本事件个数给1分;(3)求对样本事件个数而没有列出的给1分;(4)最后没下结论的扣1分.跟踪演练4 (2018·全国Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表) 解 (1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为x 1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头50天日用水量的平均数为x 2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).百度文库是百度发布的供网友在线分享文档的平台。
2019年高考数学二轮复习 概率与统计解答题专题训练(含解析)
2019年高考数学二轮复习 概率与统计解答题专题训练(含解析)1.(xx·保定调研)近年来,我国的高铁技术发展迅速,铁道部门计划在A 、B 两城之间开通高速列车,假设在试运行期间,每天8:00-9:00,9:00-10:00两个时段内各发一趟列车由A 城到B 城(两车发生情况互不影响),A 城发车时间及其概率如下表所示:8:00和周日8:20.(只考虑候车时间,不考虑其他因素)(1)设乙侯车所需时间为随机变量X ,求X 的分布列和数学期望; (2)求甲、乙二人候车时间相等的概率.解 (1)X 的所有可能取值为10、30、50、70、90(分钟),其概率分布列如下X 的数学期望E (X )=10×12+30×13+50×136+70×112+90×118=2459(分钟).(2)甲、乙二人候车时间分别为10分钟、30分钟、50分钟的概率为 P 甲10=16,P 甲30=12,P 甲50=13;P 乙10=12,P 乙30=13,P 乙50=16×16=136.所以所求概率P =16×12+12×13+13×136=28108=727,即甲、乙二人候车时间相等的概率为727.2.(xx·皖南八校联考)从正方体的各个表面上的12条面对角线中任取2条,设ξ为2条面对角线所成的角(用弧度制表示),如当2条面对角线垂直时,ξ=π2.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).解 (1)当ξ=0时,即所选的2条面对角线平行,则P (ξ=0)=6C 212=111.(2)ξ的可能取值为0,π3,π2.则P (ξ=0)=6C 212=111,P ⎝⎛⎭⎫ξ=π3=48C 212=811,P ⎝⎛⎭⎫ξ=π2=12C 212=211. ξ的分布列如下:ξ 0 π3 π2 P111811211E (ξ)=0×111+π3×811+π2×211=π3.3.(xx·广州调研)空气质量指数PM2.5(单位:μg/m 3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250 空气质量类别优良轻度污染中度污染重度污染严重污染从甲城市xx 年9月份的30天中随机抽取15天的PM 2.5日均浓度指数数据茎叶图如图所示.(1)试估计甲城市在xx 年9月份30天的空气质量类别为优或良的天数;(2)在甲城市这15个监测数据中任取2个,设X 为空气质量类别为优或良的天数,求X 的分布列及数学期望.解 (1)由茎叶图可知,甲城市在xx 年9月份随机抽取的15天中的空气质量类别为优或良的天数为5.所以可估计甲城市在xx 年9月份30天的空气质量类别为优或良的天数为10. (2)X 的所有可能取值为0,1,2,因为P (X =0)=C 05C 210C 215=37,P (X =1)=C 15C 110C 215=1021,P (X =2)=C 25C 010C 215=221,所以X 的分布列为:X 0 1 2 P371021221数学期望E (X )=0×37+1×1021+2×221=23.4.(xx·浙江名校联考)甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛结束.因两队实力相当,每场比赛两队获胜的可能性均为12.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为300万元的概率; (2)设总决赛中获得门票总收入为X ,求X 的均值E (X ).解 (1)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列. 设此数列为{a n },则易知a 1=40,a n =10n +30, 所以S n =n10n +702=300.解得n =-12(舍去)或n =5, 所以总决赛共比赛了5场.则前4场比赛中,一支球队共赢了3场,且第5场比赛中,领先的球队获胜,其概率为C 14⎝⎛⎭⎫124=14. (2)随机变量X 可取的值为S 4,S 5,S 6,S 7,即220,300,390,490.又P (X =220)=2×⎝⎛⎭⎫124=18, P (X =300)=C 14⎝⎛⎭⎫124=14, P (X =390)=C 25⎝⎛⎭⎫125=516, P (X =490)=C 36⎝⎛⎭⎫126=516, 所以X 的分布列为X 220 300 390 490 P1814516516所以X 的均值E (X )=5.自驾游从A 地到B 地有甲、乙两条线路,甲线路是A -C -D -B ,乙线路是A -E -F -G -H -B ,其中CD 段、EF 段、GH 段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率x 在⎝⎛⎭⎫23,1上变化,y 在⎝⎛⎭⎫0,12上变化.在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD 段平均堵车时间,调查了100名走甲路线的司机,得到表2数据.CD 段 EF 段 GH 段(1)求CD 段平均堵车时间a 的值;(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率. 解 (1)a =12×8100+32×6100+52×38100+72×24100+92×24100=3.(2)设走甲线路所花汽油费为ξ元,则E (ξ)=500(1-x )+(500+60)x =500+60x . 设走乙线路多花的汽油费为η元, ∵EF 段与GH 段堵车与否相互独立,∴P (η=0)=(1-y )×⎝⎛⎭⎫1-14, P (η=20)=(1-y )×14,P (η=40)=y ×⎝⎛⎭⎫1-14, P (η=60)=14y ,∴E (η)=0×(1-y )×⎝⎛⎭⎫1-14+20×(1-y )×14+40×y ×⎝⎛⎭⎫1-14+60×14y =40y +5. ∴走乙线路所花的汽油费的数学期望为E (545+η)=545+E (η)=550+40y . 依题意,选择走甲线路应满足(550+40y )-(500+60x )≥0, 即6x -4y -5≤0,又23<x <1,0<y <12,∴P (选择走甲线路)=⎝⎛⎭⎫1-23×12-12×⎝⎛⎭⎫1-56×14⎝⎛⎭⎫1-23×12=78.。
2019届高三数学(理)二轮专题复习文档专题四概率与统计 规范答题示范 Word版含解析
规范答题示范——概率与统计解答题【典例】(分)(·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶元,售价每瓶元,未售出的酸奶降价处理,以每瓶元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于,需求量为瓶;如果最高气温位于区间[,),需求量为瓶;如果最高气温低于,需求量为瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.()求六月份这种酸奶一天的需求量(单位:瓶)的分布列;()设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?[信息提取]❶看到求的分布列,想到依据题目中的信息确定的取值及相应概率;❷看到求的数学期望达到最大值,想到利用数学期望公式,列出关于进货量的函数关系式,由函数的单调性求解.[规范解答]()由题意知,所有的可能取值为,,,分由表格数据知,()由题意知,这种酸奶一天的需求量至多为,至少为,因此只需考虑≤≤.当≤≤时,若最高气温不低于,则=-=,若最高气温位于区间[,),则=×+(-)-=-;若最高气温低于,则=×+(-)-=-;因此()=×+( -)×+(-)×=-.……………………………………………………分当≤<时,若最高气温不低于,则=-=;若最高气温低于,则=×+(-)-=-;因此()=×(+)+(-)×=+.……………………………………………………分所以=时,的数学期望达到最大值,最大值为元.……………………………………………………分[高考状元满分心得]❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.如第()问中,写出所有可能取值得分,第()问中分当≤≤时和≤<时进行分析才能得满分.❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第()问应写出求分布列的过程,第()问应写出不同范围内的数学期望.。
高考数学(理科)二轮专题:第二篇专题四第1讲 概率、随机变量及其分布列
专题四 概率与统计第1讲 概率、随机变量及其分布列(限时45分钟,满分96分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·株洲二模)如图,在边长为1的正方形内有不规则图形Ω,由电脑随机从正方形中抽取10 000个点,若落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,则图形Ω面积的估计值为A.13B.12C.14D.16解析 设图形Ω 的面积为S ,∵由电脑随机从正方形中抽取10 000个点,落在图形Ω内和图形Ω外的豆子分别为3 335,6 665,∴S 1=3 33510 000≈13,∴S ≈13.故选A. 答案 A2.(2019·潍坊模拟)四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别标有数字1,2,3,4的四色地图符合四色定理,区域A 和区域B 标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是A.115B.110C.13D.1130解析 A ,B 只能有一个可能为1,题目求最大,令B 为1,则总数有30个,1号有10个,则概率为13.故选C.答案 C3.(2019·浙江衢州五校联考)随机变量的分布列如下:若E (X )=13,则D (X )的值是A.19B.29C.49D.59解析 由题设可得a +b =23,b -a =13⇒a =16,b =12,所以由数学期望的计算公式可得 E (X 2)=0×13+1×23=23,(E (X ))2=19,所以由随机变量的方差公式可得 D (X )=E (X 2)-(E (X ))2=59.故选D.答案 D4.(2019·河北省级示范校联合体联考)袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232 321 230 023 123 021 132 220 011 203 331 100 231 130 133 231 031 320 122 103 233 221 020 132 由此可以估计,恰好第三次就停止的概率为 A.18B.14C.16D.524解析 由题意可知,满足条件的随机数组中,前两次抽取的数中必须包含0或1,且0与1不能同时出现,出现0就不能出现1,反之亦然,第三次必须出现前面两个数字中没有出现的1或0,可得符合条件的数组只有3组:021,130,031,故所求概率为P =324=18.故选A.答案 A5.(2019·郑州一模)魔法箱中装有6张卡片,上面分别写着如下六个定义域为R 的函数:f 1(x )=2x ,f 2(x )=2x,f 3(x )=x 2,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=1-2x1+2x,现从魔法箱中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是A.25B.35C.12D.13解析 首先结合f (-x )+f (x )与0的关系,判断该六个函数的奇偶性,结合题意可知1,4,6为奇函数,3,5为偶函数,2为非奇非偶函数,从6张卡片抽取2张,有C 26=15种,而任取2张卡片得到的新函数为奇函数,说明该两个函数为一奇一偶函数,故有3×2=6种,结合古典概型计算公式,相除得25.故选A.答案 A6.(2019·辽阳期末)一批排球中正品有m 个,次品有n 个,m +n =10(m ≥n ),从这批排球中每次随机取一个,有放回地抽取10次,X 表示抽到的次品个数.若D (X )=21,从这批排球中随机抽取两个,则至少有一个正品的概率p =A.4445B.1415C.79D.1315解析 依题意可得X ~B ⎝⎛⎭⎫10,n10, 则DX =10×n10×⎝⎛⎭⎫1-n 10=21, 又m ≥n ,则n ≤5,从而n =3, 则p =1-C 23C 210=1415.故选B.答案 B7.(2019·济南期末)如图,在△ABC 中,∠C =90°,BC =2,AC =3,三角形内的空白部分由三个半径均为1的扇形构成,向△ABC 内随机投掷一点,则该点落在阴影部分的概率为A.π6B .1-π6C.π4D .1-π4解析 由题意,题目符合几何概型,在△ABC 中,∠C =90°,BC =2,AC =3,面积为12×BC ×AC =3,阴影部分的面积为:三角形面积-12圆面积=3-π2,所以点落在阴影部分的概率为3-π23=1-π6.故选B.答案 B8.(2019·贵州重点中学联考)有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为A.2π-334π-23 B.23π3-3C.32π-23D.2π-332π-23解析 设圆半径为R ,如图,易得△ABC 的面积为12·32R 2=34R 2,阴影部分面积为3·60πR 2360-3·34R 2=2π-334R 2,勒洛三角形的面积为2π-334R 2+34R 2=π-32R 2,若从勒洛三角形内部随机取一点, 则此点取自阴影部分的概率为P =阴影部分面积勒洛三角形面积=2π-334R 2π-32R 2=2π-332π-23.故选D.答案 D二、填空题(本大题共4小题,每小题5分,共20分)9.一个盒子装有3个红球和2个蓝球(小球除颜色外其他均相同),从盒子中一次性随机取出3个小球后,再将小球放回.重复50次这样的实验.记“取出的3个小球中有2个红球,1个蓝球”发生的次数为ξ,则ξ的方差是________.解析 由题意知ξ~B (n ,p ),其中n =50,p =C 23C 12C 35=610=35,∴D (ξ)=50×35×25=12.答案 1210.(2019·淮南二模)关于圆周率π的近似值,数学发展史上出现过很多有创意的求法,其中可以通过随机数实验来估计π的近似值.为此,李老师组织100名同学进行数学实验教学,要求每位同学随机写下一个实数对(x ,y ),其中0<x <1,0<y <1,经统计数字x 、y 与1可以构成钝角三角形三边的实数对(x ,y )为28个,由此估计π的近似值是________(用分数表示).解析 实数对(x ,y )落在区域⎩⎨⎧0<x <10<y <1的频率为0.28,又设A 表示“实数对(x ,y )满足⎩⎨⎧0<x <10<y <1且能与1构成钝角三角形”,则A 中对应的基本事件如图阴影部分所示:其面积为π4-12,故P (A )=π4-12≈0.28,所以π≈7825.答案782511.(2019·长春外国语学校月考)已知直线l 过点(-1,0),l 与圆C :(x -1)2+y 2=3相交于A 、B 两点,则弦长|AB |≥2的概率为________.解析 显然直线l 的斜率存在, 设直线方程为y =k (x +1), 代入(x -1)2+y 2=3中得, (k 2+1)x 2+2(k 2-1)x +k 2-2=0, ∵l 与⊙C 相交于A 、B 两点, ∴Δ=4(k 2-1)2-4(k 2+1)(k 2-2)>0, ∴k 2<3,∴-3<k <3,又当弦长|AB |≥2时,∵圆半径r =3, ∴圆心到直线的距离d ≤2,即|2k |1+k2≤2, ∴k 2≤1,∴-1≤k ≤1.由几何概型知,事件M :“直线l 与圆C 相交弦长|AB |≥2”的概率 P (M )=1-(-1)3-(-3)=33.答案3312.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72, 即这粒种子能成长为幼苗的概率为0.72. 答案 0.72三、解答题(本大题共3小题,每小题12分,共36分)13.(2019·湖南三湘名校二联)某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为k ,当k ≥85时,产品为一等品;当75≤k <85时,产品为二等品;当70≤k <75时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)甲生产线生产的产品的质量指标值的频数分布表:乙生产线生产的产品的质量指标值的频数分布表:(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率; (2)若该产品的利润率y 与质量指标值k 满足关系y =⎩⎪⎨⎪⎧t ,k ≥855t 2,75≤k <85t 2,70≤k <75,其中0<t <15,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.解析 (1)由题意知,从乙生产线生产的产品中随机抽取一次抽中三等品的概率为110,所以至少抽到2件三等品的概率P =C 23×⎝⎛⎭⎫1102×910+⎝⎛⎭⎫1103=7250.(2)甲生产线生产的产品的利润分布列为所以E (y 甲)=0.6t +2t 2,乙生产线生产的产品的利润分布列为所以 E (y 乙)=0.5t +2.1t 2, 因为0<t <15,所以E (y 乙)-E (y 甲)=0.1t 2-0.1t =0.1t (t -1)<0,所以从长期来看,甲生产线生产的产品平均利润率较大.14.(2019·佛山禅城区二调)研究机构培育一种新型水稻品种,首批培育幼苗2 000株,株长均介于185 mm ~235 mm ,从中随机抽取100株对株长进行统计分析,得到如下频率分布直方图(1)求样本平均株长x -和样本方差s 2(同一组数据用该区间的中点值代替);(2)假设幼苗的株长X 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2,试估计2 000株幼苗的株长位于区间(201,219)的株数;(3)在第(2)问的条件下,选取株长在区间(201,219)内的幼苗进入育种试验阶段,若每株幼苗开花的概率为34,开花后结穗的概率为23,设最终结穗的幼苗株数为ξ,求ξ的数学期望.附:83≈9;若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.683; P (μ-2σ<X <μ+2σ)=0.954;P (μ-3σ<X <μ+3σ)=0.997解析 (1)x -=190×0.02+200×0.315+210×0.35+220×0.275+230×0.04=210, s 2=202×0.02+102×0.315+102×0.275+202×0.04=83.(2)由(1)知, μ=x -=210,σ=83≈9, ∴P (201<X <219)=P (210-9<X <210+9)=0.683, 2 000×0.683=1 366∴2 000株幼苗的株长位于区间(201,219)的株数大约是1 366.(3)由题意,进入育种试验阶段的幼苗数1 366,每株幼苗最终结穗的概率P =12,则ξ-B ⎝⎛⎭⎫1 366,12, 所以E (ξ)=1 366×12=683.15.(2019·河北示范高中联合体联考)某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:(1)其中每月完成合格产品的件数不少于3 200件的员工被评为“生产能手”.由以上统计数据填写下面的2×2列联表,并判断是否有95%的把握认为“生产能手”与性别有关?(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2 600件以内的,计件单价为1元;超出(0,200]件的部分,累进计件单价为1.2元;超出(200,400]件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段的频率视为相应的概率,在该厂男员工中随机选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3 100元的人数为Z ,求Z 的分布列和数学期望.附:K 2=(ad -bc )2(a +b )(c +d )(a +c )(b +d ),解析 (1)因为K 2的观测值k =100×(48×8-42×2)250×50×90×10=4>3.841,所以有95%的把握认为“生产能手”与性别有关. (2)当员工每月完成合格产品的件数为3 000件时, 得计件工资为2 600×1+200×1.2+200×1.3 =3 100元,由统计数据可知,男员工实得计件工资不少于3 100元的概率为p 1=25,女员工实得计件工资不少于3 100元的概率为p 2=12,设2名女员工中实得计件工资不少于3 100元的人数为X ,1名男员工中实得计件工资在3 100元以及以上的人数为Y ,则X ~B ⎝⎛⎭⎫2,12,Y ~B ⎝⎛⎭⎫1,25, Z 的所有可能取值为0,1,2,3,P (Z =0)=P (X =0,Y =0)=⎝⎛⎭⎫1-122⎝⎛⎭⎫1-25=320, P (Z =1)=P (X =1,Y =0)+P (X =0,Y =1) =C 12·12·⎝⎛⎭⎫1-12⎝⎛⎭⎫1-25+⎝⎛⎭⎫1-12225=25, P (Z =2)=P (X =2,Y =0)+P (X =1,Y =1) =C 22⎝⎛⎭⎫122⎝⎛⎭⎫1-25+C 1212⎝⎛⎭⎫1-1225=720, P (Z =3)=P (X =2,Y =1)=⎝⎛⎭⎫122×25=110, 所以Z 的分布列为故E (Z )=0×320+1×25+2×720+3×110=75.。
(全国通用版)2019高考数学二轮复习专题四概率与统计规范答题示范——概率与统计解答题学案文
规范答题示范——概率与统计解答题【典例】 (本小题满分12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率. [信息提取]❶(1)、(2)中求a和评分不低于80的概率,联想到频率分布直方图的面积为1,利用频率估计概率.❷看到计算评分在[40,50)的概率,联想到由频率表确定各区间的人数,进而利用古典概型计算概率.[规范解答][高考状元满分心得]❶得步骤分:步骤规范,求解完整,解题步骤常见的失分点,第(2)问中,不能用频率估计概率,第(3)问中步骤不完整,没有指出“基本事件总数”与“事件M”包含的基本事件个数,或者只指出事件个数,没有一一列举10个基本事件及事件M包含的基本事件,导致扣3分或2分.❷得关键分:如第(1)问中,正确求得a=0.006;第(3)问中列出10个基本事件,错写或多写,少写均不得分.❸得计算分:如第(1)、(2)问中,要理清频率直方图的意义,计算正确,否则导致后续皆错大量失分,第(3)问中利用“频数、样本容量、频率之间的关系”求得各区间的人数,准确列出基本事件,正确计算概率.[解题程序]第一步:由各矩形的面积之和等于1,求a的值.第二步:由样本频率分布估计概率.第三步:设出字母,列出基本事件总数及所求事件M所包含的基本事件.第四步:利用古典概型概率公式计算.第五步:反思回顾,查看关键点,易错点和答题规范.【巩固提升】(2018·潍坊模拟)2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:(1)经分析发现,可用线性回归模型拟合当地该品牌新能源汽车实际销量y (万辆)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:y ^=b ^t +a ^,并预测2018年5月份当地该品牌新能源汽车的销量;(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:(ⅰ)求这200位拟购买新能源汽车的消费者对补贴金额的心理预期值X 的平均值x 及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);(ⅱ)将对补贴金额的心理预期值在[1,2)(万元)和[6,7](万元)的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.参考公式及数据:①回归方程y ^=b ^t +a ^,其中b ^=∑ni =1t i y i -nt -y-∑ni =1t 2i -nt-2,a ^=y --b ^t -;②∑5i =1t i y i =18.8. 解 (1)易知t -=1+2+3+4+55=3,y -=0.5+0.6+1+1.4+1.75=1.04,∑ni =1t 2i =12+22+32+42+52=55, b ^=∑5i =1t i y i -5t -y -∑5i =1t 2i -5t -2=18.8-5×3×1.0455-5×32=0.32, ∴a ^=y --b ^t -=1.04-0.32×3=0.08.则y 关于t 的线性回归方程为y ^=0.32t +0.08,则t =6时,y ^=2.00,即2018年5月份当地该品牌新能源汽车的销量约为2万辆. (2)(ⅰ)根据题意,这200位拟购买新能源汽车的消费者对补贴金额的心理预期值X 的平均值x -及中位数的估计值分别为:x -=1.5×0.1+2.5×0.3+3.5×0.3+4.5×0.15+5.5×0.1+6.5×0.05=3.5,中位数的估计值为3+1×100-20-6060=3+13≈3.3,(ⅱ)设从“欲望膨胀型”消费者中抽取x 人,从“欲望紧缩型”消费者中抽取y 人,由分层抽样的定义可知630=x 10=y20,解得x =2,y =4.在抽取的6人中,2名“欲望膨胀型”消费者分别记为A 1,A 2,4名“欲望紧缩型”消费者分别记为B 1,B 2,B 3,B 4,则所有的抽样情况如下:{A 1,A 2,B 1},{A 1,A 2,B 2},{A 1,A 2,B 3},{A 1,A 2,B 4},{A 1,B 1,B 2},{A 1,B 1,B 3},{A 1,B 1,B 4},{A 1,B 2,B 3},{A 1,B 2,B 4},{A 1,B 3,B 4},{A 2,B 1,B 2},{A 2,B 1,B 3},{A 2,B 1,B 4},{A 2,B 2,B 3},{A 2,B 2,B 4},{A 2,B 3,B 4},{B 1,B 2,B 3},{B 1,B 2,B 4},{B 1,B 3,B 4},{B 2,B 3,B 4}共20种.其中至少有1名“欲望膨胀型”消费者的情况有16种.记事件A 为“抽出的3人中至少有1名‘欲望膨胀型’消费者”,则P (A )=1620=0.8.。
2019届高考数学二轮复习第二篇考点四概率与统计课件文
刷高考原题改编题
2.(2018 年全国Ⅱ卷,理 18 改编)一只药用昆虫的产卵数 y(单位:个)与一定范围内的温度 x(单位:℃)有关,现收集了
该种药用昆虫的 6 组观测数据如下表所示.
温度 x/℃ 21
23
24
27
29
32
产卵 y/个
6
11
20
27
57
77
ห้องสมุดไป่ตู้ 经计算 x
6
R2
1
i 1 6
( yi yˆi )2 ( yi y )2
=1
236.64 3930
0.9398 .
i 1
因为 0.9398<0.9522,
n
n
n
(xi x )( yi y)
xi yi nxy
( yi yˆi )2
b i1 n
i1 n
,a
y bx , R2
1
i 1 n
.
(xi x )2
xi2 nx 2
( yi y )2
i 1
i 1
i 1
6
解析 (1)由题意得, b
(2)由题意知抽取的 6 名“体育达人”中有 4 名男职工(记作 a,b,c,d),2 名女职工(记作 m,n),
则从这 6 名“体育达人”中任意选取 2 名有 ab,ac,ad,am,an,bc,bd,bm,bn,cd,cm,cn,dm,dn,mn,共 15 种取法,取
解析
出的 2 名“体育达人”中至少有 1 名女职工有 am,an,bm,bn,cm,cn,dm,dn,mn,共 9 种取法,所以所求概率 P=195=35. 方法技巧
2019届高三数学(理)二轮专题复习课件:专题四 概率与统计 规范答题示范
当200≤n<300时,
若最高气温不低于20,则Y=6n-4n=2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n. ……………………………………………………………………………………10分 所以n=300时,Y的数学期望达到最大值,最大值为520元. ……………………………………………………………………………………12分
[解题程序] 第一步:确定随机变量的取值; 第二步:求每一个可能值的概率,列出随机变量的分布列; 第三步:根据题目所要解决的问题,确定自变量及其取值范围; 第四步:确定利润Y与进货量的函数关系; 第五步:求出利润的数学期望E(Y)与进货量n的关系; 第六步:利用函数的性质,求E(Y)的最大值; 第七步:反思回顾、查看关键点、易错点和答题规范.
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货 量n(单位:瓶)为多少时,Y的数学期望达到最大值? [信息提取] ❶看到求X的分布列,想到依据题目中的信息确定X的取值及相应概率; ❷看到求Y的数学期望达到最大值,想到利用数学期望公式,列出关于进货量n的函 数关系式,由函数的单调性求解.
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进A水果150千克,记超市当天A水果获得的利润为X(单位:元),
求X的分布列及其数学期望;
(2)若该超市计划一天购进A 水果150千克或160千克,请以当天A水果获得的利润的
期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,
精品-2019届高考数学二轮复习高考大题专项练四统计概率A理
四 统计概率(A)1.(2018·大庆模拟)某人租用一块土地种植一种瓜类作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455 kg.已知当年产量低于450 kg 时,单位售价为12元/kg,当年产量不低于450 kg 时,单位售价为10元/kg.(1)求图中a,b 的值;(2)估计年销售额大于3 600元小于6 000元的概率.2.某地区高考实行新方案,规定:除必考语文、数学和英语外,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.假如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(2)假设男生、女生选择选考科目是相互独立的,从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(3)从选考方案确定的8名男生中随机选出2名,设随机变量ξ=求ξ的分布列及数学期望E(ξ).3.(2018·宣城二模)在一次全国高中五省大联考中,有90万名学生参加,考后对所有学生成绩统计发现,英语成绩服从正态分布N(μ, σ2).用茎叶图列举了20名学生的英语成绩,巧合的是这20个数据的平均数和方差恰好比所有90万个数据的平均数和方差都多0.9,且这20个数据的方差为49.9.(1)求μ,σ.(2)给出正态分布的数据:P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5.①若从这90万名学生中随机抽取1名,求该生英语成绩在(82.1, 103.1)的概率;②若从这90万名学生中随机抽取1万名,记X为这1万名学生中英语成绩在(82.1,103.1)的人数,求X的数学期望.4.(2018·南阳一模)近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具,而微信支付为用户带来了全新的支付体验,支付环节因此变得简便而快捷,某商场随机对商场购物的100名顾客进行统计,其中40岁以下占,采用微信支付的占,40岁以上采用微信支付的占.并由列联表中所得数据判断在犯错误的概率不超过多少的前提下认为“使用微信支付与年龄有关”?(2)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?参考公式:K2=,n=a+b+c+d.1.解:(1)由频率分布直方图的性质得100(a+0.001 5+b+0.004)=1,得100(a+b)=0.45,由300×100a+400×0.4+500×100b+600×0.15=455,得300a+500b=2.05,解方程组得a=0.001 0,b=0.003 5.(2)由(1)结合频率分布直方图知,当年产量为300 kg时,其年销售额为3 600元,当年产量为400 kg时,其年销售额为4 800元,当年产量为500 kg时,其年销售额为5 000元,当年产量为600 kg时,其年销售额为6 000元,因为年产量为400 kg的频率为0.4,即年销售额为4 800元的频率为0.4,而年产量为500 kg的频率为0.35,即年销售额为5 000元的频率为0.35,故估计年销售额大于3 600元小于6 000元的概率为0.05+0.4+0.35+0.075=0.875.2.解:(1)由题意可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有××420=140人,(2)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为=;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为×=.(3)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史 ;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得ξ的取值为1,2.P(ξ=1)==,P(ξ=2)==,(或P(ξ=2)=1-P(ξ=1)=).所以ξ的分布列为所以E(ξ)=1×+2×=.3.解:(1)因为通过计算可得这20个数据的平均数为=90,所以由题可得μ=90- 0.9=89.1,σ==7.(2)①因为μ=89.1,σ=7,所以(82.1,103.1)=(μ-σ,μ+2σ),所以该生英语成绩在(82.1,103.1)的概率为=0.818 6.②由题可得X服从二项分布B(10 000,0.818 6),所以E(X)=10 000×0.818 6=8 186.4.解:(1)由已知可得,40岁以下的有100×=60人,使用微信支付的有60×=40人,40岁以上使用微信支付的有40×=10人.由列联表中的数据计算可得K的观测值为k==,由于>10.828,所以在犯错误的概率不超过0.001的前提下认为“使用微信支付与年龄有关”.(2)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,这两人使用微信支付分别记为A,B,则P(A)=P(B)=,从“40岁以上”的人中抽取1人,这个人使用微信支付记为C,则P(C)=,显然A,B,C相互独立,则至少有一人使用微信支付的概率为1-P()=1-××=,故至少有一人使用微信支付的概率为.。
2019届高考数学二轮复习大题专项练四统计概率B文
四统计概率(B)1.(2018·合肥一模)一家大型购物商场委托某机构调查该商场的顾客使用移动支付的情况.调查人员从年龄在[20,60](1),试根据上述数据估计,该商场当天应准备多少个环保购物袋?(2)某机构从被调查的使用移动支付的顾客中,按分层抽样的方式抽取7人做跟踪调查,并给其中2人赠送额外礼品,求获得额外礼品的2人年龄都在[20,30)内的概率.2.(2014·全国Ⅱ卷)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.3.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(1)完成2×2列联表,并判断是否有99.9%的把握认为性别与支持与否有关?(2)5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.附:K2=.4.(2018·梅州二模)某学校共有1 500名学生,为调查该校学生每周使用手机上网时间的情况,采用分层抽样的方法,收集100名学生每周上网时间的样本数据(单位:小时).根据这100个样本数据,得到学生每周上网时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].(1)估计该校学生每周平均使用手机上网时间(每组数据以组中值为代表);(2)估计该校学生每周使用手机上网时间超过4个小时的概率;(3)将每周使用手机上网时间在(4,12]内的定义为“长时间使用手机上网”,每周使用手机上网时间在(0,4]内的定义为“不长时间使用手机上网”.在样本数据中,有25名学生不近视.请完成每周使用手机上网的时间与近视程度的2×2列联表,附:K2=.1.解:(1)由题表可知,该商场使用移动支付的顾客的比例为=,若当天该商场有12 000人购物,则估计该商场要准备环保购物袋 12 000×=7 000个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四概率与统计规范答题示范
【典例】 (12分)(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y 的数学期望达到最大值?
[信息提取]
❶看到求X的分布列,想到依据题目中的信息确定X的取值及相应概率;
❷看到求Y的数学期望达到最大值,想到利用数学期望公式,列出关于进货量n的函数关系式,由函数的单调性求解.
[规范解答]
(1)由题意知,X所有的可能取值为200,300,500,1分
由表格数据知,
(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.
当300≤n≤500时,
若最高气温不低于25,则Y=6n-4n=2n,
若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.
……………………………………………………8分当200≤n<300时,
若最高气温不低于20,则Y=6n-4n=2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.
……………………………………………………10分所以n=300时,Y的数学期望达到最大值,最大值为520元.
……………………………………………………12分[高考状元满分心得]
❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.如第(1)问中,写出X所有可能取值得分,第(2)问中分当300≤n≤500时和200≤n<300时进行分析才能得满分.
❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问应写出求分布列的过程,第(2)问应写出不同范围内Y的数学期望.
[解题程序]
第一步:确定随机变量的取值;
第二步:求每一个可能值的概率,列出随机变量的分布列;
第三步:根据题目所要解决的问题,确定自变量及其取值范围;
第四步:确定利润Y与进货量的函数关系;
第五步:求出利润的数学期望E(Y)与进货量n的关系;
第六步:利用函数的性质,求E(Y)的最大值;
第七步:反思回顾、查看关键点、易错点和答题规范.
【巩固提升】某大型水果超市每天以10元/千克的价格从水果基地购进若干A水果,然后以15元/千克的价格出售,若有剩余,则将剩余的水果以8元/千克的价格退回水果基地,为了确定进货数量,该超市记录了A水果最近50天的日需求量(单位:千克),整理得下表:
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进A水果150千克,记超市当天A水果获得的利润为X(单位:元),求X的分布列及其数学期望;
(2)若该超市计划一天购进A水果150千克或160千克,请以当天A水果获得的利润的期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,剩余的水果以7元/千克的价格退回水果基地,又该选哪一个?
解(1)若A水果日需求量为140千克,
则X=140×(15-10)-(150-140)×(10-8)=680(元),且P(X=680)=5
50
=0.1. 若A水果日需求量不小于150千克,
则X=150×(15-10)=750(元),且P(X=750)=1-0.1=0.9.
故X的分布列为
E(X)=680×0.1+750×0.9=743(元).
(2)设该超市一天购进A水果160千克,当天的利润为Y(单位:元),
则Y的可能取值为140×5-20×2,150×5-10×2,160×5,
即660,730,800,
Y的分布列为
E(Y)=660×0.1+730×0.2+800×0.7=772(元).
因为772>743,所以该超市应购进160千克.
若剩余的水果以7元/千克的价格退回水果基地,同理可得X,Y的分布列分别为
因为670×0.1+750×0.9<640×0.1+720×0.2+800×0.7,
所以该超市还是应购进160千克.。