八年级数学下学期期末试卷(含解析) 新人教版3

合集下载

最新人教版2022-2022年八年级下期末数学试卷(含答案)

最新人教版2022-2022年八年级下期末数学试卷(含答案)

下学期期末考试(qī mò kǎo shì)八年级数学试卷一、选择题(本大题共6小题,每小题3分,共计(ɡònɡ jì)18分,每小题只有一个(yīɡè)正确选项)1.能使有意义(yìyì)的x的取值范围(fànwéi)是()A.x>0 B.x≥0 C.x>1 D.x≥1【专题】存在型.【分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.x【解答】解:∵1∴x-1≥0,解得x≥1.故选:D.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.2.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.15【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数.【解答】解:依题意得13在这组数据中出现四次,次数最多,∴他们年龄的众数为13.故选:B.【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.3.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答(jiědá)】解:A、因为(yīn wèi)12+22≠32,故不是(bù shi)勾股数;故此选项错误;B、因为(yīn wèi)32+42=52,故是勾股数.故此(gùcǐ)选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可4.下列运算正确的是()【专题】计算题.【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.如图,▱ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.35°B.30°C.25°D.20°【专题】几何图形.【分析(fēnxī)】要求(yāoqiú)∠DAE,就要(jiù yào)先求出∠ADE,要求(yāoqiú)出∠ADE,就要(jiù yào)先求出∠DBC.利用DB=DC,C=70°即可求出.【解答】解:∵DB=DC,∠C=70°∴∠DBC=∠C=70°,又∵AD∥BC,∴∠ADE=∠DBC=70°∵AE⊥BD∴∠AEB=90°,∴∠DAE=90°-∠ADE=20°故选:D.【点评】此题考查平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.6.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()【分析】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.【解答】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn <0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn <0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点评(diǎn pínɡ)】本题综合考查了正比例函数、一次函数图象与系数(xìshù)的关系.一次函数y=kx+b(k≠0)的图象有四种(sì zhǒnɡ)情况:①当k>0,b>0,函数(hánshù)y=kx+b的图象经过第一(dìyī)、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.二、填空题(本大题有6小题,每小题3分,共18分)7.计算42的结果是.【专题】常规题型.【分析】根据合并同类二次根式进行计算即可.【解答】解:原式=(4-122故答案为2【点评】本题考查了二次根式的加减,掌握合并同类二次根式是解题的关键8.在平行四边形ABCD中,AB=3,BC=4,则平行四边形ABCD的周长等于.【分析】根据平行四边形的对边相等,可得AB=CD,AD=BC,所以可求得▱ABCD的周长为14.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=4,∴▱ABCD的周长为14.故答案为14.【点评(diǎn pínɡ)】此题考查了平行四边形的性质:平行四边形的对边相等.此题比较简单,注意解题(jiě tí)时要细心.9.已知一个菱形(línɡ xínɡ)的两条对角线的长分别为10和24,则这个(zhè ge)菱形的周长为.【分析(fēnxī)】根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC=10,BD=24,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴BC=CD=AD=AB=13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.10.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.故答案(dáàn)是:5.【点评(diǎn pínɡ)】本题考查了矩形(jǔxíng)的性质,正确理解△AOB 是等边三角形是关键(guānjiàn).11.某一次函数的图象(tú xiànɡ)经过点(﹣1,4),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.【专题】一次函数及其应用.【分析】由该函数过点(-1,4)可设该函数的解析式为y=k(x+1)+4,结合一次函数的性质,取k=-1即可得出结论.【解答】解:∵一次函数的图象经过点(-1,4),∴设该函数的解析式为y=k(x+1)+4.又∵函数y随x的增大而减小,∴k<0,取k=-1,则该函数的解析式为y=-x+3.故答案为:y=-x+3(答案不唯一).【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.12.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC 上(不与点A,C重合),且∠ABP=30°,则CP的长为.【专题】压轴题;分类讨论.【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.【解答(jiědá)】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾(máodùn);如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB,∵BC=6,∴AB=3,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,【点评(diǎn pínɡ)】本题考查了解(liǎojiě)直角三角形,熟悉特殊角的三角函数值是解题的关键.三、解答(jiědá)题(本大题有5小题,每题6分,共30分)13.计算(jì suàn):【专题(zhuāntí)】计算题.【分析】根据二次根式的运算法则即可求出答案.【点评(diǎn pínɡ)】本题考查二次根式的运算,解题的关键(guānjiàn)是熟练运用二次根式的运算法则,本题属于基础题型.14.先化简,再求值:(m﹣)m+3)﹣m(m﹣6),其中(qízhōng)m=.【专题(zhuāntí)】常规(chángguī)题型.【分析】直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:原式=m2﹣3﹣(m2﹣6m)=m2﹣3﹣m2+6m=6m﹣3,当7时,原式=67﹣3.【点评】此题主要考查了二次根式的化简求值,正确合并同类项是解题关键.15.如图所示,在平行四边ABCD中,点M、N分别在BC、AD上,且BM=DN.求证:四边形AMCN是平行四边形.【分析】根据平行四边形的性质可以证明AN∥CM且AN=CM,则依据一组对边平行且相等的四边形是平行四边形即可判断.【解答】证明:∵▱ABCD中,AD∥BC,AD=BC,又∵BM=DN,∴AN∥CM且AN=CM,∴四边形AMCN是平行四边形.【点评(diǎn pínɡ)】此题考查(kǎochá)了平行四边形的性质与判定.注意选择适宜的判定方法.16.如图所示,一次函数图象(tú xiànɡ)经过点A、点C,且与正比例函数(hánshù)y=﹣x的图象(tú xiànɡ)交于点B,(1)求B点坐标;(2)求该一次函数的表达式.【专题】一次函数及其应用.【分析】(1)当x=-1时,y=-x=1,即可得出B为(-1,1);(2)利用待定系数法即可得到该一次函数的表达式.【解答】解:(1)当x=﹣1时,y=﹣x=1,则B为(﹣1,1);(2)设一次函数的解析式为y=kx+b,把A(0,2),B(﹣1,1)代入得∴一次函数的解析式为y=x+2.【点评】本题考查一次函数,解题的关键是灵活应用待定系数法确定函数解析式.求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.17.(1)四边形ABCD为矩形,△BCE中,BE=CE,请用无刻度的直尺作出△BCE的高EH;(2)四边形ABCD为矩形,E,F为AD上的两点,且∠ABE=∠DCF,请用无刻度的直尺找到BC的中点P.【专题(zhuāntí)】作图题.【分析(fēnxī)】(1)作矩形的对角线,它们(tā men)相交于点O,连接(liánjiē)EO并延长(yáncháng)交BC于H,则EH⊥BC;(2)分别延长BE和CF,它们相交于点M,再作矩形的对角线,它们相交于点O,连接MO并延长交BC于P,则BP=CP.【解答】解:(1)如图1,EH为所作;(2)如图2,点P为所作.【点评】本题考查了作图-法则作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证(qiúzhèng):AE=DF;(2)若AD平分(píngfēn)∠BAC,试判断(pànduàn)四边形AEDF的形状,并说明(shuōmíng)理由.【专题(zhuāntí)】等腰三角形与直角三角形;矩形菱形正方形.【分析】(1)由DE∥AC交AB于E,DF∥AB交AC于F,可证得四边形AEDF是平行四边形,即可证得结论;(2)由AD平分∠BAC,DE∥AC,易证得△ADE是等腰三角形,又由四边形AEDF是平行四边形,即可证得四边形AEDF是菱形.【解答】(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF;(2)若AD平分∠BAC,则四边形AEDF是菱形;理由:∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠ADE=∠FAD,∴∠EAD=∠ADE,∴AE=DE,∵四边形AEDF是平行四边形,∴四边形AEDF是菱形.【点评】此题考查了等腰三角形的判定与性质,菱形的判定与性质.注意熟练掌握菱形的判定方法是解此题的关键.19.(8分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象(tú xiànɡ),写出关于x的不等式2x﹣4>kx+b的解集.【分析(fēnxī)】(1)利用(lìyòng)待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于(guānyú)k、b得方程组,再解方程组即可;(2)联立两个函数(hánshù)解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.20.(8分)某校高中一年级组建篮球队,对甲、乙两名备选同学进行定位投篮测试,每次投10个球共投10次,甲、乙两名同学测试情况如图所示.(1)根据(gēnjù)如图所提供的信息填写下表:平均数众数方差甲 1.2乙 2.2(2)如果你是高一学生会文体委员(wěiyuán),会选择哪名同学进入篮球队?请说明理由.【专题(zhuāntí)】图表(túbiǎo)型.【分析(fēnxī)】(1)根据平均数和众数的定义求解;(2)根据折线图分析:平均数一样,而乙的众数大,甲的方差小,成绩稳定;故选甲或乙均有道理,只要说理正确即可.【解答】解:(1)据折线图的数据,甲的数据中,6出现的最多,故众数是6;平均数为(9+6+6+8+7+6+6+8+8+6)=7;乙的数据中,8出现的最多,故众数是8;平均数为(4+5+7+6+8+7+8+8+8+9)=7;平均数众数甲7 6乙7 8(2)(答案不唯一,只要说理正确).选甲:平均数与乙一样,甲的方差小于乙的方差,甲的成绩较乙的成绩稳定.选乙:平均数与甲一样,乙投中篮的众数比甲投中篮的众数大,且从折线图看出,乙比甲潜能更大.【点评(diǎn pínɡ)】本题考查平均数、众数的意义(yìyì)与求法及折线图的意义与运用.五、解答(jiědá)题(本大题共2小题,每小题9分,共18分)21.(9分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.(1)求BC的长;(2)求BD的长.【专题(zhuāntí)】常规(chángguī)题型.【分析】(1)在Rt△ABC中利用勾股定理即可求出BC的长;(2)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠2=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=2,则ED=4,在Rt△BDE中,利用勾股定理可得BD=5.【解答】解:(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=2,(2)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠2,∴∠2=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,在Rt△BCE中,由勾股定理(ɡōu ɡǔ dìnɡ lǐ)可得EC=2;∴ED=2+2=4,在Rt△BDE中,由勾股定理(ɡōu ɡǔ dìnɡ lǐ)可得BD=5.【点评(diǎn pínɡ)】本题(běntí)考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.22.(9分)某商店(shāngdiàn)分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200 (1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B 种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y 元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答(jiědá)】解:(1)设A种商品(shāngpǐn)每件的进价为x元,B 种商品(shāngpǐn)每件的进价为y元,答:A种商品(shāngpǐn)每件的进价为20元,B种商品(shāngpǐn)每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000-m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.六、解答题(本大题共12分)23.(12分)如图,在梯形ABCD 中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒lcm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何(wèihé)值时,以C、D、Q、P为顶点的梯形面积(miàn jī)等于60cm2?【分析(fēnxī)】(1)由题意(tí yì)已知,AD∥BC,要使四边形PQDC 是平行四边形,则只需要(xūyào)让QD=PC即可,因为Q、P点的速度已知,AD、BC的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)要使以C、D、Q、P为顶点的梯形面积等于60cm2,可以分为两种情况:点P、Q分别沿AD、BC运动或点P返回时,再利用梯形面积公式,即(QD+PC)×AB÷2=60,因为Q、P点的速度已知,AD、AB、BC 的长度已知,用t可分别表示QD、BC的长,即可求得时间t.【解答】解:(1)∵四边形PQDC是平行四边形,∴DQ=CP,当P从B运动到C时,如图1:∵DQ=AD-AQ=16-t,CP=21-2t∴16-t=21-2t解得:t=5当P从C运动到B时,∵DQ=AD-AQ=16-t,CP=2t-21∴16-t=2t-21,(2)若点P、Q分别沿AD、BC运动时,如图2:DQ+CP2×AB=60,即解得:t=15.故当t=9或15秒时,以C,D,Q,P为顶点(dǐngdiǎn)的梯形面积等60cm2.【点评(diǎn pínɡ)】本题主要考查了直角梯形的性质(xìngzhì)、平行四边形的性质、梯形的面积等知识,特别应该注意要全面考虑各种情况,不要遗漏.内容总结(1)平均数为(9+6+6+8+7+6+6+8+8+6)=7。

最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。

新部编人教版八年级数学下册期末考试卷及参考答案

新部编人教版八年级数学下册期末考试卷及参考答案

新部编人教版八年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、C8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、52、22()1y x =-+3、2x (x ﹣1)(x ﹣2).4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)3.5、24°.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

人教版八年级下册期末数学试卷及答案试题解析三套

人教版八年级下册期末数学试卷及答案试题解析三套

人教版2019年八年级下册期末数学试卷2019八年级(下)期末数学试卷一一、选择题1.值等于()A.±4 B.4 C.±2 D.22.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,133.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.54.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣2二、填空题7.化简:= .8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱剩余油量y(升)与行使时间t(小时)的关系式为.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO 向右平移得到△DCE,则△ABO向右平移过程扫过的面积是.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为.三、解答题13.(6分)计算:﹣+14.(6分)计算:2×+.15.(6分)在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.16.(6分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.(6分)如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH ⊥AB于H,求DH的长.四、解答题18.(8分)某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.19.(8分)已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.20.(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?21.(8分)如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC 的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.五、解答题(10分)22.(10分)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA2的长为;OA4的长为;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA nA n的面积分别是多少?(用含n的代数式表示)﹣1(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.六、解答题(12分)23.(12分)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE= ;当点P在矩形的部时,BE的取值围是.(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.参考答案与试题解析一、选择题1.值等于()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】由于即是求16的算术平方根.根据算术平方根的概念即可求出结果.【解答】解:∵表示16的算术平方根,∴的值等于4.故选B.【点评】此题考查了算术平方根的概念以及求解方法,解题注意首先化简.2.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,13【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+122≠132,不能构成直角三角形,故选项错误;B、32+42≠72,不能构成直角三角形,故选项错误;C、82+152≠162,不能构成直角三角形,故选项错误;D、52+122=132,能构成直角三角形,故选项正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.5【考点】菱形的性质.【分析】根据菱形的性质可得AO⊥BO,从而可判断OH是Rt△DAB斜边的中线,继而可得出OH的长度.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的周长为20,∴AD=5又∵点H是AD中点,则OH=AD=×5=,故选:B.【点评】本题考查了菱形的性质及直角三角形斜边的中线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.4.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【考点】方差.【分析】根据四个班的平均分相等结合给定的方差值,即可找出成绩最稳定的班级.【解答】解:∵甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5、S乙2=21.7、S丙2=15、S丁2=17,且8.5<15<17<21.7,∴甲班体考成绩最稳定.故选A.【点评】本题考查了方差,解题的关键是明白方差的意义.本题属于基础题,难度不大,解决该题型题目时,熟练掌握方差的意义是关键.5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO【考点】平行四边形的判定.【分析】平行四边形的性质有①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形,根据以上容判断即可.【解答】解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.【点评】本题考查了对平行四边形和等腰梯形的判定的应用,注意:平行四边形的性质有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣2【考点】两条直线相交或平行问题.【分析】由函数图象可判断A;由直线与y轴的交点位置可判断B;由函数图象可知当x>2时,对应的函数值的大小关系可判断C;把A点横坐标代入两函数解析式可判断D;可得出答案.【解答】解:∵y2=kx+n在第一、三、四象限,∴k>0,故A正确;由图象可知直线y1与y轴的交点在直线y2相与y轴交点的上方,∴m>n,故B正确;由函数图象可知当x<2时,直线y1的图象在y2的上方,∴y1>y2,故C不正确;∵A点为两直线的交点,∴2k+n=m﹣2,故D正确;故选C.【点评】本题主要考函数的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.二、填空题7.化简:= .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出答案.【解答】解:==.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55 .【考点】函数关系式.【分析】剩油量=原有油量﹣工作时间耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO 向右平移得到△DCE,则△ABO向右平移过程扫过的面积是48 .【考点】矩形的性质;平移的性质.【分析】首先根据平移的知识可知S△ABO=S△DEC,进而可知△ABO平移过程扫过的面积是矩形ABCD的面积,于是得到答案.【解答】解:∵△ABO向右平移得到△DCE,∴S△ABO=S△DEC,∴△ABO平移过程扫过的面积是矩形ABCD的面积,∵AD=8,AB=6,∴矩形ABCD的面积为48,∴△ABO向右平移过程扫过的面积是48,故答案为48.【点评】本题主要考查了矩形的性质以及平移的知识,解题的关键是知道△ABO 平移过程扫过的面积是矩形ABCD的面积,此题难度一般.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1 .【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为 5 .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,y=0分别求出点A、B的坐标,再根据坐标特征求得AB点的距离.【解答】解:根据题意,令y=0,解得x=﹣3,即点A的坐标为(﹣3,0),令x=0,解得y=﹣4,即点B的坐标为(0,﹣4),∴在直角三角形AOB中,AB2=32+42=25,∴AB=5.故填5.【点评】本题考查了一次函数上点的坐标特征,是基础题.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为、4或2.【考点】正方形的性质;等腰直角三角形.【分析】分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑,通过构建直角三角形,利用正方形和等腰直角三角形的性质找出直角边的长度,利用勾股定理即可得出结论.【解答】解:AD为边向正方形外作等腰直角三角形ADE分三种情况,如图所示.①当∠AED=90°时,过点E作EF⊥BA延长线于点F,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AF=EF=AD=1.在Rt△BFE中,BF=AB+AF=2+1=3,EF=1,∴BE==;②当∠DAE=90°时,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AE=AD=2,∴BE=AB+AE=2+2=4;③当∠ADE=90°时,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴DE=AD=2,在Rt△BCE中,BC=2,CE=CD+DE=2+2=4,∴BE==2.故答案为:、4或2.【点评】本题考查了正方形的性质、等腰直角三角形的性质以及勾股定理,解题的关键是分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,分类讨论是关键.三、解答题13.计算:﹣+【考点】二次根式的加减法.【分析】二次根式的加减法,先化简,再合并同类二次根式.【解答】解:原式=3﹣4+=0.【点评】二次根式的加减运算,实质是合并同类二次根式.14.计算:2×+.【考点】二次根式的混合运算.【分析】直接利用二次根式混合运算法则化简求出答案.【解答】解:原式=2××+=3+.【点评】此题主要考查了二次根式的混合运算,正确掌握二次根式运算法则是解题关键.15.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【分析】设一次函数解析式为y=kx+b,把A、B两点的坐标代入可求得k、b 的值,可求得一次函数的解析式.【解答】解:设一次函数解析式为y=kx+b,把A、B两点的坐标代入可得,解得,∴一次函数解析式是y=3x﹣6.【点评】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.16.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.【考点】平行四边形的性质;作图—基本作图.【分析】(1)连接AC,由AE=CE得到∠EAC=∠ECA,由AD∥BC得∠DAC=∠ECA,则∠CAE=∠CAD,即AC平分∠DAE;(2)连接AC、BD交于点O,连接EO,由平行四边形的性质及等腰三角形的性质可知EO为∠AEC的角平分线.【解答】解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.【点评】本题考查的是作图﹣基本作图、平行四边形的性质、等腰三角形的性质,熟知平行四边形及等腰三角形的性质是解答此题的关键.17.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.四、解答题18.某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为200 人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由条形图可知A等级有90人,由扇形图可知对应的百分比为45%,那么抽查的学生总数=A等级的人数÷对应的百分比,计算即可求解;(2)根据所有等级的百分比的和为1,则可计算出x的值,再求出B级与C级的人数,即可作图;(3)利用每周课外阅读时间量满足2≤t<4的人数=该校总人数×B级的与C 级百分比的和计算即可.【解答】解:(1)抽查的学生总数=90÷45%=200人,(2)∵x%+15%+10%+45%=1,∴x=30;B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,条形统计图补充如下:(3)2500×(10%+30%)=1000人,所以估计每周课外阅读时间量满足2≤t<4的人数为1000人.故答案为200.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是读懂统计图,能从条形统计图,扇形统计图中得到准确的信息.19.已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.【考点】二次根式的应用.【分析】长方形的面积等于长乘以宽,计算时应用平方差公式比较简便;求长方形的对角线应用勾股定理,注意二次根式的运算【解答】解:如图所示:∵在Rt△BCD中,BC=(2+)cm,CD=(2﹣)cm,且∠BCD=90°,∴S 四边形ABCD=(2+)×(2﹣)=(2)2﹣()2=8﹣2=6(cm2)由勾股定理得:BD====2(cm)即:该长方形的面积和对角线的长分别是6cm2、2cm【点评】本题考查了二次根式的应用,解题的关键的是二次根式的运算:(2+)×(2﹣)=(2)2﹣()2、(2+)2=(2)2+2×2×+()2=12+4+2等.20.甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7x+60时,x=600,所以,x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值围分情况讨论.21.如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.【考点】菱形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)由AB=AC利用中位线的性质可得DE=DF,四边形AEDF为平行四边形,由邻边相等的平行四边形是菱形证得结论;(2)首先由等腰三角形的性质“三线合一”得AD⊥BC,BD=BC=,由锐角三角函数定义得AE,易得四边形AEDF的周长.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AF且DE==AF,∴四边形AEDF为平行四边形,同理可得,DF∥AB且DF=,∵AB=AC,∴DE=DF,∴四边形AEDF是菱形;(2)解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,BD=BC=,∴AE===4,∵四边形AEDF是菱形,∴四边形AEDF的周长为4×4=16.【点评】此题主要考查了菱形的判定及性质定理,等腰三角形的性质,三角形中位线的性质定理,综合运用各定理是解答此题的关键.五、解答题(10分)22.(10分)(2016春•石城县期末)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA 2的长为;OA4的长为 2 ;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA nA n的面积分别是多少?(用含n的代数式表示)﹣1(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.【考点】等腰直角三角形;规律型:图形的变化类.【分析】(1)利用勾股定理依次计算即可;(2)依据(1)的计算找出其中的规律可得到OA n的长,然后依据计算出前几个三角形的面积,然后依据规律解答求得△OA n﹣1A n的面积即可;(3)首先依据题意列出算式,然后再求解即可.【解答】解:(1)OA 2==,OA3==,OA 4===2,…OA 6=故答案为:;2;.(2)由(1)可知:OA n=.S1=×1×1=;S 2=××;S 3=××1=;…△OA n﹣1A n的面积=.(3)S12+S22+S32+…+S1002=()2+()2+()2+…+()2==1262.5.【点评】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题,找出其中的规律是解题的关键.六、解答题(12分)23.(12分)(2016春•石城县期末)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE= 10 ;当点P在矩形的部时,BE的取值围是0<BE<10 .(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.【考点】四边形综合题.【分析】(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;(2)①由题意画出图形即可;②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;(3)由折叠的性质用BE表示出AE,最后用勾股定理即可.【解答】解:(1)当点P在CD上时,如图1,∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,∴∠BCE=∠ECP=45°,∴△BCE是等腰直角三角形,∴BE=BC=AD=10,当点P在矩形部时,BE的取值围是0<BE<12;故答案为:10,0<BE<10;(2)①补全图形如图2所示,②当点E与点A重合时,如图3,由折叠得,AB=PC,在△ADC与△CPA中,,∴△ADC≌△CPA,∴∠PAC=∠DCA,设AP与CD相交于O,则OA=OC,∴OD=OP,∠ODP=∠OPD,∵∠AOC=∠DOP,∴∠OAC=∠OPD∴PD∥AC,(3)如备用图1,由折叠得,BE=PE,PC=BC=10,AE=AB﹣BE,在Rt△ABC中,AC==2,∴AP=AC﹣PC=2﹣10,在Rt△APE中,AE2﹣PE2=AP2,∴(16﹣BE)2﹣BE2=(2﹣10)2,∴BE=.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质,尺规作图,正确的作出辅助线构造全等三角形是解题的关键.2019八年级(下)期末数学试卷二一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2D.±22.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.485.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是507.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C.D.48.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3D.69.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米10.如图,把Rt△ABC放在直角坐标系,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)= .12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.14.已知x+=,那么x﹣= .15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为.三、解答题(共8小题,满分72分)17.(6分)计算:(1)(+)﹣(﹣)(2)(+)÷.18.(6分)如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC 上一点,且BN=BC.求△AMN的面积.19.(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.20.(8分)已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.21.(8分)如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.22.(11分)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A 地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?23.(12分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85高中部8510024.(13分)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x 轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.。

新人教版八年级数学下册期末考试题及答案【完美版】

新人教版八年级数学下册期末考试题及答案【完美版】

新人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2x 1-有意义,则x 的取值范围是 ▲ .3.若m+1m =3,则m 2+21m=________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、D6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、x1≥.3、74、10.56、32°三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

初二数学下册期末考试试卷(含-答案)人教版

初二数学下册期末考试试卷(含-答案)人教版

明.)20。

如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。

(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。

21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。

下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。

如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。

点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。

八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。

人教新版八年级下册数学期末试卷和答案详解(PDF可打印)

人教新版八年级下册数学期末试卷和答案详解(PDF可打印)

2020-2021学年内蒙古乌海市八年级(下)期末数学试卷一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.92.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2 3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20 4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6 6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.38.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.211.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<112.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是.14.(3分)已知y=,则x y的值为.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN 折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间x(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.2020-2021学年内蒙古乌海市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共12小题,每小题3分,共计36分)1.(3分)的化简结果为()A.3B.﹣3C.±3D.9【考点】二次根式的性质与化简.【分析】直接根据=|a|进行计算即可.【解答】解:原式=|﹣3|=3.故选:A.2.(3分)若代数式有意义,则x的取值范围是()A.x≠2B.x≤C.x≤且x≠2D.x≥且x≠2【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式及分式有意义的条件即可求出答案.【解答】解:由题意可知:,解得:x≤.故选:B.3.(3分)下列四组线段中,其中能够构成直角三角形的是()A.32,42,52B.7,24,25C.8,13,17D.10,15,20【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,进行计算即可解答.【解答】解:A、∵(32)2+(42)2=337,(52)2=625,∴(32)2+(42)2≠(52)2,∴以32,42,52不能构成直角三角形,故A不符合题意;B、∵72+242=625,252=625,∴72+242=252,∴以7,24,25能构成直角三角形,故B符合题意;C、∵82+132=233,172=289,∴82+132≠172,∴以8,13,17不能构成直角三角形,故C不符合题意;D、∵102+152=325,202=400,∴102+152≠202,∴以10,15,20不能构成直角三角形,故D不符合题意;故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间【考点】勾股定理;坐标与图形性质.【分析】根据点P的坐标为(﹣2,3),勾股定理求出OP的长,得出点A的坐标,再判定出3<<4,即可得出﹣的范围.【解答】解:∵点P的坐标为(﹣2,3),∴OP=,∴A(﹣,0),∵9<13<16,∴3<<4,∴﹣4<,故选:A.5.(3分)平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<6【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的两条对角线相交于平行四边形的两边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.【解答】解:∵平行四边形ABCD∴OA=OC=3,OB=OD=5∴在△AOB中,OB﹣OA<x<OB+OA即:2<x<8故选:B.6.(3分)快递公司快递员小张一周内投递快递物品件数情况为:有4天是每天投递65件,有2天是每天投递70件,有1天是90件,这一周小张平均每天投递物品的件数为()A.80件B.75件C.70件D.65件【考点】加权平均数.【分析】直接利用加权平均数求法进而分析得出答案.【解答】解:由题意可得,这一周小张平均每天投递物品的件数为:=(件),故选:C.7.(3分)下列命题:①若=a,则a>0;②的算术平方根是2;③对角线相等的四边形是矩形;④一组数据5,6,7,8,9的中位数和众数都是7,其中真命题的个数是()A.0B.1C.2D.3【考点】命题与定理.【分析】根据矩形的判定、中位数和众数的判定、算术平方根的性质判断即可.【解答】解:①若=a,则a≥0,原命题是假命题;②的算术平方根是2,是真命题;③对角线相等的平行四边形是矩形,原命题是假命题;④一组数据5,6,7,8,9的中位数是7,但众数不是7,原命题是假命题;故选:B.8.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°【考点】菱形的性质.【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH ⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数【解答】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.9.(3分)四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC,这五个条件中任选三个,能使四边形ABCD是菱形的选法有()A.1种B.2种C.3种D.4种【考点】菱形的判定.【分析】由平行四边形的判定方法和菱形的判定方法得出能使四边形ABCD是菱形的选法有4种,即可得出结论.【解答】解:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①②③能使四边形ABCD是菱形;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴①③⑤能使四边形ABCD是菱形;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴③④⑤能使四边形ABCD是菱形;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形;∴②③④能使四边形ABCD是菱形;∴能使四边形ABCD是菱形的选法有4种.故选:D.10.(3分)若关于x的函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.2【考点】一次函数的定义.【分析】直接利用一次函数的定义得出m的值进而得出答案.【解答】解:∵关于x的函数y=(m﹣1)x|m|﹣5是一次函数,∴|m|=1,m﹣1≠0,解得:m=﹣1.故选:B.11.(3分)已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.B.C.m≥1D.m<1【考点】一次函数图象上点的坐标特征.【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,∴当﹣1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m﹣1<0,解得m<,故选:A.12.(3分)如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△PAE周长的最小值是()A.3B.4C.5D.6【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【解答】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,故选:D.二、填空题(共8小题,每小题3分,共计24分)13.(3分)一组数据3,4,3,a,8的平均数为5,则这组数据的方差是 4.4.【考点】方差;算术平均数.【分析】先根据平均数是5,求出a的值,然后利用方差的计算公式求解即可.【解答】解:因为3、4、3、a、8的平均数是5,所以3+4+3+a+8=25,解得a=7,故这组数据为3,4,3,7,8,所以这组数据的方差为×[(3﹣5)2+(4﹣5)2+(3﹣5)2+(7﹣5)2+(8﹣5)2]=4.4.故答案为:4.4.14.(3分)已知y=,则x y的值为.【考点】二次根式有意义的条件.【分析】根据二次根是有意义的条件:被开方数是非负数即可求得x的值,进而求得y 的值,然后代入求解即可.【解答】根据题意得:,解得:x=3,则y=﹣2,故x y=3﹣2=.故答案是:.15.(3分)已知P(a,b)是直线y=x﹣2上的点,则6b﹣2a+3的值是﹣9.【考点】一次函数图象上点的坐标特征.【分析】将点的坐标代入直线中可得出b=a﹣2,整理得到3b﹣a=﹣6,代入代数式求得即可.【解答】解:∵P(a,b)是直线y=x﹣2上的点,∴b=a﹣2,∴3b﹣a=﹣6,∴6b﹣2a+3=2×(﹣6)+3=﹣9.故答案为:﹣9.16.(3分)如图,在平行四边形ABCD中,∠D=50°.以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则∠AEB=25°.【考点】作图—复杂作图;平行四边形的性质.【分析】利用平行四边形的性质求出∠ABC=50°,再利用角平分线的定义,平行线的性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知BE平分∠ABC,∴∠EBC=∠ABC=25°,∴∠AEB=∠EBC=25°,故答案为:25°.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=7,BC=12,则EF的长为 2.5.【考点】三角形中位线定理.【分析】根据直角三角形斜边上的中线的性质求出DF,根据三角形中位线定理求出DE,计算即可.【解答】解:在Rt△AFB中,D为AB的中点,AB=7,∴DF=AB=3.5,∵DE为△ABC的中位线,BC=12,∴DE=BC=6,∴EF=DE﹣DF=2.5,故答案为:2.5.18.(3分)如图,将矩形纸片ABCD沿MN折叠,使点B与点D重合,再将△CDN沿DN折叠.使点C恰好落在MN上的点F处.若MN=5,则AD的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据折叠的性质可以证明△DEM≌△DCN,得DM=DN,再根据折叠可得∠BNM =∠DNM=∠DNC,可证明△DMN是等边三角形,再根据等边三角形的性质即可求出AD的长.【解答】解:由折叠可知:点B与点D重合,∴∠EDN=90°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠EDM+∠MDN=∠CDN+∠MDN,∴∠EDM=∠CDN,∵∠E=∠C=90°,DE=DC,∴△DEM≌△DCN(ASA),∴DM=DN,由折叠,∠BNM=∠DNM,∠DNC=∠DNM,∴∠BNM=∠DNM=∠DNC=180°=60°,∴△DMN是等边三角形,∴DM=MN=5,点C恰好落在MN上的点F处可知:∠DFN=90°,即DF⊥MN,∴MF=NF=MN=,∴CN=ME=AM=,∴AD=AM+DM=.故答案为.19.(3分)如图,一次函数y1=x+b与一次函数y2=kx﹣1的图象相交于点P,则关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.【考点】一次函数与一元一次不等式;两条直线相交或平行问题.【分析】观察函数图象得到,当x>﹣1,函数y=x+b的图象都在函数y=kx﹣1图象的上方,于是可得到关于x的不等式x+b﹣kx+1>0的解集.【解答】解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b﹣kx+1>0的解集为x>﹣1.故答案为:x>﹣1.20.(3分)如图,平行四边形ABCD中,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE,BF相交于点H,BF与AD的延长线相交于点G.下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△GDF,其中正确的结论是①②③.【考点】平行四边形的性质;全等三角形的判定.【分析】①根据等腰直角三角形的性质即可判断;②通过三角形全等和平行四边形的性质即可判断;③根据平行四边形的性质和线段的等量代换即可判断;④通过角的关系即可求得结果;【解答】解:∵∠DBC=45°,DE⊥BC,∴BD=BE,BE=DE,∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°,∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC(SAS),∴∠BHE=∠C,BH=CD,∵四边形ABCD是平行四边形,∴∠C=∠A,AB=CD,∴∠A=∠BHE,AB=BH,∴正确的有①②③;故答案为:①②③.三、解答题(共计60分)21.(8分)计算:(1)(﹣2)2++6;(2)(3﹣2+)÷2.【考点】二次根式的混合运算.【分析】(1)先根据完全平方公式和分母有理数将式子展开,然后再合并同类项和同类二次根式即可;(2)根据二次根式的除法化简即可.【解答】解:(1)(﹣2)2++6=3﹣4+4+2+2=7;(2)(3﹣2+)÷2=﹣+===3﹣+2=4.22.(8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)306081504011013014690100 60811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3584分析数据:补全下列表格中的统计量:平均数中位数众数808181得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为B;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?【考点】统计量的选择;用样本估计总体;频数(率)分布表.【分析】根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)(3)结果.【解答】解:(1)根据上表统计显示:样本中位数和众数都是81,平均数是80,都是B 等级,故估计该校学生每周的用于课外阅读时间的情况等级为B.(2)∵=160∴该校现有学生400人,估计等级为“B”的学生有160名.(3)以平均数来估计:×52=26∴假设平均阅读一本课外书的时间为160分钟,以样本的平均数来估计该校学生每人一年(按52周计算)平均阅读26本课外书.故答案为:5,4,81,81,B;23.(10分)学校要在教学楼侧面悬挂社会主义核心价值观的标语牌,如图所示,为了使标语牌醒目,计划设计标语牌的宽度为BC,为了测量BC,在距教学楼20米的升旗台P处利用测角仪测得教学楼AB的顶端点B的仰角为60°,点C的仰角为45°,求标语牌的宽度BC.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可得DP=20米,然后分别在Rt△BDP和Rt△CDP中,利用锐角三角函数的定义求出BD,CD的长,进行计算即可解答.【解答】解:由题意得:DP=20米,在Rt△BDP中,∠BPD=60°,∴BD=DP•tan60°=20(米),在Rt△CDP中,∠CPD=45°,∴CD=DP•tan45°=20(米),∴BC=BD﹣CD=(20﹣20)米,∴标语牌的宽度BC为(20﹣20)米.24.(10分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.25.(12分)2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元.(1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a(个),售完这两批盲盒所获总利润为w(元),请写出w与a之间的函数关系式;②商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意即可列出一元一次方程,即可求解.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,根据题意得到a的取值,再列出w关于a的一次函数.②根据一次函数的性质即可求解.【解答】解:(1)设甲种盲盒的进货单价为a元,则乙种盲盒的进货单价为(a﹣2)元,根据题意得:10a+15(a﹣2)=1570,解得:a=64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a个,则购进乙种盲盒(50﹣a)个,依题意可得:,解得0≤a≤且x为整数,∴w=(83﹣64)(10+a)+(78﹣62)(50﹣a+15),=1230+3a,∴w与a之间的函数关系式为w=3a+1230.②∵3>0,∴w随a的增大而增大,=1230+3×33=1329(元).∴当a=33时,y最大∴购进甲种盲盒33个,购进乙种盲盒17个;才能使售完这二批盲盒获得总利润最大;最大利润是1329元.26.(12分)如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.(1)求出点A的坐标.(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)联立两直线解析式求出A的坐标即可;(2)根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;(ii)当四边形OP2CQ2为菱形时;(iii)当四边形OQ3P3C为菱形时;分别求出P坐标即可.【解答】解:(1)解方程组,得,∴A(6,3);(2)设D(x,x),∵△COD的面积为12,∴×6×x=12,解得:x=4,∴D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直线CD解析式为y=﹣x+6;(3)在直线l1:y=﹣x+6中,当x=0时,y=6,∴C(0,6),存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:(i)当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0);(ii)当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线CP1的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3);(iii)当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此时P3(3,﹣3+6);综上可知存在满足条件的点的P,其坐标为(6,0)或(3,3)或(3,﹣3+6).。

人教版八年级数学第二学期期末质量检测试卷及答案三

人教版八年级数学第二学期期末质量检测试卷及答案三

人教版八年级数学第二学期期末质量检测试卷及答案一.选择题(共10小题,满分40分,每小题4分)1.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥2.下图中不是中心对称图形的是()A.B.C.D.3.若△ABC中,AB=c,AC=b,BC=a,由下列条件不能判定△ABC为直角三角形的是()A.(c+b)(c﹣b)=a2B.∠A+∠B=∠CC.a=32,b=42,c=52D.a:b:c=5:12:134.一个容量为70的样本最大值为141,最小值60,取组距为10,则可以分成()A.10组B.9组C.8组D.7组5.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限6.一次函数y=﹣2x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限7.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是()A.B.C.6D.48.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.109.如图,在直角坐标系中,△AOB是等边三角形,若点B的坐标是(4,0),则点A的坐标是()A.(2,2)B.(2,2)C.(2,2)D.(1,2)10.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△BEF=S△ABE.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.12.如图,正比例函数图象经过点A,则该函数的解析式为.13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.14.如图,在矩形纸片ABCD中,边AB=12,AD=5,点P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠,则CD′的最小值为.15.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b的值为.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.17.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.18.如图,等腰三角形ABC的底边BC长为8,面积是48,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.三.解答题(共8小题,满分78分)19.(6分)如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的平行四边形为整点平行四边形.如图,已知整点A(2,5),B(3,2),请在所给网格区域内按要求画以A,B,C,D为顶点的整点平行四边形.(1)在图1中画出点C,D,使点C的横、纵坐标之和等于点D的横、纵坐标之和的3倍;(2)在图2中画出点C,D,使点C的横、纵坐标之积等于点D的横、纵坐标之积的2倍.21.(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△DOB的面积22.(10分)如图,在Rt△ABC中,∠ACB=90°,D,E分别是边AB,BC的中点,连接DE并延长到点F,使EF=DE,连接CF,BF.(1)求证:四边形CFBD是菱形;(2)连接AE,若CF =,DF=2,求AE的长.23.(10分)为贯彻落实教育部印发的《大中小学劳动教育指导纲要(试行)》通知要求,培养学生劳动习惯与劳动能力,某校学生发展中心在暑假期间开展了“家务劳动我最行”的实践活动,开学后从校七至九年级各随机抽取30名学生,对他们的每日平均家务劳动时长(单位:min)进行了调查,并对数据进行了收集、整理和描述.下面是其中的部分信息:a.90名学生每日平均家务劳动时长的频数分布表:分组频数20≤x<925m25≤x<301530≤x<3535≤x<2440n40≤x<45945≤x<50合计90b.90名学生每日平均家务劳动时长频数分布直方图:c.每日平均家务劳动时长在35≤x<40这一组的是:35 35 35 35 36 36 36 36 36 37 37 37 38 38 38 38 38 38 38 39 39 39 39 39d.小东每日平均家务劳动时长为37min.根据以上信息,回答下列问题:(1)写出频数分布表中的数值m=,n=;(2)补全频数分布直方图;(3)小东每日平均家务劳动时长样本中一半学生的每日平均家务劳动时长;(填“超过”或“没超过”)(4)学生发展中心准备将每日平均家务劳动时长达到40min及以上的学生评为“家务小能手”,如果该校七至九年级共有420名学生,请估计获奖的学生人数.24.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.25.(13分)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?26.(13分)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).参考答案一.选择题(共10小题,满分40分,每小题4分)1.解:在函数y=中,自变量x的取值范围是x≤,故选:B.2.解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.3.解:由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项A不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项B不符合题意;a=32,b=42,c=52,则a2+b2≠c2,故选项C符合题意;当a:b:c=5:12:13时,则a2+b2=c2,故选项D不符合题意;故选:C.4.解:(141﹣60)÷10=8.1,因此可以分9组,故选:B.5.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.6.解:∵k=﹣2<0,∴一次函数的图象经过第二四象限,∵b=1>0,∴一次函数y=﹣2x+1的图象与y轴正半轴相交,经过第一象限,∴一次函数y=﹣2x+1的图象经过第一二四象限,故选:D.7.解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵ED垂直平分AB,∴EA=EB,∴∠A=∠ABE,∴∠A=∠ABE=∠CBE=×90°=30°,在Rt△ABC中,BC=AC=×9=3,在Rt△BCE中,CE=BC=×3=3,∴BE=2CE=6,∴AE=6.故选:C.8.解:∵360÷40=9,∴这个多边形的边数是9.故选:C.9.解:过点A作AC⊥OB于点C,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60°,∴∠OAC=30°,∵点B的坐标为(4,0),∴OB=4,∴OA=4,∴OC=OA=2,∴AC===2,∴A(2,2).故选:B.10.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF.若AD与BF相等,则BF=BC,题中未限定这一条件,若S△BEF=S△ACD;则S△BEF=S△ABC,则AB=BF,∴BF=BE,题中未限定这一条件,∴④不一定正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确;故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为:65°.12.解:设该正比例函数的解析式为y=kx,由图象可知,该函数图象过点A(2,4),∴2=k,即该正比例函数的解析式为y=2x.故答案为:y=2x.13.解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.14.解:连接AC,当点D'在AC上时,CD'有最小值,∵四边形ABCD是矩形,AB=12,AD=5,∴∠D=∠B=90°,AD=BC,∴AC=,由折叠性质得:AD=AD'=5,∠AD'P=∠D=90°,∴CD'的最小值=AC﹣AD'=13﹣5=8,故答案为:8.15.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.16.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.17.解:∵l:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1O(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256),故答案为:(0,256).18.解:连接AD,AD与EF的交点即为M,∵EF是AC的垂直平分线,∴C点与A点关于直线EF对称,∴AM=CM,∴CM+MD=AD,此时△CDM周长最小,∵△ABC是等腰三角形,D是BC的中点,∴AD⊥BC,∵BC长为8,面积是48,∴AD=12,∴△CDM周长=AD+CD=12+4=16,故答案为16.三.解答题19.解:(1)∵∠ABC+∠ADC=360°﹣(α+β)=240°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=α+β=120°.(2)β﹣α=60°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.20.解:(1)如图,四边形ACBD即为所求.(2)如图,四边形ACBD即为所求.21.解:(1)把A(﹣2,﹣2),B(1,4)代入y=kx+b得,解得.所以一次函数解析式为y=2x+2;(2)令y=0,则0=2x+2,解得x=﹣1,所以C点的坐标为(﹣1,0),把x=0代入y=2x+2得y=2,所以D点坐标为(0,2),(3)S△BOD=2×1=1.22.证明:(1)∵点E为BC的中点,∴CE=BE,又∵EF=DE,∴四边形CFBD是平行四边形,∵D是边AB,∠ACB=90°,∴CD=AB=BD,∴四边形CFBD是菱形;(2)∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DF=2DE=2EF,DF=2,∴AC=2,EF=1,∵CF=,四边形CFDB是菱形,∴∠CEF=90°,∴CE===3,∵∠ACE=90°,∴AE===,即AE的长是.23.解:(1)由频数分布直方图知m=12,则n=90﹣(9+12+15+24+9)=21,故答案为:12、21;(2)补全频数分布直方图如下:(3)样本中一半学生的每日平均家务劳动时长为≈42.8(min),所以小东每日平均家务劳动时长没超过样本中一半学生的每日平均家务劳动时长,故答案为:没超过;(4)如果该校七至九年级共有420名学生,估计获奖的学生人数为420×=140(人).24.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.25.解:(1)由题意,设y关于x的函数解析式为y=kx+b,把(280,40,),(290,39)代入得:,解得:,∴y与x之间的函数解析式为y=﹣x+68(200≤x≤320);(2)设宾馆的利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+68)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵﹣<0,∴当x<350时,w随x的增大而增大,∵200≤x≤320,∴当x=320时,w取得最大值,最大值为10800元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是10800元.26.解:(1)如图①,过点B作BH⊥OA,垂足为H,由点A(4,0),得OA=4,∵BO=BA,∠OBA=90°,∴OH=BH=OA==2,∴点B的坐标为(2,2);(2)①由点E(﹣,0),得OE=,由平移知,四边形O'C'D'E'是矩形,得∠O'E'D'=90°,O'E'=OE=,∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,∵BO=BA,∠OBA=90°,∴∠BOA=∠BAO=45°,∴∠OFE'=90°﹣∠BOA=45°,∴∠FOE'=∠OFE',∴FE'=OE'=t﹣,∴S△FOE'=OE'•FE'=(t﹣)2,∴S=S△OAB﹣S△FOE'=,即S=﹣t2+t﹣(4≤t<);②(Ⅰ)当4<t≤时,由①知S=﹣t2+t﹣=﹣(t﹣)2+4,∴当t=4时,S有最大值为,当t=时,S有最小值为,∴此时≤S<;(Ⅱ)当<t≤4时,如图2,令O'C'与AB交于点M,D'E'与DB交于点N,∴S=S△OAB﹣S△OE'N﹣S△O’AM=4﹣(t﹣)2﹣(4﹣t)2=﹣t2+t﹣=﹣(t﹣)2+,此时,当t=时,S有最大值为,当t=4时,S有最小值为,∴≤S≤;(Ⅲ)当≤t≤时,如图3,令O'C'与AB交于点M,此时点D'位于第二象限,∴S=S△OAB﹣S△O’AM=4﹣(4﹣t)2=﹣t2+4t﹣4=﹣(t﹣4)2+4,此时,当t=时,S有最小值为,当t=时,S有最大值为,∴≤S≤;综上,S的取值范围为≤S≤;∴S的取值范围为≤S≤.。

新人教版八年级数学下册期末考试(含答案)

新人教版八年级数学下册期末考试(含答案)

新人教版八年级数学下册期末考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:3x -x=__________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、D6、C7、B8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、82、22()1y x =-+3、x (x+1)(x -1)4、2≤a+2b ≤5.5、186、20三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、-3.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、(1)略(2)等腰三角形,理由略6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。

A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。

有意义,则x 的取值范围是( )。

A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。

A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。

A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。

A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。

A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。

A.24B.16C.4错误!未找到引用源。

D.2错误!未找到引用源。

8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。

B.2错误!未找到引用源。

C.3错误!未找到引用源。

D.4错误!未找到引用源。

9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。

新人教版八年级数学下册期末考试及答案【精选】

新人教版八年级数学下册期末考试及答案【精选】

新人教版八年级数学下册期末考试及答案【精选】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.因式分解:2218x =__________.3.分解因式:2x3﹣6x2+4x=__________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、D6、A7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、52、2(x +3)(x ﹣3).3、2x (x ﹣1)(x ﹣2).4、145、96、7三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、11a -,1.3、(1)12,32-;(2)略.4、(1)y =x +5;(2)272;(3)x >-3.5、(1)2;(2)60︒ ;(3)见详解6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

最新人教版八年级下册数学《期末考试卷》含答案解析

最新人教版八年级下册数学《期末考试卷》含答案解析

最新人教版八年级下册数学《期末考试卷》含答案解析2019-2020学年度第二学期期末测试人教版八年级数学试题一、选择题(本大题共 10 小题,共 40 分)1.若分式13x -有意义,则x 的取值范围是()A. 3x ≠B. 3x ≠-C. 3x <D. 3x >2.在平面直角坐标系中,点(1,5)P -在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若一粒米的质量约是0.000021kg ,将数据0.000021用科学记数法表示为()A. 21×10-4B. 2.1×10-6C. 2.1×10-5D. 2.1×10-4 4.在?ABCD 中,∠A+∠C=130°,则∠A 的度数是()A. 50°B. 65°C. 70°D. 80°5.某铁工艺品商城某天销售了110件工艺品,其统计如表:货种ABCDE销售量(件) 10 40 30 10 20该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是() A. 平均数B. 众数C. 中位数D. 方差6.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB 的长为( )A. 3B. 4C. 3D. 57.正方形具有而菱形不一定具有的性质是( ) A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等8.一次函数y kx b =+的图象如图所示,则不等式0kx+b <的解集是()A. 2x >-B. 2x <-C. 3x <-D. 3x >-9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A.72072054848x -=+ B. 72072054848x +=+ C. 720720548x-=D. 72072054848x-=+10. 如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是【】A. B.C.D.二、填空题(本大题共 6 小题,共 24 分)11.计算:π0-(13)-1=______.12.直线y=3x 向下平移2个单位后得到的直线解析式为______.13.若A (x 1,y 1)和B (x 2,y 2)在反比例函数2y x=的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是y 1 y 2;14.若某组数据的方差计算公式是S 2=14[(7-x )+(4-x )2+(3-x )2+(6-x )2],则公式中x =______. 15.?ABCD 中,已知点A (﹣1,0),B (2,0),D (0,1),则点C 的坐标为________.16.如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=kx(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为54,则k的值为______.三、解答题(本大题共 8 小题,共 78 分)17.化简:2162aa--÷(a-4)-12a-.18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)20.已知反比例函数y=kx(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D(1)求这个反比函数的表达式;(2)求△ACD的面积.21.校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.甲乙丙笔78 80 85试面92 75 70试(1)甲、乙、丙的得票数依次是______、______、______;(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.22.如图,?ABCD中,AC、BD交于点O,BD⊥AD于点D,将△ABD沿BD翻折得到△EBD,连接EC、EB.(1)求证:四边形DBCE是矩形;(2)若BD=4,AD=3,求点O到AB的距离.23.如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形ABCD 的“对补点”.(1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.24.如图,在平面直角坐标系中,O 坐标原点,直线l 1:y=kx+4与y 轴交于点A ,与x 轴交于点B .(1)请直接写出点A 的坐标:______;(2)点P 为线段AB 上一点,且点P 的横坐标为m ,现将点P 向左平移3个单位,再向下平移4个单位,得点P′在射线AB 上.①求k 的值;②若点M 在y 轴上,平面内有一点N ,使四边形AMBN 是菱形,请求出点N 的坐标;③将直线l 1绕着点A 顺时针旋转45°至直线l 2,求直线l 2的解析式.四、计算题(本大题共 1 小题,共 8 分)25.解方程:()32121x x x =+--答案与解析一、选择题(本大题共 10 小题,共 40 分)1.若分式13x -有意义,则x 的取值范围是()A. 3x ≠ B. 3x ≠-C. 3x <D. 3x >【答案】A 【解析】【分析】根据分式有意义的条件,得到关于x 的不等式,进而即可求解.【详解】∵分式13x -有意义,∴30x -≠,即:3x ≠,故选A .【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键. 2.平面直角坐标系中,点(1,5)P -在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【详解】根据各象限内点的坐标特征知点P (1,-5)在第四象限. 故选D.3. 若一粒米的质量约是0.000021kg ,将数据0.000021用科学记数法表示为()A. 21×10-4 B. 2.1×10-6C. 2.1×10-5D. 2.1×10-4【答案】C 【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,故数据0.000021用科学记数法表示为2.1×10-5.故选C .考点:科学记数法—表示较小的数.4.在?ABCD 中,∠A+∠C=130°,则∠A 的度数是()A. 50° B. 65°C. 70°D. 80°【答案】B根据平行四边形的性质可知∠A=∠C ,再结合题中∠A+∠C=130°即可求出∠A 的度数.【详解】∵四边形ABCD 是平行四边形,∴A C ∠=∠.又∵∠A+∠C=130°,∴∠A =65°,故选:B .【点睛】本题主要考查平行四边形的性质,掌握平行四边形的性质是解题的关键.5.某铁工艺品商城某天销售了110件工艺品,其统计如表:货种ABCDE销售量(件) 10 40 30 10 20该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是() A. 平均数 B. 众数C. 中位数D. 方差【答案】B 【解析】【分析】根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.【详解】由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.故选:B .【点睛】本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键. 6.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o ,则AB 的长为( )A. 3B. 4C. 3D. 5【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC,BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.7.正方形具有而菱形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等【答案】B【解析】【分析】根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.【点睛】本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.8.一次函数y kx b =+的图象如图所示,则不等式0kx+b <的解集是()A. 2x >-B. 2x <-C. 3x <-D. 3x >-【答案】D 【解析】【分析】写出函数图象在x 轴下方所对应的自变量的范围即可.【详解】当x >-3时,y <0,所以不等式kx+b <0的解集是x >-3.故选D .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A. 72072054848x -=+ B.72072054848x +=+ C. 720720548x-= D.72072054848x-=+ 【答案】D 【解析】【详解】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x +,根据“因客户要求提前5天交货”,用原有完成时间720 48减去提前完成时间72048x+,可以列出方程:72072054848x-=+.故选D .10. 如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是【】A. B. C. D.【答案】B【解析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,∠NEK=∠MEL,EN=EM,∠ENK=∠EML,∴△ENK≌△ENL(ASA).∴阴影部分的面积始终等于正方形面积的14,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.二、填空题(本大题共 6 小题,共 24 分)11.计算:π0-(13)-1=______.【答案】-2 【解析】【分析】直接利用零指数幂和负整数指数幂的运算法则进行计算即可.【详解】原式=1-3=-2.故答案为:-2.【点睛】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键. 12.直线y=3x 向下平移2个单位后得到的直线解析式为______.【答案】y=3x-2 【解析】【分析】直接利用一次函数图象的平移规律“上加下减”即可得出答案.【详解】直线y=3x 沿y 轴向下平移2个单位,则平移后直线解析式为:y=3x-2,故答案为:y=3x-2.【点睛】本题主要考查一次函数的平移,掌握平移规律是解题的关键.13.若A (x 1,y 1)和B (x 2,y 2)在反比例函数2y x=的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是y 1 y 2;【答案】>;【解析】试题解析:∵反比例函数2y x=中,系数20>,∴反比例函数在每个象限内,y 随x 的增大而减小,∴当120x x <<时,12.y y > 故答案.>14.若某组数据的方差计算公式是S 2=14[(7-x )+(4-x )2+(3-x )2+(6-x )2],则公式中x =______.【答案】5.【解析】【分析】根据x 代表的是平均数,利用平均数的公式121()n x x x x n=+++L 即可得出答案.【详解】由题意,可得1(7436)54x =?+++=.故答案为:5.【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.15.?ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.【答案】(3,1).【解析】∵四边形ABCD为平行四边形.∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,∴C(3,1).16.如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=kx(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为54,则k的值为______.【答案】52.【解析】【分析】先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.【详解】设△ABC的高为h,∵S△ABC=12BC?h=123h=54,∴h=56.∵AB AC=,∴点A的横坐标为13322=.设点C(3,m),则点A(3 2,m+56),∵点A、C在反比例函数y=k x(k>0,x>0)的图象上,则k=3m=32(m+56),解得56m =,则k=3m =52,故答案:52.【点睛】本题主要考查反比例函数与几何综合,找到A,C 坐标之间的关系并能够利用方程的思想是解题的关键.三、解答题(本大题共 8 小题,共 78 分)17.化简:2162a a --÷(a-4)-12a -.【答案】32a a +- 【解析】【分析】先利用平方差公式22()()a b a b a b -=+-对216a -进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【详解】原式=()()4411242a a a a a +-?---- =4122a a a +--- =32a a +- 【点睛】本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.18.已知:如图,在菱形ABCD 中,AC 、BD 交于点O ,菱形的周长为8,∠ABC=60°,求BD 的长和菱形ABCD 的面积.【答案】3S 菱形ABCD 3 【解析】【分析】先根据菱形的性质得出AB=BC=2,AO=CO ,BO=DO ,AC ⊥BD ,然后证明△ABC 是等边三角形,进而求出AC 的长度,再利用勾股定理即可得出BD 的长度,最后利用S 菱形ABCD =1 2AC×BD 即可求出面积.【详解】∵菱形ABCD 的周长为8,∴AB=BC=2,AO=CO ,BO=DO ,AC ⊥BD ,90AOB ∠=?∴.∵∠ABC=60°,∴△ABC 是等边三角形,∴AC=AB=BC=2,∴AO=12AC =1.90AOB ∠=?Q ,∴=∴BD=2BO =,∴S 菱形ABCD =12AC× 【点睛】本题主要考查菱形的性质,勾股定理,掌握菱形的性质是解题的关键.19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)【答案】见解析.【解析】【分析】先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS 证明△ABC ≌△CDA ,则有∠3=∠4,进一步得出AD ∥BC ,最后利用两组对边分别平行的四边形为平行四边形即可证明.【详解】已知:如图,在四边形ABCD 中,AB ∥CD ,AB=CD .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图所示:∵AB ∥CD ,∴∠1=∠2,在△ABC 和△CDA 中,12AB CD AC CA =??∠=∠??=?,∴△ABC ≌△CDA (SAS ),∴∠3=∠4,∴AD ∥BC ,∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).【点睛】本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.20.已知反比例函数y =kx(k≠0)的图象经过点B(3,2),点B 与点C 关于原点O 对称,BA ⊥x 轴于点A ,CD ⊥x 轴于点D(1)求这个反比函数的表达式;(2)求△ACD 的面积.【答案】(1 )6y x=;(2)6. 【解析】试题分析:(1)将B 点坐标代入y =kx中,求得k 值,即可得反比例函数的解析式;(2)分别求得点C 、点A、点D的坐标,即可求得△ACD的面积.试题解析:(1)将B点坐标代入y=中,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵点B与点C关于原点O对称,∴C点坐标为(-3,-2).∵BA⊥x轴,CD⊥x轴,∴A点坐标为(3,0),D点坐标为(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=621.校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.甲乙丙笔78 80 85试面92 75 70试(1)甲、乙、丙的得票数依次是______、______、______;(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.【答案】(1)50、80、70;(2)乙的平均成绩最高,应录用乙.【解析】【分析】(1)分别用总票数乘以甲,乙,丙各自得票数的百分比即可得出各自的得票数;(2)按照加权平均数的求法112212n nnx w x w x w w w w ++++++L L 分别求出甲,乙,丙的成绩,选出成绩最高者即可.【详解】(1)甲的得票数为:200×25%=50(票),乙的得票数为:200×40%=80(票),丙的得票数为:200×35%=70(票),(2)甲的平均成绩:50378492373.8343+?+?=++ ;乙的平均成绩:80380475378.5343+?+?=++;丙的平均成绩:70385470376343+?+?=++;∵78.5>76>73.8,∴乙的平均成绩最高,应录用乙.【点睛】本题主要考查加权平均数和扇形统计图,掌握加权平均数的求法是解题的关键.22.如图,在?ABCD 中,AC 、BD 交于点O ,BD ⊥AD 于点D ,将△ABD 沿BD 翻折得到△EBD ,连接EC 、EB .(1)求证:四边形DBCE 是矩形;(2)若BD=4,AD=3,求点O 到AB 的距离.【答案】(1)见解析;(2)点O 到AB 的距离为65.【解析】【分析】(1)先利用折叠的性质和平行四边形的性质得出DE ∥BC ,DE=BC ,则四边形DBCE 是平行四边形,再利用BE=CD 即可证明四边形DBCE 是矩形;(2)过点O 作OF ⊥AB ,垂足为F ,先利用勾股定理求出AB 的长度,然后利用AOB V 面积即可求出OF 的长度,则答案可求.【详解】(1)由折叠性质可得:AD=DE ,BA=BE ,∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,BA=CD ,∴DE ∥BC ,DE=BC ,∴四边形DBCE 是平行四边形,又∵BE=CD ,∴四边形DBCE 是矩形.(2)过点O 作OF ⊥AB ,垂足为F ,∵BD ⊥AD ,∴∠ADB=90°,在Rt △ADB 中,BD=4,AD=3,由勾股定理得:22435+=,又∵四边形ABCD 是平行四边形,∴OB=OD=122BD =, 1122ABO S AB OF OB AD ∴==?V ∴23655OB AD OF AB ??===答:点O 到AB 的距离为65.【点睛】本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.23.如果P 是正方形ABCD 内的一点,且满足∠APB +∠DPC =180°,那么称点P 是正方形 ABCD 的“对补点”.(1)如图1,正方形ABCD 的对角线AC ,BD 交于点M ,求证:点M 是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A (1,1),C (3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.【答案】(1)证明见解析;(2)对补点如:N (52,52).证明见解析【解析】试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC =∠AMB =90°,从而得到点M 是正方形ABCD 的对补点.(2) 在直线y =x (1<x <3)或直线y =-x +4(1<x <3)上除(2,2)外的任意点均可,通过证明△DCN ≌△BCN,得到∠CND =∠CNB,利用邻补角的性质即可得出结论. 试题解析:(1)∵四边形ABCD 是正方形,∴ AC ⊥BD .∴ ∠DMC =∠AMB =90°. 即∠DMC +∠AMB =180°.∴ 点M 是正方形ABCD 的对补点.。

人教版八年级(下)期末数学试卷(3)

人教版八年级(下)期末数学试卷(3)

人教版八年级(下)期末数学试卷(3)一.选择题(共11小题,满分33分,每小题3分)1.(3分)某天小强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中图象表示小强离家的距离y(km)与时间x(min)之间的函数关系.下列说法中错误的是()A.小强从家到体育场用了15分钟B.体育场离文具店1.5千米C.小强在文具店停留了20分钟D.小强从文具店回家的平均速度是千米/小时2.(3分)已知样本数据个数为30,且被分成4组,各组数据个数之比为2:3:4:1,则第二小组频数和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.9和0.4D.12和93.(3分)一组数据x1,x2,…,x7的方差是S2=,则该组数据的和为()A.37B.73C.10D.214.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.5.(3分)已知a≠0,则下列结论正确的为()A.无意义B.C.D.6.(3分)若ab=﹣2,a2+b2=5,则(a﹣b)2的值为()A.9B.8C.7D.67.(3分)下列命题的逆命题成立的是()A.对顶角相等B.菱形的四条边相等C.全等三角形的对应角相等D.如果两个实数相等,那么它们的绝对值相等8.(3分)如图,已知等腰Rt△ABC中,∠ACB=90°,P是BC延长线上一点,作PD⊥BC(A、D在直线BC的同侧),使得PD=PC,则当CP逐渐增大时,△ABD的面积大小变化情况是()A.一直变大B.一直变小C.先变小再变大D.保持不变9.(3分)如图,AB=2,E为AB的中点,在AB的同侧作直角△ACB与直角△ADB,连接DC,DE,CE.当∠DEC=90°时,则CD的长等于()A.1B.C.2D.2.510.(3分)如图,已知四边形ABCD的对角线AC=BD,顺次连接四边形ABCD四边中点,得四边形EFGH,则EFGH的形状是()A.平行四边形B.矩形C.菱形D.等腰梯形11.(3分)在同一平面直角坐标系中,函数y=ax﹣b和y=bx+a的图象可能是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)12.(3分)下列四边形:①平行四边形,②菱形,③矩形,④正方形,其中对角线垂直的为:.(填序号)13.(3分)如图,平行四边形ABCD中,∠ABC=70°,BE平分∠ABC,交AD于点E,DF∥BE,交BC于点F,那么∠1的度数为°.14.(3分)用40cm长的铁丝围成一个长方形,该长方形的长比宽多4cm,则长方形的面积为.15.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(n,2),则不等式2x≥ax+4的解集为.三.解答题(共4小题,满分30分)16.(11分).17.(6分)如图,分别以等腰Rt△ACD的边AD,AC,CD为直径画半圆,所得的两个月形图案AGCE与DHCF(即阴影部分)的面积分别记为S1、S2,△ACD的面积记为S.(1)求证:S=S1+S2.(2)当AD=6cm时,求S的值.18.(6分)如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC=20°,∠ACB=66°,求∠FEG的度数.19.(7分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)运动员甲测试成绩的众数是,中位数是;(2)已知甲成绩的平均数是7分,请分别计算乙、丙两人测试成绩的平均数;若三人成绩的方差分别为S2甲=0.8、S乙2=0.4、S丙2=0.8,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(3)若在甲、乙、丙中任选两人相互进行垫球练习,用树状图或列表法求出选中甲和乙练习的概率是多少?四.解答题(共3小题,满分23分)20.(7分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明:四边形ADCF是菱形;(3)若AB=6,AC=8,求菱形ADCF的面积.21.(8分)计算:(1);(2).22.(8分)在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息2分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为米/分,点D的坐标为.(2)求甲返回时距A地的路程y与时间x之间的函数关系式(写出自变量的取值范围).(3)甲、乙同时出发m分钟后,甲在返回过程中与乙距A地的路程相等.请直接写出m 的值.五.解答题(共2小题,满分22分)23.(10分)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF =CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.24.(12分)已知正方形ABCD中,点E,F分别在边CD,BC上,连接AE,DF.(1)若E为CD的中点,AE⊥DF于点O.①如图1,求证:BF=CF;②如图2,连接OC,求的值;(2)如图3,若AB=,DE=BF,则AE+DF的最小值为(直接写出结果).。

2314.人教版八年级下学期期末考试数学试题及参答案 (5)

2314.人教版八年级下学期期末考试数学试题及参答案 (5)

八年级下册数学期末考试试卷(解析版)一.选择题1.分式无意义,则x的取值范围是()A.x>2B.x=2C.x≠2D.x<22.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.不等式组的解集在数轴上应表示为()A. B. C. D.4.内角和与外角和相等的多边形一定是()A. 八边形B. 六边形C. 五边形D. 四边形5.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B. 2+a<2+bC.D. 3a>3b6.多项式x2﹣kx+9能用公式法分解因式,则k的值为()A. ±3B. 3C. ±6D. 67.若将(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 缩小为原来的8.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是30cm和19cm,则△ABC的腰和底边长分别为()A. 11cm和8cmB. 8cm和11cmC. 10cm和8cmD. 12cm和6cm9.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. ﹣=2 B. ﹣=2 C. ﹣=2 D. ﹣=210.如图,在▱ABCD中,∠ABC=60°,AB=BC=6cm,点M、N分别在BC和CD上,且∠MAN=60°,则四边形AMCN的面积是多少()A. 6cm2B. 18cm2C. 9 cm2D. 8 cm2二.填空题11.因式分解:2x2﹣8=________.12.“a的3倍与12的差是一个非负数”用不等式表示为________.13.一个多边形的内角和为540°,则这个多边形的边数是________.14.分式方程= 的解是________.15.如图,在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=________.16.如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为智慧数:如3=22﹣1,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52…探索从1开始第20个智慧数是________.三.解答题17.解不等式:﹣1.18.先化简(1+ )÷ ,再代入一个你喜欢的整数求值.19.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C1.四.解答题20.为了锻炼意志提高班级凝聚力,某校八年级学生决定全班参加“美丽佛山一路向前﹣﹣﹣50公里徒步”活动,从起点步行出发20分钟后,负责宣传的王老师骑自行车以2倍的速度原路追赶,结果在距起点10千米处追上,求学生步行的速度和王老师骑自行车的速度分别是多少?21.如图,同学们用直尺和三角板画平行线,将一块三角板ABC的一边AC贴着直尺推移到A1B1C1的位置.(1)这种画平行线的方法利用了怎样的移动?(2)连接BB1,证明得到的四边形ABB1A1是平行四边形.22.小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:一次函数与方程的关系:①一次函数的解析式就是一个二元一次方程;②点B的横坐标是方程①的解;③点C的坐标(x,y)中的x,y的值是方程组②的解一次函数与不等式的关系:①函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式③的解集;②函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式④的解集.(1)请根据以上方框中的内容在下面数学序号后写出相应的式子:①________;②________;③________;④________;(2)如果点C的坐标为(2,5),那么不等式kx+b≥k1x+b1的解集是________.五.解答题23.计算下列各式:(1)1﹣(2)(1﹣)(1﹣)(3)(1﹣)(1﹣)(1﹣)(4)请你根据上面算式所得的简便方法计算下式:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)24.为了保护环境,某企业决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如表.A型 B型价格(万元/台)12 10处理污水量(吨/月) 240 200年消耗费(万元/台) 1 1预算要求,该企业购买污水处理设备的资金不高于105万元.(1)请问该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)实际上,该企事业污水的处理方式有两种:A.交污水厂处理厂处理;B.企业购买设备自行处理.如果污水厂处理厂处理污水每吨收费10元,在第(2)问的条件下,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?25.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1四边形ABCD中,取对角线BD的中点O,连接OA,OC,显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于E,则直线AE即为一条“好线”.(1)如图1,试说明直线AE是“好线”的理由;(2)如图2,AE为一条“好线”,F为AD边上的一点,请作出经过F点的“好线”,并说明理由;(3)如图3,五边形ABCDE是一块土地的示意图,经过多年开垦荒地,现已变成如图3所示的形状,但原块土地与开垦荒地的分界小路(折线CDE)还保留着,现在请你过E点修一条直路.要求直路左边的土地面积与原来一样多(只需对作图适当说明无需说明理由)答案解析部分一.<b >选择题</b>1.【答案】B【考点】分式有意义的条件【解析】【解答】由题意得:x﹣2=0,解得x=2,故答案为:B.【分析】分式无意义则分式的分母为零,故此可得到关于x的方程,然后求得方程的解即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】A、是轴对称图形,不是中心对称图形,A不符合题意;B、不是轴对称图形,也不是中心对称图形,B不符合题意;C、是轴对称图形,也是中心对称图形,C符合题意;D、是轴对称图形,不是中心对称图形,D不符合题意.故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.【答案】B【考点】在数轴上表示不等式的解集【解析】【解答】不等式组的解集是≤x<2,在数轴上可表示为:故答案为:B.【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.【答案】D【考点】多边形内角与外角【解析】【解答】多边形外角和=360°,根据题意,得(n﹣2)•180°=360°,解得n=4.故答案为:D.【分析】任意多边形的外角和为360°,设多边形的边数为n,然后依据多边形的内角和公式列方程求解即可.5.【答案】D【考点】不等式的性质【解析】【解答】A、a>b,则a﹣5>b﹣5,A不符合题意;B、a>b,则2+a>2+b,B不符合题意;C、a>b,则>,C不符合题意;D、a>b,则3a>3b,D符合题意.故答案为:D.【分析】依据不等式的性质1可对A、B作出判断;依据不等式的性质2可对C、D作出判断.6.【答案】C【考点】因式分解-运用公式法【解析】【解答】∵多项式x2﹣kx+9能用公式法分解因式,并且它有三项,∴它是一个完全平方式,∴这两个数是3、x,∴k=±2×3=±6.故答案为:C.【分析】依据中间项等于“±2ab”进行判断即可.7.【答案】D【考点】分式的基本性质【解析】【解答】=== • .故答案为:D.【分析】首先分别用3a和3b去代换原分式中的a和b,然后利用分式的基本性质化简即可.8.【答案】A【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是30cm和19cm,∴AB=30﹣19=11cm,∴BC=19﹣11=8cm,即△ABC的腰和底边长分别为11cm和8cm.故答案为:A.【分析】首先根据线段垂直平分线的性质得到AD=BD,然后通过等量代换得到△DBC的周长=AC+BC,再根据两个三角形的周长求出AB,然后BC的值即可.9.【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故答案为:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,接下来,用含x的式子表示实际需要的天数和计划需要的天数,最后依据原计划所用时间-实际所用时间=2列出方程即可.10.【答案】C【考点】平行四边形的性质【解析】【解答】解:连接AC,∵∠B=60°,∴∠BAD=120°,∵∠MAN=60°,∴∠BAM=∠CAN,∴△ABC为等边三角形,∴AB=AC,∴△ABM≌△ACN,∴四边形AMCN的面积等于平行四边形面积的一半.∵AB=6cm,∴BC边上的高为3 ,S菱形ABCD=6× =18 ,∴四边形AMCN的面积等于×18 =9 .故答案为:C.【分析】连接AC,可证明△ABC为等边三角形,从而得到AB=AC,然后再证明△ABM和△ANC全等,故此可得到四边形AMCN的面积正好等于平行四边形面积的一半.二.<b >填空题</b>11.【答案】2(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:2x2﹣8=2(x+2)(x﹣2).【分析】先提取公因式,然后再利用平方差公式进行分解即可.12.【答案】3a﹣12≥0【考点】一元一次不等式的应用【解析】【解答】解:根据题意,得3a﹣12≥0.故答案为:3a﹣12≥0.【分析】非负数包括正数和零,然后依据3a与12的差大于等于零列出不等式即可.13.【答案】5【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【分析】设这个多边形的边数是n,然后依据多边形的内角和定理可得到(n-2)•180°=540°,然后解关于n的方程即可.14.【答案】x=2【考点】分式方程的解【解析】【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.【分析】最简公分母为x(x-1),首先方程两边同时乘以x(x-1),然后再解关于x的整式方程,最后,再进行检验即可.15.【答案】3【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∵AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠FED=∠CBE,∠ABF=∠F,∵∠ABE=∠CBE,∴∠ABE=∠AEB,∠FED=∠F,∴AB=AE=5cm,DF=DE,∵AD=8cm,∴DE=AD﹣AE=3(cm),∴DF=3cm.故答案为:3.【分析】依据平行线的性质和角平分线的定义可得到∠ABE=∠AEB,∠FED=∠F,依据等角对等边的性质可得到AB=AE,DE=DF.16.【答案】29【考点】平方差公式【解析】【解答】解:∵第1个智慧数3=22﹣12,第2个智慧数5=32﹣22,第3个智慧数7=42﹣32,第4个智慧数8=32﹣12,第5个智慧数9=52﹣42,第6个智慧数11=62﹣52,第7个智慧数12=42﹣22,第8个智慧数13=72﹣62,第9个智慧数15=42﹣12,第10个智慧数16=52﹣32,第11个智慧数17=92﹣82,第12个智慧数19=102﹣92,…∴可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.即第n组的第一个数为4n(n≥2),∵20=3×6+2,∴第20个智慧数位于第7组第2个数,∵第7组的第1个智慧数为4×7=28,∴第7组第2个数为29,即第20个智慧数为29,故答案为:29.【分析】观察所给的算式可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2),又因为20=3×6+2,所以第20个智慧数是第7组中的第2个数,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:去分母得,3(3x﹣2)≥5(2x+1)﹣15,去括号得,9x﹣6≥10x+5﹣15,移项得,9x﹣10x≥5﹣15+6,合并同类项得,﹣x≥﹣4,把x的系数化为1得,x≤4.【考点】解一元一次不等式【解析】【分析】首先不等式两边同时乘以15,需要注意不要漏乘不含分母的项,然后再按照去括号、移项、合并同类项的步骤求解即可.18.【答案】解:原式= ÷= ×=∵解得:p≠±2且p≠0且p≠1令p=3代入得,原式=【考点】分式的化简求值【解析】【分析】首先计算括号内的减法,然后将除法转化为乘法,接下来,依据分式的乘法法则进行计算,最后再选择能够使得分式有意义的p的值代入计算即可.19.【答案】(1)解:如图,△A1B1C1为所作;(2)解:如图,Rt△A2B2C1为所作.【考点】坐标与图形变化-旋转【解析】【分析】(1)利用网格特点和平移的方向和距离确定出A、B、C的对应点A1、B1、C1的位置,从而得到Rt△A1B1C1;(2)利用网格特点和旋转中心、旋转角、旋转方向确定出A1、B1的对应点A2、B2的位置,从而得到Rt△A2B2C1.四.<b >解答题</b>20.【答案】解:设学生步行的速度为x千米/小时,则王老师骑自行车的速度为2x千米/小时,由题意得,﹣= ,解得:x=15,经检验:x=15是原方程的根,且符合题意.则2x=15×2=30(千米/小时),答:学生步行的速度是15千米/小时,王老师骑自行车的速度是30千米/小时.【考点】分式方程的应用【解析】【分析】设学生步行的速度为x千米/小时,则王老师骑自行车的速度为2x千米/小时,然后用含x的式子表示同学步行所用的时间和王老师骑自行车所用的时间,最后依据同学步行走10千米所用的时间-王老师骑自行车走10千米所用的时间=小时列方程求解即可.21.【答案】(1)解:有平行线的画法知道,三角形是平移变换,平移没有改变图形的形状和大小,得到同位角相等,即同位角相等两直线平行;(2)解:∵将一块三角板ABC的一边AC贴着直尺推移到A1B1C1的位置,∴AB=A1B1,AB∥A1B1,∴四边形ABB1A1是平行四边形.【考点】平行四边形的判定,作图—复杂作图【解析】【分析】(1)依据平移的定义进行解答即可;(2)利用平移的性质可得到AB=A1B1,AB∥A1B1,然后依据一组对边平行且相等的四边形是平行四边形进行证明即可.22.【答案】(1)kx+b=0;;kx+b>0;kx+b<0(2)x≤2【考点】一次函数与一元一次不等式,一次函数与二元一次方程(组)【解析】【解答】解:(1)根据观察:①kx+b=0;②;③kx+b>0;④kx+b<0.(2)如果C点的坐标为(2,5),那么当x≤2时,不等式kx+b≥k1x+b1才成立.故答案为:①kx+b=0;②;③kx+b>0;④kx+b<0;(2)x≤2.【分析】(1)①依据x轴上各点的纵坐标为0可得到kx+b=0的解;②因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b中,当y>0时,kx+b>0,因此x的取值范围是不等式kx+b>0的解集;同理可求得④的结论.(2)由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值.五.<b >解答题</b>23.【答案】(1)解:1﹣=(2)解:(1﹣)(1﹣)=(3)解:原式=(4)解:原式= • • • … • =【考点】平方差公式【解析】【分析】对于(1)、(2)、(3),先依据平方差公式进行分解因式,然后再依据乘法法则进行计算即可;对于(4),据平方差公式进行分解因式,然后再依据乘法法则进行计算,注意确定好约分时,哪些项可约分.24.【答案】(1)解:设购买污水处理设备A型x台,则B型(10﹣x)台.12x+10(10﹣x)≤105,解得x≤2.5.∵x取非负整数,∴x可取0,1,2.有三种购买方案:方案一:购A型0台、B型10台;方案二:购A型1台,B型9台;方案三:购A型2台,B型8台.(2)解:240x+200(10﹣x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为:12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元),∴为了节约资金,应选购A型1台,B型9台.(3)解:10年企业自己处理污水的总资金为:102+1×10+9×10=202(万元),若将污水排到污水厂处理:2040×12×10×10=2448000(元)=244.8(万元).节约资金:244.8﹣202=42.8(万元).【考点】一元一次不等式的应用【解析】【分析】(1)设购买污水处理设备A型x台,则B型(10-x)台,然后依据购买污水处理设备的资金不高于105万元列出不等式方程求解即可,x的值取整数.(2)依据企业每月处理的污水量大于等于2040吨列不等式求解,最后再根据x的值选出最佳方案.(3)首先计算出企业自己处理污水的总资金,再计算出污水排到污水厂处理的费用,相比较即可得解.25.【答案】(1)解:∵点O是BD的中点,∴S△AOB=S△AOD,S△BOC=S△DOC,∴S△AOB+S△BOC=S△AOD+S△DOC= S四边形ABCD,∴S四边形ABCO= S四边形ABCD.∴折线AOC能平分四边形ABCD的面积,设AE交OC于F.∵OE∥AC,∴S△AOE=S△COE,∴S△AOF=S△CEF,∵折线AOC能平分四边形ABCD的面积,∴直线AE平分四边形ABCD的面积,即AE是四边形ABCD的一条“好线”.(2)解:连接EF,过A作EF的平行线交CD于点G,连接FG,则GF为一条“好线”.∵AG∥EF,∴S△AGE=S△AFG.设AE与FG的交点是O.则S△AOF=S△GOE,又AE为一条“好线”,所以GF为一条“好线”.(3)解:如图3,连接CE,过点D作DF∥EC交CM于F,连接EF,即EF为所修的直路,理由:过点D作DG⊥CE于G,过点F作FH⊥EC于H,∵DF∥EC,∴DG=FH(夹在平行线间的距离处处相等),∵S△CDE= EC×DG,S△CEF= EC×FH,∴S△CDE=S△CEF,∴S四边形ABCDE=S四边形ABCE+S△CDE=S四边形ABCE+S△CEF=S五边形ABCFE.即:直路左边的土地面积与原来一样多.【考点】平行线之间的距离【解析】【分析】(1)首先作AH⊥BC,垂足为H.依据三角形的面积公式可得到S△ABD=BD•AH,S△ADC=DC•AH,然后结合条件BD=CD,可得到S△ABD=S△ADC,再判断出S四边形ABCO=S四边形ABCD,进而判断出S△AOE=S△COE,推出S△AOF=S△CEF,即可推出直线AE平分四边形ABCD的面积;(2)首先连接EF,FG,然后过点A作EF的平行线交CD于点G,由AG∥EF,推出S△AGE=S△AFG.设AE 与FG的交点是O.则S△AOF=S△GOE,又AE为一条“好线”,所以GF为一条“好线”,(3)首先连接CE,EF,然后过点D作DF∥EC交CM于F,然后依据夹在平行线间的距离处处相等得出DG=FH,于是可得到S△CDE=S△CEF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江西省赣州市石城县八年级(下)期末数学试卷一、选择题1.值等于()A.±4 B.4 C.±2 D.22.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,133.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.54.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班 B.乙班 C.丙班 D.丁班5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1 D.2k+n=m﹣2二、填空题7.化简: = .8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程扫过的面积是.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为.三、解答题13.(6分)计算:﹣+14.(6分)计算:2×+.15.(6分)在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.16.(6分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.(6分)如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.四、解答题18.(8分)某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t (小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t <3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.19.(8分)已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.20.(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?21.(8分)如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.五、解答题(10分)22.(10分)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA2的长为;OA4的长为;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA n﹣1A n的面积分别是多少?(用含n的代数式表示)(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.六、解答题(12分)23.(12分)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE= ;当点P在矩形的内部时,BE的取值范围是.(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.2015-2016学年江西省赣州市石城县八年级(下)期末数学试卷参考答案与试题解析一、选择题1.值等于()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】由于即是求16的算术平方根.根据算术平方根的概念即可求出结果.【解答】解:∵表示16的算术平方根,∴的值等于4.故选B.【点评】此题考查了算术平方根的概念以及求解方法,解题注意首先化简.2.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,13【考点】勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、62+122≠132,不能构成直角三角形,故选项错误;B、32+42≠72,不能构成直角三角形,故选项错误;C、82+152≠162,不能构成直角三角形,故选项错误;D、52+122=132,能构成直角三角形,故选项正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,若菱形ABCD的周长为20,则OH的长为()A.2 B.2.5 C.3 D.3.5【考点】菱形的性质.【分析】根据菱形的性质可得AO⊥BO,从而可判断OH是Rt△DAB斜边的中线,继而可得出OH的长度.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的周长为20,∴AD=5又∵点H是AD中点,则OH=AD=×5=,故选:B.【点评】本题考查了菱形的性质及直角三角形斜边的中线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.4.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班 B.乙班 C.丙班 D.丁班【考点】方差.【分析】根据四个班的平均分相等结合给定的方差值,即可找出成绩最稳定的班级.【解答】解:∵甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5、S乙2=21.7、S丙2=15、S丁2=17,且8.5<15<17<21.7,∴甲班体考成绩最稳定.故选A.【点评】本题考查了方差,解题的关键是明白方差的意义.本题属于基础题,难度不大,解决该题型题目时,熟练掌握方差的意义是关键.5.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO【考点】平行四边形的判定.【分析】平行四边形的性质有①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形,根据以上内容判断即可.【解答】解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.【点评】本题考查了对平行四边形和等腰梯形的判定的应用,注意:平行四边形的性质有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.6.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1 D.2k+n=m﹣2【考点】两条直线相交或平行问题.【分析】由函数图象可判断A;由直线与y轴的交点位置可判断B;由函数图象可知当x>2时,对应的函数值的大小关系可判断C;把A点横坐标代入两函数解析式可判断D;可得出答案.【解答】解:∵y2=kx+n在第一、三、四象限,∴k>0,故A正确;由图象可知直线y1与y轴的交点在直线y2相与y轴交点的上方,∴m>n,故B正确;由函数图象可知当x<2时,直线y1的图象在y2的上方,∴y1>y2,故C不正确;∵A点为两直线的交点,∴2k+n=m﹣2,故D正确;故选C.【点评】本题主要考函数的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.二、填空题7.化简: = .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出答案.【解答】解: ==.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.8.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55 .【考点】函数关系式.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.9.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程扫过的面积是48 .【考点】矩形的性质;平移的性质.【分析】首先根据平移的知识可知S△ABO=S△DEC,进而可知△ABO平移过程扫过的面积是矩形ABCD的面积,于是得到答案.【解答】解:∵△ABO向右平移得到△DCE,∴S△ABO=S△DEC,∴△ABO平移过程扫过的面积是矩形ABCD的面积,∵AD=8,AB=6,∴矩形ABCD的面积为48,∴△ABO向右平移过程扫过的面积是48,故答案为48.【点评】本题主要考查了矩形的性质以及平移的知识,解题的关键是知道△ABO平移过程扫过的面积是矩形ABCD的面积,此题难度一般.10.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为 1 .【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.11.函数的图象交x轴于A,交y轴于B,则AB两点间的距离为 5 .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,y=0分别求出点A、B的坐标,再根据坐标特征求得AB点的距离.【解答】解:根据题意,令y=0,解得x=﹣3,即点A的坐标为(﹣3,0),令x=0,解得y=﹣4,即点B的坐标为(0,﹣4),∴在直角三角形AOB中,AB2=32+42=25,∴AB=5.故填5.【点评】本题考查了一次函数上点的坐标特征,是基础题.12.如图,已知正方形ABCD的边长为2,以AD为边向正方形外作等腰直角三角形ADE,则BE的长为、4或2.【考点】正方形的性质;等腰直角三角形.【分析】分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑,通过构建直角三角形,利用正方形和等腰直角三角形的性质找出直角边的长度,利用勾股定理即可得出结论.【解答】解:AD为边向正方形外作等腰直角三角形ADE分三种情况,如图所示.①当∠AED=90°时,过点E作EF⊥BA延长线于点F,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AF=EF=AD=1.在Rt△BFE中,BF=AB+AF=2+1=3,EF=1,∴BE==;②当∠DAE=90°时,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴AE=AD=2,∴BE=AB+AE=2+2=4;③当∠ADE=90°时,连接BE,∵正方形ABCD的边长为2,△AED为等腰直角三角形,∴DE=AD=2,在Rt△BCE中,BC=2,CE=CD+DE=2+2=4,∴BE==2.故答案为:、4或2.【点评】本题考查了正方形的性质、等腰直角三角形的性质以及勾股定理,解题的关键是分∠AED=90°、∠DAE=90°以及∠ADE=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,分类讨论是关键.三、解答题13.计算:﹣+【考点】二次根式的加减法.【分析】二次根式的加减法,先化简,再合并同类二次根式.【解答】解:原式=3﹣4+=0.【点评】二次根式的加减运算,实质是合并同类二次根式.14.计算:2×+.【考点】二次根式的混合运算.【分析】直接利用二次根式混合运算法则化简求出答案.【解答】解:原式=2××+=3+. 【点评】此题主要考查了二次根式的混合运算,正确掌握二次根式运算法则是解题关键.15.在平面直角坐标系xOy 中,一次函数的图象经过点A (1,﹣3)和(2,0),求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【分析】设一次函数解析式为y=kx+b ,把A 、B 两点的坐标代入可求得k 、b 的值,可求得一次函数的解析式.【解答】解:设一次函数解析式为y=kx+b ,把A 、B 两点的坐标代入可得,解得,∴一次函数解析式是y=3x ﹣6.【点评】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.16.如图,平行四边形ABCD 中,AE=CE ,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE 的角平分线;(2)在图2中,作出∠AEC 的角平分线.【考点】平行四边形的性质;作图—基本作图.【分析】(1)连接AC ,由AE=CE 得到∠EAC=∠ECA ,由AD ∥BC 得∠DAC=∠ECA ,则∠CAE=∠CAD ,即AC 平分∠DAE ;(2)连接AC 、BD 交于点O ,连接EO ,由平行四边形的性质及等腰三角形的性质可知EO 为∠AEC 的角平分线.【解答】解:(1)连接AC ,AC 即为∠DAE 的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.【点评】本题考查的是作图﹣基本作图、平行四边形的性质、等腰三角形的性质,熟知平行四边形及等腰三角形的性质是解答此题的关键.17.如图,四边形ABCD是菱形,对角线AC=8 cm,BD=6cm,DH⊥AB于H,求DH的长.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.四、解答题18.某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t <4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)本次随机抽取的学生人数为200 人;(2)求出x值,并将不完整的条形统计图补充完整;(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由条形图可知A等级有90人,由扇形图可知对应的百分比为45%,那么抽查的学生总数=A等级的人数÷对应的百分比,计算即可求解;(2)根据所有等级的百分比的和为1,则可计算出x的值,再求出B级与C级的人数,即可作图;(3)利用每周课外阅读时间量满足2≤t<4的人数=该校总人数×B级的与C级百分比的和计算即可.【解答】解:(1)抽查的学生总数=90÷45%=200人,(2)∵x%+15%+10%+45%=1,∴x=30;B等级的人数=200×30%=60人,C等级的人数=200×10%=20人,条形统计图补充如下:(3)2500×(10%+30%)=1000人,所以估计每周课外阅读时间量满足2≤t<4的人数为1000人.故答案为200.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是读懂统计图,能从条形统计图,扇形统计图中得到准确的信息.19.已知一个长方形的长为(2+)cm,宽为(2﹣)cm,请分别求出它的面积和对角线的长.【考点】二次根式的应用.【分析】长方形的面积等于长乘以宽,计算时应用平方差公式比较简便;求长方形的对角线应用勾股定理,注意二次根式的运算【解答】解:如图所示:∵在Rt△BCD中,BC=(2+)cm,CD=(2﹣)cm,且∠BCD=90°,∴S四边形ABCD=(2+)×(2﹣)=(2)2﹣()2=8﹣2=6(cm2)由勾股定理得:BD====2(cm)即:该长方形的面积和对角线的长分别是6cm2、2cm【点评】本题考查了二次根式的应用,解题的关键的是二次根式的运算:(2+)×(2﹣)=(2)2﹣()2、(2+)2=(2)2+2×2×+()2=12+4+2等.20.甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中函数的图象;(3)春节期间如何选择这两家商场去购物更省钱?【考点】一次函数的应用.【分析】(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【解答】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7x+60时,x=600,所以,x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【点评】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.21.如图,已知△ABC中,AB=AC,E,D,F分别是边AB,BC,AC的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,BC=4,求四边形AEDF的周长.【考点】菱形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)由AB=AC利用中位线的性质可得DE=DF,四边形AEDF为平行四边形,由邻边相等的平行四边形是菱形证得结论;(2)首先由等腰三角形的性质“三线合一”得AD⊥BC,BD=BC=,由锐角三角函数定义得AE,易得四边形AEDF的周长.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AF且DE==AF,∴四边形AEDF为平行四边形,同理可得,DF∥AB且DF=,∵AB=AC,∴DE=DF,∴四边形AEDF是菱形;(2)解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,BD=BC=,∴AE===4,∵四边形AEDF是菱形,∴四边形AEDF的周长为4×4=16.【点评】此题主要考查了菱形的判定及性质定理,等腰三角形的性质,三角形中位线的性质定理,综合运用各定理是解答此题的关键.五、解答题(10分)22.(10分)(2016春•石城县期末)如图是第七届国际数学教育大会的会徽示意图,主题图案是由一连串如图所示的直角三角形演化而成的.其中的第一个三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3…=A8A9=1.(1)根据图示,求出OA2的长为;OA4的长为 2 ;OA6的长为.(2)如果按此演变方式一直连续作图到△OA n﹣1A n,则线段OA n的长和△OA n﹣1A n的面积分别是多少?(用含n的代数式表示)(3)若分别用S1,S2,S3…S100表示△OA1A2,△OA2A3,△OA3A4…△OA99A100的面积,试求出S12+S22+S32+…+S1002的值.【考点】等腰直角三角形;规律型:图形的变化类.【分析】(1)利用勾股定理依次计算即可;(2)依据(1)的计算找出其中的规律可得到OA n的长,然后依据计算出前几个三角形的面积,然后依据规律解答求得△OA n﹣1A n的面积即可;(3)首先依据题意列出算式,然后再求解即可.【解答】解:(1)OA2==,OA3==,OA4===2,…OA6=故答案为:;2;.(2)由(1)可知:OA n=.S1=×1×1=;S2=××;S3=××1=;…△OA n﹣1A n的面积=.(3)S12+S22+S32+…+S1002=()2+()2+()2+…+()2==1262.5.【点评】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题,找出其中的规律是解题的关键.六、解答题(12分)23.(12分)(2016春•石城县期末)如图,在矩形ABCD中,AB=16,AD=10,E是线段AB 上一点,连接CE,现将∠B向右上方翻折,折痕为CE,使点B落在点P处.(1)当点P落在CD上时,BE= 10 ;当点P在矩形的内部时,BE的取值范围是0<BE <10 .(2)当点E与点A重合时:①请在备用图1中画出翻折后的图形(尺规作图,保留作图痕迹)②连接PD,求证:PD∥AC;(3)当点P在矩形ABCD的对称轴上时,求BE的长.【考点】四边形综合题.【分析】(1)由折叠的性质得到推出△BCE是等腰直角三角形,即可得到结论;(2)①由题意画出图形即可;②根据全等三角形的性质得到∠PAC=∠DCA,设AP与CD相交于O,于是得到OA=OC,求得∠OAC=∠OPD,根据平行线的判定定理得到结论;(3)由折叠的性质用BE表示出AE,最后用勾股定理即可.【解答】解:(1)当点P在CD上时,如图1,∵将∠B向右上方翻折,折痕为CE,使点B落在点P处,∴∠BCE=∠ECP=45°,∴△BCE是等腰直角三角形,∴BE=BC=AD=10,当点P在矩形内部时,BE的取值范围是0<BE<12;故答案为:10,0<BE<10;(2)①补全图形如图2所示,②当点E与点A重合时,如图3,由折叠得,AB=PC,在△ADC与△CPA中,,∴△ADC≌△CPA,∴∠PAC=∠DCA,设AP与CD相交于O,则OA=OC,∴OD=OP,∠ODP=∠OPD,∵∠AOC=∠DOP,∴∠OAC=∠OPD∴PD∥AC,(3)如备用图1,由折叠得,BE=PE,PC=BC=10,AE=AB﹣BE,在Rt△ABC中,AC==2,∴AP=AC﹣PC=2﹣10,在Rt△APE中,AE2﹣PE2=AP2,∴(16﹣BE)2﹣BE2=(2﹣10)2,∴BE=.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理折叠的性质,等腰直角三角形的性质,尺规作图,正确的作出辅助线构造全等三角形是解题的关键.。

相关文档
最新文档