2012年中考数学专题训练十 二次函数
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。
中考数学复习《二次函数》专题训练-附带有参考答案
中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
2012年全国各地市中考数学模拟试题分类汇编18二次函数的图象和性质
二次函数的图象和性质一、选择题1、(2012年浙江金华一模)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+- C .()213y x =-- D .()213y x =-+答案:D2、.(2012年浙江金华四模)抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1)答案:C3、(2012年浙江金华五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ▲ ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A4、(2012年浙江金华五模)抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3答案:B5、(2012江苏无锡前洲中学模拟)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x =C .2225y x= D .245y x =答案:B(第1题) AB D6.(2012荆门东宝区模拟)在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).(第2题)答案:D7. (2012年江苏海安县质量与反馈)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是A .y =2x 2+2B .y =2x 2-2C .y =(x -2)2D .y =2(x +2)2答案:D.8. (2012年江苏沭阳银河学校质检题)下列函数中,是二次函数的是(▲) A 、xx y 12-= B 、x x y 322+= C 、22y x y +-= D 、1+=x y 答案: B.9. (2012年江苏沭阳银河学校质检题)抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y下列说法①抛物线与x 轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=21,④在对称轴的左侧,y 随x 的增大而增大,正确的有(▲) A 、1个 B 、2个 C 、3个 D 、4个 答案:C.10.马鞍山六中2012中考一模).二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是( )A .B .C .D .答案:A11.(2012荆州中考模拟).将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 答案:A12.(2012年南岗初中升学调研).抛物线y=一x2-2与y轴的交点坐标是( )。
中考数学专题专练--二次函数与一次函数的综合 (1)
中考数学专题专练--二次函数与一次函数的综合1.如图,二次函数y=- 34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=6,并求出此时P点的坐标.4.如图,抛物线y1=a(x-1)2+4与x轴交于A(-1,0)。
(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x 轴于点B,求△ABC的面积。
5.如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线I:x=-1,该抛物线与x轴的另一个交点为B。
(1)求此抛物线的解析式;(2)点P在抛物线上且位于第二象限,求△PBC的面积最大值及点P的坐标。
(3)点M在此抛物线上,点N在对称轴上,以B、C、M、N为顶点的四边形能否为平行四边形?若能,写出所有满足要求的点M 的坐标;若不能,请说明理由。
6.如图,直线y=-x+2与抛物线y=ax 2交于A ,B 两点,点A 坐标为(1,1)。
(1)水抛物线的函数表达式:(2)连结OA ,OB ,求△AOB 的面积。
7.已知抛物线y=ax 2+bx+c 的顶点P(1,-1),且过Q(5,3)。
中考数学专题训练---二次函数的综合题分类含答案
中考数学专题训练---二次函数的综合题分类含答案一、二次函数1.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣32x2﹣32x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278. ∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3), ∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),∴AC=,AN ,∴C△ANM=AM+MN+AN=AC+AN=32+10.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(1-62,74). 【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221bba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB ,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+2或1-2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-6,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2ba=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .4.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.5.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上.设O 'C '与x 轴交于点E ,与直线OD 交于点P ;设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+ 当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知, 方程的两根为:257m m x ()-±-= 即1216x x m =-=-+,由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为45+41或5-412;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+41或5-41;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6).【解析】 【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得; (3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.10.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE 的长与a 值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,∴﹣∴a=,∴45°≤β≤60°,a≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE ,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN ,∴△DPM ≌△EPN ,∴PM=PN ,PM=EN ,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m ,∴n=﹣m ﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1,∵抛物线的顶点在第二象限,∴m <1.∴n=﹣m ﹣1(m <1).故答案为:(1)(﹣1,4),3;(2)OE 的长与a 值无关;(3)3﹣1;(4)n=﹣m ﹣1(m <1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。
中考数学真题二次函数专项练习(带答案)
中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
2012年中考数学一轮复习精品讲义 二次函数
第二十六章 二次函数本章小结小结1 本章概述本章从实际问题的情境入手引出基本概念,引导学生自主探索变量之间的关系及其规律,认识二次函数及其图象的一些基本性质,学习怎样寻找所给问题中隐含的数量关系,掌握其基本的解决方法.本章的主要内容有两大部分:一部分是二次函数及其图象的基本性质,另一部分是二次函数模型.通过分析实例,尝试着解决实际问题,逐步提高分析问题、解决问题的能力.二次函数综合了初中所学的函数知识,它把一元二次方程、三角形等知识综合起来,是初中各种知识的总结.二次函数作为一类重要的数学模型,将在解决有关实际问题的过程中发挥重要的作用. 小结2 本章学习重难点【本章重点】 通过对实际问题情境的分析,确定二次函数的表达式,体会二次函数的意义;会用描点法画二次函数的图象,能从图象中认识二次函数的性质;会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题;会利用二次函数的图象求一元二次方程的近似解.【本章难点】 会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题. 【学习本章应注意的问题】1.在学习本章的过程中,不要死记硬背,要运用观察、比较的方法及数形结合思想熟练地画出抛物线的草图,然后结合图象来研究二次函数的性质及不同图象之间的相互关系,由简单的二次函数y =ax 2(a ≠0)开始,总结、归纳其性质,然后逐步扩展,从y =ax 2+k ,y =a (x -h )2一直到y =ax 2+bx +c ,最后总结出一般规律,符合从特殊到一般、从易到难的认识规律,降低了学习难度.2.在研究抛物线的画法时,要特别注意抛物线的轴对称性,列表时,自变量x 的选取应以对称轴为界进行对称选取,要结合图象理解并掌握二次函数的主要特征.3.有关一元二次方程与一次函数的知识是学习二次函数内容的基础,通过观察、操作、思考、交流、探索,加深对教材的理解,在学习数学的过程中学会与他人交流,同时,在学习本章时,要深刻理解两种思想和两种方法,两种思想指的是函数思想和数形结合思想,两种方法指的是待定系数法和配方法,在学习过程中,对数学思想和方法要认真总结并积累经验小结3 中考透视近几年来,各地的中考试卷中还出现了设计新颖、贴近生活、反映时代特点的阅读理解题、开放性探索题和函数的应用题,尤其是全国各地中考试题中的压轴题,有三分之一以上是这一类题,试题考查的范围既有函数的基础知识、基本技能以及基本的数学方法,还越来越重视对学生灵活运用知识能力、探索能力和动手操作能力的考查,特别是二次函数与一元二次方程、三角形的面积、三角形边角关系、圆的切线以及圆的有关线段组成的综合题,主要考查综合运用数学思想和方法分析问题并解决问题的能力,同时也考查计算能力、逻辑推理能力、空间想象能力和创造能力.知识网络结构图二次函数的概念二次函数的图象开口方向对称轴顶点坐标增减性专题总结及应用二次函数 二次函数的性质 二次函数的应用 一元二次方程的近似解 一元二次不等式的解集 二次函数的最大(小)值 在实际问题中的应用一、知识性专题专题1 二次函数y =ax 2+bx +c 的图象和性质【专题解读】 对二次函数y =ax 2+bx +c 的图象与性质的考查一直是各地中考必考的重要知识点之一,一般以填空题、选择题为主,同时也是综合性解答题的基础,需牢固掌握.例1 二次函数y =ax 2+bx +c (a ≠0)的图象如图26-84所示,则下列结论:①a >0;②c >0;③b 2-4ac >0.其中正确的个数是 ( )A .0个B .1个C .2个D .3个分析 ∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半铀,∴c >0;∵抛物线与x 轴有两个交点,∴b 2-4ac >0.故②③正确.故选C .【解题策略】 解此类题时,要注意观察图象的开口方向、与y 轴交点的位置以及与x 轴交点的个数.例2 若y =ax 2+bx +c ,则由表格中的信息可知y 与x 之间的函数关系式是 ( )x -1 0 1 ax 2 1 ax 2+bx +c83A .y =x 2-4x +3B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +8分析 由表格中的信息可知,当x =1时,ax 2=1,所以a =1.当x =-1时,ax 2+bx +c =8,当x =0时,ax 2+bx +c =3,所以c =3,所以1³(-1)2+b ³(-1)+3=8,所以b =-4.故选A .【解题策略】 本题考查用待定系数法求二次函数的解析式,解决此题的突破口是x =1时,ax 2=1,x =0时,ax 2+bx +c =3和x =-1时,ax 2+bx +c =8.例3 已知二次函数y =ax 2+bx +1的大致图象如图26-85所示,则函数y =ax +b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 分析 由图象可知a <0,2ba-<0,则b <0,所以y =ax +b 的图象不经过第一象限.故选A .【解题策略】 抛物线的开口方向决定了a 的符号,b 的符号由抛物线的开口方向和对称轴共同决定.例4 已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.其中正确的个数为 ( )A .0个B .1个C .2个D .3个 分析 由a >0,得抛物线开口向上,由2ba-<0,得对称轴在y 轴左侧,由c <0可知抛物线与y 轴交于负半轴上,可得其大致图象如图26—86所示,因此顶点在第三象限,故①③正确.故选C.【解题策略】 此题考查了二次函数的开口方向、对称轴、顶点等性质,解题时运用了数形结合思想.例5 若A 113,4y ⎛⎫- ⎪⎝⎭,B 25,4y ⎛⎫- ⎪⎝⎭,C 31,4y ⎛⎫ ⎪⎝⎭为二次函数y =x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( )A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2分析因为y=x2+4x+5的图象的对称轴为直线x=-2,所以x=134-与x=-34的函数值相同,因为抛物线开口向上,所以当54-<34-<14时,y2<y1<y3.故选B.【解题策略】此题考查了抛物线的增减性和对称轴,讨论抛物线的增减性需在对称轴的同侧考虑,因此将x=134-的函数值转化为x=-34的函数值.例6 在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是(如图26—87所示) ( )分析直线y=-x+1与y轴交于正半轴,抛物线y=-32(x-1)2的顶点为(1,0),且开口向下.故选D.专题2 抛物线的平移规律【专题解读】当二次函数的二次项系数a相同时,图象的形状相同,即开口方向、大小相同,只是位置不同,所以它们之间可以进行平行移动,移动时,其一,把解析式y=ax2+bx+c化成y=a(x-h)2+k的形式;其二,对称轴左、右变化,即沿x轴左、右平移,此时与k的值无关;顶点上、下变化,即沿y轴上、下平移,此时与h的值无关.其口诀是“左加右减,上加下减”.例7 把抛物线y=-2x2向上平移1个单位,得到的抛物线是 ( )A.y=-2(x+1)2 B.y=-2(x-1)2C.y=-2x2+1 D.y=-2x2-1分析原抛物线的顶点为(0,0),向上平移一个单位后,顶点为(0,1).故选C.【解题策略】解决此题时,可以用“左加右减,上加下减”的口诀来求解,也可以根据顶点坐标的变化来求解.例8 把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=x2-3x +5,则 ( )A.b=3,c=7 B.b=6,c=3C.b=-9,c=-5 D.b=-9,c=21分析y=x2-3x+5变形为y=232x⎛⎫-⎪⎝⎭+5-94,即y=232x⎛⎫-⎪⎝⎭+114,将其向左平移3个单位,再向上平移2个单位,可得抛物线y=2332x⎛⎫-+⎪⎝⎭+114+2,即y=x2+3x+7,所以b=3,c=7.故选A.【解题策略】此题运用逆向思维解决了平移问题,即抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到y=x2-3x+5,那么抛物线y=x2-3x+5则向左平移3个单位,再向上平移2个单位,可得到抛物线y =x 2+bx +c .专题3 抛物线的特殊位置与函数关系的应用【专题解读】若抛物线经过原点,则c =0,若抛物线的顶点坐标已知,则2ba -和244acb a-的值也被确定等等,这些都体现了由抛物线的特殊位置可以确定系数a ,b ,c 以及与之有关的代数式的值.例9 如图26-88所示的抛物线是二次函数y =ax 2+3ax +a 2-1的图象,则a 的值是 .分析 因为图象经过原点,所以当x =0时,y =0,所以a 2-1=0,a =±1,因为抛物线开口向下,所以a =-1.故填-1:专题4 求二次函数的最值【专题解读】 在自变量x 的取值范围内,函数y =ax 2+bx +c 在顶点24,24b ac b a a ⎛⎫-- ⎪⎝⎭处取得最值.当a >0时,抛物线y =ax 2+bx +c 开口向上,顶点最低,当x =2ba -时,y 有最小值为244acb a-;当a <0时,抛物线y =ax 2+bx +c 开口向下,顶点最高,当x =2ba -时,y 有最大值为244acb a-.例10 已知实数x ,y 满足x 2+2x +4y =5,则x +2y 的最大值为 .分析 x 2+2x +4y =5,4y =5-x 2-2x ,2y =12(5-x 2-2x ),x +2y =12(5-x 2-2x )+x ,整理得x +2y =-12x 2+52.当x =0时,x +2y 取得最大值,为52.故填52. 专题 5 二次函数与一元二次方程、一元二次不等式的关系【专题解读】 二次函数与一元二次方程、一元二次不等式之间有着密切的联系,可以用函数的观点来理解方程的解和不等式的解集.已知函数值,求自变量的对应值,就是解方程,已知函数值的范围,求对应的自变量的取值范围,就是解不等式.例11 已知二次函数y =ax 2+bx 的图象经过点(2,0),(-1,6). (1)求二次函数的解析式;(2)不用列表,画出函数的图象,观察图象,写出当y >0时x 的取值范围.分析 (1)列出关于a ,b 的方程组,求a ,b 的值即可.(2)观察图象求出y >0的解集.解:(1)由题意可知,当x =2时,y =0,当x =-1时,y =6,则420,6,a b a b +=⎧⎨-=⎩解得2,4.a b =⎧⎨=-⎩ ∴二次函数的解析式为y =2x 2-4x .(2)图象如图26—89所示,由图象可知,当y >0时,x <0或x >2.【解题策略】 求二次函数的解析式,其实质就是先根据题意寻求方程组,并解方程组,从而使问题得到解决.二、规律方法专题专题6 二次函数解析式的求法【专题解读】 用待定系数法可求出二次函数的解析式,确定二次函数的解析式一般需要三个独立的条件,根据不同的条件,选择不同的设法.(1)设一般式:y =ax 2+bx +c (a ≠0).若已知条件是图象经过三个点,则可设所求的二次函数解析式为y=ax2+bx+c,将已知条件代入,即可求出a,b,c的值.(2)设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数的图象与x轴的两个交点的坐标分别为(x1,0),(x2,0),则可设所求的二次函数解析式为y=a(x-x1)(x-x2),将第三点(m,n)的坐标(其中m,n为已知数)代入,求出待定系数a,最后将解析式化为一般式.(3)设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),则可设所求的二次函数解析式为y=a(x-h)2+k,将已知条件代入,求出待定系数a,最后将解析式化为一般式.(4)设对称点式:y=a(x-x1)(x-x2)+m(a≠0).若已知二次函数图象上的对称点(x1,m),(x2,m),则可设所求的二次函数解析式为y=a(x-x1)(x-x2)+m(a≠0),将已知条件代入,求得待定系数a,m,最后将解析式化为一般式.例12 根据下列条件求函数解析式.(1)已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式;(2)已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),求此抛物线的解析式;(3)已知抛物线与x轴交于A(-1,0),B(1,0)两点,且经过点M(0,1),求此抛物线的解析式;(4)已知抛物线经过(-3,4),(1,4)和(0,7)三点,求此抛物线的解析式.分析 (1)已知图象上任意三点的坐标,可选用一般式,从而得到关于a,b,c的方程组,求出a,b,c的值,即可得到二次函数的解析式.(2)已知抛物线的顶点坐标,应选用顶点式.(3)由于A(-l,0),B(1,0)是抛物线与x轴的两个交点,因此应选用交点式.(4)显然已知条件是抛物线经过三点,故可用一般式,但由于(-3,4),(1,4)是抛物线上两个对称点,因此选用对称点式更简便.解:(1)设二次函数的解析式为y=ax2+bx+c将(-1,-6),(1,-2)和(2,3)分别代入,得6,2,423,a b ca b ca b c-+=-⎧⎪++=-⎨⎪++=⎩解得1,2,5.abc=⎧⎪=⎨⎪=-⎩∴所求的二次函数的解析式为y=x2+2x-5.(2)∵抛物线的顶点为(-1,-3),∴设其解析式为y=a(x+1)2-3,将点(0,-5)代入,得-5=a-3,∴a=-2,∴所求抛物线的解析式为y=-2(x+1)2-3.即y=-2x2-4x-5.(3)∵点A(-1,0),B(1,0)是抛物线与x轴的两个交点,∴设抛物线的解析式为y=a(x+1)(x-1),将点M(0,1)代入,得1=-a,∴a=-1,∴所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1(4)∵抛物线经过(-3,4),(1,4)两点,∴设抛物线的解析式为y=a(x+3)(x-1)+4,将点(0,7)代入,得7=a²3²(-1)+4,∴a=-1,∴所求抛物线的解析式为y=-(x+3)(x-1)+4,即y=-x2-2x+7.【解题策略】 (1)求二次函数解析式的4种不同的设法是指根据不同的已知条件寻求最简的求解方法,它们之间是相互联系的,不是孤立的.(2)在选用不同的设法时,应具体问题具体分析,特别是当已知条件不是上述所列举的4种情形时,应灵活地运用不同的方法来求解,以达到事半功倍的效果.(3)求,函数解析式的问题,如果采用交点式、顶点式或对称点式,最后要将解析式化为一般形式.三、思想方法专题 专题7 数形结合思想【专题解读】 把问题的数量关系和空间形式结合起来考查,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题来讨论,也可以把图形的性质问题转化为数量关系的问题来研究.例13 二次函数y =ax 2+bx +c 的图象如图26-90所示,则点A (a ,b )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 分析 由图象开口方向向下可知a <0,由对称轴的位置可知x =2ba->0,所以b >0,故点A 在第二象限.故选B .【解题策略】 解决此题的关键是观察图象的开口方向以及对称轴的位置. 专题8 分类讨论思想【专题解读】 分类讨论是对问题的条件逐一进行讨论,从而求得满足题意的结果.例14 已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴交于B (1,0),C (5,0)两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,F 的坐标,并求出这个最短总路径的长.分析 (1)用待定系数法求a ,b ,c 的值.(2)用分类讨论法求直线CD 的解析式.(3)根据轴对称解决最短路径问题.解:(1)根据题意,得c =3,所以30,25530,a b a b ++=⎧⎨++=⎩解得3,518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为y =35x 2-185x +3.(2)依题意可知,OA 的三等分点分别为(0,1),(0,2), 设直线CD 的解析式为y =k x +b ,当点D 的坐标为(0,1)时,直线CD 的解析式为y =-15x +1,当点D 的坐标为(0,2)时,直线CD 的解析式为y =-25x +2. (3)由题意可知M 30,2⎛⎫⎪⎝⎭,如甲26-91所示,点M 关于x 轴的对称点为M ′30,2⎛⎫- ⎪⎝⎭,点A 关于抛物线对称轴x =3的对称点为A ′(6,3),连接A ′M ′,根据轴对称性及两点间线段最短可知,A ′M ′的长就是点P 运动的最短总路径的长.所以A ′M ′与x 轴的交点为所求的E 点,与直线x =3的交点为所求的F 点. 可求得直线A ′M ,的解析式为y =34x -32. 所以E 点坐标为(2,0),F 点坐标为33,4⎛⎫⎪⎝⎭,由勾股定理可求出A ′M ′=152. 所以点P 运动的最短总路径(ME +EF +FA )的长为152. 【解题策略】 (2)中点D 的位置不确定,需要分类讨论,体现了分类讨论的数学思想.(3)中的关键是利用轴对称性找到E ,F 两点的位置,从而求出其坐标,进而解决问题.专题9 方程思想【专题解读】 求抛物线与坐标轴的交点坐标时,可转化为二次函数y =0或x =0,通过解方程解决交点的坐标问题.求抛物线与x 轴的交点个数问题也可以转化为求一元二次方程根的情况.例15 抛物线y =x 2-2x +1与x 轴交点的个数是 ( ) A .0个 B .1个 C .2个 D .3个分析 可设x 2-2x +1=0,Δ=(-2)2-4³1³1=0,可得抛物线y =x 2-2x +1与x 轴只有一个交点.故选B .【解题策略】 抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的个数可由一元二次方程ax 2+bx +c =o(a ≠0)的根的个数来确定.专题10 建模思想【专题解读】 根据实际问题中的数量关系建立二次函数关系式,再用二次函教的性质来解决实际问题. 例16 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天的销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W (元)与销售价x (元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?分析 (1)原来每箱售价50元,价格每提高1元,平均每天少销售3箱,若提高(x -50)元,则平均每天少销售3(x -50)箱,所以提价后每天销售[90-3(x -50)]箱,即y =90-3(x -50).(2)每天的销售利润可用(x -40)[90-3(x -50)]来表示.(3)建立W 和x 之间的二次函数关系式,利用二次函数的最值求利润的最值. 解:(1)y =90-3(x -50),即y =-3x +240.(2)W =(x -40)(-3x +240)=-3x 2+360x -9600,(3)∵a =-3<0,∴当x =2ba-=60时,W 有最大值, 又∵当x <60时,y 随x 的增大而增大, ∴当x =55时,W 取得最大值为1125元,即每箱苹果的销售价为55元时,可获得1125元的最大利润.【解题策略】 求实际问题的最值时,可通过建立二次函数关系式,根据二次函数的最值来求解. 例17 某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a 元. (1)试求a 的值;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元),则产品的年销售量将是原销售量的y倍,且y与x之间的关系如图26—92所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并计算广告费x(万元)在什么范围内时,公司获得的年利润S(万元)随广告费的增多而增多.(注:年利润S=年销售总额-成本费-广告费) 解:(1)由题意得a(1+25%)=250,解得a=200(元).(2)①依题意可设y与x之间的函数关系式为y=ax2+bx+1,则421 1.36,1641 1.64,a ba b++=⎧⎨++=⎩,解得0.01,0.2,ab=-⎧⎨=⎩∴y=-0.01x2+0.2x+1.②S=(-0.01x2+0.2x+1)³10³250-10³200-x,即S=-25x2+499x+500,整理得S=-25(x-9.98)2+2990.01.∴当0≤x≤9.98时,公司获得的年利润随广告费的增多而增多.例18 某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是元;(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是;(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元.分析本题是用二次函数解决有关利润最大的问题,由浅入深地设置了三个问题.解:(1)18000(2)y=12-x2+10x+18000(3)当y=17600时,-12x2+10x+400=0,即x2-20x-800=0.解得x=-20(舍去)或x=40.180+40=220,所以这天每间客房的价格是220元.例19 (09²泰安)如图26-93(1)所示,△OAB是边长为2的等边三角形,过点A的直线y=+m与x轴交于点E.(1)求点E的坐标;(2)求过A,O,E三点的抛物线的解析式.解:(1)如图26-93(2)所示,过A作AF⊥x轴于F,则OF =OA cos 60°=1,AF =OF tan 60°∴点A (1.代入直线解析式,得1+mm, ∴y=x. 当y =0时,=0, 解得x =4,∴点E (4,0).(2)设过A ,O ,E 三点的抛物线的解析式为y =ax 2+bx +c , ∵抛物线过原点,∴c =0,∴1640,a b a b ⎧+=⎪⎨+=⎪⎩解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=x 2x . 例20 如图26-94所示,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的表达式.解:(1)如图26-95所示,过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E ,则AF =2,OF =1. ∵OA ⊥OB ,∴∠AOF +∠BOE =90°. 又∵∠BOE +∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴BE OE OBOF AF OA===2 ∴BE =2,OE =4. ∴B (4,2).(2)设过点A (-1,2),B (4,2),O (0,0)的抛物线的表达式为y =ax 2+bx +c .则2,1642,0.a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得1,23,20.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求抛物线的表达式为y =12x 2-32x . 例21如图26-96所示,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式.解:(1)已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点, ∴01,200,b c c =++⎧⎨=++⎩解得3,2,b c =-⎧⎨=⎩∴所求抛物线的解析式为y =x 2-3x +2.(2)∵A (1,0),B (0,2),∴OA =1,OB =2, 可得旋转后C 点的坐标为(3,1).当x =3时,由y =x 2-3x +2得y =2,可知抛物线y =x 2-3x +2过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C∴平移后的抛物线的解析式为y =x 2-3x +1.例22 如图26-97所示,抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标.解:(1)∵抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,∴40,4 4.a b a a --=⎧⎨-=⎩解得1,3.a b =-⎧⎨=⎩∴抛物线的解析式为y =-x 2+3x +4.(2)如图26-98所示,点D (m ,m +1)在抛物线上,∴m +1=-m 2+3m +4,即m 2-2m -3=0,∴m =-1或m =3.∵点D 在第一象限,∴点D 的坐标为(3,4). 由(1)得B 点的坐标为(4,0), ∴OC =OB ,∴∠CBA =45°.设点D 关于直线BC 的对称点为点E .∵C(0,4),∴CD∥AB,且CD=3,∴∠ECB=∠DCB=45°,∴E点在y轴上,且CE=CD=3.∴OE=1,∴E(0,1).即点D关于直线BC对称的点的坐标为(0,1).2011中考真题精选点评:本题考查了二次函数图象上点的坐标特点,一元二次方程解的意义.关键是求二次函数解析式,根据二次函数的对称轴,开口方向判断函数值的大小.2.(2011黑龙江牡丹江,18,3分)抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A、﹣2B、2C、15D、﹣15考点:二次函数图象上点的坐标特征;代数式求值。
2012年全国各地中考数学考点分类解析汇编(22)二次函数
2012年全国各地中考数学考点分类解析汇编(22)二 次 函 数一、选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a <0,∵对称轴x=﹣<0, ∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A .点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--考点:二次函数图象与几何变换。
中考数学复习专题十一 二次函数与几何图形综合题
【点评】 本题主要考查的是二次函数的综合应用,求得 P1C 和 P2A 的解析式是解答问题(2) 的关键,求得点 P 的纵坐标是解答问题(3)的关键.
单击此处编辑母版标题样式
[对应训练] 1.(2016·遵义)如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(-8,3),B(-
4,• 0单),•击C第(此-二4处级,3编),辑∠A母BC版=文α°本.抛样物式线 y=12x2+bx+c 经过点 C,且对称轴为 x=-45,并与
证:PH=GH.
单击此处编辑母版标题样式
•
单击此处编辑母版文本样式
• 第二级
12×(-4)2-4b+c=3,
解:(1)根• 第据•三题第级意四• 得级第:五级-2×b 12=-45,
解得
b=45, c=-95,∴抛物线的解析式为:y
Hale Waihona Puke =12x2+45x-95,点 G(0,-95)
单击此处编辑母版标题样式
标为(-2,5).综• 第上五所级述,P 的坐标是(1,-4)或(-2,5)
单击此处编辑母版标题样式 (3)如图 2 所示:连接 OD.由题意可知,四边形 OFDE 是矩形,则 OD=EF.根据垂线
段最短,可得当 OD⊥AC 时,OD 最短,即 EF 最短.由(1)可知,在 Rt△AOC 中,∵OC
单击此处编辑母版标题样式
• 单三击个此步处骤 编辑母版文本样式
•解第二二次级函数与几何图形综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻
译并转化• 为第显三性级条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于 联想和转化,• 将第四以级上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的
2012年中考数学复习专题——二次函数知识点归纳
中考复习专题——二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质a >向上()00, y轴x >时,y 随x 的增大而增大;0x <时,y 随x的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结:a 的符号开口方向 顶点坐标 对称轴 性质a > 向上()0c , y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质a >向上()0h , X=hx h>时,y 随x 的增大而增大;x h <时,y 随x的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x的增大而增大;x h =时,y 有最大值0.二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k=-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
中考一轮复习 数学专题10 二次函数(学生版)
专题10 二次函数一、单选题1.(2022·青海西宁)如图,△AB C 中,BC =6,BC 边上的高为3,点D ,E ,F 分别在边BC ,AB ,AC 上,且EF ∥B C .设点E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .2.(2022·广东广州)如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .0a <B .0c >C .当2x <-时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小3.(2022·黑龙江绥化)已知二次函数2y ax bx c =++的部分函数图象如图所示,则一次函数24y ax b ac =+-与反比例函数42a b c y x++=在同一平面直角坐标系中的图象大致是( )A.B.C.D.=+的图象经过()4.(2022·湖北武汉)二次函数()2y x m n=++的图象如图所示,则一次函数y mx nA.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限B-两点,则下列说法正5.(2021·辽宁阜新)如图,二次函数2=++的图象与x轴交于A,(),10(2)y a x k确的是()A .0a <B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =- 本号资料皆来源#于微信*:数学 6.(2021·湖北襄阳)一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .7.(2021·江西)在同一平面直角坐标系中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .8.(2020·内蒙古呼伦贝尔)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则反比例函数a y x=与一次函数y cx b =-+在同一平面直角坐标系内的图象可能是( )A .B .C .D .9.(2020·甘肃天水)若函数()20y ax bx c a =++≠的图象如图所示,则函数y ax b =+和c y x=在同一平面直角坐标系中的图象大致是( )A .B .C .D .10.(2020·湖北襄阳)二次函数2y ax bx c =++的图象如图所示,下列结论:∥0ac <;∥30a c +=;∥240ac b -<;∥当1x >-时,y 随x 的增大而减小,其中正确的有( )# 本号资料皆来源于微信公众*号:数学A .4个B .3个C .2个D .1个11.(2020·安徽)如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A .B .C .D .12.(2022·广西玉林)小嘉说:将二次函数2y x 的图象平移或翻折后经过点(2,0)有4种方法: ∥向右平移2个单位长度 ∥向右平移1个单位长度,再向下平移1个单位长度∥向下平移4个单位长度 ∥沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个13.(2022·甘肃兰州)已知二次函数2245y x x =-+,当函数值y 随x 值的增大而增大时,x 的取值范围是( )A .1x <B .1x >C .2x <D .2x >14.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =- 15.(2022·贵州铜仁)如图,等边ABC 、等边DEF 的边长分别为3和2.开始时点A 与点D 重合,DE 在AB 上,DF 在AC 上,DEF 沿AB 向右平移,当点D 到达点B 时停止.在此过程中,设ABC 、DEF 重合部分的面积为y ,DEF 移动的距离为x ,则y 与x 的函数图象大致为( )A .B .C .D .16.(2022·辽宁锦州)如图,四边形ABCD 是边长为2cm 的正方形,点E ,点F 分别为边AD ,CD 中点,点O 为正方形的中心,连接,OE OF ,点P 从点E 出发沿E O F --运动,同时点Q 从点B 出发沿BC 运动,两点运动速度均为1cm/s ,当点P 运动到点F 时,两点同时停止运动,设运动时间为s t ,连接,BP PQ ,BPQ 的面积为2cm S ,下列图像能正确反映出S 与t 的函数关系的是( )A .B .C .D .17.(2022·山东烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,其对称轴为直线x =﹣12,且与x 轴的一个交点坐标为(﹣2,0).下列结论:∥abc >0;∥a =b ;∥2a +c =0;∥关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .∥∥B .∥∥C .∥∥D .∥∥18.(2022·四川广安)已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:∥abc >0;∥2c ﹣3b <0;∥5a +b +2c =0;∥若B (43,y 1)、C (13,y 2)、D (13-,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .419.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13- 20.(2022·四川达州)二次函数2y ax bx c =++的部分图象如图所示,与y 轴交于(0,1)-,对称轴为直线1x =.以下结论:∥0abc >;∥13a >;∥对于任意实数m ,都有()m am b a b +>+成立;∥若()12,y -,21,2y ⎛⎫ ⎪⎝⎭,()32,y 在该函数图象上,则321y y y <<;∥方程2ax bx c k ++=(0k ,k 为常数)的所有根的和为4.其中正确结论有( )A .2B .3C .4D .521.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( ) A .5 B .4 C .3 D .222.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:∥2b a =;∥32a -<<-;∥24<0ac b -;∥若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;∥当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个23.(2021·山东日照)抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:∥0abc <;∥()()2242a c b +<;∥若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;∥抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1 24.(2021·黑龙江牡丹江)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:∥ab c >0;∥﹣2<b 53<-;∥(a +c )2﹣b 2=0;∥2c ﹣a <2n ,则正确的个数为( )A .1B .2C .3D .425.(2021·辽宁丹东)已知抛物线2(0)y ax bx c a =++>,且13,22a b c a b c ++=--+=-.判断下列结论:∥0abc <;∥220a b c ++>;∥抛物线与x 轴正半轴必有一个交点;∥当23x ≤≤时,3y a =最小;∥该抛物线与直线y x c =-有两个交点,其中正确结论的个数( )A .2B .3C .4D .5 26.(2020·四川眉山)已知二次函数22224y x ax a a =-+--(a 为常数)的图象与x 轴有交点,且当3x >时,y 随x 的增大而增大,则a 的取值范围是( )A .2a ≥-B .3a <C .23a -≤<D .23a -≤≤ 27.(2020·辽宁丹东)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点C 在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D ,对称轴为直线2x =,有以下结论:∥0abc >;∥若点11,2M y ⎛⎫- ⎪⎝⎭,点27,2N y ⎛⎫ ⎪⎝⎭是函数图象上的两点,则12y y <;∥3255a -<<-;∥ADB ∆可以是等腰直角三形.其中正确的有( )A .1个B .2个C .3个D .4个28.(2020·内蒙古呼和浩特)关于二次函数216274y x x a =-++,下列说法错误的是( ) A .若将图象向上平移10个单位,再向左平移2个单位后过点()4,5,则5a =-# 本号资料皆来源于微信公#众号:数学B .当12x =时,y 有最小值9a -C .2x =对应的函数值比最小值大7D .当0a <时,图象与x 轴有两个不同的交点二、填空题29.(2022·贵州黔东南)在平面直角坐标系中,将抛物线221y x x =+-先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是_______.30.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.31.(2022·江苏连云港)如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .32.(2022·黑龙江牡丹江)把二次函数y =2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.33.(2022·辽宁)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()1,0-和点()2,0,以下结论: @@本号资料皆来源于微信:数学#∥0abc <;∥420a b c -+<;∥0a b +=;∥当12x <时,y 随x 的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)34.(2021·贵州黔西)小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h (m )与足球被踢出后经过的时间t (s )之间的关系为h =﹣5t 2+12t ,则足球距地面的最大高度是______m . 35.(2021·四川巴中)y 与x 之间的函数关系可记为y =f (x ).例如:函数y =x 2可记为f (x )=x 2.若对于自变量取值范围内的任意一个x ,都有f (﹣x )=f (x ),则f (x )是偶函数;若对于自变量取值范围内的任意一个x ,都有f (﹣x )=﹣f (x ),则f (x )是奇函数.例如:f (x )=x 2是偶函数,f (x )1x=是奇函数.若f (x )=ax 2+(a ﹣5)x +1是偶函数,则实数a =__________.36.(2020·广西贵港)如图,对于抛物线211y x x =-++,2221y x x =-++,2331y x x =-++,给出下列结论:∥这三条抛物线都经过点()0,1C ;∥抛物线3y 的对称轴可由抛物线1y 的对称轴向右平移1个单位而得到;∥这三条抛物线的顶点在同一条直线上;∥这三条抛物线与直线1y =的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.37.(2020·湖北省直辖县级单位)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.38.(2022·江苏盐城)若点(),P m n 在二次函数222=++y x x 的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.39.(2022·吉林长春)已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 40.(2022·山东烟台)如图1,∥AB C 中,∥ABC =60°,D 是BC 边上的一个动点(不与点B ,C 重合),DE ∥AB ,交AC 于点E ,EF ∥BC ,交AB 于点F .设BD 的长为x ,四边形BDEF 的面积为y ,y 与x 的函数图象是如图2所示的一段抛物线,其顶点P 的坐标为(2,3),则AB 的长为 _____.41.(2022·山东聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).42.(2022·内蒙古赤峰)如图,抛物线265y x x =---交x 轴于A 、B 两点,交y 轴于点C ,点(),1D m m +是抛物线上的点,则点D 关于直线AC 的对称点的坐标为_________.43.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.44.(2022·湖北武汉)已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:∥0b >;∥若32m =,则320a c +<; ∥若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;∥当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).45.(2021·辽宁沈阳)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为__________元时,才能使每天所获销售利润最大.46.(2021·贵州遵义)抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)经过(0,0),(4,0)两点.则下列四个结论正确的有 ___(填写序号).∥4a +b =0;∥5a +3b +2c >0;∥若该抛物线y =ax 2+bx +c 与直线y =﹣3有交点,则a 的取值范围是a 34≥; ∥对于a 的每一个确定值,如果一元二次方程ax 2+bx +c ﹣t =0(t 为常数,t ≤0)的根为整数,则t 的值只有3个.47.(2021·贵州黔东南)如图,二次函数()2=++0y ax bx c a ≠的函数图像经过点(1,2),且与x 轴交点的横坐标分别为1x 、2x ,其中 -1<1x <0,1<2x <2,下列结论:∥0abc >;∥20a b +<;∥420a b c -+>;∥当()12x m m =<<时,22am bm c <+-;∥1b > ,其中正确的有 ___________.(填写正确的序号)48.(2021·江苏无锡)如图,在平面直角坐标系中,O 为坐标原点,点C 为y 轴正半轴上的一个动点,过点C 的直线与二次函数2y x 的图象交于A 、B 两点,且3CB AC ,P 为CB 的中点,设点P 的坐标为(,)(0)P x y x >,写出y 关于x 的函数表达式为:________.49.(2020·四川巴中)现有一“祥云”零件剖面图,如图所示,它由一个半圆和左右两支抛物线的一部分组成,且关于y 轴对称.其中半圆交y 轴于点E ,直径2AB =,2OE =;两支抛物线的顶点分别为点A 、点B .与x 轴分别交于点C 、点D ;直线BC 的解析式为:34y kx =+.则零件中BD 这段曲线的解析式为_________.50.(2020·吉林长春)如图,在平面直角坐标系中,点A 的坐标为()0,2,点B 的坐标为()4,2.若抛物线23()2y x h k =--+(h 、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为_________.51.(2020·湖北荆州)我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.52.(2022·广西贵港)已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:∥0abc <;∥240b ac ->;∥0a b c ++=;∥21(2)4am bm a b +<-(其中12m ≠-);∥若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.53.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC→向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .54.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h (米)与物体运动的时间t (秒)之间满足函数关系25h t mt n =-++,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w 表示0秒到t 秒时h 的值的“极差”(即0秒到t 秒时h 的最大值与最小值的差),则当01t ≤≤时,w 的取值范围是_________;当23t ≤≤时,w 的取值范围是_________.55.(2021·四川德阳)已知函数y 21213x 583x 8x ≤⎧=⎨-+≤≤⎩(<)()()的图象如图所示,若直线y =kx ﹣3与该图象有公共点,则k 的最大值与最小值的和为 _____.56.(2021·吉林长春)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax =上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,分别过点C 、D 作x 轴的垂线交抛物线于E 、F 两点.当四边形CDFE 为正方形时,线段CD 的长为_________.57.(2021·四川南充)关于抛物线221(0)y ax x a =-+≠,给出下列结论:∥当0a <时,抛物线与直线22y x =+没有交点;∥若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;∥若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________.58.(2021·江苏连云港)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.59.(2020·四川内江)已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.∥当2x =时,M 的最大值为4;∥当3b =-时,使2M y >的x 的取值范围是13x ;∥当5b =-时,使3M =的x 的值是11x =,23x =;∥当1b ≥时,M 随x 的增大而增大.上述结论正确的是____(填写所有正确结论的序号)60.(2020·湖北荆门)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点A 、B ,顶点为C ,对称轴为直线1x =,给出下列结论:∥0abc <;∥若点C 的坐标为1,2,则ABC 的面积可以等于2;∥()()1122,,,M x y N x y 是抛物线上两点()12x x <,若122x x +>,则12y y <;∥若抛物线经过点(3,1)-,则方程210ax bx c +++=的两根为1-,3其中正确结论的序号为_______.61.(2020·湖北武汉)抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过(2,0)A ,(4,0)B -两点,下列四个结论:∥一元二次方程20ax bx c ++=的根为12x =,24x =-;∥若点()15,C y -,()2,D y π在该抛物线上,则12y y <;∥对于任意实数t ,总有2at bt a b +≤-;∥对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个.其中正确的结论是________(填写序号).62.(2020·湖北咸宁)如图,四边形ABCD 是边长为2的正方形,点E 是边BC 上一动点(不与点B ,C 重合),90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F ,交CD 于点G ,连接AF ,有下列结论: ∥ABE ECG ∽;∥AE EF =;∥DAF CFE ∠=∠;∥CEF △的面积的最大值为1.其中正确结论的序号是_____________.(把正确结论的序号都填上)63.(2020·四川乐山)我们用符号[]x 表示不大于x 的最大整数.例如:[]1.51=,[]1.52-=-.那么: (1)当[]12x -<≤时,x 的取值范围是______;(2)当12x -≤<时,函数[]223y x a x =-+的图象始终在函数[]3y x =+的图象下方.则实数a 的范围是______.三、解答题64.(2022·山东青岛)已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4).(1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由.65.(2022·江苏常州)在5张相同的小纸条上,分别写有语句:∥函数表达式为y x =;∥函数表达式为2y x ;∥函数的图像关于原点对称;∥函数的图像关于y 轴对称;∥函数值y 随自变量x 增大而增大.将这5张小纸条做成5支签,∥、∥放在不透明的盒子A 中搅匀,∥、∥、∥放在不透明的盒子B 中搅匀.(1)从盒子A 中任意抽出1支签,抽到∥的概率是______;(2)先从盒子A 中任意抽出1支签,再从盒子B 中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.66.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.67.(2020·黑龙江鹤岗)如图,已知二次函数2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知BAC ∆的面积是6.(1)求a 的值;(2)在抛物线上是否存在一点P ,使ABP ABC S S ∆∆=.存在请求出P 坐标,若不存在请说明理由.68.(2020·山东青岛)某公司生产A 型活动板房成本是每个425元.图∥表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图∥所示的直角坐标系,抛物线可以用()20y kx m k =+≠表示,求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图∥,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?69.(2020·广西贵港)如图,已知抛物线212y x bx c =++与x 轴相交于()6,0A -,()10B ,,与y 轴相交于点C ,直线l AC ⊥,垂足为C .(1)求该抛物线的表达式:(2)若直线l 与该抛物线的另一个交点为D ,求点D 的坐标;(3)设动点(),P m n 在该抛物线上,当45PAC ∠=︒时,求m 的值.70.(2020·山东济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l∥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若∥ACD是以∥DCA为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设∥AEM的面积为S1,∥MON的面积为S2,若S1=2S2,求m的值.71.(2020·山东日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.72.(2020·辽宁朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y (件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(1)直接写出y与x的关系式_________________;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.73.(2020·辽宁阜新)如图,二次函数2y x bx c =++的图象交x 轴于点()30A -,,()10B ,,交y 轴于点C .点(),0P m 是x 轴上的一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式; 本号资@料皆来源于微信:数学第@六感(2)∥若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;∥若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.74.(2020·云南昆明)如图,两条抛物线214y x =-+,2215y x bx c =-++相交于A ,B 两点,点A 在x 轴负半轴上,且为抛物线2y 的最高点.(1)求抛物线2y 的解析式和点B 的坐标;(2)点C 是抛物线1y 上A ,B 之间的一点,过点C 作x 轴的垂线交2y 于点D ,当线段CD 取最大值时,求BCD S △.75.(2020·山东烟台)如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,D 为第一象限内抛物线上一动点,过点D 作DE ∥OA 于点E ,与AC交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似?若存在,求出m 的值;若不存在,请说明理由.76.(2020·山东威海)已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A ,点B 的坐标为(3,5)(1)求抛物线过点B 时顶点A 的坐标(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点# 本号资料皆来源于微信:数学77.(2020·陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与∥AOC全等,求满足条件的点P,点E的坐标.78.(2021·贵州黔西)如图,直线l:y=2x+1与抛物线C:y=2x2+bx+c相交于点A(0,m),B(n,7).(1)填空:m=,n=,抛物线的解析式为.(2)将直线l向下移a(a>0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围.(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P的坐标;若不存在,请说明理由.79.(2021·山东青岛)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?80.(2021·四川内江)如图,抛物线2y ax bx c =++与x 轴交于(2,0)A -、(6,0)B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为(4,3).(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD ∆面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.81.(2021·甘肃兰州)如图1,二次函数()()34y a x x =+-的图象交坐标轴于点A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数()()34y a x x =+-的表达式;(2)过点P 作PQ x ⊥轴分别交线段AB ,抛物线于点Q ,C ,连接AC .当1OP =时,求ACQ 的面积; (3)如图2,将线段PB 绕点P 逆时针旋转90得到线段PD .∥当点D 在抛物线上时,求点D 的坐标;∥点52,3E ⎛⎫- ⎪⎝⎭在抛物线上,连接PE ,当PE 平分BPD ∠时,直接写出点P 的坐标.82.(2021·湖南湘潭)如图,一次函数y x=A、B,二次函数2y bx c++图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.83.(2021·黑龙江牡丹江)抛物线y=﹣x2+bx+c经过点A(﹣3,0)和点C(0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;(2)若过顶点D的直线将∥ACD的面积分为1:2两部分,并与x轴交于点Q,则点Q的坐标为.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标(24,24b ac ba a)84.(2022·甘肃兰州)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为5m3,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.85.(2022·广东广州)如图,在菱形ABC D 中,∥BAD = 120°,AB = 6,连接BD .(1)求BD 的长;(2)点E 为线段BD 上一动点(不与点B ,D 重合), 点F 在边AD 上,且BE, ∥当CE 丄AB 时,求四边形ABEF 的面积;∥当四边形ABEF 的面积取得最小值时,CE的值是否也最小?如果是,求CE 的最小值;如果不是,请说明理由. 本号资料皆来源于微信公众@号:数学第六*感86.(2022·湖南郴州)如图1,在ABC 中,AC BC =,90ACB ∠=︒,4cm AB =.点D 从A 点出发,沿线段AB 向终点B 运动.过点D 作AB 的垂线,与ABC 的直角边AC (或BC )相交于点E .设线段AD 的长为a (cm ),线段DE 的长为h (cm ). 本*号资*料皆来源于#微信:数学。
2012年中考数学分类解析(159套63专题)专题22_二次函数的应用(几何问题)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 【答案】 D 。
【考点】二次函数的图象和性质。
【分析】根据题意得:y =|ax 2+bx +c|的图象如右图,∵|ax 2+bx +c|=k(k≠0)有两个不相等的实数根, ∴k>3。
故选D 。
二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上. (Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求A B Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求A B Cy y y -的最小值.【答案】解:(Ⅰ)若a=1,b=4,c=10,此时抛物线的解析式为y=x 2+4x+10。
①∵y=x 2+4x+10=(x+2)2+6,∴抛物线的顶点坐标为P (-2,6)。
②∵点A (1,y A )、B (0,y B )、C (-1,y C )在抛物线y=x 2+4x+10上, ∴y A =15,y B =10,y C =7。
∴A B Cy 15==5y y 107--。
(Ⅱ)由0<2a <b ,得0b x 12a<=--。
由题意,如图过点A 作AA 1⊥x 轴于点A 1, 则AA 1=y A ,OA 1=1。
连接BC ,过点C 作CD⊥y 轴于点D , 则BD=y B -y C ,CD=1。
过点A 作AF∥BC,交抛物线于点E (x 1,y E ),交x 轴于点F (x 2,0)。
则∠FAA 1=∠CBD。
中考数学《二次函数》专题训练及答案
中考数学《二次函数》专题训练及答案一、单选题1.已知二次函数y=ax2+bx+c的图象经过原点和第一、二、三象限,则()A.a>0,b>0,c>0B.a<0,b<0,c=0C.a<0,b<0,c>0D.a>0,b>0,c=02.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣63.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5B.6C.7D.84.从地面竖直向上抛出一小球,小球的高度y米与小球运动的时间x秒之间的关系式为y=ax2+ bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( )A.第8秒B.第10秒C.第12秒D.第15秒5.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③若点B(﹣52,y1)、C(﹣12,y2)为函数图象上的两点,则y1<y2;④a+b+c>0,其中正确结论是()A.①③B.②③C.①④D.②④6.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为()A .x=1B .x=﹣1C .x 1=1,x 2=﹣3D .x 1=1,x 2=﹣47.西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为12米,在如图所示的坐标系中,这个喷泉的函数关系式是( )A .y =-(x -12)2+3B .y =-3(x+12)2+3C .y =-12(x-12)2+3D .y =-12(x+12)2+38.若y=(2﹣m )x m2−2是二次函数,则m 的值为( )A .2B .-2C .2或﹣2D .09.同一坐标平面内,图象不可能由函数y=2x 2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是( )A .y =12x 2−1B .y=2x 2+3C .y=-2x 2-1D .y=2(x+1)2-110.下列函数:①x ≥3且x ≠4 ; ②√2−1 ;③x ;④y ,其中 y =(x −20)[105−5(x −25)]的值随 =−5x 2+330x −4600 值的增大而增大的函数有( ) . A .4个B .3个C .2个D .1个11.若将抛物线y=2x 2向右平移3个单位,再向上平移5个单位,则得到的抛物线是 ( )A .y=2(x+3)2-5B .y=2(x-3)2+5C .y=2(x-3)2-5D .y=2(x+3)2+512.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣52,y1)、C(﹣12,y2)为函数图象上的两点,则y1<y2其中正确结论是()A.②④B.①④C.①③D.②③二、填空题13.如图,直线y=kx+b与抛物线y=﹣x2+2x+3交于点A,B,且点A在y轴上,点B在x轴上,则不等式﹣x2+2x+3>kx+b的解集为.14.已知二次函数y=x2-x+ 14 m-1的图象与x轴有公共点,则m的取值范围是.15.y=﹣2x2的图象上有三个点(﹣1,y1),(2,y2),(3,y3),则y1,y2,y3的大小关系为.16.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.17.如图,在平面直角坐标系中,点A(0,a2−2a)和点B(0,−4a−5)在y轴上,点M在x轴负半轴上,S△ABM=12.当线段OM最长时,点M的坐标为.18.如图,抛物线y=-x2+2x+c交x轴于点A(-1,0)、B(3,0),交y轴于点C,D为抛物线的顶点.(1)点D坐标为;(2)点C关于抛物线对称轴的对称点为E点,点M是抛物线对称轴上一点,且△DMB和△BCE相似,点M坐标为.三、综合题19.已知抛物线y=a(x-3)2+4经过点(1,0).(1)求a的值;(2)在方格纸中画出y=a(x-3)2+4的图像(3)根据图像写出方程a(x-3)2+4=0的解,和不等式a(x-3)2+4<0的解集20.已知点P(m,n)在抛物线y=ax2+2x+1上运动.(1)当a=−1时,若点P到y轴的距离等于2,求n的值;(2)当P为抛物线的顶点,且m=12时,求a的值.21.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?22.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,当y<3时,直接写出x的取值范围.23.根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);24.如图1,等边三角形ABC中,点D在AB上(点D与点A,B不重合),DE⊥BC,垂足为E,点P在BC上,且DP∥AC,△B′DE′与△BDE关于DP对称.设BE=x,△B′DE′与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x<12,12≤x<m与m≤x<n时,函数的解析式不同).(1)填空:等边三角形ABC的边长为,图2中a的值为;(2)求S关于x的函数关系式,并直接写出x的取值范围.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】A10.【答案】C 11.【答案】B 12.【答案】B 13.【答案】0<x <3 14.【答案】m ≤5 15.【答案】y 3<y 2<y 1 16.【答案】1;9 17.【答案】(-6,0)18.【答案】(1)(1,4) (2)(1,23)或(1,-2)19.【答案】(1)解:将点(1,0)代入y=a (x-3)2+4中,得:0=4a+4 解得:a=-1;(2)解:由y=-(x-3)2+4知,对称轴为直线x=3,顶点坐标为(3,4),与x 轴的交点为点(1,0)和(5,0)令x=0,则y=-5,与y 轴的交点为(0,-5),与其对称的点坐标为(6,-5) 故画出该函数的图象如下:;(3)解:由图像可知,方程a (x-3)2+4=0的解为x 1=1,x 2=5,不等式a (x-3)2+4<0的解集为x <1或x >5.20.【答案】(1)解:∵a =−1∴y =ax 2+2x +1=−x 2+2x +1 ∵点P 到y 轴距离等于2 ∴x =2或−2∵点P(m ,n)在抛物线y =ax 2+2x +1上运动 将x =2代入y =−x 2+2x +1=−4+4+1=1 将x =−2代入y =−x 2+2x +1=−4−4+1=−7 ∴n 的值为1或−7.(2)解:由y =ax 2+2x +1,抛物线的对称轴为x =−22a当P(m ,n)为抛物线的顶点,且m =12∴−22a =12∴a =−2.21.【答案】(1) 设甲商品的进价为x 元,乙商品的进价为y 元,由题意得:{x =12y 3x +y =200解之:{x =40y =80答:甲商品的进价为40元,乙商品的进价为80元;(2)设购进甲商品m 件,则购进乙商品为(100-m )件,由题意地:{40m +80(100−m )≥671040m +80(100−m )≤6810解之:2934≤m ≤3214∵m 为正整数 ∴m=30,31,32 ∴100-m=70,69,68 因此有三种进货方案:方案一:甲商品30件。
中考数学二次函数专题训练50题(含参考答案)
中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。
2012年全国各地中考数学二次函数压轴题汇编2[1]
2012年中考二次函数(二)一.解答题(共30小题)1.(2012•连云港)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D 为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.2.(2012•丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为_________时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.3.(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.4.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c 有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.5.(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.6.(2012•荆门)已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.7.(2012•荆门)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.8.(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.9.(2012•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.10.(2012•济宁)如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.11.(2012•吉林)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E=_________,y F=_________;当m=3,n=5时,y E=_________,y F=_________.归纳证明对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.12.(2012•黄石)已知抛物线C1的函数解析式为y=ax2+bx﹣3a(b<0),若抛物线C1经过点(0,﹣3),方程ax2+bx ﹣3a=0的两根为x1,x2,且|x1﹣x2|=4.(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2.(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为)13.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)14.(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.15.(2012•怀化)如图,抛物线m:y=﹣(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M(3,),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D;(1)求抛物线n的解析式;(2)设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.16.(2012•湖州)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)17.(2012•呼和浩特)如图,抛物线y=ax2+bx+c(a<0)与双曲线相交于点A,B,且抛物线经过坐标原点,点A的坐标为(﹣2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.18.(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)(1)求此抛物线的解析式.(2)过点P作CB所在直线的垂线,垂足为点R,①求证:PF=PR;②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.19.(2012•菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.20.(2012•河南)如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,直接写出m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.21.(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.22.(2012•广元)如图,在矩形ABCD中,AO=3,tan∠ACB=.以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系,设D、E分别是线段AC、OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动.设运动时间为t(秒)(1)求直线AC的解析式;(2)用含t的代数式表示点D的坐标;(3)在t为何值时,△ODE为直角三角形?(4)在什么条件下,以Rt△ODE的三个顶点能确定一条对称轴平行于y轴的抛物线?并请选择一种情况,求出所确定的抛物线的解析式.23.(2012•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).24.(2012•广安)如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.25.(2012•阜新)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.26.(2012•福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).27.(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).2请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?28.(2012•东营)已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.29.(2012•达州)【问题背景】若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:>0),利用函数的图象或通过配方均可求得该函数的最大值.【提出新问题】若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?【分析问题】若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x>0),问题就转化为研究该函数的最大(小)值了.【解决问题】借鉴我们已有的研究函数的经验,探索函数(x>0)的最大(小)值.(1)实践操作:填写下表,并用描点法画出函数(x>0)的图象:(3)推理论证:问题背景中提到,通过配方可求二次函数>0)的最大值,请你尝试通过配方求函数(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,〕30.(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的坐标为_________,点E的坐标为_________.(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.②运动停止时,求抛物线的顶点坐标.答案与评分标准一.解答题(共30小题)1.(2012•连云港)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D 为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.,,=2.(2012•丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为﹣1时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.﹣(﹣=,,∴==,,,BG=AE==,=,)(﹣),x=)×+2=﹣+向右平移个单位,再向上平移个单位得到抛物线﹣+3.(2012•乐山)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.∴解得:抛物线的解析式为∴解得:)时,.,(舍去),,﹣时,由,,﹣(,﹣)或,﹣))DQ OG+DQ时,取得最大值为,此时,﹣)4.(2012•兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c 有如下关系:x1+x2=﹣,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.CE=|CE=AE=AB=CE=|,∴∴∴∴,5.(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.x=时,求出,进而得出,进而表示出y=上,∴所求函数关系式为,,,,解得:∴x=∴,(OF=+t×,∵(×=(﹣(﹣),S=,,6.(2012•荆门)已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.==4.)时,=的最大值为,最小值为﹣7.(2012•荆门)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.BAE==3BE==BAE==BAE=BAE=BAE=DEO==tanBAE= =,则E=÷=10BAE= =÷=;,﹣)解得,∴,时,设,即×﹣t﹣<.即)﹣((=3t+.8.(2012•江西)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.倍,由此确定,±;9.(2012•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.代入(OP=0PA==∴n=()OQ=,,,,,∴∴n=,)(,∵,∠10.(2012•济宁)如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐标.,,﹣∴,=的坐标是(运动到(,∴∴××﹣∵11.(2012•吉林)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E=2,y F=2;当m=3,n=5时,y E=15,y F=15.归纳证明对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.OA•AF=2••EF•AF,得:OA=2EF=2AB;12.(2012•黄石)已知抛物线C1的函数解析式为y=ax2+bx﹣3a(b<0),若抛物线C1经过点(0,﹣3),方程ax2+bx ﹣3a=0的两根为x1,x2,且|x1﹣x2|=4.(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2.(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为)配成完全平方式,然后根据平方的非负性即可得证.=4x+﹣≥x+=2•=)≥13.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)﹣14.(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.(,即x+2,∴,(=BE=±,(在抛物线上,∴(((EC=15.(2012•怀化)如图,抛物线m:y=﹣(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M(3,),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D;(1)求抛物线n的解析式;(2)设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.﹣(后确定最大值时,+﹣)关于点,﹣(﹣(=(,﹣y=﹣PF x﹣(﹣﹣+(+((﹣==5MH= 4=∵,。
中考数学二次函数 专题复习题(含答案)
二次函数专题复习题1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)2.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.15.已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.16.如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.参考答案1.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+bx+12上,当m≤x≤n时,y的取值范围是12≤y≤16,求m﹣n 的取值范围.(直接写出结果即可)【解答】解:(1)把C(﹣1,7),D(5,7)代入y=ax2+bx+12,可得,解得,∴抛物线的解析式为y=﹣x2+4x+12.(2)如图1中,过点E作EM⊥AB于M,过点D作DN⊥AB于N.对于抛物线y=﹣x2+4x+12,令y=0,得到,x2﹣4x﹣12=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0),∵D(5,7),∴OA=2,DN=7,ON=5,AN=7∵△CED的面积与△CAD的面积之比为1:7,∴DE:AD=1:7,∴AE:AD=6:7,∵EM∥DN,∵===,∴==,∴AM=EM=6,∴E(4,6),∴直线BE的解析式为y=﹣3x+18,由,解得或,∴F(1,15),过点P作PQ∥y轴交BF于Q,设P(t,﹣t2+4t+12)则Q(t,﹣3t+18),∴PQ=﹣t2+4t+12﹣(﹣3t+18)=﹣t2+7t﹣6,∵S△PBF=•(﹣t2+7t﹣6)•5=﹣(t﹣)2+,∵﹣<0,∴t=时,△BFP的面积最大,最大值为.(3)对于抛物线y=﹣x2+4x+12,当y=16时,﹣x2+4x+12=16,解得x1=x2=2,当y=12时,﹣x2+4x+12=12,解得x=0或4,观察图2可知:当0≤x≤2或2≤x≤4时,12≤y≤16,∴m=0,n=2或m=2,n=4或m=0,n=4,∴﹣4≤m﹣n≤﹣22.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).(1)求二次函数的关系式;(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.【解答】解:(1)因为点A(﹣6,0)和点B(2,0),设函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),则﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)解法一:如图1所示,过点P作直线m∥AC交抛物线于点P′,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=×PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);解法二:如图1,过点P作PH∥y轴交AC于点H,设P(x,﹣x2﹣2x+6).∵△PCA的面积为12,∴OA•PH=12,即×6•PH=12.∴PH=4,∴PH•|x A﹣x P|+PH•|x P|=12,即×4•|﹣6﹣x P|+×4•|x P|=12,∴x P=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣).综上,点E(,)或(,﹣).3.如图1,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C(0,﹣3),点D为该二次函数图象顶点.(1)求该二次函数解析式,及D点坐标;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD 相切,求点P的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMC=S△AOC,点E为直线AM上一动点,在x轴上是否存在点F,使以点F、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标,若不存在,请说明理由.【解答】解:(1)设该二次函数解析式为y=a(x+1)(x﹣3),把点C(0,﹣3)代入得:﹣3=a×1×(﹣3),解得:a=1,二次函数解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数图象顶点D坐标为(1,﹣4);(2)由(1)得:抛物线对称轴为直线x=1,∵点P是抛物线的对称轴上一点,∴设点P的坐标为(1,m),设直线CD的解析式为y=kx+b,把点C(0,﹣3),点D(1,﹣4)代入得:,解得:,∴直线CD的解析式为y=﹣x﹣3,当y=0时,x=﹣3,∴直线CD与x轴的交点为G(﹣3,0),∴OG=3,∴GN=ON+OG=1+3=4,∵抛物线顶点D坐标为(1,﹣4),∴DN=4=GN,∴△DNG是等腰直角三角形,∴∠NDG=45°,设直线CD与圆P相切于点Q,连接PQ、P A,如图3所示:∵以点P为圆心的圆经过A、B两点,且与直线CD相切,∴PQ⊥CD,PQ=P A,∴△PQD是等腰直角三角形,∴PD=PQ=P A,∵PD=|m+4|,P A==,∴|m+4|=,整理得:m2﹣8m﹣8=0,解得:m=4±2,∴点P的坐标为(1,4+2)或(1,4﹣2);(3)存在,理由如下:∵S△AMC=S△AOC,A(﹣1,0)、B(3,0),∴S△ABC﹣S△ABM=S△AOC,AB=OA+OB=4,∴×4×3﹣×4×|y M|=×1×3,∴|y M|=,∵y M<0,∴y M=﹣,设直线BC的解析式为y=k'x+b',则,解得:,∴直线BC的解析式为y=x﹣3,当y=﹣时,﹣=x﹣3,∴x=,∴M(,﹣),同理得:AM的解析式为y=﹣x﹣,分三种情况:①如图4所示:四边形BCEF是平行四边形,则CE∥BF,CE=BF,由题意得:∵点E为直线AM上一动点,点F在x轴上,∴点E的纵坐标为﹣3,∴﹣3═﹣x﹣,∴x=,∴点E(,﹣3),∴BF=CE=,∴OF=OB+BF=3+=,∴点F的坐标为(,0);②如图5所示:四边形BF'CE是平行四边形,同①得:点F'的坐标为(,0);③四边形BCF''E是平行四边形,如图6所示:点F(,0)关于点A的对称点为F''(﹣,0);综上所述,在x轴上存在点F,使以点F、E、B、C为顶点的四边形为平行四边形,点F 的坐标为(,0)或(,0)或(﹣,0)4.抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣3,0)和点B(2,0),∴,解得:,∴抛物线解析式为:y=x2+x﹣6;(2)①设点P(a,a2+a﹣6),∵点P位于y轴的左侧,∴a<0,PE=﹣a,∵PD=2PE,∴|a2+a﹣6|=﹣2a,∴a2+a﹣6=﹣2a或a2+a﹣6=2a,解得:a1=,a2=(舍去)或a3=﹣2,a4=3(舍去)∴PE=2或;②存在点P,使得∠ACP=∠OCB,理由如下,∵抛物线y=x2+x﹣6与x轴交于点C,∴点C(0,﹣6),∴OC=6,∵点B(2,0),点A(﹣3,0),∴OB=2,OA=3,∴BC===2,AC===3,如图,过点A作AH⊥CP于H,∵∠AHC=∠BOC=90°,∠ACP=∠BCO,∴△ACH∽△BCO,∴,∴=,∴AH=,HC=,设点H(m,n),∴()2=(m+3)2+n2,()2=m2+(n+6)2,∴或,∴点H(﹣,﹣)或(﹣,),当H(﹣,﹣)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣x﹣6,∴x2+x﹣6=﹣x﹣6,解得:x1=﹣2,x2=0(舍去),∴点P的坐标(﹣2,﹣4);当H(﹣,)时,∵点C(0,﹣6),∴直线HC的解析式为:y=﹣7x﹣6,∴x2+x﹣6=﹣7x﹣6,解得:x1=﹣8,x2=0(舍去),∴点P的坐标(﹣8,50);综上所述:点P坐标为(﹣2,﹣4)或(﹣8,50).5.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=﹣x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD 于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(﹣,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD 于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.【解答】解:(1)把A(﹣2,0),C(0,4)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+x+4.(2)令y=0,则有﹣x2+x+4=0,解得x=﹣2或4,∴B(4,0),把B(4,0)代入y=﹣x+m,得到m=2,∴直线BD的解析式为y=﹣x+2,由,解得或,∴D(﹣1,).(3)设P(a,﹣a2+a+4),则N(a,),F(a,﹣a+2),∴PN=﹣a2+a+4﹣=﹣a2+a+,NF=﹣(﹣a+2)=a+,∵N是线段PF的三等分点,∴PN=2NF或NF=2PN,∴﹣a2+a+=a+1或a+=﹣a2+2a+3,解得a=±1或﹣1或,∵a>0,∴a=1或,∴P(1,)或(,).(4)如图2中,∵A(﹣2,0),D(﹣1,),∴直线AD的解析式为y=x+5,∵A′Q′与AQ关于MG对称,MG⊥AD,∴QQ′∥AD,∵Q(﹣,0),∴直线QQ′的解析式为y=x+2,设直线QQ′交抛物线于E,由,解得或,∴E(1,),当点A′与D重合时,直线GM的解析式为y=﹣x+,可得M(,0),此时t=,当点Q′与E重合时,直线GM经过点(,),∵GM⊥AD,∴GM的解析式为y=﹣x+,令y=0,可得x=,∴M(,0),此时t==,观察图象可知,满足条件的t的值为≤t≤.6.如图,已知二次函数y=ax2+bx+4的图象与y轴交于点A,与x轴交于点B(﹣2,0),点C(8,0),直线y=经过点A,与x轴交于D点.(1)求该二次函数的表达式;(2)点E为线段AC上方抛物线上一动点,若△ADE的面积为10,求点E的坐标;(3)点P为抛物线上一动点,连接AP,将线段AP绕点A逆时针旋转到AP',并使∠P′AP=∠DAO,是否存在点P使点P′恰好落到坐标轴上?如果存在,请直接写出此时点P的横坐标;如果不存在,请说明理由.【解答】解:(1)把点B、C的坐标代入抛物线的解析式得,,解得,,∴二次函数的解析式为:;(2)设E(m,)(0<m<8),过E作EQ⊥x轴于点Q,则EQ=,∵D(3,0),∴DQ=m﹣3,∴S△ADE=S梯形AOQE﹣S△AOD﹣S△DEQ==,解得,m=8(舍),或m=,∴E点的坐标为(,);(3)①当P点在第一象限内,P′点在y轴上时,如图2,过P作PE⊥x轴于点E,过A作AM⊥PE于M,设P(m,+4),则AM=m,PM=,∵PE∥AO,∴∠APM=∠P′AP,∵∠P AP′=∠DAO,∴∠APM=∠DAO,∵∠AMP=∠AOD=90°,∴△APM∽△DAO,∴,即,解得,m=0(舍),或m=,∴此时P点的横坐标为;②当P点在y轴左边,P′在x轴上时,如图3,过P作PM⊥y轴于M,过P′作P′M′⊥AD于M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=﹣m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=﹣m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵DM′+AM′=AD=5,∴,解得,m=,或m=(舍),∴此时P点的横坐标为;③当P点在第四象限内,P′点在x轴上时,如图4,过P作PM⊥y轴于M,过P′作P′M′⊥AD于点M′,则∠AMP=∠AM′P′,设P(m,+4),则AM=,PM=m,∵∠P AP′=∠DAO,∴∠P AM=∠P′AM′,∵AP=AP′,∴△APM≌△AP′M′(AAS),∴PM=P′M′=m,AM=AM′═,∵∠DM′P′=∠DOA=90°,∠P′DM′=∠ADO,∴△DP′M′∽△DAO,∴,即,∴,∵AM′﹣DM′=AD=5,∴,解得,m=(舍),或m=.∴此时P点的横坐标为.综上,存在,其中P点的横坐标为或或.7.在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C 坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.【解答】解:(1)把A(﹣3.1)代入y=﹣x2+kx﹣2k,得﹣9﹣3k﹣2k=1.解得k=﹣2,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)如图1,设C(t,﹣t2﹣2t+4),则E(t,﹣﹣t+2),设直线AB的解析式为y=kx+b,把A(﹣3,1),(0,4)代入得到,,解得,∴直线AB的解析式为y=x+4,∵E(t,﹣﹣t+2)在直线AB上,∴﹣﹣t+2=t+4,解得t1=t2=﹣2,∴C(﹣2,4).(3)由y=﹣x2+kx﹣2k=k(x﹣2)﹣x2,当x﹣2=0时,x=2,y=﹣4,∴无论k取何值,抛物线都经过定点H(2,﹣4),二次函数的顶点N(,﹣2k),①如图2中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若>2时,则k>4,∵M(2﹣,0),H(2,﹣4),∴MI=,HI=4,∴tan∠MHI==,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH===,解得k=4+2或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即﹣2k═﹣4,解得k=4(不符合题意舍弃).③若=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=﹣x2+(4+2)x﹣(8+4).8.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N 以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q 为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣x2+x+1,令y=0,可得x2﹣3x﹣4=0,解得x=﹣1或4,∴A(﹣1,0),令y=0,得到x=1,∴C(0,1),∴OA=OC=1,∴∠CAO=45°.(2)如图1中,过点C作CE⊥OA于E,过点D作DF⊥AB于F.∵∠NEM=∠DFM=∠NMD=90°,∴∠NME+∠DMF=90°,∠DMF+∠MDF=90°,∴∠NME=∠MDF,∵NM=DM,∴△MEN≌△DFM(AAS),∴NE=MF,EM=DF,∵∠CAO=45°,AN=t,AM=3t,∴AE=EN=t,∴EM=AM﹣AE=2t,∴DF=2t,MF=t,OF=4t﹣1,∴D(4t﹣1,2t),∴﹣(4t﹣1)2+(4t﹣1)+1=2t,∵t>0,故可以解得t=,经检验,t=时,M,N均没有达到终点,符合题意,∴D(2,).(3)如图3﹣1中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠MDB时,取E(,0),连接EC,过点E作EG⊥EC交PC于G,∵M(,0),D(2,),B(4,0)∴FM=2﹣=,DM=,BM=,BD=,∴DF=2MF,∵OC=2OE,∴tan∠OCE=tan∠MDF=,∴∠OCE=∠MDF,∴∠OCP=∠MDB,∴∠ECG=∠FDB,∴tan∠ECG=tan∠FDB=,∴EG=,可得G(,),∴直线CP的解析式为y=﹣x+1,由,解得或,∴P(,),∴PC=,当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).如图3﹣2中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠DMB时,设PC交x轴于k.∵tan∠OCK=tan∠DMB=2,∴OK=2OC=2,∴点K与F重合,∴直线PC的解析式为y=﹣x+1,由,解得或,∴P(5,﹣),当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).当点Q在点C的下方,点P在y的右侧,∠QCP=∠DBM时,同法可得P(,﹣),Q(0,﹣)或(0,),当点Q在点C上方,∠QCP=∠DMB时,同法可得P(1,),Q(0,)或(0,),当点Q在点C上方,∠QCP=∠MDB时,同法可得P(,),Q(0,)或(0,),当点Q在点C下方,点P在y轴的左侧时,∠QCP=∠DBM时,同法可得P(﹣,﹣),Q(0,﹣)或(0,﹣).9.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接P A,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3得:,解得∴抛物线的表达式为y=﹣x2+2x+3,∴点C坐标为(0,3),把B(3,0),C(0,3)代入y=kx+n得:,解得∴直线BC的表达式为y=﹣x+3.(2)①∵P A交直线BC于点D,∴设点D的坐标为(m,﹣m+3),设直线AD的表达式为y=k1x+b1,∴,解得,∴直线AD的表达式,y=x+,∴x+=﹣x2+2x+3,整理得,(x﹣)(x+1)=0解得x=或﹣1(不合题意,舍去),∴点D的横坐标为m,点P的横坐标为,分别过点D、P作x轴的垂线,垂足分别为M、N,如图1中:∴DM∥PN,OM=m,ON=,OA=1,∴=====,设=t,则t=整理得,(t+1)m2+(2t﹣3)m+t=0,∵△≥0,∴(2t﹣3)2﹣4t(t+1)≥0,解得t≤∴有最大值,最大值为.②存在,理由如下:过点F作FG⊥OB于G,如图2中,∵y=﹣x2+2x+3的对称轴为x=1,∴OE=1,∵B(3,0),C(0,3)∴OC=OB=3,又∵∠COB=90°,∴△OCB是等腰直角三角形,∵∠EFB=90°,BE=OB﹣OE=2,∴△EFB是等腰直角三角形,∴FG=GB=EG=1,∴点F的坐标为(2,1),当EF为边时,∵四边形EFPQ为平行四边形,∴QE=PF,QE∥PF∥y轴,∴点P的横坐标与点F的横坐标同为2,当x=2时,y=﹣22+2×2+3=3,∴点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,2),根据对称性当P(0,3)时,Q(1,4)时,四边形EFQP也是平行四边形.当EF为对角线时,如图3中,∵四边形PEQF为平行四边形,∴QE=PF,QE∥PF∥y轴,同理求得:点P的坐标为(2,3),∴QE=PF=3﹣1=2,点Q的坐标为(1,﹣2);综上,点P的坐标为(2,3)时,点Q的坐标为(1,2)或(1,﹣2),P(0,3)时,Q(1,4).10.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣),即满足条件的点P的坐标为(3,﹣2)或(,﹣).11.如图,在平面直角坐标系中,抛物线y=x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y=﹣x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.【解答】(1)解:对于抛物线y=x2﹣2x,令y=0,得到x2﹣2x=0,解得x=0或6,∴A(6,0),∵直线y=﹣x+b经过点A,∴0=﹣3+b,∴b=3,∵y=x2﹣2x=(x﹣3)2﹣3,∴M(3,﹣3).(2)证明:如图1中,设平移后的直线的解析式y=﹣x+n.∵平移后的直线经过M(3,﹣3),∴﹣3=﹣+n,∴n=﹣,∴平移后的直线的解析式为y=﹣x﹣,过点D(2,0)作DH⊥MC于H,则直线DH的解析式为y=2x﹣4,由,解得,∴H(1,﹣2),∵D(2,0),M(3,﹣3),∴DH==,HM==,∴DH=HM.∴∠DMC=45°,∵∠ADM=∠DMC+∠ACM,∴∠ADM﹣∠ACM=45°.(3)解:如图2中,过点G作GH⊥OA于H,过点E作EK⊥OA于K.∵∠BEF=2∠BAO,∠BEF=∠BAO+∠EF A,∴∠EF A=∠BAO,∵∠EF A=∠GFH,tan∠BAO===,∴tan∠GFH=tan∠EFK=,∵GH∥EK,∴==,设GH=4k,EK=3k,则OH=HG=4k,FH=8k,FK=AK=6k,∴OF=AF=12k=3,∴k=,∴OF=3,FK=AK=,EK=,∴OK=,∴E(,).12.如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).13.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:(1,0);(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.【解答】解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,∴HE∥GK.14.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:。
中考数学专题复习《二次函数—二次函数解决实际问题》专题训练
二次函数--二次函数解决实际问题1. 如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A.6425m2B.43m2C.83m2 D.4m2 2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m ,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m4. 河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-125x2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )A.-20mB.10mC.20mD.-10m5. 某幢建筑物,从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M 离墙1米,离地面403米,则水流下落点B 离墙距离OB 是( )A.2米B.3米C.4米D.5米6. 如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A.3cm2B.323cm2C.923cm2D.2723cm2 7. 若某商品的利润y(元)与售价x(元)之间的函数关系式是y =-x2+8x +9,且售价x 的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元8. 一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元9. 如图,隧道的截面是抛物线,可以用y =-116x2+4表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m ,小于8m10. 如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm ,要使鸡场的面积最大,鸡场的长为 m.11. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系式y =-29x2+89x +109,则羽毛球飞出的水平距离为 米.12. 如图,有一抛物线形的立交拱桥,这个拱桥的最大高度为16m ,跨度为40m ,现把它的图形放在坐标系中.若在离跨度中心M 点5m 处垂直竖立一根铁柱支撑拱顶,这根铁柱应取 m.13. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y(单位:米2),当x = 米时菜园的面积最大.14. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形面积之和的最小值是__________cm2.15. 已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式:y =-x2+1200x -357600,则卖出盒饭数量为________盒时,获得最大利润为________元.16. 某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大17. 杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-35x2+3x +1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 一种进价为每件40元的T 恤,若销售单价为60元,则每周可卖出300件,可提高利润,欲对该T 恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T 恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价为多少元时,每周的销售利润最大?19. 如图,某足球运动员站在点O 练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?20. 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m.按照图中所示的直角坐标系,抛物线可以用y =-16x2+bx +c 表示,且抛物线时的点C 到墙面OB 的水平距离为3m ,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?参考答案:1—9 CACCB CCAA10. 2511. 512. 1513. 1514. 25215. 600 240016. 2217. 解:(1)y =-35x2+3x +1=-35(x -52)2+194,∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米; (2)当x =4时,y =-35×42+3×4+1=3.4=BC ,所以这次表演成功. 18. 解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x2+1300x -36000(60≤x≤90).配方,得y =-10(x -65)2+6250.∵-10<0,∴当x =65时,y 有最大值6250,因此,当该T 恤销售单价为65元时,每周的销售利润最大.19. 解:(1)由题意得:函数y =at2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎪⎨⎪⎧ 0.5=c 3.5=0.82a -5×0.8+c ,解得:⎩⎪⎨⎪⎧ a =-2516c =12,∴抛物线的解析式为:y =-2516t2+5t +12,∴当t=85时,y 最大=4.5; (2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44,∴他能将球直接射入球门.20. 解:(1)根据题意得B(0,4),C(3,172),把B(0,4),C(3,172)代入y =-16x2+bx +c 得⎩⎪⎨⎪⎧ c =4-16×32+3b +c =172,解得⎩⎪⎨⎪⎧ b =2c =4,所以抛物线解析式为y =-16x2+2x +4,则y =-16(x -6)2+10,所以D(6,10),所以拱顶D 到地面OA 的距离为10m ;(2)由题意得货运汽车最外侧于地面OA 的交点为(2,0)或(10,0),当x =2或x =10时,y =223>6,所以这辆货车能安全通过;(3)令y =0,则-16(x -6)2+10=8,解得x1=6+23,x2=6-23,则x1-x2=43,所以两排灯的水平距离最小是43m.。
2012中考数学专题14 二次函数
解析:当y1=y2时,x2=-x+3解得x1=-2,x2=,观察图象得当y1<y2时,-2<x<.
答案:C
8.如图,点A、B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为()
A.(0,2)B.(1,0)C.(0,-3)D.(0,0)
解析:∵抛物线与y轴相交,∴x=0.当x=0时,y=2,∴交点坐标为(0,2).
答案:A
5.(2010·宁波)如图,已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连结BA,BC,求△ABC的面积.
答案:
3.对于反比例函数y=,当x>0时,y随x的增大而增大,则二次函数y=kx2+kx的大致图象是()
答案:C
4.已知抛物线C:y=x2+3x-10,将抛物线C平移得到抛物线C′.若两条抛物线C、C′关于直线x=1对称,则下列平移方法中,正确的是()
A.将抛物线C向右平移个单位
B.将抛物线C向右平移3个单位
A.(-1,8)B.(1,8)C.(-1,2)D.(1,-4)
解析:∵y=-3x2-6x+5,∴y=-3(x+1)2+8,∴顶点坐标是(-1,8).
答案:A
2.若二次函数y=x2+bx+4配方后为y=(x-2)2+k,则b、k的值分别为()
A.0,5B.0,1C.-4,5D.-4,1
解析:∵y=(x-2)2+k,∴y=x2-4x+4+k=x2+bx+5,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年数学中考专项训练十二次函数
(时间:90分钟满分:100分)
一、选择题(每小题3分,共24分)
1.(2011年北京)抛物线y=x2-6x+5的顶点坐标为( )
A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)
2.(2011年株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
A.4米B.3米C.2米D.1米
3.(2011年呼和浩特)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象
上有三点(-4
5
,y1)、(-
5
4
,y2)、(-
1
6
,y3),y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
4.(2011年重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )
A.a>0 B.b<0 C.c<0 D.a+b+c>0
5.(2011年宿迁)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.a>0 B.当x>1时,y随x的增大而增大
C.c<0 D.3是方程ax2+bx+c=0的一个根
6.(2011年威海)二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量x的取值范围是( ) A.-1<x<3 B.x<-1
C.x>3 D.x<-3或x>3
7.(2011年铜仁)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( ) A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
8.(2011年桂林)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是( )
A.y=-(x+1)2+2 B.y=-(x-1)2+4
C.y=-(x-1)2+2 D.y=-(x+1)2+4
二、填空题(每小题3分,共18分)
9.(2011年德州)将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为______.10.(2011年河南)点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1_______y2(填“>”“<”或“=”).
11.(2011年枣庄)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
从上表可知,下列说法中正确的是______ .(填写序号)
①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;
③抛物线的对称轴是x =
12
;④在对称轴左侧,y 随x 的增大而增大.
12. (2011年湖州)如图,已知抛物线y =x 2
+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与
x 轴的一个交点在(1,0)和(3,0)之间,你所确定的b 的值是______. 13.(2011年宜宾)如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为
顶点且过A 、D 两点的抛物线与以O 为顶点且过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______.
14.(2011年日照)如图是二次函数y =ax 2+bx +c(a ≠0)的图象的一部分,给出下列命题: ①a +b +c
=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c>0.其中正确的命题是______.(只要求填写正确命题的序号)
三、解答题(共58分)
15.(10分)(2011年哈尔滨)手工课时,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线
长度之和恰好为60 cm ,菱形的面积S(单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化. (1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少?______.
(参考公式:当x =-2b a
时,二次函数y =ax 2
+bx +c (a ≠0)有最小(大)值
2
44ac b a
)
16.(12分)(2011年陕西)二次函数y =
23
x 2
-1
3
x 的图象经过△AOB 的三个顶点,其中A (-1,m ),
B(n ,n).
(1)求点A 、B 的坐标;
(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形. ①这样的点C 有几个? ②能否将抛物线y =
23
x 2-
13
x 平移后经过A 、C 两点?若能,求出平移后经过A 、C 两点的一条抛物
线的解析式;若不能,说明理由.
17.(12分)(2011年北京市)在平面直角坐标系x O y 中,二次函数y =m x 2+(m -3)x -3(m>0)的图象与
x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=k x+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于x轴的直
线交这个一次函数的图象于点M,交二次函数y=m x2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.
18.(12分)(2011年宜宾)已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点.若DA=2D B,且S△ABD=42,求
a的值.
19.(12分)(2011年杭州)设函数y=k x2+(2k+1)x+1(k为实数).
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两
个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值.
参考答案
1.A
2.A
3.A
4.D
5.D
6.A
7.B
8.B
9.y =x 2+1 10.< 11.①③④ 12.如-12
13.2 14.①③
15.(1)S =-12
x 2+30x (2) 当x 为30 cm 时,菱形风筝面积最大,最大面积是
450 cm 2.
16.(1)A(-1,1),B(2,2) (2)①3个 ②能 2
2413
3
y x x =-
-
17.(1)(-1,0) (2)m =1 (3)y =-2x +1 18.(1)2
14y x a a
=
+ (2)略 (3)a =2
19.(1)如两个函数为y =x +1,y =x 2
+3x +1,图象略 (2)略 (3)m ≤-1。