2014届高考数学一轮必备考情分析学案:12.2《古典概型》

合集下载

一轮复习:12.2古典概型

一轮复习:12.2古典概型
§12.2 古典概型
知识梳理 1.基本事件的特点
(1)任何两个基本事件是 互斥 的;
(2)任何事件(除不可能事件)都可以表示成 基本事件 的和.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型 ,简称古典概型.
(1)试验中所有可能出现的基本事件 只有有限个 ;
(2)每个基本事件出现的可能性 相等 .
命题点2 与线性规划知识交汇命题的问题
x≤0, 典例 由不等式组 y≥0, y-x-2≤0
确定的平面区域记为 Ω1 ,由不等式组
x+y≤1, 确定的平面区域记为 Ω2,若在 Ω1 中随机取一点,则该点恰 x+y≥-2
7 好在 Ω2 内的概率为___. 8
命题点3 与定积分交汇命题的问题

3 B.4
1 C.3
2 D.3
题型三 与体积有关的几何概型
典例
师生共研
(1)已知正三棱锥 S—ABC 的底面边长为 4,高为 3,在正三棱锥内
1 任取一点 P,使得 VP—ABC<2VS—ABC 的概率是

7 A.8
3 B.4
1 C.2
1 D.4
(2)如图,正方体ABCD—A1B1C1D1的棱长为1,在正方
§12.3 几何概型
知识梳理 1.几何概型
如果每个事件发生的概率只与构成该事件区域的长度 ( 面积或 体积)成比
例,则称这样的概率模型为几何概率模型,简称为 几何概型 .
2.在几何概型中,事件A的概率的计算公式
构成事件A的区域长度面积或体积 P(A)=试验的全部结果所构成的区域长度面积或体积 .
π 食能被鱼缸内在圆锥外面的鱼吃到”的概率是1- 4 ,故选A.“物质分金、木、土、水、火五种属性,

学案1:§12.2 古典概型

学案1:§12.2 古典概型

§12.2 古典概型考纲展示1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件及事件发生的概率.考点1古典概型的简单问题第1步回顾基础一、自读自填1.基本事件的特点(1)任何两个基本事件是________的.(2)任何事件(除不可能事件)都可以表示成________的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件________.(2)每个基本事件出现的可能性________.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是________;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=________.4.古典概型的概率计算公式P(A)=________________.二、链接教材(1)从字母a,b,c,d中任意取出两个不同字母的试验中,基本事件共有________个.(2)抛掷质地均匀的一枚骰子一次,出现正面朝上的点数大于2且小于5的概率为__________.三、易错问题古典概型:关键在于基本事件的计数.从1,3,5,7中任取2个不同的数,则取出的2个数之差的绝对值大于3的概率是__________.第2步自主练透典题1(1)袋中共有15个除了颜色外完全相同的球,其中有10个白球、5个红球.从袋中任取2个球,所取的2个球中恰有1个白球、1个红球的概率为()A. 521 B.1021C. 1121D.1(2)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)②在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.点石成金古典概型中基本事件的两种探求方法(1)列举法适合给定的基本事件个数较少且易一一列举出的情况.(2)树状图法适合较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)和(2,1)相同.考点2较复杂古典概型的概率第1步回顾基础一、通性通法古典概型:基本事件的个数;古典概型概率公式.(1)抛掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1,2,3,4,5,6)一次,则两颗骰子向上点数之积等于12的概率为__________.(2)小明的自行车用的是密码锁,密码锁的四位数码由4个数字2,4,6,8按一定顺序构成,小明不小心忘记了密码中4个数字的顺序,随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是__________.第2步师生共研典题2某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.点石成金 1.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.2.注意区别排列与组合,以及计数原理的正确使用.第3步跟踪训练为振兴旅游业,四川省面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜景区旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.考点3古典概型的交汇命题第1步多角探明考情聚焦古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识全面,能力要求较高. 主要有以下几个命题角度: 角度一古典概型与平面向量相结合典题3 已知向量a =(x ,-1),b =(3,y ),其中x 随机选自集合{-1,1,3},y 随机选自集合{1,3,9}.(1)求a ∥b 的概率; (2)求a ⊥b 的概率. 角度二古典概型与直线、圆相结合典题4 将一颗骰子先后抛掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________. 角度三古典概型与函数相结合典题5 已知关于x 的一元二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率. 角度四古典概型与统计相结合典题6 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制成频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.点石成金解决与古典概型交汇命题的关注点解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.第2步课堂归纳方法技巧 1.确定基本事件的方法(1)当基本事件总数较少时,可用列举法计算;(2)当基本事件总数较多时,可用列表法、树状图法.2.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.3.概率的一般加法公式:P(A∪B)=P(A)+P(B)-P(A∩B).公式使用中要注意:(1)公式的作用是求A∪B的概率,当A∩B=∅时,A,B互斥,此时P(A∩B)=0,所以P(A∪B)=P(A)+P(B);(2)要计算P(A∪B),需要求P(A)、P(B),更重要的是把握事件A∩B,并求其概率;(3)该公式可以看作一个方程,知三可求一.易错防范古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.参考答案考点1古典概型的简单问题第1步回顾基础一、自读自填1.(1)互斥(2)基本事件2.(1)只有有限个 (2)相等3. 1n m n4. A 包含的基本事件的个数基本事件的总数二、链接教材 (1)【答案】6【解析】基本事件有{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },共6个. (2)【答案】13【解析】抛掷质地均匀的一枚骰子一次,出现点数1,2,3,4,5,6,共6个基本事件,其中正面朝上的点数大于2且小于5的有3,4,共2个基本事件,所以P =26=13.三、易错问题 【答案】12【解析】由题意知,“从1,3,5,7中任取2个不同的数”所包含的基本事件为(1,3),(1,5),(1,7),(3,5),(3,7),(5,7),共6个,满足条件的事件包含的基本事件为(1,5),(1,7),(3,7),共3个,所以所求的概率P =36=12.第2步 自主练透 典题1 (1)【答案】 B【解析】 从15个球中任取2个球共有C 215种取法,其中有1个红球、1个白球的情况有C 110C 15=50(种),所以P =50C 215=1021. (2)解:①由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.②从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有: {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个. 根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P =215.考点2 较复杂古典概型的概率 第1步 回顾基础一、通性通法 (1)【答案】19【解析】抛掷两颗相同的正方体骰子,共有36种等可能的结果:(1,1),(1,2),(1,3),…,(6,6).点数之积等于12的结果有(2,6),(3,4),(4,3),(6,2),共4种,故所求事件的概率为436=19. (2)【答案】2324【解析】由2,4,6,8可以组成24个四位数(每个数位上的数都不相同),其中只有一个能打开锁,能打开锁的概率为124,所以不能打开锁的概率为1-124=2324.典题2 解:(1)由题意,参加集训的男生、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法,得 P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.第3步 跟踪训练解:(1)由题意,得省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡. 设事件A 为“采访该团2人,恰有1人持银卡”,则P (A )=C 16C 130C 236=27,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B 为“采访该团2人,持金卡与持银卡人数相等”,可以分为事件B 1为“采访该团2人,持金卡0人,持银卡0人”,或事件B 2为“采访该团2人,持金卡1人,持银卡1人”两种情况.则P (B )=P (B 1)+P (B 2)=C 221C 236+C 19C 16C 236=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.典题3 解:由题意,得(x ,y )所有的基本事件为(-1,1),(-1,3),(-1,9),(1,1),(1,3), (1,9),(3,1),(3,3),(3,9),共9个. (1)设“a ∥b ”为事件A ,则xy =-3.事件A 包含的基本事件有(-1,3),共1个. 故a ∥b 的概率为P (A )=19.(2)设“a ⊥b ”为事件B ,则y =3x .事件B 包含的基本事件有(1,3),(3,9),共2个. 故a ⊥b 的概率为P (B )=29.典题4 【答案】712【解析】 依题意,将一颗骰子先后抛掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤ 2,即a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21(种), 因此所求的概率为2136=712.典题5 解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba ≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.∴事件包含基本事件的个数是1+2+2=5, ∴所求事件的概率为515=13.(2)由(1)知,当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知,试验的全部结果所构成的区域为⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为⎝⎛⎭⎫163,83, ∴所求事件的概率为P =12×8×8312×8×8=13.典题6 解:(1)因为(0.004+a +0.018+0.022×2+0.028)×10=1,所以a =0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A 1,A 2,A 3; 受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B 1,B 2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}. 又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.。

2014届高考数学一轮复习(基础知识+高频考点+解题训练)古典概型教学案

2014届高考数学一轮复习(基础知识+高频考点+解题训练)古典概型教学案

古_典_概_型[知识能否忆起]一、基本事件的特点1.任何两个基本事件是互斥的.2.任何事件(除不可能事件)都可以表示成基本事件的和. 二、古典概型的两个特点1.试验中所有可能出现的基本事件只有有限个,即有限性. 2.每个基本事件出现的可能性相等,即等可能性.[提示] 确定一个试验为古典概型应抓住两个特征:有限性和等可能性. 三、古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[小题能否全取]1.(教材习题改编)从甲、乙、丙三人中任选两名代表,甲被选中的概率为( ) A.12B.13 C.23D .1 解析:选C 基本事件总数为(甲、乙)、(甲、丙)、(乙、丙)共三种,甲被选中共2种.那么P =23.2.(教材习题改编)从1,2,3,4,5,6六个数中任取2个数,那么取出的两个数不是连续自然数的概率是( )A.35B.25C.13D.23解析:选D 从六个数中任取2个数有15种方法,取出的两个数是连续自然数有5种情况,那么取出的两个数不是连续自然数的概率P =1-515=23.3.甲、乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,那么甲同学拿到一本自己书一本乙同学书的概率是( )33C.12D.14解析:选B 记甲同学的两本书为A ,B ,乙同学的两本书为C ,D ,那么甲同学取书的情况有AB ,AC ,AD ,BC ,BD ,CD 共6种,有一本自己的书,一本乙同学的书的取法有AC ,AD ,BC ,BD 共4种,所求概率P =23.4.(2012·某某一调)将甲、乙两球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,那么在1,2号盒子中各有一个球的概率为________.解析:依题意得,甲、乙两球各有3种不同的放法,共9种放法,其中有1,2号盒子中各有一个球的放法有2种,故有1,2号盒子中各有一个球的概率为29.答案:295.(教材习题改编)从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________.解析:P =3×210=35.答案:351.古典概型的判断:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概率模型才是古典概型.2.对于复杂的古典概型问题要注意转化为几个互斥事件的概率问题去求.简单的古典概型典题导入[例1] (2012·某某高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.2555[自主解答] (文)设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,那么从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 1,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3)共6个.因此其概率为615=25.(理)从6个球中任取两球有C 26=15种取法,颜色一黑一白的取法有C 12C 13=6种,故概率P =615=25.[答案] B在本例条件下,求两球不同色的概率.解:两球不同色可分三类:一红一白,一红一黑,一白一黑. 故P =1×2+1×3+2×315=1115.由题悟法计算古典概型事件的概率可分三步:(1)算出基本事件的总个数n ;(2)求出事件A 所包含的基本事件个数m ;(3)代入公式求出概率P .以题试法1.“≺数〞是指每个数字比其左边的数字大的自然数(如 1 469),在两位的“≺数〞中任取一个数比36大的概率是( )A.12B.23 C.34D.45解析:选A 在两位数中,十位是1的“≺数〞有8个;十位是2的“≺数〞有7个;……;十位是8的“≺数〞有1个.那么两位数中,“≺数〞共有8+7+6+5+4+3+2+1=36个,比36大的“≺数〞共有3+5+4+3+2+1=18个.故在两位的“≺数〞中任取一个数比36大的概率是1836=12.复杂的古典概型典题导入[例2] (2012·某某高考)如下图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.[自主解答] (文)从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种; y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种; z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)法一:选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.法二:选取的这3个点与原点不共面的所有可能的结果有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种,因此这3个点与原点O 共面的概率为P 2=1-820=35.(理)从这6个点中任取3个点可分三类:在x 轴上取2个点、1个点、0个点,共有C 22C 14+C 12C 24+C 34=20种取法.(1)选取的3个点与原点O 恰好是正三棱锥项点的取法有2种,概率P 1=220=110.(2)法一:选取的3个点与原点O 共面的取法有C 22·C 14·3=12种,所求概率P 2=1220=35.法二:选取的3个点与原点不共面的取法有C 12·C 12·C 12=8种,因此这3个点与原点O 共面的概率P 2=1-820=35.由题悟法求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成彼此互斥的事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.以题试法2.一个小朋友任意敲击电脑键盘上的0到9十个键,那么他敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.425B.215C.25D.29解析:选A 任意敲击两次有10×10=100种方法,两次都是3的倍数有4×4=16种方法,故所求概率为P =16100=425.1.(2013·某某调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,那么取出的2个球同色的概率为( )A.12B.13C.14D.25解析:选A 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P =816=12.2.(2012·鸡西模拟)在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( )A.34B.310C.25D .以上都不对 解析:选B 在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310.3.(2013·某某质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,那么三次点数依次构成等差数列的概率为( )A.112B.118C.136D.7108解析:选A 基本事件总数为6×6×6,事件“三次点数依次成等差数列〞包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P =186×6×6=112.4.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件,n 件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,假设发现有次品,那么当天的产品不能通过.那么第一天通过检查的概率为( )A.25B.35C.23D.67解析:选B 因为随意抽取4件产品检查是随机事件,而第一天有1件次品,所以第一天通过检查的概率P =C 49C 410=35.5.(2012·某某模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},那么函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34解析:选C 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.假设存在零点,那么⎩⎪⎨⎪⎧f 1≤0,f 2≥0,解得a +1≤b ≤8+2a .因此可使函数在区间[1,2]上有零点的有a =1,2≤b ≤10,故b =2,b =4,b =8;a =2,3≤b ≤12,故b =4,b =8,b =12;a =3,4≤b ≤14,故b =4,b =8,b=12;a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为1116.6.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,那么检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析:选B 从“6听饮料中任取2听饮料〞这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料〞含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 7.(2012·某某模拟)从分别写有0,1,2,3,4的五X 卡片中取出一X 卡片,记下数字后放回,再从中取出一X 卡片.那么两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五X 卡片中取出两X 卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.答案:158.(2012·某某高考)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,那么在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).解析:基本事件是对这6门课排列,故基本事件的个数为A 66.“课表上的相邻两节文化课之间至少间隔1节艺术课〞就是“任何两节文化课不能相邻〞,利用“插空法〞,可得其排列方法种数为A 33A 34.根据古典概型的概率计算公式可得事件“课表上的相邻两节文化课之间至少间隔1节艺术课〞发生的概率为A 33A 34A 66=15.答案:159.(2012·某某高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,假设从这10个数中随机抽取一个数,那么它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35.答案:3510.暑假期间,甲、乙两个学生准备以问卷的方式对某城市市民的出行方式进行调查.如图是这个城市的地铁二号线路图(部分),甲、乙分别从太平街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.(1)求甲选取问卷调查的站点是太平街站的概率;(2)求乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率.解:(1)由题知,所有的基本事件有3个,甲选取问卷调查的站点是太平街站的基本事件有1个,所以所求事件的概率P =13.(2)由题知,甲、乙两人选取问卷调查的所有情况见下表:乙 甲ABCA (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C(C ,A )(C ,B )(C ,C )由表格可知,共有9种可能结果,其中甲、乙在相邻的两站进行问卷调查的结果有4种,分别为(A ,B ),(B ,A ),(B ,C ),(C ,B ).因此乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率为49.11.(2012·某某模拟)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b 〞.设复数为z =a +b i.(1)假设集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9〞的概率. 解:(1)A ={6i,7i,8i,9i}. (2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9〞的事件为B . 当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9; 当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9;当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124.12.(2012·某某模拟)A 、B 、C 三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着1,另一个球标着2.现从A 、B 、C 三个箱子中各摸出1个球.(1)假设用数组(x ,y ,z )中的x ,y ,z 分别表示从A 、B 、C 三个箱子中摸出的球的,请写出数组(x ,y ,z )的所有情形,并回答一共有多少种;(2)如果请您猜测摸出的这三个球的之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.解:(1)数组(x ,y ,z )的所有情形为(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(2)记“所摸出的三个球之和为i 〞为事件A i (i =3,4,5,6),易知,事件A 3包含有1个基本事件,事件A 4包含有3个基本事件,事件A 5包含有3个基本事件,事件A 6包含有1个基本事件,所以,P (A 3)=18,P (A 4)=38,P (A 5)=38,P (A 6)=18.故所摸出的两球之和为4或5的概率相等且最大.故猜4或5获奖的可能性最大.1.(2012·某某十校联考)从x 2m -y 2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,那么此方程是焦点在x 轴上的双曲线方程的概率为( )A.12B.47C.23D.34解析:选B 当方程x 2m -y 2n =1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m <0,n >0,所以方程x 2m -y 2n=1表示椭圆双曲线、抛物线等圆锥曲线的(m ,n )有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1)共7种,其中表示焦点在x 轴上的双曲线时,那么m >0,n >0,有(2,2),(3,2),(2,3),(3,3)共4种,所以所求概率P =47.2.设连续掷两次骰子得到的点数分别为m 、n 那么直线y =mnx 与圆(x -3)2+y 2=1相交的概率为________.解析:由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.由直线与圆的位置关系得,d =|3m |m 2+n2<1,即m n <24,共有13,14,15,16,26,5种,所以直线y =m n x 与圆(x -3)2+y 2=1相交的概率为536.答案:5363. (2012·某某高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)假设从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.解:(1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.因此,从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,那么抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3}共3种.所以P (B )=315=15.1.A ={1,2,3},B ={x ∈R |x 2-ax +b =0},a ∈A ,b ∈A ,那么A ∩B =B 的概率是( ) A.29B.13word11 / 11 C.89D .1 解析:选C ∵A ∩B =B ,∴B 可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B =∅时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b .当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b .∴A ∩B =B 的概率为83×3=89. 2.将一颗骰子投掷两次分别得到点数a 、b ,那么直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.解析:圆心(2,0)到直线ax -by =0的距离d =|2a |a 2+b 2,当d <2时,直线与圆相交,那么有d =|2a |a 2+b 2<2,得b >a ,满足题意的b >a ,共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512. 答案:5123.(2012·某某高考)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个(1,1),(2,2).故所求的概率P =29.。

2014高考数学一轮复习课件:10.2古典概型(精)

2014高考数学一轮复习课件:10.2古典概型(精)

基本事件的总数为 6×6=36 个, 记事件 A={(m, • 5解析: .(理 )若以连续掷两次骰子分别得到的点数 2 2 n)落在圆 x + y = 16 内},则 A 所包含的基本事件有 (1,1) , m、n作为P 点的坐标,则点 P落在圆x2+ y2= 16 内的概率是 ________ . (1,2) , (1,3),(2,1),(2,2) ,(2,3), (3,1)(3,2)共 8 个. 8 2 ∴P(A)=36=9. 2 答案:9
解析:一枚硬币连掷 3 次,共有:(正,正,正),(正, 正,反),(正,反,正),(反,正,正),(正,反,反),(反, 正,反),(反,反,正),(反,反,反)8 种情况,而只有一 次出现正面的情况有:(正,反,反),(反,正,反),(反, 3 反,正)3 种情况,故 P= . 8
• 答案:A
(2)计算古典概型所含基本事件总数的方法 ①树形图 ②列表法 ③另外,还可以用坐标系中的点来表示基本事 件,进而可计算基本事件总数.
• (1)随机试验满足的条件 • ①试验可以在相同的条件下重复做下去; • ②试验的所有结果是明确可知的,并且不止一 个; • ③每次试验总是恰好出现这些结果中的一个, 但在试验之前却不能肯定会出现哪一个结 果.所以,随机试验的每一个可能出现的结果 是一个随机事件,这类随机事件叫做基本事 件.
• • • •
3.袋中有 2 个白球,2 个黑球,其中任意摸出 2 个,则 至少摸出 1 个黑球的概率是( 3 A.4 1 C. 6 5 B.6 1 D. 3 )
解析:该试验中出现(白 1,白 2),(白 1,黑 1),(白 1, 黑 2),(白 2,黑 1),(白 2,黑 2)和(黑 1,黑 2)共 6 种等可 能的结果,所以属于古典概型.事件“至少摸出 1 个黑球” 所含有的基本事件为(白 1,黑 1),(白 1,黑 2),(白 2,黑 1),(白 2,黑 2)和(黑 1,黑 2)共 5 种,据古典概型概率公式, 5 得事件“至少摸出 1 个黑球”的概率是6.

【步步高】2014届高三数学大一轮复习 12.2古典概型教案 理 新人教A版

【步步高】2014届高三数学大一轮复习 12.2古典概型教案 理 新人教A版

§12.2 古典概型2014高考会这样考 1.考查古典概型概率公式的应用;2.考查古典概型与事件关系及运算的综合题;3.与统计知识相结合,考查解决综合问题的能力.复习备考要这样做 1.掌握解决古典概型的基本方法,列举基本事件、随机事件,从中找出基本事件的总个数,随机事件所含有的基本事件的个数;2.复习时要加强与统计相关的综合题的训练,注重理解、分析、逻辑推理能力的提升.1. 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2. 古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等.3. 如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )= mn.4. 古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[难点正本 疑点清源]1. 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.2. 从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集. 故P (A )=card A card I =m n.1. 甲、乙、丙三名同学站成一排,甲站在中间的概率是__________.答案 13解析 甲共有3种站法,故站在中间的概率为13.2. 从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________.答案 25解析 从6个数中任取2个数的可能情况有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种,其中和为偶数的情况有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6种,所以所求的概率是25.3. 从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15答案 D解析 基本事件的个数有5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.4. 一个口袋内装有2个白球和3个黑球,则先摸出1个白球后放回的条件下,再摸出1个白球的概率是 ( )A.23B.14C.25D.15答案 C解析 先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为25.5. (2012·广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19答案 D解析 个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数.(2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P=545=1 9.题型一基本事件例1有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.思维启迪:由于出现的结果有限,每次每颗只能有四种结果,且每种结果出现的可能性是相等的,所以是古典概型.由于试验次数少,故可将结果一一列出.解(1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).探究提高基本事件的确定可以使用列举法和树形图法.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.解 所有可能的基本事件共有27个,如图所示.(1)记“3个矩形都涂同一颜色”为事件A ,由图,知事件A 的基本事件有1×3=3(个),故P (A )=327=19.(2)记“3个矩形颜色都不同”为事件B ,由图,可知事件B 的基本事件有2×3=6(个),故P (B )=627=29.题型二 古典概型问题例2 有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (2)从一等品零件中,随机抽取2个. ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.思维启迪:确定基本事件总数,可用列举法.确定事件所包含的基本事件数,用公式求解.解 (1)由所给数据可知,一等品零件共有6个,记“从10个零件中,随机抽取一个,这个零件为一等品”为事件A ,则P (A )=610=35.(2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6,从这6个一等品零件中随机抽取2个,所有可能的结果有{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②“从一等品零件中,随机抽取2个,这2个零件直径相等”记为事件B ,则其所有可能结果有{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共6种,所以P (B )=25.探究提高 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.(2012·上海)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示). 答案 23解析 三位同学每人选择三项中的两项有C 23C 23C 23=3×3×3=27(种)选法, 其中有且仅有两人所选项目完全相同的有C 23C 13C 12=3×3×2=18(种)选法. ∴所求概率为P =1827=23.题型三 古典概型的综合应用例3 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm 之间的概率;(3)从样本中身高在180~190 cm 之间的男生中任选2人,求至少有1人身高在185~190 cm 之间的概率.思维启迪:先根据统计图确定样本的男生人数,身高在170~185 cm 之间的人数和概率,再确定身高在180~190 cm 之间的人数,转化成古典概型问题.解 (1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400. (2)由统计图知,样本中身高在170~185 cm 之间的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm 之间的频率f =3570=0.5.故由f 估计该校学生身高在170~185 cm 之间的概率P =0.5.(3)样本中身高在180~185 cm 之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm 之间的男生有2人,设其编号为⑤⑥. 从上述6人中任选2人的树状图为故从样本中身高在180~190 cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm 之间的可能结果数为9,因此,所求概率P =915=0.6.探究提高 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):A 类轿车10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解 (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个.事件E 包含的基本事件有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个.故P (E )=710,即所求概率为710.(3)样本平均数x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.六审细节更完善典例:(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率. 审题路线图(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来 ↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂(将复杂问题转化为简单问题) ↓计算n ≥m +2的概率↓n ≥m +2的所有情况为(1,3),(1,4),(2,4) ↓P 1=316↓注意细节,P 1=316是n ≥m +2的概率,需转化为其对立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件共有{1,2},{1,3}两个.因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分] 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为 1-P 1=1-316=1316.[12分]温馨提醒 (1)本题在审题时,要特别注意细节,使解题过程更加完善.如第(1)问,注意两球一起取,实质上是不分先后,再如两球编号之和不大于4等;第(2)问,有次序. (2)在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,第(1)问应写成{1,2}的形式,表示无序,第(2)问应写成(1,2)的形式,表示有序.(3)本题解答时,存在格式不规范,思维不流畅的严重问题.如在解答时,缺少必要的文字说明,没有按要求列出基本事件.在第(2)问中,由于不能将事件n <m +2的概率转化成n ≥m +2的概率,导致数据复杂、易错.所以按要求规范解答是做好此类题目的基本要求.方法与技巧1. 古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个. 2. 确定基本事件的方法列举法、列表法、树形图法. 失误与防范1. 古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是否是等可能的. 2. 概率的一般加法公式:P (A ∪B )=P (A )+P (B )-P (A ∩B ).公式使用中要注意:(1)公式的作用是求A ∪B 的概率,当A ∩B =∅时,A 、B 互斥,此时P (A ∩B )=0,所以P (A ∪B )=P (A )+P (B );(2)要计算P (A ∪B ),需要求P (A )、P (B ),更重要的是把握事件A ∩B ,并求其概率;(3)该公式可以看作一个方程,知三可求一.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2011·课标全国)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13B.12C.23D.34答案 A解析 甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3种.故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.2. (2011·陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( )A.136B.19C.536D.16答案 D解析 最后一个景点甲有6种选法,乙有6种选法,共有36种,他们选择相同的景点有6种,所以P =636=16,所以选D.3. (2011·浙江)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地抽取并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( ) A.15B.25C.35D.45答案 B解析 第一步先排语文书有A 22=2(种)排法.第二步排物理书,分成两类.一类是物理书放在语文书之间,有1种排法,这时数学书可从4个空中选两个进行排列,有A 24=12(种)排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3种排法.因此同一科目的书都不相邻共有2×(12+2×2×3)=48(种)排法,而5本书全排列共有A 55=120(种),所以同一科目的书都不相邻的概率是48120=25. 4. 一个袋中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 ( )A.15 B.310C.25D.12答案 C解析 从袋中任取两个球,其一切可能结果有(黑1,黑2),(黑1,黑3),(黑1,红1),(黑1,红2),(黑2,黑3),(黑2,红1),(黑2,红2),(黑3,红1),(黑3,红2),(红1,红2)共10个,同色球为(黑1,黑2),(黑1,黑3),(黑2,黑3),(红1,红2)共4个结果,∴P =25.二、填空题(每小题5分,共15分)5. (2011·福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________. 答案 35解析 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35.6. 从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________. 答案 34解析 从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求的概率为34. 7. 在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)中任取三个,则这三点能构成三角形的概率是________(结果用分数表示).答案 45解析 从五个点中任取三个点有10种不同的取法,其中A 、C 、E 和B 、C 、D 共线.故能构成三角形10-2=8(个),所求概率为P =810=45. 三、解答题(共22分)8. (10分)(2012·天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解 (1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3; 从中学中抽取的学校数目为6×1421+14+7=2; 从大学中抽取的学校数目为6×721+14+7=1. 故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15. 9. (12分)已知关于x 的二次函数f (x )=ax 2-4bx +1.设集合P ={-1,1,2,3,4,5},Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在[1,+∞)上是增函数的概率.解 分别从集合P 和Q 中任取一个数作为a 和b ,则有(-1,-2),(-1,-1),…,(-1,4);(1,-2),(1,-1),…,(1,4);…;(5,-2),(5,-1),…,(5,4),共36种取法.由于函数f (x )=ax 2-4bx +1的图象的对称轴为x =2b a, 要使y =f (x )在[1,+∞)上是增函数,必有a >0且2b a≤1,即a >0且2b ≤a . 若a =1,则b =-2,-1;若a =2,则b =-2,-1,1;若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2;若a =5,则b =-2,-1,1,2.故满足题意的事件包含的基本事件的个数为2+3+3+4+4=16.因此所求概率为1636=49. B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为( )A.13B.14C.16D.112答案 C解析 复数(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,则n 2-m 2=0⇒m =n ,而投掷两颗骰子得到点数相同的情况只有6种,所以所求概率为66×6=16. 2. 宋庆龄基金会计划给西南某干旱地区援助,6家矿泉水企业参与了竞标.其中A 企业来自浙江省,B ,C 两家企业来自福建省,D ,E ,F 三家企业来自河南省.此项援助计划从两家企业购水,假设每家企业中标的概率相同.则在中标的企业中,至少有一家来自河南省的概率是( ) A.45B.35C.12D.15答案 A解析 在六家矿泉水企业中,选取两家有15种情况,其中至少有一家企业来自河南的有12种情况,故所求概率为45.3. 连掷两次骰子分别得到点数m 、n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是( )A.512B.712C.13D.12答案 A解析 ∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).∴P =1536=512,故选A. 二、填空题(每小题5分,共15分)4. (2012·重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 ________(用数字作答).答案 35解析 6节课随机安排,共有A 66=720(种)方法.课表上相邻两节文化课之间最多间隔1节艺术课,分三类:第1类:文化课之间没有艺术课,有A 33·A 44=6×24=144(种).第2类:文化课之间有1节艺术课,有A 33·C 13·A 12·A 33=6×3×2×6=216(种).第3类:文化课之间有2节艺术课,有A 33·A 23·A 22=6×6×2=72(种).共有144+216+72=432(种).由古典概型概率公式得P =432720=35.5. 如图在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点.在A 、P 、M 、C 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F .设G 为满足向量OG →=OE →+OF →的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不 含边界)的概率为________.答案 34解析 基本事件的总数是4×4=16,在OG →=OE →+OF →中,当OG →=OP →+OQ →,OG →=OP →+ON →,OG→=ON →+OM →,OG →=OM →+OQ →时,点G 分别为该平行四边形各边的中点,此时点G 在平行四边形的边界上,而其余情况的点G 都在平行四边形外,故所求的概率是1-416=34.6. 若集合A ={a |a ≤100,a =3k ,k ↔N *},集合B ={b |b ≤100,b =2k ,k ↔N *},在A ∪B中随机地选取一个元素,则所选取的元素恰好在A ∩B 中的概率为________.答案 1667 解析 易知A ={3,6,9,…,99},B ={2,4,6,…,100},则A ∩B ={6,12,18,…,96},其中有元素16个.A ∪B 中元素共有33+50-16=67(个),∴所求概率为1667. 三、解答题7. (13分)(2012·北京)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率.(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)解 (1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )≈400+240+601 000=0.7, 所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200, 所以s 2=13[(600-200)2+(0-200)2+(0-200)2] =80 000.即s 2的最大值为80 000.。

(湖南专用)2014届高考数学一轮复习第十一章概率与统计11.2《古典概型》学案理

(湖南专用)2014届高考数学一轮复习第十一章概率与统计11.2《古典概型》学案理

11.2 古典概型考纲要求1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.1.基本事件有如下特点:(1)任何两个基本事件是______的;(2)任何事件(除不可能事件)都可以表示成__________.2.一般地,一次试验有下面两个特征:(1)有限性,即在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是相等的,称具有这两个特点的概率模型为古典概型.判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:试验结果的有限性和每一个试验结果出现的等可能性.3.如果一次试验中所有可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是______;如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=______.1.从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为( ).A.29B.13C.49D.592.先后抛掷两颗质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( ).A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个数的两倍的概率是__________.4.盒子中共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们颜色不同的概率是__________.一、古典概型及其概率计算【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?方法提炼1.判断一个概率问题是否为古典概型,关键是看它是否同时满足两个特征:有限性和等可能性,同时满足这两个特征的概率模型才是古典概型.2.求古典概型的概率时,一般是先用列举法把试验所包含的基本事件一一列举出来,然后再找出所求事件A 所包含的基本事件的个数,利用公式P (A )=m n即可求得事件A 的概率. 请做演练巩固提升1二、古典概型的应用【例2-1】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.【例2-2】甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.方法提炼由于古典概型所包含的基本事件的个数是有限的,所以可先用列举法把试验所包含的基本事件一一列举出来,然后再求出某事件A 所包含的基本事件的个数,利用公式P (A )=m n便可求出事件A 的概率.请做演练巩固提升3概率主观题的规范解答【典例】 (12分)(2012山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.规范解答:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.(3分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.(5分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(6分) (2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.(8分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.(9分)从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.(11分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.(12分) 答题指导:事件A 的概率的计算方法,关键要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.回答好这三个方面的问题,解题才不会出错.1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A.13B.12C.23D.342.若a∈{1,2},b∈{-2,-1,0,1,2},方程x2+ax+b=0的两根均为实数的概率为( ).A.35B.710C.14D.383.(2012安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( ).A.15B.25C.35D.454.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).A.110B.18C.16D.155.某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20(1)若所抽取的205的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.参考答案基础梳理自测知识梳理1.(1)互斥 (2)基本事件的和3.1n m n基础自测1.C 解析:依题意k 和b 的所有可能的取法一共有3×3=9种,其中当直线y =kx +b不经过第二象限时应有k >0,b <0,一共有2×2=4种,所以所求概率为49. 2.B 解析:先后抛掷两颗骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112. 3.13解析:所有情况共有6种,而其中一个数为另一个数两倍的有2种情况. 故所求概率为26=13. 4.12解析:基本事件总数为6种情况,其中颜色不同的共有3种情况,所以所求概率为P =36=12. 考点探究突破【例1】 解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸中白球的可能性为511,同理可知摸中黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.【例2-1】 解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率P =26=13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316. 故满足条件n <m +2的事件的概率为1-P 1=1-316=1316. 【例2-2】 解:(1)甲、乙两人抽到的牌的所有情况(方片4用4′表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2或4或4′,因此乙抽到的牌的数字大于3的概率为23. (3)由甲抽到的牌的牌面数字比乙大的有(3,2),(4,2),(4,3),(4′,2),(4′,3)共5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712, ∵512<712,∴此游戏不公平. 演练巩固提升1.A 解析:由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种,又两位同学参加同一个兴趣小组的种数为3,故概率为39=13. 2.B 解析:若方程有两实根,则a 2-4b ≥0,即a 2≥4b .则满足条件的基本事件(a ,b )有:(1,0),(2,-1),(2,0),(1,-1),(1,-2),(2,-2),(2,1)共有7种情况,而基本事件总数为10,∴所求概率为710. 3.B 解析:记1个红球为A,2个白球为B 1,B 2,3个黑球为C 1,C 2,C 3,则从中任取2个球,基本事件空间Ω={(A ,B 1),(A ,B 2),(A ,C 1),(A ,C 2),(A ,C 3),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 2,C 1),(B 2,C 2),(B 2,C 3),(C 1,C 2),(C 1,C 3),(C 2,C 3)},共计15种,而两球颜色为一白一黑的有如下6种:(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 2,C 1),(B 2,C 2),(B 2,C 3),所以所求概率为615=25. 4.D 解析:在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE ),共有3种,∴所求概率为315=15. 5.解:(1)由频率分布表得a +0.2+0.45+b +c =1,即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15. 等级系数为5的恰有2件,所以c =220=0.1. 从而a =0.35-b -c =0.1,所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.又基本事件的总数为10,故所求的概率P (A )=410=0.4.。

2014高考数学最新一轮复习必考题型巩固提升12.2《古典概型》学案

2014高考数学最新一轮复习必考题型巩固提升12.2《古典概型》学案

12.2古典概型考情分析1.考查古典概型概率公式的应用,尤其是古典概型与互斥、对立事件的综合问题更是高考的热点.2.在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问题的能力,难度以中档题为主. 基础知识1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 3.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.注意事项1.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P (A )=A I =mn. 2. (1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y )可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同. 题型一 基本事件数的探求【例1】做抛掷两颗骰子的试验:用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,写出: (1)试验的基本事件;(2)事件“出现点数之和大于8”; (3)事件“出现点数相等”; (4)事件“出现点数之和大于10”. 解 (1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4, 1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(2)事件“出现点数之和大于8”包含以下10个基本事件(3,6),(4,5),(4,6)(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)事件“出现点数相等”包含以下6个基本事件(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)事件“出现点数之和大于10”包含以下3个基本事件(5,6),(6,5),(6,6).【变式1】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,写出:(1)试验的基本事件;(2)事件“3个矩形颜色都相同”;(3)事件“3个矩形颜色都不同”.解(1)所有可能的基本事件共27个.(2)由图可知,事件“3个矩形都涂同一颜色”包含以下3个基本事件:红红红,黄黄黄,蓝蓝蓝.(3)由图可知,事件“3个矩形颜色都不同”包含以下6个基本事件:红黄蓝,红蓝黄,黄红蓝,黄蓝红,蓝红黄,蓝黄红.题型二古典概型【例2】现有8名2012年伦敦奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件共有C13C13C12=18个.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“A1恰被选中”这一事件,事件M由C13C12=6,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N包含(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)3个结果,事件N有3个基本事件组成,所以P (N )=318=16,由对立事件的概率公式得 P (N )=1-P (N )=1-16=56.【变式2】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ). A.13 B.12 C.23 D.34解析 甲、乙两人都有3种选择,共有3×3=9(种)情况,甲、乙两人参加同一兴趣小组共有3种情况.∴甲、乙两人参加同一兴趣小组的概率P =39=13.答案 A题型三 古典概型的综合应用【例3】在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第66(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解 (1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90, 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4.【变式3】 一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解 (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个. 事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个. 故P (E )=710,即所求概率为710.(3)样本平均数x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P (D )=68=34,即所求概率为34.重难点突破【例4】甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任取2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解析 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种,从中选出2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出2名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种, 选出的2名教师来自同一学校的概率为P =615=25.巩固提高1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件.那么( )A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115 B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16 B.15 C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16 B.13 C.12D.34解析:要使△ABC有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a 满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A。

高三 一轮复习 古典概型与几何概型 教案

高三 一轮复习 古典概型与几何概型 教案

教学内容古_典_概_型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件). 2.古典概型 (1)特点:①试验中所有可能出现的基本事件只有有限个,即有限性. ②每个基本事件发生的可能性相等,即等可能性. (2)概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.1.在计算古典概型中基本事件数和事件发生数时,易忽视他们是否是等可能的.2.概率的一般加法公式P (A +B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A +B )=P (A )+P (B ),此时P (A ∩B )=0. [试一试]1.从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是________.古典概型中基本事件的探求方法1.枚举法:适合给定的基本事件个数较少且易一一列举出的.2.树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x ,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同. [练一练]从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为________.考点一古典概型1.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为________.2.(2014·温州调研)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是________.3.(2014·深圳第一次调研)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?[类题通法]计算古典概型事件的概率可分三步(1)算出基本事件的总个数n;(2)求出事件A所包含的基本事件个数m;(3)代入公式求出概率P.考点二古典概型的交汇命题问题古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识面全,能力要求较高,归纳起来常见的交汇命题角度有: (1)古典概型与平面向量相结合; (2)古典概型与直线、圆相结合; (3)古典概型与函数相结合. 角度一 古典概型与平面向量相结合1.(2014·济南模拟)设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.角度二 古典概型与直线、圆相结合2.连掷骰子两次得到的点数分别记为a 和b ,则使直线3x -4y =0与圆(x -a )2-(y -b )2=4相切的概率为________.角度三 古典概型与函数相结合3.(2014·安徽省级示范高中一模)设a ∈{2,4},b ∈{1,3},函数f (x )=12ax 2+bx +1.(1)求f (x )在区间(-∞,-1]上是减函数的概率;(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率.[类题通法]解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[课堂练通考点]1.(2014·江南十校联考)第16届亚运会于2010年11月12日在中国广州举行,运动会期间从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿几_何_概_型1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)易混淆几何概型与古典概型,两者共同点是基本事件的发生是等可能的,不同之处是几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.[试一试]1.在长为6 m的木棒AB上任取一点P,使点P到木棒两端点的距离都大于2 m的概率是________.2.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.几何概型的常见类型的判断方法1.与长度有关的几何概型,其基本事件只与一个连续的变量有关;2.与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;3.与体积有关的几何概型.(方法参见考点二“类题通法”) [练一练]1.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.2.若不等式组⎩⎪⎨⎪⎧x 2-4x ≤0,-1≤y ≤2,x -y -1≥0,表示的平面区域为M ,(x -4)2+y 2≤1表示的平面区域为N ,现随机向区域内抛一粒豆子,则该豆子落在平面区域N 内的概率是________.考点一与长度、角度有关的几何概型1.(2014·石家庄模拟)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为________.2.(2014·北京西城模拟)如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.3.(2013·福建高考)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.[类题通法]求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).考点二与体积有关的几何概型[典例](2013·深圳二模)一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.[类题通法]对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[针对训练]在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.考点三与面积有关的几何概型与面积有关的几何概型是近几年高考的热点之一,归纳起来常见的命题角度有:(1)与三角形、矩形、圆等平面图形面积的有关问题;(2)与线性规划知识交汇命题的问题;(3)与平面向量的线性运算交汇命题的问题.角度一与三角形、矩形、圆等平面图形面积的有关问题1.(2013·陕西高考改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.角度二与线性规划交汇命题的问题2.(2013·四川高考改编)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.角度三与平面向量的线性运算交汇命题的问题3.已知P是△ABC所在平面内一点,PB+PC+2PA=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是________.[类题通法]求解与面积有关的几何概型时,关键是弄清某事件对应的面积,以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.[课堂练通考点]1.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为________.2.在区间[-5,5]内随机地取出一个数a,则恰好使1是关于x的不等式2x2+ax-a2<0的一个解的概率为________.3.(2014·淄博模拟)在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形1.用一平面截一半径为5的球得到一个圆面,则此圆面积小于9π的概率是________.2.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是________.3.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连结MN ,则弦MN 的长度超过2R 的概率是________.4.如图,圆的直径是正方形边长的一半,圆位于正方形的内部.现随意地将飞镖掷向正方形内,则飞镖击中圆面部分的概率是________.5.(2014·惠州调研)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________.6.(2014·昆明质检)在区间[0,10]上任取一个实数a ,使得不等式2x 2-ax +8≥0在(0,+∞)上恒成立的概率为________.7.(2014·苏锡常镇四市一调)如图,边长为2的正方形内有一个半径为1的半圆.向正方形内任投一点(假设该点落在正方形内的每一点都是等可能的),则该点落在半圆内的概率为________.8.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体。

人教版高三数学一轮复习精品课件3:12.2 古典概型

人教版高三数学一轮复习精品课件3:12.2 古典概型

相邻两节文化课之间最多间隔1节艺术课的概率为
________(用数字作答).
[解析] (1)当 n≤3 时,易知不成立.当 n≥4 时,两个数之和 为 5 有两种情况:(1,4),(2,3).
由题意知C22n=114,即 n(n-1)=56,解得 n=8. (2)当每两节文化课之间都有一节艺术课时,共有 2A33A33=72 种排法; 当有两节文化课排在一起时,共有 C23C13A22A22A33=216 种排 法; 当三节文化课排在一起时,共有 A33A44=144 种排法.
01何两个基本事件是 互斥 的. 2. 任何事件(除不可能事件)都可以表示成 基本事件 的 和.
[想一想] 在一次试验中,其基本事件的发生一定是等可能 的吗?
提示:不一定等可能.如试验一粒种子是否发芽,其发芽和 不发芽的可能性是不相等的.
[填一填] (1)某校高一年级学生要组建书法、绘画、舞蹈、 音乐四个兴趣小组,某学生只选报其中的 2 个,则基本事件共有
1.理解古典概型及其概率计算公式. 2. 会计算一些随机事件所含的基本事件数及事件发生的概率.
1点必知关键——解决古典概型问题的关键 一个试验是否为古典概型,在于这个试验是否具有古典概型的 两个特征——有限性和等可能性,只有同时具备这两个特点的 概型才是古典概型.正确的判断试验的类型是解决概率问题的 关键.
限时规范特训
路漫漫其修远兮,吾将上下而求索!
第十二章 第2讲
第3页
2种必会方法——古典概型的两种破题方法 (1)树状图是进行列举的一种常用方法,适合于有顺序的问题及 较复杂问题中基本事件数的探求.另外在确定基本事件时,(x, y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无 序的,如(1,2)与(2,1)相同. (2)含有“至多”、“至少”等类型的概率问题,从正面突破比 较困难或者比较繁琐时,考虑其反面,即对立事件,应用P(A) =1-P( A )求解较好.

2014届高考数学一轮复习名师首选第10章58《古典概型》学案

2014届高考数学一轮复习名师首选第10章58《古典概型》学案

学案58 古典概型导学目标: 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.自主梳理1.古典概型一般地,一次试验有下面两个特征(1)有限性.试验中所有可能出现的基本事件只有有限个;(2)等可能性.每个基本事件的发生都是等可能的,称这样的概率模型为古典概型.2.古典概型的概率公式如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是________;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=________.自我检测1.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x +y=5下方的概率为________.2.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是________.3.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.4.有100张卡片(编号从1号到100号),从中任取1张,取到卡号是7的倍数的概率为________.5.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是________(用分数表示).探究点一写出基本事件例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.变式迁移1 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球.问:(1)共有多少个基本事件?(2)摸出的两只球都是白球的概率是多少?探究点二古典概型的概率计算例2 班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求独唱和朗诵由同一个人表演的概率.变式迁移2 同时抛掷两枚骰子,求至少有一个5点或6点的概率.探究点三古典概型的综合问题例3 汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.变式迁移3 为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.分类讨论思想例(14分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.多角度审题 本题属于求较复杂事件的概率,关键是理解题目的实际含义,把实际问题转化为概率模型,联想掷骰子试验,把红桃2、红桃3、红桃4和方片4分别用数字2,3,4,4′表示,抽象出基本事件,把复杂事件用基本事件表示,找出总体I 包含的基本事件总数n 及事件A 包含的基本事件个数m ,用公式P(A)=mn求解.【答题模板】解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.[6分](2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23.[10分](3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P 1=512,同理乙胜的概率P 2=512.因为P 1=P 2,所以此游戏公平.[14分]【突破思维障碍】(1)对一些较为简单、基本事件个数不是太大的概率问题,计数时只需要用枚举法即可计算一些随机事件所含的基本事件数及事件发生的概率,但应特别注意:计算时要严防遗漏,绝不重复.(2)取球模型是古典概型计算中的一个典型问题,好多实际问题都可以归结到取球模型上去,特别是产品的抽样检验,解题时要分清“有放回”与“无放回”,“有序”与“无序”等条件的影响.【易错点剖析】1.题目中“红桃4”与“方片4”属两个不同的基本事件,应用不同的数字或字母标注. 2.注意“抽出的牌不放回”对基本事件数目的影响.1.基本事件的特点主要有两条:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和.2.古典概型的基本特征是:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.3.计算古典概型的基本步骤有:①判断试验结果是否为等可能事件;②求出试验包括的基本事件的个数n ,以及所求事件A 包含的基本事件的个数m ;③代入公式P(A)=mn,求概率值.课后练习(满分:90分)一、填空题(每小题6分,共48分)1.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率为________.2.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为________.3.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________(结果用数值表示).4.连续掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角θ>90°的概率为________.5.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是________.6.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有________人.7.在集合{x|x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x=12的概率为________. 8.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.二、解答题(共42分)9.(14分)袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.10.(14分)某商场举行抽奖活动,从装有编号0,1,2,3四个小球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.11.(14分)已知实数a ,b∈{-2,-1,1,2}. (1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.学案58 古典概型答案自主梳理 2.1n m n 自我检测 1.16 2.12125 3.13 4.0.14解析 卡号是7的倍数有:7,14,21, (98)共有m =98-77+1=14,总共n =100.∴P=mn =0.14.5.45解析 ∵A、C 、E 在直线y =x 上,B 、C 、D 在直线y =-x +2上,任取三点列举知有10种取法,共线有2种取法.∴取三点能构成三角形的概率为10-210=45.课堂活动区例1 解题导引 计算古典概型所含基本事件总数的方法:(1)树形图;(2)列表法;(3)另外,还可以用坐标系中的点来表示基本事件. 解 (1)这个试验的基本事件为 (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).变式迁移1 解 (1)分别记白球为1,2,3号,黑球为A ,B 号,从中摸出2只球,有如下基本事件:(1,2),(1,3),(1,A),(1,B),(2,3),(2,A),(2,B),(3,A),(3,B),(A ,B),因此,共有10个基本事件.(2)上述10个基本事件发生的可能性相同,且只有3个基本事件是摸到两只白球(记为事件A),即(1,2),(1,3),(2,3),故P(A)=310.例 2 解题导引 古典概型的概率计算公式是P(A)=mn.由此可知,利用列举法算出所有基本事件的个数n 以及事件A 包含的基本事件数m 是解题关键.必要时可以采用画树状图或列表法辅助列举基本事件.解 (1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,因此这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P(A 1∪A 2)=P(A 1)+P(A 2) =1220+220=710=0.7, 即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二型.用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P(A)=525=0.2.一个5点或6点的概率为P =2036=59.方法二 利用对立事件求概率.“至少有一个5点或6点”的对立事件是“没有5点或6点”,如上表,“没有5点或6点”包含16个基本事件,没有5点或6点的概率为P =1636=49.∴至少有一个5点或6点的概率为1-49=59.例3 解题导引 本题主要考查抽样的方法及古典概型概率的求法,考查用概率知识解决实际问题的能力.解 (1)设该厂这个月共生产轿车n 辆,由题意得50n =10100+300,所以n =2 000.则z =2 000-(100+300)-(150+450)-600=400. (2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a5,即a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车.用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故P(E)=710,即所求概率为710.(3)样本平均数x =18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8. 2)=9.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)=68=34,即所求概率为34.变式迁移3 解 (1)总体平均数为16×(5+6+7+8+9+10)=7.5.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P(A)=715.课后练习区 1.38解析 共23=8(种)情况,符合要求的有(正,反,反),(反,正,反),(反,反,正)3种.∴P=38.2.1936解析 b 2≥4c.由此可见,为P =1936.3.310解析 在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下的两个数字有10种可能的结果:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},其中两个数字都是奇数包含3个结果:{1,3},{1,5},{3,5},故所求的概率为310.4.512解析 由题意知,(m ,n)·(-1,1)=-m +n<0, ∴m>n.基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).∴P=1536=512.5.310解析 由袋中随机取出2个小球的基本事件总数为10,取出小球标注数字之和为3的事件为1,2.取出小球标注数字之和为6的事件为1,5或2,4.∴取出的小球标注的数字之和为3或6的概率为 P =1+210=310.6.120解析 设男教师有n 人,则女教师有(n +12)人. 由已知从这些教师中选一人,选到男教师的概率P =n 2n +12=920,得n =54, 故参加联欢会的教师共有120人. 7.15解析 cos π3=cos 5π3=12,共2个.x 总体共有10个,所以概率为210=15.8.0.2解析 从5根竹竿中一次随机抽取2根竹竿共有10种抽取方法,而抽取的两根竹竿长度恰好相差0.3 m 的情况是2.5和2.8,2.6和2.9两种,∴概率P =210=0.2.9.解 (1)ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de.(5分)(2)记“恰好摸出1个黑球和1个红球”为事件A ,则事件A 包含的基本事件为ac ,ad ,ae ,bc ,bd ,be ,共6个基本事件.所以P(A)=610=0.6.所以恰好摸出1个黑球和1个红球的概率为0.6. (10分)(3)记“至少摸出1个黑球”为事件B ,则事件B 包含的基本事件为ab ,ac ,ad ,ae ,bc ,bd ,be ,共7个基本事件,所以P(B)=710=0.7.所以至少摸出1个黑球的概率为0.7.(14分)10.解 设“中三等奖”的事件为A ,“中奖”的事件为B ,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的方法.(4分)(1)两个小球号码相加之和等于3的取法有4种: (0,3)、(1,2)、(2,1)、(3,0).故P(A)=416=14.(10分)(2)由(1)知,两个小球号码相加之和等于3的取法有4种.两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1),(12分) 两个小球号码相加之和等于5的取法有2种:(2,3),(3,2),P(B)=416+316+216=916.(14分)11.解 由于实数对(a ,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.(5分)设“直线y =ax +b 不经过第四象限”为事件A ,“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B.(1)若直线y =ax +b 不经过第四象限,则必须满足⎩⎪⎨⎪⎧a≥0,b≥0,即满足条件的实数对(a ,b)有(1,1),(1,2),(2, 1),(2,2),共4种.∴P(A)=416=14.故直线y =ax +b 不经过第四象限的概率为14.(9分)(2)若直线y =ax +b 与圆x 2+y 2=1有公共点,则必须满足|b|a 2+1≤1,即b 2≤a 2+1.(11分)若a =-2,则b =-2,-1,1,2符合要求,此时实数对(a ,b)有4种不同取值; 若a =-1,则b =-1,1符合要求,此时实数对(a ,b)有2种不同取值;若a =1,则b =-1,1符合要求,此时实数对(a ,b)有2种不同取值,若a =2,则b =-2,-1,1,2符合要求,此时实数对(a ,b)有4种不同取值.∴满足条件的实数对(a ,b)共有12种不同取值.∴P(B)=1216=34.故直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34.(14分)。

高三数学一轮复习精品教案2:古典概型教学设计

高三数学一轮复习精品教案2:古典概型教学设计

10.5.1 古典概型考纲传真1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. 有限性试验中所有可能出现的基本事件只有有限个等可能性每个基本事件出现的可能性相等3.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.1.(人教A 版教材习题改编)甲、乙、丙三名同学站成一排,甲站在中间的概率是( ) A.16 B.12 C.13D.23『解析』 甲、乙、丙三名同学站成一排,有6个基本事件,其中甲站在中间的基本事件有2个,故所求概率为P =26=13.『答案』 C2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34『解析』 甲、乙两位同学参加3个小组的所有可能性有3×3=9种,其中,甲、乙参加同一小组的情况有3种.故甲、乙参加同一个兴趣小组的概率P =39=13.『答案』 A3.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.『解析』 三张卡片随机排成一行的基本事件有BEE ,EBE ,EEB ,共3个, 故所求概率为P =13.『答案』 134.(2013·徐州调研)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.『解析』 从1,2,3,4中随机取两个数,不同的结果为{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共有6个基本事件.满足一个数是另一个数两倍的取法有{1,2},{2,4}共两种,∴所求事件的概率P =26=13.『答案』 135.(2012·浙江高考)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. 『解析』 如图,在正方形ABCD 中,O 为中心,∵正方形的边长为1,∴两点距离为22的情况有(O ,A ),(O ,B ),(O ,C ),(O ,D )4种, 故P =4C 25=25.『答案』 25简单古典概型的概率(2012·山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.『思路点拨』 依题意,所求事件的概率满足古典概型,分别求基本事件总数与所求事件所包含的基本事件个数m ,进而利用古典概型概率公式计算.『尝试解答』 (1)从5张卡片中任取两张,共有n =C 25=10种方法,记“两张卡片颜色不同且标号之和小于4”为事件A ,则A 包含基本事件m =C 12C 12-1=3个,由古典概型概率公式,P (A )=m n =310.(2)从6张卡片中任取两张,共有n =C 26=15个基本事件,记“两张卡片颜色不同且标号之和小于4”为事件B ,则事件B 包含基本事件总数m =C 11(C 12+C 13)+(C 12C 12-1)=8,∴所求事件的概率P (B )=m n =815.,1.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.2.(1)用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率; (2)若从报名的6名教师中任选2名,求选出的2名老师来自同一学校的概率.『解』 (1)从甲、乙两校报名的教师中各选1名,共有n =C 13×C 13=9种选法. 记“2名教师性别相同”为事件A ,则事件A 包含基本事件总数m =C 12·1+C 12·1=4,∴P (A )=m n =49. (2)从报名的6人中任选2名,有n =C 26=15种选法.记“选出的2名老师来自同一学校”为事件B ,则事件B 包含基本事件总数m =2C 23=6.∴选出2名教师来自同一学校的概率P (B )=615=25.复杂古典概型的概率为振兴旅游业,某省2012年“国庆、中秋黄金周”面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到该省名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.『思路点拨』 首先求出省内、省外游客人数及持金卡、银卡人数,然后求出基本事件总数及所求事件包含的基本事件数,最后代入公式求解.『尝试解答』 (1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件A 为“采访该团2人,恰有1人持银卡”,则P (A )=C 16C 130C 236=27,所以“采访该团2人,恰有1人持银卡”的概率是27.(2)设事件B 为“采访该团2人,持金卡人数与持银卡人数相等”.事件B 1“采访该团2人,持金卡的有0人,持银卡的有0人”;事件B 2“采访该团2人,持金卡的有1人,持银卡的有1人”.则事件B 1,B 2互斥,且B =B 1+B 2,∵P (B 1)=C 221C 236,P (B 2)=C 19C 16C 236.∴P (B )=P (B 1)+P (B 2)=C 221C 236+C 19C 16C 236=44105,所以采访2人中,持金卡与持银卡人数相等的概率是44105.,1.本题属于求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成互斥事件或对立事件的概率. 2.(1)在解决与互斥事件有关问题时,首先分清所求事件是哪些事件组成的,是否具备互斥的条件,一个事件是由几个互斥事件组成的,做到不重、不漏.(2)在求基本事件总数和所求事件包含基本事件的数目时,要保证计数的一致性,用排列时都按排列计数;用组合时,均用组合计数.本例中条件不变,在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率.『解』 由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件C 为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”, 事件C 1为“采访该团3人中 ,1人持金卡,0人持银卡”, 事件C 2为“采访该团3人中,1人持金卡,1人持银卡”.P (C )=P (C 1)+P (C 2)=C 19C 221C 336+C 19C 16C 121C 336=934+27170=3685. 所以“在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人”的概率是3685.古典概型与统计的综合应用(2013·徐州质检)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5 fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.『思路点拨』 对于第(1)问,由频率分布表可得出a 、b 、c 的关系a +0.2+0.45+b +c =1,再根据等级系数为4的恰有3件,等级系数为5的恰有2件的条件分别得出b ,c 的值,从而求出a 的值.对于第(2)问,从日用品x 1,x 2,x 3,y 1,y 2中任取两件结果等可能,为古典概型,利用公式就可求得结果.『尝试解答』(1)抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.由频率分布表得a+0.2+0.45+b+c=1,∴a=0.35-b-c=0.1.所以a=0.1,b=0.15,c=0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能情况为:{x1,x2},{x1,x3},{x1,y1},{x1,y2},{x2,x3},{x2,y1},{x2,y2},{x3,y1},{x3,y2},{y1,y2}.设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为{x1,x2},{x1,x3},{x2,x3},{y1,y2},共4个.又基本事件的总数为10,故所求的概率P(A)=410=0.4.,1.本题综合考查概率与统计的知识,数学应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想.2.(1)此类问题求解的关键是准确提炼数据信息,正确运算,注重思想方法的培养.(2)注重正反两方面的思维训练,提升自己的思维水平.(2012·天津高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.『解』(1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A 5,大学记为A 6,则抽取2所学校的所有等可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种,所以P (B )=315=15.一条规律从集合的角度看概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P (A )=card (A )card (I )=m n. 两种方法1.列举法:适用于较简单的试验.2.树状图法:适用于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y )若看成是有序的,则(1,2)与(2,1)不同;{x ,y }若看成无序的,则{1,2}与{2,1}相同.从近两年的高考试题来看,古典概型是高考的热点,可在选择题、填空题中单独考查,也可在解答题中与统计等知识渗透综合考查,但题目一般不超过中等难度,以考查基本概念和基本运算为主,求解的关键在于正确计算随机试验不同的结果及事件A 包含的基本事件数.易错辨析之十八 古典概型的基本事件计算不准致误(2013·成都模拟)在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=(a ,b ),从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形(记所有作成的平行四边形的个数为n ),若平行四边形的面积等于2,记为事件A ,则P (A )等于( )A.215B.15C.415D.110『错解』 ∵以原点为起点的向量α=(a ,b )有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个.从中任取两个为邻边作平行四边形, 则n =6×52=15个.其中由(2,1)与(4,1),(2,1)与(4,3)确定的平行四边形面积为2, 因此事件A 含有基本事件数m =2. 根据古典概型,P (A )=m n =215.『答案』 A错因分析:(1)没能结合图形确定面积为2的平行四边形的个数,遗漏(2,3)与(4,5)导致结果错误.(2)本题还易出现错误地认为是n =6×5=30,错将取两个向量作平行四边形看成是有顺序的,导致错选D.防范措施:(1)准确理解题意,正确确定事件类型.(2)计算基本事件总数时,可画出几何图、树形图,利用枚举法、列表法、坐标网格法是克服此类错误的有效手段.『正解』 以原点为起点的向量α=(a ,b )有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个.从中任取两个为邻边作平行四边形, 则n =6×52=15个.如图所示,结合图形进行计算,其中由(2,1)与(4,1),(2,1)与(4,3),(2,3)与(4,5)确定的平行四边形面积为2.∴面积为2的平行四边形的个数m =3.根据古典概型,P (A )=m n =315=15.『答案』 B1.(2012·广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19『解析』 依题设,个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20(个)符合条件的两位数. (2)当个位为偶数时,有5×5=25(个)符合条件的两位数.因此共有20+25=45(个)符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19.『答案』 D2.(2013·南京调研)为预防H 1N 1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2 000个流感样本分成三组,测试结果如下表:分组 A 组 B 组 C 组 疫苗有效 673 a b 疫苗无效7790c已知在全体样本中随机抽取1个,抽取B 组疫苗有效的概率是0.33.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取样本多少个?(2)已知b ≥465,c ≥30,求通过测试的概率. 『解』 (1)∵a2 000=0.33,∴a =660,∴b +c =2 000-673-77-660-90=500, ∴应在C 组抽取样本个数是360×5002 000=90(个).(2)∵b +c =500,b ≥465,c ≥30,∴(b ,c )的可能性是(465,35),(466,34),(467,33),(468,32),(469,31),(470,30).若测试没有通过,则77+90+c >2000×(1-90%)=200,c >33,(b ,c )的可能性是(465,35),(466,34).记“疫苗通过测试”为事件A ,∵P (A )=26=13,∴疫苗通过测试的概率为P (A )=1-P (A )=23.。

高中高三数学《古典概型》教案、教学设计

高中高三数学《古典概型》教案、教学设计
-例如:将学生分成小组,针对某一实际问题进行讨论,共同找出解决问题的方法。
5.教学过程中,注重启发式教学,引导学生自主探究、发现规律,提高学生的自主学习能力。
-例如:在讲解古典概型计算方法时,教师给出部分提示,让学生自主完成计算过程。
6.设计丰富的课堂练习,巩固所学知识,并及时给予反馈,帮助学生查漏补缺。
-请学生尝试解决以下问题:一个袋子里有5个白球、4个黑球和1个红球,随机取出两个球,求取出的两个球颜色相同的概率。
作业要求:
1.学生在完成作业时,要注重理解古典概型的概念和计算方法,避免死记硬背。
2.在设计生活实例时,要尽量选择有趣、富有挑战性的问题,提高自己的实际应用能力。
3.完成作业后,要进行自我检查,确保解答过程正确无误,并对自己的作业进行适当的批改和反思。
四、教学内容与过程
(一)导入新课
1.教学活动:教师以一个生动的实际例子引入新课,如“一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。”
2.提出问题:通过上述例子,教师引导学生思考以下问题:
-概率是什么?如何计算概率?
-在这个问题中,为什么红球和蓝球的个数会影响概率的计算?
3.过渡:通过讨论,引出古典概型的概念,指出古典概型是解决此类问题的有效方法。
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
-生活中还有哪些问题可以用古典概型来解决?
-在解决古典概型问题时,如何运用排列组合知识?
2.讨论过程:小组成员相互交流,共同解决问题,教师巡回指导。
3.分享与评价:各小组汇报讨论成果,其他小组进行评价,教师给予点评。
(四)课堂练习
1.教学活动:学生完成以下练习题,巩固所学知识。

2019届高考数学一轮必备考情分析学案:12.2《古典概型》(含解析)

2019届高考数学一轮必备考情分析学案:12.2《古典概型》(含解析)

12.2古典概型考情分析1.考查古典概型概率公式的应用,尤其是古典概型与互斥、对立事件的综合问题更是高考的热点.2.在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问题的能力,难度以中档题为主. 基础知识1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 3.古典概型的概率公式 P(A)=A 包含的基本事件的个数基本事件的总数.注意事项1.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P(A)==m n. 2. (1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同. 题型一 基本事件数的探求【例1】做抛掷两颗骰子的试验:用(x ,y)表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,写出: (1)试验的基本事件;(2)事件“出现点数之和大于8”; (3)事件“出现点数相等”; (4)事件“出现点数之和大于10”. 解 (1)这个试验的基本事件为:[:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4, 1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(2)事件“出现点数之和大于8”包含以下10个基本事件(3,6),(4,5),(4,6)(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)事件“出现点数相等”包含以下6个基本事件(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)事件“出现点数之和大于10”包含以下3个基本事件(5,6),(6,5),(6,6).【变式1】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,写出:(1)试验的基本事件;(2)事件“3个矩形颜色都相同”;(3)事件“3个矩形颜色都不同”.解(1)所有可能的基本事件共27个.(2)由图可知,事件“3个矩形都涂同一颜色”包含以下3个基本事件:红红红,黄黄黄,蓝蓝蓝.(3)由图可知,事件“3个矩形颜色都不同”包含以下6个基本事件:红黄蓝,红蓝黄,黄红蓝,黄蓝红,蓝红黄,蓝黄红.题型二古典概型【例2】现有8名2019年伦敦奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.解(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件共有C13C13C12=18个.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“A1恰被选中”这一事件,事件M由C13C12=6,因而P(M)=618=13.(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N包含(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)3个结果,事件N有3个基本事件组成,所以P(N)=318=16,由对立事件的概率公式得P(N)=1-P(N)=1-16=56.【变式2】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A.13B.12C.23D.34解析甲、乙两人都有3种选择,共有3×3=9(种)情况,甲、乙两人参加同一兴趣小组共有3种情况.∴甲、乙两人参加同一兴趣小组的概率P =39=13.答案 A题型三 古典概型的综合应用【例3】在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n(n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x 6(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 解 (1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90, 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4.【变式3】 一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解 (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400. (2)设所抽样本中有a 辆舒适型轿车,由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个. 故P(E)=710,即所求概率为710. (3)样本平均数x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)=68=34,即所求概率为34.重难点突破【例4】甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (2)若从报名的6名教师中任取2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 解析 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示. 从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),共9种,从中选出2名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F),共4种,选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F),共15种. 从中选出2名教师来自同一学校的结果有:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F),共6种,[: 选出的2名教师来自同一学校的概率为P =615=25.巩固提高1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件.那么( )A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3. 答案:B3.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B[:数理化][:4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( ) A.16 B.15 C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13. 答案:C5.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16 B.13 C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >bsinA ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a 满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A。

高考数学一轮复习 12-2 古典概型课件 新人教A版

高考数学一轮复习 12-2 古典概型课件 新人教A版

有的基本事件构成集合 I,则事件 A 的概率为ccaarrdd((AI)).
(√ )
ppt精选
4
课堂总结
(4)从市场上出售的标准为500±5 g的袋装食盐中任取一
袋,测其重量,属于古典概型.
(×)
ppt精选
5
课堂总结
2.(2014·陕西卷)从正方形四个顶点及其中心这5个点中,任
取2个点,则这2个点的距离不小于该正方形边长的概率
ppt精选
7
课堂总结
4.(人教A必修3P127例3改编)同时掷两个骰子,向上点数不 相同的概率为________.
解析 掷两个骰子一次,向上的点数共 6×6=36 个可能的
结果,其中点数相同的结果共有 6 个,所以点数不同的概
率 P5 6
ppt精选
8
课堂总结
5.从分别写1,2,3,4,5的五张卡片中任取两张,假设每 张卡片被取到概率相等,且每张卡片上只有一个数字,则 取到的两张卡上的数字之和为偶数的概率为________. 解析 法一 从分别写有 1,2,3,4,5 的五张卡片中任 取两张,可能情况有(1,2),(1,3),(1,4),(1,5),(1, 6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3, 6),(4,5),(4,6),(5,6),共 15 种,其中和为偶数的情 况有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共 6 种,所以所求的概率是25.

()
A.15
B.25
C.35
D.45
解析 根据题意知,取两个点的所有情况为 C25种,2 个点
的距离小于该正方形边长的情况有 4 种,故所求概率 P=1

江苏省建陵高级中学高考数学一轮复习 古典概型导学案

江苏省建陵高级中学高考数学一轮复习 古典概型导学案

江苏省建陵高级中学2014届高考数学一轮复习古典概型导学案一:学习目标备注1、理解古典概型,掌握古典概型的概率计算公式2、会用枚举法计算概率。

二:课前预习1.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率是________.2.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.3.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是________.4.在平面直角坐标系中,从五个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)中任取三个,这三点能构成三角形的概率是 .5.连掷两次骰子分别得到点数m,n,向量a=(m,n),b=(-1,1),若在△ABC中,AB与a同向,CB与b反向,则∠ABC是钝角的概率是________.三:课堂研讨例1、有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为________.例2、设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能值为________.例3、把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,-2),则向量m与向量n垂直的概率是________课堂检测——古典概型姓名:1.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为________.2.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率等于________.3.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1、2、3、4,把两个玩具各抛掷一次,斜向上的面写有的数字之和能被5整除的概率为________.4.如图,将一个体积为27 cm3的正方体木块表面涂上蓝色,然后锯成体积为1 cm3小正方体,从中任取一块,则这一块恰有两面涂有蓝色的概率是课外作业——古典概型姓名:1.集合A ={2,4,6,8,10},B ={1,3,5,7,9},在A 中任取一元素m 和在B 中任取一元素n ,则所取两数m >n 的概率是________.2.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、 纵坐标,则点P 在直线x+y=5下方的概率是 .3.已知k ∈Z,AB →=(k,1),AC →=(2,4),若|A B →|≤4,则△ABC 是直角三角形的概率为________.4.将一枚骰子抛掷两次,若先后出现的点数分别为b 、c 则方程x 2+bx +c =0有实根的概率为____________.。

2014高考数学(理)一轮复习总教案:12.5 古典概型

2014高考数学(理)一轮复习总教案:12.5 古典概型

12.5古典概型典例精析题型一古典概率模型的计算问题【例1】一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆),现按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类10辆。

(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本视为一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8。

6,9。

2,9。

6,8.7,9.3,9.0,8.2把这8辆车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【解析】(1)依题意知,从每层抽取的比率为错误!,从而轿车的总数为50×40=2 000辆,所以z=2 000-100-150-300-450-600=400.(2)由(1)知C类轿车共1 000辆,又样本容量为5,故抽取的比率为错误!,即5辆轿车中有2辆舒适型、3辆标准型,任取2辆,一共有n =10种不同取法,记事件A:至少有1辆舒适型轿车,则事件A表示抽取到2辆标准型轿车,有m′=3种不同取法,从而事件A包含:基本事件数为m=7种,所以P(A)=错误!。

(3)样本平均数x=错误!×(9。

4+8.6+9.2+9.6+8。

7+9.3+9。

0+8.2)=9.0,记事件B:从样本中任取一数,该数与样本平均数的绝对值不超过0.5,则事件B包含的基本事件有6种,所以P(B)=错误!=错误!.【点拨】利用古典概型求事件的概率时,主要弄清基本事件的总数,及所求事件所含的基本事件的个数.【变式训练1】已知△ABC的三边是10以内(不包含10)的三个连续的正整数,求任取一个△ABC是锐角三角形的概率。

【解析】依题意不妨设a=n-1,b=n,c=n+1(n>1,n∈N),从而有a+b>c,即n>2,所以△ABC的最小边为2,要使△ABC是锐角三角形,只需△ABC的最大角C是锐角,cos C=(n-1)2+n2-(n+1)2=错误!>0,所以n>4,2(n-1)n所以,要使△ABC是锐角三角形,△ABC的最小边为4.另一方面,从{2,3,4,…,9}中,“任取三个连续正整数"共有6种基本情况,“△ABC是锐角三角形”包含4种情况,故所求的概率为错误!=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意事项 1.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集 合 I,基本事件的个数 n 就是集合 I 的元素个数,事件 A 是集合 I 的一个包含 m 个元素的子集.故 P(A)= cardA m = . cardI n
2. (1)列举法:适合于较简单的试验. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事 件时,(x,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的, 如(1,2)与(2,1)相同. 题型一 基本事件数的探求 【例 1】做抛掷两颗骰子的试验:用(x,y)表示结果,其中 x 表示第一颗骰子出 现的点数,y 表示第二颗骰子出现的点数,写出:
解析 甲、乙两人都有 3 种选择,共有 3×3=9(种)情况,甲、乙两人参加同一 3 1 兴趣小组共有 3 种情况.∴甲、乙两人参加同一兴趣小组的概率 P=9=3. 答案 A 题型三 古典概型的综合应用
Go the distance
【例 3】在某次测验中,有 6 位同学的平均成绩为 75 分.用 xn 表示编号为 n(n =1,2,…,6)的同学所得成绩,且前 5 位同学的成绩如下: 编号 n 成绩 xn 1 70 2 76 3 72 4 70 5 72
(2)由图可知,事件“3 个矩形都涂同一颜色”包含以下 3 个基本事件:红红红, 黄黄黄,蓝蓝蓝. (3)由图可知,事件“3 个矩形颜色都不同”包含以下 6 个基本事件:红黄蓝,红
Go the distance
蓝黄,黄红蓝,黄蓝红,蓝红黄,蓝黄红. 题型二 古典概型
【例 2】现有 8 名 2012 年伦敦奥运会志愿者,其中志愿者 A1,A2,A3 通晓日语, B1,B2,B3 通晓俄语,C1,C2 通晓韩语.从中选出通晓日语、俄语和韩语的志 愿者各 1 名,组成一个小组. (1)求 A1 被选中的概率; (2)求 B1 和 C1 不全被选中的概率. 解 (1)从 8 人中选出日语、俄语和韩语志愿者各 1 名,其一切可能的结果组成
Go the distance
师来自同一学校的概率. 解析 (1)甲校两男教师分别用 A、B 表示,女教师用 C 表示;乙校男教师用 D 表示,两女教师分别用 E、F 表示. 从甲校和乙校报名的教师中各任选 1 名的所有可能的结果为:(A,D),(A,E), (A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共 9 种, 从中选出 2 名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共 4 4 种,选出的 2 名教师性别相同的概率为 P=9. (2)从甲校和乙校报名的教师中任选 2 名的所有可能的结果为:(A,B),(A,C), (A,D),(A,E),(A,F),(B,C),(B,D) ,(B,E),(B,F),(C,D),(C,E), (C,F),(D,E),(D,F),(E,F),共 15 种. 从中选出 2 名教师来自同一学校的结果有: (A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共 6 种, 6 2 选出的 2 名教师来自同一学校的概率为 P=15=5.
解析: 记 4 听合格的饮料分别为 A1、A2、A3、A4,2 听不合格的饮料分别为 B1、B2,则从中随机抽取 2 听有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1, B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4, B1),(A4,B2),(B1,B2),共 15 种不同取法,而至少有一听不合格饮料有(A1, B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1, 9 3 B2),共 9 种,故所求概率为 P=15=5. 答案:B
[来源:学|科|网]
巩固提高
1.甲:A1、A2 是互斥事件;乙:A1、A2 是对立事件.那么( A.甲是乙的充分但不必要条件 B.甲是乙的 必要但不充 分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选 B 答案:B 2.从某班学生中任意找出一人,如果该同学的身高小于 160 cm 的概率为 0.2,该同学的身高在[160,175]的概率为 0.5,那么该同学的身高超过 175 cm 的 概率为( A.0.2 C.0.7 ) B.0.3 D.0.8 )
解析:因为必然事件发生的概率是 1,所以该同学的身高超过 175 cm 的概
Gห้องสมุดไป่ตู้ the distance
率为 1-0.2-0.5=0.3. 答案:B 3.某种饮料每箱装 6 听,其中有 4 听合格,2 听不合格,现质检人员从中 随机抽取 2 听进行检测,则检测出至少有一听不合格饮料的概率是( 1 A.15 8 C.15 14 D.15 3 B.5 )
(1)求第 6 位同学的成绩 x6,及这 6 位同学成绩的标准差 s; (2)从前 5 位同学中, 随机地选 2 位同学, 求恰有 1 位同学成绩在区间(68,75)中的 概率. 解 (1)∵这 6 位同学的平均成绩为 75 分, 1 ∴6(70+76+72+70+72+x6)=75 ,解得 x6=90, 这 6 位同学成绩的方差 1 s2 =6 ×[(70- 75)2 + (76-75)2 +(72- 75)2 + (70- 75)2 + (72- 75)2 +(90- 75)2] = 49,∴标准差 s=7. (2)从前 5 位同学中,随机地选出 2 位同学的成绩有:(70,76),(70,72),(70,70), (70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共 10 种, 恰有 1 位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共 4 4 种,所求的概率为10=0.4, 即恰有 1 位同学成绩在区间(68,75)中的概率为 0.4. 【变式 3】 一汽车厂生产 A,B,C 三类轿车,每类轿车均有舒适型和标准型两 种型号,某月的产量如下表(单位:辆): 轿车 A 舒适型 标准型 100 300 轿车 B 150 450 轿车 C z 600
Go the distance
12.2 古典概型
考情分析 1.考查古典概型概率公式的应用,尤其是古典概型与互斥 、对立事件的综合问 题更是高考的热点. 2.在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问 题的能力,难度以中档题为主. 基础知识 1.基本事件的特点 (1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性 相等. 3.古典概型的概率公式 P(A)= A包含的基本事件的个数 . 基本事件的总数
1 1 的基本事件共有 C1 3C3C2=18 个.由于每一个基本事件被抽取的机会均等,因此
这些基本事件的发生是等可能的. 用 M 表示“A1 恰被选中”这一事件,
1 事件 M 由 C1 3C2=6,
6 1 因而 P(M)=18=3. (2)用 N 表示“B1、C1 不全被选中”这一事件,则其对立事件 N 表示“B1、C1 全被选中”这一事件,由于 N 包含(A1 ,B1,C1),(A2,B1,C1),(A3,B1,C1)3 3 1 个结果,事件 N 有 3 个基本事件组成,所以 P( N )=18=6,由对立事件的概率 公式得 1 5 P(N)=1-P( N )=1-6=6. 【变式 2】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同 学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ( 1 A. 3 ). B. 1 2 C. 2 3 D. 3 4
按类用分层抽样的方法在这个月生产的轿车中抽取 50 辆,其中有 A 类轿车 10 辆. (1)求 z 的值; (2)用分层抽样的方法在 C 类轿车中抽取一个容量为 5 的样本.将该样本看成一 个总体,从中任取 2 辆,求至少有 1 辆舒适 型轿车的概率;
Go the distance
(3)用随机抽样的方法从 B 类舒适型轿车中抽取 8 辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这 8 辆轿车的得分看成一个总体,从中任取一 个数,求该数与样本平均数之差的绝对值不超过 0.5 的概率. 解 (1)设该厂这个月共生产轿车 n 辆, 50 10 由题意得 n = ,所以 n=2 000, 100+300 则 z=2 000-100-300-150-450-600=400. (2)设所抽样本中有 a 辆舒适型轿车, 400 a 由题意得1 000=5,则 a=2. 因此抽取的容量为 5 的样本中,有 2 辆舒适型轿车,3 辆标准型轿车.用 A1,A2 表示 2 辆舒适型轿车,用 B1,B2,B3 表示 3 辆标准型轿车,用 E 表示事件“在该样本中任取 2 辆,其中至少有 1 辆舒适型 轿车”,则基本事件空间包含的基本事件有: (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1, B2),(B1,B3),(B2,B3),共 10 个. 事件 E 包含的基本事件有: (A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共 7 个. 7 7 故 P(E)=10,即所求概率为10. 1 (3)样本平均数 x =8(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9. 设 D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过 0.5”,则基本事件空间中有 8 个基本事件,事件 D 包含的基本事件有: 6 3 3 9.4,8.6,9.2,8.7,9.3,9.0,共 6 个,所以 P(D)=8=4,即 所求概率为4. 重难点突破 【例 4】甲、乙两校各有 3 名教师报名支教,其中甲校 2 男 1 女,乙校 1 男 2 女. (1)若从甲校和乙校报名的教师中各任选 1 名,写出所有可能的结果,并求选出 的 2 名教师性别相同的概率; (2)若从报名的 6 名教师中任取 2 名,写出所有可能的结果,并求选出的 2 名教
相关文档
最新文档