Filter Table and Graph

合集下载

Digital Filter Design Toolkit Reference Manual Labview

Digital Filter Design Toolkit Reference Manual Labview
National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100
Important Information
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free. A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty. National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it. EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

基于Directshow的H.264网络视频监控客户端实现

基于Directshow的H.264网络视频监控客户端实现

基于Directshow的H.264网络视频监控客户端实现彭锋;林和志;黄联芬【摘要】In order to realize the real-time broadcasting of H. 264 at video monitoring client, a method that combines Directshow with MFC is adopted. Directshow taken as a drive of the video player receives data from the network, performs cache, decoding and display, and provides the API for MFC, which is used to design UI to control the process of playing. After verification on PC, the player can smoothly play the H. 264 video stream received from network, and the packet loss rate islow. The innovation of this paper is to use Directshow to play smoothly real-time H. 264 stream received from network.%为了实现视频监控客户端对H.264实时播放,采用Directshow与MFC相结合的方法,用Directshow作为视频播放的驱动,从网络接收数据,完成缓存,解码显示及封装成MFC可调用的API,MFC用来设计户界面,对播放过程进行相应的控制,达到了播放从网络接收到的H.264视频的目的.经过PC机上验证,可以流畅地从网络上接收播放H.264视频流,并且丢包率很小.在此用Directshow来实时流畅的播放从网络上接收到的H.264视频流.【期刊名称】《现代电子技术》【年(卷),期】2011(034)008【总页数】3页(P118-120)【关键词】H.264;Directshow;MFC;网络视频监控【作者】彭锋;林和志;黄联芬【作者单位】厦门大学,福建,厦门,361005;厦门大学,福建,厦门,361005;厦门大学,福建,厦门,361005【正文语种】中文【中图分类】TN919-340 引言视频监控以其直观方便信息内容丰富而广泛应用于安保,监控等场合,成为商业,交通,住宅等领域防范的重要手段。

GSPBOX_-Atoolboxforsignalprocessingongraphs_

GSPBOX_-Atoolboxforsignalprocessingongraphs_

GSPBOX_-Atoolboxforsignalprocessingongraphs_GSPBOX:A toolbox for signal processing on graphsNathanael Perraudin,Johan Paratte,David Shuman,Lionel Martin Vassilis Kalofolias,Pierre Vandergheynst and David K.HammondMarch 16,2016AbstractThis document introduces the Graph Signal Processing Toolbox (GSPBox)a framework that can be used to tackle graph related problems with a signal processing approach.It explains the structure and the organization of this software.It also contains a general description of the important modules.1Toolbox organizationIn this document,we brie?y describe the different modules available in the toolbox.For each of them,the main functions are brie?y described.This chapter should help making the connection between the theoretical concepts introduced in [7,9,6]and the technical documentation provided with the toolbox.We highly recommend to read this document and the tutorial before using the toolbox.The documentation,the tutorials and other resources are available on-line 1.The toolbox has ?rst been implemented in MATLAB but a port to Python,called the PyGSP,has been made recently.As of the time of writing of this document,not all the functionalities have been ported to Python,but the main modules are already available.In the following,functions pre?xed by [M]:refer to the MATLAB implementation and the ones pre?xed with [P]:refer to the Python implementation. 1.1General structure of the toolbox (MATLAB)The general design of the GSPBox focuses around the graph object [7],a MATLAB structure containing the necessary infor-mations to use most of the algorithms.By default,only a few attributes are available (see section 2),allowing only the use of a subset of functions.In order to enable the use of more algorithms,additional ?elds can be added to the graph structure.For example,the following line will compute the graph Fourier basis enabling exact ?ltering operations.1G =gsp_compute_fourier_basis(G);Ideally,this operation should be done on the ?y when exact ?ltering is required.Unfortunately,the lack of well de?ned class paradigm in MATLAB makes it too complicated to be implemented.Luckily,the above formulation prevents any unnecessary data copy of the data contained in the structure G .In order to avoid name con?icts,all functions in the GSPBox start with [M]:gsp_.A second important convention is that all functions applying a graph algorithm on a graph signal takes the graph as ?rst argument.For example,the graph Fourier transform of the vector f is computed by1fhat =gsp_gft(G,f);1Seehttps://lts2.epfl.ch/gsp/doc/for MATLAB and https://lts2.epfl.ch/pygsp for Python.The full documentation is also avail-able in a single document:https://lts2.epfl.ch/gsp/gspbox.pdf1a r X i v :1408.5781v 2 [c s .I T ] 15 M a r 2016The graph operators are described in section4.Filtering a signal on a graph is also a linear operation.However,since the design of special?lters(kernels)is important,they are regrouped in a dedicated module(see section5).The toolbox contains two additional important modules.The optimization module contains proximal operators,projections and solvers compatible with the UNLocBoX[5](see section6).These functions facilitate the de?nition of convex optimization problems using graphs.Finally,section??is composed of well known graph machine learning algorithms.1.2General structure of the toolbox(Python)The structure of the Python toolbox follows closely the MATLAB one.The major difference comes from the fact that the Python implementation is object-oriented and thus allows for a natural use of instances of the graph object.For example the equivalent of the MATLAB call:1G=gsp_estimate_lmax(G);can be achieved using a simple method call on the graph object:1G.estimate_lmax()Moreover,the use of class for the"graph object"allows to compute additional graph attributes on the?y,making the code clearer as its MATLAB equivalent.Note though that functionalities are grouped into different modules(one per section below) and that several functions that work on graphs have to be called directly from the modules.For example,one should write:1layers=pygsp.operators.kron_pyramid(G,levels)This is the case as soon as the graph is the structure on which the action has to be performed and not our principal focus.In a similar way to the MATLAB implementation using the UNLocBoX for the convex optimization routines,the Python implementation uses the PyUNLocBoX,which is the Python port of the UNLocBoX. 2GraphsThe GSPBox is constructed around one main object:the graph.It is implemented as a structure in Matlab and as a class in Python.It stores the nodes,the edges and other attributes related to the graph.In the implementation,a graph is fully de?ned by the weight matrix W,which is the main and only required attribute.Since most graph structures are far from fully connected, W is implemented as a sparse matrix.From the weight matrix a Laplacian matrix is computed and stored as an attribute of the graph object.Different other attributes are available such as plotting attributes,vertex coordinates,the degree matrix,the number of vertices and edges.The list of all attributes is given in table1.2Attribute Format Data type DescriptionMandatory?eldsW N x N sparse matrix double Weight matrix WL N x N sparse matrix double Laplacian matrixd N x1vector double The diagonal of the degree matrixN scalar integer Number of verticesNe scalar integer Number of edgesplotting[M]:structure[P]:dict none Plotting parameterstype text string Name,type or short descriptiondirected scalar[M]:logical[P]:boolean State if the graph is directed or notlap_type text string Laplacian typeOptional?eldsA N x N sparse matrix[M]:logical[P]:boolean Adjacency matrixcoords N x2or N x3matrix double Vectors of coordinates in2D or3D.lmax scalar double Exact or estimated maximum eigenvalue U N x N matrix double Matrix of eigenvectorse N x1vector double Vector of eigenvaluesmu scalar double Graph coherenceTable1:Attributes of the graph objectThe easiest way to create a graph is the[M]:gsp_graph[P]:pygsp.graphs.Graph function which takes the weight matrix as input.This function initializes a graph structure by creating the graph Laplacian and other useful attributes.Note that by default the toolbox uses the combinatorial de?nition of the Laplacian operator.Other Laplacians can be computed using the[M]:gsp_create_laplacian[P]:pygsp.gutils.create_laplacian function.Please note that almost all functions are dependent of the Laplacian de?nition.As a result,it is important to select the correct de?nition at? rst.Many particular graphs are also available using helper functions such as:ring,path,comet,swiss roll,airfoil or two moons. In addition,functions are provided for usual non-deterministic graphs suchas:Erdos-Renyi,community,Stochastic Block Model or sensor networks graphs.Nearest Neighbors(NN)graphs form a class which is used in many applications and can be constructed from a set of points (or point cloud)using the[M]:gsp_nn_graph[P]:pygsp.graphs.NNGraph function.The function is highly tunable and can handle very large sets of points using FLANN[3].Two particular cases of NN graphs have their dedicated helper functions:3D point clouds and image patch-graphs.An example of the former can be seen in thefunction[M]:gsp_bunny[P]:pygsp.graphs.Bunny.As for the second,a graph can be created from an image by connecting similar patches of pixels together.The function[M]:gsp_patch_graph creates this graph.Parameters allow the resulting graph to vary between local and non-local and to use different distance functions [12,4].A few examples of the graphs are displayed in Figure1.3PlottingAs in many other domains,visualization is very important in graph signal processing.The most basic operation is to visualize graphs.This can be achieved using a call to thefunction[M]:gsp_plot_graph[P]:pygsp.plotting.plot_graph. In order to be displayable,a graph needs to have2D(or3D)coordinates(which is a?eld of the graph object).Some graphs do not possess default coordinates(e.g.Erdos-Renyi).The toolbox also contains routines to plot signals living on graphs.The function dedicated to this task is[M]:gsp_plot_ signal[P]:pygsp.plotting.plot_signal.For now,only1D signals are supported.By default,the value of the signal is displayed using a color coding,but bars can be displayed by passing parameters.3Figure 1:Examples of classical graphs :two moons (top left),community (top right),airfoil (bottom left)and sensor network (bottom right).The third visualization helper is a function to plot ?lters (in the spectral domain)which is called [M]:gsp_plot_filter [P]:pygsp.plotting.plot_filter .It also supports ?lter-banks and allows to automatically inspect the related frames.The results obtained using these three plotting functions are visible in Fig.2.4OperatorsThe module operators contains basics spectral graph functions such as Fourier transform,localization,gradient,divergence or pyramid decomposition.Since all operator are based on the Laplacian de? nition,the necessary underlying objects (attributes)are all stored into a single object:the graph.As a ?rst example,the graph Fourier transform [M]:gsp_gft [P]:pygsp.operators.gft requires the Fourier basis.This attribute can be computed with the function [M]:gsp_compute_fourier_basis[P]:/doc/c09ff3e90342a8956bec0975f46527d3240ca692.html pute_fourier_basis [9]that adds the ?elds U ,e and lmax to the graph structure.As a second example,since the gradient and divergence operate on the edges of the graph,a search on the edge matrix is needed to enable the use of these operators.It can be done with the routines [M]:gsp_adj2vec[P]:pygsp.operators.adj2vec .These operations take time and should4Figure 2:Visualization of graph and signals using plotting functions.NameEdge derivativefe (i,j )Laplacian matrix (operator)Available Undirected graph Combinatorial LaplacianW (i,j )(f (j )?f (i ))D ?WV Normalized Laplacian W (i,j ) f (j )√d (j )f (i )√d (i )D ?12(D ?W )D ?12V Directed graph Combinatorial LaplacianW (i,j )(f (j )?f (i ))12(D ++D ??W ?W ?)V Degree normalized Laplacian W (i,j ) f (j )√d ?(j )?f (i )√d +(i )I ?12D ?12+[W +W ?]D ?12V Distribution normalized Laplacianπ(i ) p (i,j )π(j )f (j )? p (i,j )π(i )f (i )12 Π12PΠ12+Π?12P ?Π12 VTable 2:Different de?nitions for graph Laplacian operator and their associated edge derivative.(For directed graph,d +,D +and d ?,D ?de?ne the out degree and in-degree of a node.π,Πis the stationary distribution of the graph and P is a normalized weight matrix W .For sake of clarity,exact de?nition of those quantities are not given here,but can be found in [14].)be performed only once.In MATLAB,these functions are called explicitly by the user beforehand.However,in Python they are automatically called when needed and the result stored as an attribute. The module operator also includes a Multi-scale Pyramid Transform for graph signals [6].Again,it works in two steps.Firstthe pyramid is precomputed with [M]:gsp_graph_multiresolution [P]:pygsp.operators.graph_multiresolution .Second the decomposition of a signal is performed with [M]:gsp_pyramid_analysis [P]:pygsp.operators.pyramid_analysis .The reconstruction uses [M]:gsp_pyramid_synthesis [P]:pygsp.operators.pyramid_synthesis .The Laplacian is a special operator stored as a sparse matrix in the ?eld L of the graph.Table 2summarizes the available de?nitions.We are planning to implement additional ones.5FiltersFilters are a special kind of linear operators that are so prominent in the toolbox that they deserve their own module [9,7,2,8,2].A ?lter is simply an anonymous function (in MATLAB)or a lambda function (in Python)acting element-by-element on the input.In MATLAB,a ?lter-bank is created simply by gathering these functions together into a cell array.For example,you would write:51%g(x)=x^2+sin(x)2g=@(x)x.^2+sin(x);3%h(x)=exp(-x)4h=@(x)exp(-x);5%Filterbank composed of g and h6fb={g,h};The toolbox contains many prede?ned design of?lter.They all start with[M]:gsp_design_in MATLAB and are in the module[P]:pygsp.filters in Python.Once a?lter(or a?lter-bank)is created,it can be applied to a signal with[M]: gsp_filter_analysis in MATLAB and a call to the method[P]:analysis of the?lter object in Python.Note that the toolbox uses accelerated algorithms to scale almost linearly with the number of sample[11].The available type of?lter design of the GSPBox can be classi?ed as:Wavelets(Filters are scaled version of a mother window)Gabor(Filters are shifted version of a mother window)Low passlter(Filters to de-noise a signal)High pass/Low pass separationlterbank(tight frame of2lters to separate the high frequencies from the low ones.No energy is lost in the process)Additionally,to adapt the?lter to the graph eigen-distribution,the warping function[M]:gsp_design_warped_translates [P]:pygsp.filters.WarpedTranslates can be used[10].6UNLocBoX BindingThis module contains special wrappers for the UNLocBoX[5].It allows to solve convex problems containing graph terms very easily[13,15,14,1].For example,the proximal operator of the graph TV norm is given by[M]:gsp_prox_tv.The optimization module contains also some prede?ned problems such as graph basis pursuit in[M]:gsp_solve_l1or wavelet de-noising in[M]:gsp_wavelet_dn.There is still active work on this module so it is expected to grow rapidly in the future releases of the toolbox.7Toolbox conventions7.1General conventionsAs much as possible,all small letters are used for vectors(or vector stacked into a matrix)and capital are reserved for matrices.A notable exception is the creation of nearest neighbors graphs.A variable should never have the same name as an already existing function in MATLAB or Python respectively.This makes the code easier to read and less prone to errors.This is a best coding practice in general,but since both languages allow the override of built-in functions,a special care is needed.All function names should be lowercase.This avoids a lot of confusion because some computer architectures respect upper/lower casing and others do not.As much as possible,functions are named after the action they perform,rather than the algorithm they use,or the person who invented it.No global variables.Global variables makes it harder to debug and the code is harder to parallelize.67.2MATLABAll function start by gsp_.The graph structure is always therst argument in the function call.Filters are always second.Finally,optional parameter are last.In the toolbox,we do use any argument helper functions.As a result,optional argument are generally stacked into a graph structure named param.If a transform works on a matrix,it will per default work along the columns.This is a standard in Matlab(fft does this, among many other functions).Function names are traditionally written in uppercase in MATLAB documentation.7.3PythonAll functions should be part of a module,there should be no call directly from pygsp([P]:pygsp.my_function).Inside a given module,functionalities can be further split in differentles regrouping those that are used in the same context.MATLAB’s matrix operations are sometimes ported in a different way that preserves the efciency of the code.When matrix operations are necessary,they are all performed through the numpy and scipy libraries.Since Python does not come with a plotting library,we support both matplotlib and pyqtgraph.One should install the required libraries on his own.If both are correctly installed,then pyqtgraph is favoured unless speci?cally speci?ed. AcknowledgementsWe would like to thanks all coding authors of the GSPBOX.The toolbox was ported in Python by Basile Chatillon,Alexandre Lafaye and Nicolas Rod.The toolbox was also improved by Nauman Shahid and Yann Sch?nenberger.References[1]M.Belkin,P.Niyogi,and V.Sindhwani.Manifold regularization:A geometric framework for learning from labeled and unlabeledexamples.The Journal of Machine Learning Research,7:2399–2434,2006.[2] D.K.Hammond,P.Vandergheynst,and R.Gribonval.Wavelets on graphs via spectral graph theory.Applied and ComputationalHarmonic Analysis,30(2):129–150,2011.[3]M.Muja and D.G.Lowe.Scalable nearest neighbor algorithms for high dimensional data.Pattern Analysis and Machine Intelligence,IEEE Transactions on,36,2014.[4]S.K.Narang,Y.H.Chao,and A.Ortega.Graph-wavelet?lterbanks for edge-aware image processing.In Statistical Signal ProcessingWorkshop(SSP),2012IEEE,pages141–144.IEEE,2012.[5]N.Perraudin,D.Shuman,G.Puy,and P.Vandergheynst.UNLocBoX A matlab convex optimization toolbox using proximal splittingmethods.ArXiv e-prints,Feb.2014.[6] D.I.Shuman,M.J.Faraji,and P.Vandergheynst.A multiscale pyramid transform for graph signals.arXiv preprint arXiv:1308.4942,2013.[7] D.I.Shuman,S.K.Narang,P.Frossard,A.Ortega,and P.Vandergheynst.The emerging?eld of signal processing on graphs:Extendinghigh-dimensional data analysis to networks and other irregular domains.Signal Processing Magazine,IEEE,30(3):83–98,2013.7[8] D.I.Shuman,B.Ricaud,and P.Vandergheynst.A windowed graph Fourier transform.Statistical Signal Processing Workshop(SSP),2012IEEE,pages133–136,2012.[9] D.I.Shuman,B.Ricaud,and P.Vandergheynst.Vertex-frequency analysis on graphs.arXiv preprint arXiv:1307.5708,2013.[10] D.I.Shuman,C.Wiesmeyr,N.Holighaus,and P.Vandergheynst.Spectrum-adapted tight graph wavelet and vertex-frequency frames.arXiv preprint arXiv:1311.0897,2013.[11] A.Susnjara,N.Perraudin,D.Kressner,and P.Vandergheynst.Accelerated?ltering on graphs using lanczos method.arXiv preprintarXiv:1509.04537,2015.[12] F.Zhang and E.R.Hancock.Graph spectral image smoothing using the heat kernel.Pattern Recognition,41(11):3328–3342,2008.[13] D.Zhou,O.Bousquet,/doc/c09ff3e90342a8956bec0975f46527d3240ca692.html l,J.Weston,and B.Sch?lkopf.Learning with local and global consistency.Advances in neural informationprocessing systems,16(16):321–328,2004.[14] D.Zhou,J.Huang,and B.Sch?lkopf.Learning from labeled and unlabeled data on a directed graph.In the22nd international conference,pages1036–1043,New York,New York,USA,2005.ACM Press.[15] D.Zhou and B.Sch?lkopf.A regularization framework for learning from graph data.2004.8。

等值图fly图形研究团队

等值图fly图形研究团队
研究游戏引擎技术、游戏AI和游戏物 理等,为游戏产业的发展提供技术支 持和创新思路。
02
等值图技术介绍
等值图定义
等值图是一种可视化技术,用于表示数据点在某个维度上的等值线或等值面。它 通过颜色、线条或符号的变化来表示数值的变化,帮助用户直观地理解数据的分 布和趋势。
等值图通常用于地理信息系统、气象预报、医学影像等领域,以展示空间数据的 连续变化。
非专业用户而言,理解Fly图形的含义和解 读数据的变化趋势也需要一定的学习和训练

04
等值图Fly图形研究进展
研究成果展示
01
成果1:等值图算法优化
02
等值图算法是图形渲染中的关键技术,该团队在算法优化 方面取得了重要突破,提高了渲染速度和图像质量。
03
成果2:实时图形渲染技术
04
团队成功研发出实时图形渲染技术,使得图形渲染更为流 畅,减少了延迟,提高了用户体验。
缺点
等值图对于数据的准确性和精度有一定要求,如果数据质量 不高,可能会影响可视化效果;对于大规模数据集,等值图 的计算和渲染可能比较耗时;此外,等值图的可视化效果也 受限于地图投影、比例尺等因素。
03
Fly图形技术介绍
Fly图形定义
总结词
Fly图形是一种基于等值线构建的 二维图形表示方法。
详细描述
Fly图形的优缺点
总结词
Fly图形具有直观、易于理解等优点,但也 存在计算量大、精度要求高等挑战。
详细描述
Fly图形能够清晰地表达数据的空间结构和 变化规律,使得数据可视化结果易于被用户 理解和接受。然而,由于其生成过程涉及大 量的计算和数据预处理,对于大规模和高精 度数据的处理存在一定的难度。此外,对于

grafana bar chart阈值线

grafana bar chart阈值线

grafana bar chart阈值线摘要:I.简介- 介绍Grafana Bar Chart- 引入阈值线的概念II.阈值线的设置与使用- 阈值线的定义- 阈值线的设置方法- 阈值线的使用场景III.阈值线的实际应用- 举例说明阈值线的应用- 阈值线在实际项目中的优势IV.结论- 总结Grafana Bar Chart 阈值线的意义- 展望阈值线在未来的发展正文:Grafana 是一款功能强大的开源可视化工具,广泛应用于监控和数据分析领域。

在Grafana 中,Bar Chart 是一种常见的图表类型,用于展示各类数据。

而阈值线则是Bar Chart 的一个附加功能,可以为数据设置一个阈值,从而更好地分析和解读数据。

阈值线是一种自定义的线条,可以放置在Bar Chart 的任意位置,用于表示数据的某个阈值。

阈值线的设置方法很简单,只需在Grafana 的配置界面中,选择需要添加阈值线的图表,然后在图表的属性面板中找到“Threshold Line”选项,输入所需的阈值和颜色即可。

阈值线可以设置为多种颜色,以便在图表中区分不同的阈值。

阈值线的使用场景非常丰富,例如在监控系统中,可以设置阈值线来表示系统运行的正常范围,一旦数据超过阈值,就可以发出警报。

在数据分析中,阈值线可以帮助我们更好地理解数据的分布情况,发现数据的异常值,从而为后续的数据分析和决策提供依据。

以一个简单的例子来说明阈值线的应用。

假设我们有一个关于网站访问量的Bar Chart,通过设置阈值线,我们可以更好地理解访问量的分布情况。

例如,我们可以设置一个阈值线,表示日均访问量的一定比例,如80%。

这样,当访问量超过这个阈值时,我们就可以认为网站的访问量较高,可能需要进一步分析原因;而当访问量低于这个阈值时,我们就可以认为网站的访问量较低,可能需要采取一些措施提高访问量。

总之,Grafana Bar Chart 的阈值线功能为数据可视化提供了更丰富的表达方式,使得我们能够更好地分析和解读数据。

JMP10分析软件的学习资料

JMP10分析软件的学习资料

DRAFT 10.0Highlights in JMP 10What’s New in JMP and JMP Pro JMP 10 provides new analysis platforms, major additions to several platforms, and new utilities fordebugging JSL and easily creating JSL applications.DRAFT 10.0ContentsBasic Analysis and Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Bubble Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Graph Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Compare Data Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Embedded Data Filter in Tabulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Multilingual Sample Data Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Inverted Selection in Filtered Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Filter Hierarchical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Design of Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Custom Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Evaluate a Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 General Enhancements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Bootstrapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Column Switcher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Graph Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Menu Preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Local Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Replacing Graph Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7SAS Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Modeling and Multivariate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Nonlinear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8Partial Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Quality and Reliability Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Control Chart Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Measurement Systems Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Reliability Forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Reliability Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Add-In Builder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Highlights in JMP 103 DRAFT 10.0Application Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Enhanced Graphics Scripting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10JSL Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Script Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Scripting Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114Highlights in JMP 10Basic Analysis and Graphing DRAFT 10.0 Basic Analysis and GraphingThis section describes new features and enhancements in the basic analysis and graphing areas.Bubble PlotThe Bubble Plot platform contains the following new options within the red triangle menu:Set Shape changes the shape of the bubble. Choices include Circle (default), Triangle, Square, Diamond, Arrow, or Custom. Custom shapes are created using JSL. If no custom shape is defined, theCustom option defaults to the circle shape.Orient Shapes orients shapes as they move in particular directions over time, following the shape of the data. This option appears only if you have specified a Time variable.Color Theme changes the colors representing the high, middle, and low values of the color variable. This option appears only if you have specified a Coloring variable.Draw the Filled option now resides within this menu, and two new options appear: Outlined and Filled and Outlined.Lock Scales Prevents axis scales and gradient legend scales from automatically adjusting in response to data or filtering changes.Color as Sum Within Aggregation Options, a new option appears: Color as Sum. This option computes the mean of the data values and maps to a color. This option appears only for continuousvariables.The Bubble Plot platform also contains the following enhancements:•If you Split bubbles and then select Script > Redo Analysis, the state of split bubbles is preserved.•If you have excluded rows in your data table, it will no longer contribute to the computation or to the display of the bubble plot, including axes, bubble sizes, and time states.•If you have hidden rows in your data table, they will be used in the computation, but will not be shown in the bubble plot. All rows associated with a bubble must be hidden in order for the bubble todisappear.When exporting a bubble plot to an Adobe Flash file (.swf), note the following enhancements:•Background maps are retained.•You can split or combine bubbles.Graph Builder•Instead of right-clicking on a graph and selecting a new element or changing element properties, you can do so directly from the Graph Builder window. The Graph Builder window now contains icons thatchange the element. Properties for most element types also appear.•The following new elements are supported in Graph Builder:Highlights in JMP 105 DRAFT 10.0Data T ables –Regression line, or line of fit–Density ellipse–Violin plot (appears in place of a Contour plot when there is only 1 continuous variable)–Pie chart–Shaded area–T reemap–Heatmap–Caption box–Function•You can nest categorical X variables, resulting in nested X axes.Data TablesThis section describes new features and enhancements to data tables.Compare Data TablesThe Compare Data Tables platform enables you to compare two data tables. You can compare differences in the data, table variables and scripts, and column attributes and properties.To launch the Compare Data Tables platform, select Tables > Compare Data Tables.Embedded Data Filter in TabulateTo open the embedded Data Filter in Tabulate, select Show Data Filter from the red triangle menu next to Tabulate.Why did we do this? What benefit is this to users?Multilingual Sample Data TablesFor any translated sample data tables, instead of providing three sets of sample data tables for English,Japanese, and Chinese, we now have one set of sample data. The data table names are in English. When you open a translated sample data table, your locale settings are detected and the content in the data tableappears in the appropriate language (English, Japanese, or Chinese).Inverted Selection in Filtered DataIn filtered data, you can select excluded columns using the Invert Selection message. For example, if males between the ages of 12 and 14 are filtered, select males of other ages:df << (Filter Column (:age) << Invert Selection;6Highlights in JMP 10Design of Experiments DRAFT 10.0 Filter Hierarchical DataData that consists of subcategories within categories is considered hierarchical data. For example,geographical regions might contain states. The Data Filter Hierarchical red triangle option lets you filterdata so that the second filtered list shows only subcategories of the first filtered list.Design of ExperimentsThis section describes new features and enhancements in the design of experiments area.Custom DesignThe Custom Design platform has the following new features:•Factors can now be of Discrete Numeric type. This is a numeric variable that can take only a discrete number of values. Discrete Numeric factors have an implied order for their levels.•The Number of Center Points and Number of Replicates options are now specified before the clicking the Make Design button. This is done so the optimization routine can return a design thataccounts for the center points and replicates. The Number of Replicates option no longer replicates theentire design, but specifies how many replicate runs to add to the design. The optimization routinedecides which design points to replicate.•The Custom Designer now supports I-optimal split-plot designs. When creating response surface designs using an optimal design approach, the I-optimality criterion can be more appropriate than theD-optimality criterion. You can use I-optimal split-plot designs to address response surface experimentswith restricted randomization.To create an I-optimal split-plot design, select DOE > Custom Design. From the red triangle menu,select Optimality Criterion > Make I-Optimal Design.Evaluate a DesignUse the Evaluate Design command to evaluate designs for any table treated as a design. From the results, you can change the model terms and the aliasing terms and the diagnostics update accordingly. To evaluatea design, select DOE > Evaluate Design.General EnhancementsGeneral enhancements include changes that affect multiple platforms or areas.Highlights in JMP 107 DRAFT 10.0General Enhancements BootstrappingBootstrapping approximates the sampling distribution of a statistic. The data is resampled (withreplacement) and the statistic is computed. This process is repeated to produce a distribution for thestatistic. To access the bootstrapping option, right-click on a statistic in a report and select Bootstrap.Note: Bootstrapping is available in many platforms, but is available only in JMP Pro.Column SwitcherWithin a report, use the Column Switcher to change an existing variable to another variable. To activate the Column Switcher, from a report window, click on the red triangle menu. Select Script > Column Switcher. Graph PreferencesThere is a new panel called Graphs in the Preferences window. The Graphs panel includes the following:•preferences for graphs that existed previously in the Reports panel•new options pertaining to areas such as borders, framing, tick marks, and grid lines• a preview area where you can see your changes before applying themTo see Graph preferences, select File > Preferences > Graphs.Menu PreferencesThe Menu preferences show and hide menus based on how you use JMP. This gives you fewer menu items to browse through and streamlines the JMP interface. For example, if you never design experiments, deselect Design of Experiments. Other menus are grouped by area of interest, such as quality engineering,reliability and survival, and SAS options.Local Data FilterThe Data Filter normally modifies the row states in a data table. If you do not want to modify the row states in your data table, use the Local Data Filter option. This option embeds the Data Filter within a reportwindow and does not affect or alter the associated data table or other associated reports.To access this option, from a report window, click on the red triangle menu. Select Script > Local DataFilter.Replacing Graph VariablesTo replace variables in a graph, you can drag and drop a variable. For example, in the Bivariate report, you can swap variables by dragging and dropping a variable from one axis to the other axis. Or, you can click ona variable in the Columns panel of the data table and drag it onto an axis.8Highlights in JMP 10Modeling and Multivariate Methods DRAFT 10.0 The following platforms support dragging and dropping a variable from an axis or from a data table into a graph:•Fit Y by X: Bivariate, Contingency•Graph: Contour Plot, Scatterplot Matrix•Quality and Process: Measurement Systems Analysis, VariabilityThe following platforms support dragging and dropping a variable from a data table into a graph:•Distribution•Fit Y by X: Logistic, OnewayIn the Distribution platform, when you drag a variable from the data table, drop it into the axis to replace the existing variable. To insert a new variable and create a new histogram, drag and drop the variable outside of an existing histogram. The new variable can be placed before, between, or after the existing histograms.Note: In the Distribution platform, remove a variable by selecting Remove in the red triangle menu. SAS SupportJMP 10 fully supports SAS 9.3, including the ability to specify the default SAS mid-tier (or environment), metadata server, or workspace server in the JMP preferences.When browsing data on a SAS server, you can select Get Details to see a data set’s size and the lastmodification date for all data sets in the library.Modeling and Multivariate MethodsThis section describes new features and enhancements in the modeling and multivariate methods area. Model ComparisonThe Model Comparison platform is used to compare the fit of different models. Measures of fit, diagnostic plots, and profilers are reported for easy comparison of models. You can combine the models through model averaging to achieve better predictive ability. The platform accepts models for both continuous andcategorical responses.To launch the Model Comparison platform, select Analyze > Modeling > Model Comparison.Note: The Model Comparison platform is available only in JMP Pro.NonlinearThe Fit Curve platform is a new personality of the Nonlinear platform. The Fit Curve platform provides tools for fitting a suite of nonlinear models without having to specify prediction formulas or starting values.Highlights in JMP 109 DRAFT 10.0Quality and Reliability Methods After fitting one or more models, you can compare parameter estimates, test for parallelism, and compare different fits. The Fit Curve platform features a variety of different built-in models, including several that are popular for bioassay and pharmacokinetic data analysis.To launch the Fit Curve platform, select Analyze > Modeling > Nonlinear. Provide a column of numeric data (with no predictor formula) in the X, Predictor Formula role.Partial Least Squares•The Partial Least Squares platform now uses validation to assess model fit and determine the number of latent factors. Cross validation methods include Holdback and KFold. To access the Partial LeastSquares platform, select Analyze > Multivariate Methods > Partial Least Squares.•The Fit Model platform contains a new PLS personality. The PLS personality can fit models using categorical input variables and can include transformations on continuous variables. Models can alsoinclude interaction and polynomial terms. To access the PLS personality in Fit Model, select Analyze >Fit Model then select PLS from the Personality menu.Note: The PLS personality in Fit Model is available only in JMP Pro.PartitionThe Show Split Count red triangle option shows or hides each frequency level for all nodes in the tree. This is for categorical responses only.Quality and Reliability MethodsThis section describes new features and enhancements in the quality and reliability methods area. Control Chart BuilderThe Control Chart Builder is a new platform for interactively creating control charts. The interface featuresa drag-and-drop workspace. You can quickly add or remove variables from the chart, use multiple Ys, addphase variables, or change chart types. This allows for easy exploration of data. The platform creates X-Bar, IR, Range, Standard Deviation charts, and Moving Range charts.To launch Control Chart Builder, select Analyze > Quality and Process > Control Chart Builder. Measurement Systems AnalysisThe Measurement Systems Analysis platform provides methods for assessing the variation in yourmeasurement system and gauges. You can study parallelism, bias, compute variance components, and study the increment resolution of your system.10Highlights in JMP 10Scripting DRAFT 10.0 To launch the Measurement Systems Analysis platform, select Analyze > Quality and Process >Measurement Systems Analysis.Reliability ForecastThe Reliability Forecast platform uses historical product failure data to forecast warranty returns and repair costs. You can interactively investigate different combinations of warranty length and production volumes to see the impact on forecasted repairs.To launch the Reliability Forecast platform, select Analyze > Reliability and Survival > ReliabilityForecast.Reliability GrowthThe Reliability Growth platform performs Crow-AMSAA analysis of a repairable system. This platform is useful for analyzing the mean time between failures (MTBF) and cumulative failure counts for a systemwith multiple stages, where a single model is not adequate to describe the entire time line.To launch the Reliability Growth platform, select Analyze > Reliability and Survival > Reliability Growth. ScriptingThis section describes new features and enhancements in the scripting area.Add-In BuilderThe Add-In builder simplifies creating a JMP add-in. Rather than creating add-ins manually, you select File > New > Add-In and begin specifying the add-in name, menu item name, JSL script, and other options. Application BuilderThe Application Builder is a drag-and-drop interface that lets you visually design new JMP windows with buttons, lists, graphs, and other objects. This saves you the step of writing scripts to create these objects.JMP then guides you through writing scripts that provide functionality to the objects.For example, you often perform the same tasks everyday (such as running Distribution and Fit Modelanalyses on a data table and viewing the results). In the Application Builder, you can create an application that shows the results for both analyses in one window rather than in separate platform windows.Create a new application by selecting File > New > Application.Enhanced Graphics ScriptingMany features of graphs that are generated by JMP are available in graphs generated by JSL (for example, clickable markers, curves, smooth line styles, and density gradient fills).Highlights in JMP 1011 DRAFT 10.0ScriptingJSL DebuggerThe JSL Debugger helps identify the point at which a script causes an error or fails. Rather thancommenting portions of the script or adding Print() statements, you can use the debugger to find theproblem.A variety of debugging methods are available: setting breakpoints, creating watches, stepping throughstatements, and other typical debugging options.To open the JSL Debugger within a script, click the Debug Script button, or right-click and select Debug Script.Script EditorThe Script Editor features drag-and-drop editing, and more syntax coloring for SAS code. And you can now see the script and log in the same window. To access the split window, right-click in the script and selectShow Embedded Log.Scripting IndexThe JSL Functions Index, DisplayBox Scripting Index, and Object Scripting Index are now in onesearchable index. Search for functions, objects, display boxes, or search all categories. You can customizeyour query to limit the search to examples, titles, and the like. Regular expressions are also supported inqueries.Open the Scripting Index by selecting Help > Scripting Index.•。

物化视图选择的一种两阶段优化算法

物化视图选择的一种两阶段优化算法

1物 化视 图选 择 问题描述
数据 仓库 的星型模 型 由一个装 载大 量数据的 事实表和 多 的响应速 度 。把视 图进行 物化存储 既需要 占用大量 的磁盘空 个维表构成 。事实表和维表之间 以外键 的方式相连 接 , 事实表 间, 又需要 耗费大量 的系统资 源以对 其进 行维护 , 以如何选 由用 户关心 的度量值和 每个维表 的主键组 成 。举 一个 简单的 所
0 引言
算法 收敛 速度 决的特点 , 速找到一个最佳 的局 部最优 。然 后 快
执 数据仓库和联机分析处理 ( L P 是现代决策支持 系统的 从这个局 部最优 出发 , 行模拟退火算法进行搜索寻优 。这种 OA) 两阶 段优化算 法的思 想已经在 关系数据 库的查询 优化以及神 核心部分 , 已经 成为数据 库领 域的热 点。O A L P是数据仓 库系

通过研 究和 实验 , 出了一种结合迭代改进算 法和模拟退 火算法的两阶段 优化算法 , 提 用于解决物化视 图的选择 。理
பைடு நூலகம்
论分析和 实验结果表 明, 该算法有效地 解决 了传统模拟退 火算法收敛过慢 的缺点 , 并且其 解的质 量逼近经典贪婪算法。
关键词 :物化视 图选择 ;两阶段 优化算法 ;模 拟退火算法 ;贪婪 算法
计 算 机 时代 2 1 00年 第 7 期
・l 5・
物化 视 图选 择 的 一种 两 阶段 优化 算 法
徐海 涛 。吴 昊 ( 州 电子科技 大学软 件 工程 学院 ,浙 江 杭 州 3 0 3 ) 杭 10 7


要 :物化 视 图是 数据 仓库 中提 高查 询效 率的有 效方 法 , 化视 图选择 问题 是数 据仓库 设计 时期 最重要 的决 定之 物

文件系统驱动编程基础篇之六——DirectShow

文件系统驱动编程基础篇之六——DirectShow

文件系统驱动编程基础篇之六——DirectShow一、前略本系列文章为业余编程爱好者而写,仅仅作为初学者的一个借鉴,真正的精华存在于参考资料*中。

知识的积累将经历从薄到厚,再从厚到薄的反复过程,为了打下牢固的基础,请读者务必在阅读本文的基础上花费必要的时间完成参考资料。

参考资料*:1.《Programming Microsoft DirectShow for Digital Video and Television》及其示例代码2.《DirectShow for DirectX 8.1 SDK C++》3. Microsoft® Windows®Software Development Kit Update for Windows Vista™之相关文档及其示例代码4.《DirectShow开发快速入门之慨述》5.《深入解析ATL (A TL Internals Second Edition ——Working with ATL 8)》6.《COM 组件设计与应用(一)起源及复合文件》(/document/viewdoc/?id=1483)阅读基础:少量的COM编程的基础知识,了解如何调用COM组件的方法,最好掌握哪怕一丁点的ATL。

本章目的:了解DirectX组件架构,学习编写简单的DirectShow程序。

二、DirectX与DirectShow首先看下面两段关于DirectX和DirectShow相关内容的摘要:DirectX的第一个版本作为Windows Games SDK发布于1995年9月,它作为Windows API的一部分用以替换Windows 3.1中的DCI和WinGAPI。

ATI的一个开发团队为微软带来了基本的游戏影像技术,微软方面,DirectX由专门的团队负责开发,Eisler 为团队领导,而St. John 和Engstrom则成为主程序设计师。

2005年4月,DirectShow从DirectX移除,加入到Microsoft Platform SDK。

Matlab中的关联规则挖掘方法介绍

Matlab中的关联规则挖掘方法介绍

Matlab中的关联规则挖掘方法介绍引言关联规则挖掘是一种数据挖掘技术,它通过分析数据集中的项集之间的频繁关联程度,发现其中的规律和关系。

在商业领域,关联规则挖掘常用于市场篮子分析,帮助企业理解产品间的关联性,从而优化营销策略。

在本文中,我们将介绍如何使用Matlab中的工具包进行关联规则挖掘,并讨论一些应用案例。

一、数据预处理在进行关联规则挖掘之前,必须先对数据进行预处理。

这包括数据清洗、转换和归一化等步骤。

在Matlab中,可以使用数据统计、数据导入和数据清洗工具箱来完成这些任务。

首先,我们需要确认数据集的格式,并使用适当的函数来读取数据。

然后,我们可以使用数据清洗工具箱中的函数来删除重复数据、填充缺失值,并进行必要的数据转换和归一化。

二、关联规则挖掘算法Matlab提供了多种关联规则挖掘算法,包括Apriori算法、Eclat算法和FP-growth算法等。

这些算法可用于发现频繁项集,并利用频繁项集生成关联规则。

以下是对其中几种算法的简要介绍:1. Apriori算法Apriori算法是关联规则挖掘中最常用的算法之一。

它通过逐层搜索频繁项集来发现关联规则。

具体而言,Apriori算法首先生成所有的单个项的频繁项集,再通过连接和剪枝操作生成更高维度的频繁项集,直到不再有频繁项集产生为止。

2. Eclat算法Eclat算法是一种基于垂直数据存储结构的关联规则挖掘算法。

它通过对数据集进行垂直方向的投影来寻找频繁项集。

具体而言,Eclat算法将数据集按照项的不同取值进行分组,并使用交集操作来寻找频繁项集。

3. FP-growth算法FP-growth算法是一种基于前缀树(Prefix Tree)结构的关联规则挖掘算法。

它通过构建一颗FP树(Frequency Pattern Tree)来寻找频繁项集,并利用FP树生成关联规则。

具体而言,FP-growth算法首先扫描数据集,统计每个项的频次,然后根据频次构建FP树,并进行频繁项集的挖掘。

《数据科学导论》Graph模块:图数据分析 - Centrality

《数据科学导论》Graph模块:图数据分析 - Centrality

。乎哈产
图片来源: [Bearman et al., American Journal of Sociology, 2004] 2
• 节点中心度 ( Node Centrality ) 分析
• 在网络中 ,不同节点的 〃地位〃 是不平等的
- 例子 :美国高中生恋爱关系图
- 如果定义有向边 :”追求〃 关系
有向图
• 思考: - 右边两图中男生的重要性一样吗 ?
- 你怎么解释这种重要性?
Graph模块
Node Centrality
i.基于几何图形的度量方法
•2.基于路径的度量方法
3. PageRank算法
・ ・•4.总结

Node Centrality
• i.基于几何图形的度量方法 - Degree Centrality - Closenes块 :图数据分析- Centrality
• 节点中心度 ( Node Centrality ) 分析
• 在网络中 ,不同节点的 〃地位〃 是不平等的
- 例子 :美国高中生恋爱关系图
1 - 边表示18个月内谈过恋爱
1
£ .公」喝滑嚏 1 无向图
• 思考:
- 你觉得哪些节点更重要? - 你怎么解释这种重要性?
• 2.基于路径的度量方法
- Betweenness Centrality
• 3. PageRank算法
- 矩阵运算形式( 为什么要有damping factor? )
- 马尔科夫链的数学本质
- 个性化PageRank算法
71
“Beautiful math tends to be useful, and useful things tend to have beautiful math.”

国外计算机科学教材系列

国外计算机科学教材系列

国外计算机科学教材系列有很多,这里列举一些广泛使用和备受推崇的系列教材,它们涵盖了计算机科学的各个领域和层次:1. **《计算机科学导论》系列**(Introduction to Computer Science Series):- 作者:Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest、Clifford Stein - 描述:这个系列主要以《算法导论》(Introduction to Algorithms)为代表,是计算机科学领域的经典之一,涵盖了算法、数据结构、计算复杂性等核心概念。

2. **《计算机组成与设计》系列**(Computer Organization and Design Series):- 作者:David A. Patterson、John L. Hennessy- 描述:该系列包括了多个版本的教材,覆盖了计算机体系结构、数字逻辑、指令集架构等内容,适用于硬件和低级编程领域的学习。

3. **《人工智能:一种现代方法》系列**(Artificial Intelligence: A Modern Approach Series):- 作者:Stuart Russell、Peter Norvig- 描述:这个系列的核心书籍是《人工智能:一种现代方法》(Artificial Intelligence:A Modern Approach),涵盖了人工智能的基本概念、算法和方法。

4. **《计算机图形学》系列**(Computer Graphics Series):- 作者:James D. Foley、Andries van Dam、Steven K. Feiner、John F. Hughes - 描述:这个系列包括了多个版本的教材,涵盖了计算机图形学的基本原理、算法和技术。

5. **《操作系统概念》系列**(Operating System Concepts Series):- 作者:Abraham Silberschatz、Peter B. Galvin、Greg Gagne- 描述:该系列教材介绍了操作系统的基本概念、设计和实现,是操作系统课程的经典教材之一。

2024年度《FEMAP示例入门与提高》版本83

2024年度《FEMAP示例入门与提高》版本83

根据桥梁的实际支撑情况,设置桥墩底部 的固定约束、桥面的滑动约束等。
通过FEMAP进行桥梁结构的有限元分析, 得到桥梁的应力、变形等结果,并评估其 安全性。
2024/3/23
20
05
求解器选择与结果输 出设置
2024/3/23
21
求解器类型介绍及选择建议
直接求解器
基于直接法,适用于中小规模问题,计算精度高,但内存消耗较大 。
的车身变形、加速度、能量吸收等数据。
02
可视化设计
根据数据的类型和特点,选择合适的图表类型和色彩方案,设计出直观
、易懂的可视化界面。
2024/3/23
03
结果展示
将设计好的可视化界面应用于汽车碰撞安全性分析结果,通过图表、动
画等形式展示车身在不同碰撞工况下的表现,帮助用户更直观地了解汽
车的安全性能。
飞机机翼结构优化设计结果
展示飞机机翼结构优化设计的结果,包括优化前后的性能对比、成 本降低和效益提升等方面的分析。
32
THANKS
感谢观看
2024/3/23
33
迭代求解器
基于迭代法,适用于大规模问题,内存消耗较小,但计算精度可能 受迭代次数和收敛准则影响。
选择建议
对于中小规模、对精度要求高的问题,推荐使用直接求解器;对于大 规模问题或需要快速求解的场景,推荐使用迭代求解器。
2024/3/23
22
结果输出设置方法
结果文件类型
支持多种格式的结果文件输出,如文本文件、 Excel文件、图形文件等。
2024/3/23
施加边界条件
根据实际问题,为模型施加适当的边界条 件,如固定约束、位移约束、力或压力载 荷等。

knowledge graph

knowledge graph

knowledge graph
知识图谱(Knowledge Graph)是一种用于表示实体和实体之间关系的数据结构。

它是一种图形数据库,用于存储和管理实体和实体之间的关系。

知识图谱可以用来构建更加智能的搜索引擎,提供更加丰富的搜索结果,并且可以更好地理解用户的查询。

知识图谱的基本构成元素是实体和实体之间的关系。

实体可以是人、地点、事件或其他实体,而实体之间的关系可以是“父子”、“朋友”或“同乡”等。

知识图谱可以用来表示实体之间的复杂关系,从而更好地理解用户的查询。

知识图谱的应用非常广泛,可以用于搜索引擎、推荐系统、自然语言处理、机器学习等领域。

它可以帮助搜索引擎更好地理解用户的查询,提供更加丰富的搜索结果;可以帮助推荐系统更好地理解用户的兴趣,提供更加准确的推荐;可以帮助自然语言处理更好地理解语义,提供更加准确的结果;可以帮助机器学习更好地理解数据,提供更加准确的预测结果。

总之,知识图谱是一种用于表示实体和实体之间关系的数据结构,它可以用来构建更加智能的搜索引擎,提供更加丰富的搜索结果,并且可以更好地理解用户的查询。

它的应用非常广泛,可以用于搜索引擎、推荐系统、自然语言处理、机器学习等领域,为用户提供更加准确的结果。

DirectShow流媒体数据的采集及图片的捕获

DirectShow流媒体数据的采集及图片的捕获

DirectShow流媒体数据的采集及图片的捕获DirectShow流媒体数据的采集及图片的捕获建议你用DirectShow它可以帮你从视频采集设备中取得数据,并通过Sample Grabber过滤器进行抓图DirectShow流媒体数据的采集及图片的捕获用DirectShow来使用摄像头,一般要求摄像头的驱动是WDM 格式的,当然,一些比较老的驱动格式DirectShow也可支持。

在DirectShow中,有一个Sample Grabber过滤器,它是一个可以被插入流的过滤器,它有自己的缓冲,存放采样。

我们就可以用它来从一个视频文件中简单的扑获一桢。

DirectShow通过图形过滤管理器(Filter Graph Manager)来与上层应用程序和下层的驱动进行联系。

DirectShow通过捕获过滤器(Capture Filter)来支持对摄像头的捕获,一个捕获过滤器有多个插口(pin),其中的预览(preview)插口可用来进行显示祯图象。

1、创建图形过滤管理器Filter Graph如上面原理所述,首先要创建Filter Graph:CComPtr< IGraphBuilder > m_pGraph;hr=m_pGraph.CoCreateInstance( CLSID_FilterGraph );2、连接设备还要创建系统枚举器组件对象:CComPtr<ICreateDevEnum>pCreateDevEnum;pCreateDevEnum.CoCreateInstance( CLSID_ SystemDeviceEnum );然后使用接口方法CreateClassEnumerator ()为指定的Filter注册类型目录创建一个枚举器,并获得IenumMoniker接口:CComPtr< IEnumMoniker > pEm;pCreateDevEnum->CreateClassEnumerator(CLSID_VideoInputDeviceCategory, &p Em, 0 );接着在调用BindT oObject()以后,可以将设备标识生成一个DirectShow Filter,将其加到Filter Graph中就可以参与工作了。

filter_solutions教程

filter_solutions教程

让我们5分钟学会filter solutions速成教程。

(由于本人在网上找了很久都没有找到关于Filter Solutions的教程,这几天接触了一些,就自己做一个简易教程和大家一起学习,由于本人水平有限,做得不好的请多包涵)。

一、首先了解一下滤波软件中的英文是什么意思。

浏览一遍,待会不会的再回头查看。

滤波器软件英汉翻译及操作说明(王Z G,湖南)Lowpass notch filters :低通陷波滤波器Order: 阶filter circuits:滤波电路frequency response:幅频响应Passband :通频带、传输带宽repeatedly cycle:重复周期maximum signal to noise ratio:最大信噪比gain constants:增益系数,放大常数circuit topologies:电路拓扑结构gain shortfall:增益不足maximum output:最大输出功率last stage:末级preceding stage:前级stage filter:分级过滤器Gain Stage:增益级voltage amplitude:电压振幅Component values: 元件值maximum valued: 最大值minimum valued: 最小值standard value:标准值resistors: 电阻器capacitors:电容器operational amplifiers:运算放大器(OA) circuit board:(实验用)电路板active filters:有源滤波器supply currents:源电流power supplies:电源bypassing capacitors:旁路电容optimal:最佳的;最理想的Gain Bandwidth:带宽增益passive component:无源元件active component: 有源元件overall spread:全局;总范围Component characteristics:组件特性Modification:修改;更改data book:数据手册typical values:标准值;典型值default values:省略补充program execution:程序执行Reset button:复原按钮positive temperature coefficient:正温度系数variable resistors:可变电阻器cermet resistor:金属陶瓷电阻器output resistance:输出电阻distortion:失真single amplifier:单级放大器voltage follower:电压输出跟随器troubleshooting:发现并修理故障control panel,:控制面板二、让我们来看看滤波器设计的基本步骤1、打开crack的软件后,根据滤波器的设计要求,在filter type中选择滤波器的类型(Gaussian:高斯滤波器、Bessel:贝塞尔滤波器、butterworth:巴特沃斯;Chebyshev1切比雪夫1;Chebyshev2切比雪夫2;Hourglass:对三角滤波器、Elliptic:椭圆滤波器、Custom:自定义滤波器、Raised Cos:升余弦滤波器、Matche:匹配滤波器、Delay:延迟滤波器);2、在filter class中选择滤波器的种类(低通、高通、带通、带阻);3、在filter Attributes中设置滤波器的阶数(Order)、通频带频率(Passband frequency);4、在Implementation中选择有源滤波器(active )、无源滤波器(passive)和数字滤波器(Digital);5、在Freq Scale中选择Hertz和Log,如果选择了Rad/Sec,则要注意Rad/Sec =6.28*Hertz;6、在Graph Limits中设置好图像的最大频率和最小频率,最大频率要大于通频带的截止频率;在Passive Design/Ideal Filter Response中观察传输函数(Transfer Function)、时域响应(Time Response)、零极点图(Pole Zero Plots)、频域响应(Frequency Response)的图像;7、在Circuit Parmaters中设置源电阻(Source Res)和负载电阻(Load Res);最后点击Circuits观察滤波器电路图;8、在设计有缘滤波器的时候还要注意在Active Implementation 中选择滤波器的电路布局形式一般有源滤波器选择Pos SAB型的,在Circuit Parmaters中设置增益大小(gain)。

数字图像处理英文词汇

数字图像处理英文词汇

Algebraic operation 代数运算;一种图像处理运算,包括两幅图像对应像素的和、差、积、商。
Aliasing 走样(混叠);当图像像素间距和图像细节相比太大时产生的一种人工痕迹。
Arc 弧;图的一部分;表示一曲线一段的相连的像素集合。
Run 行程;在图像编码中,具有相同灰度的相连像素序列
Run length 行程长度,行程;在行程中像素的个数
Run length encoding 行程编码;图像行以行程序列表示的图像压缩技术,每一行程以一个给定的行程长度和灰度值定义
Sampling 采样;(根据采样网络)将图像分为像素并测量其上局部特性(如亮度、颜色)的过程
Image matching 图像匹配;为决定两副图像相似程度对它们进行量化比较的过程。
Image-processing operation 图像处理运算;将输入图像变换为输出图像的一系列步骤
Image reconstruction 图像重构;从非图像形式构造或恢复图像的过程
Image registration 图像匹准;通过将景物中的一图幅像与相同景物的另一幅图像进行几何运算,以使其中物体对准的过程
Quantitative image analysis 图像定量分析;从一副数字图像中抽取定量数据的过程
Quantization 量化;在每一个像素处,将图像的局部特性赋予一个灰度集合中的元素的过程
Region 区域;一副图像中的相连子集
Region growing 区域增长;通过重复地求具有相似灰度或纹理的相邻子区域的并集形成区域的一种图像分割技术
Edge detection 边缘检测; 通过检查邻域,将边缘像素标识出的一种图像分割技术。

VOSONDash版本0.5.7用户界面说明书

VOSONDash版本0.5.7用户界面说明书

Package‘VOSONDash’October12,2022Version0.5.7Title User Interface for Collecting and Analysing Social NetworksDescription A'Shiny'application for the interactive visualisation andanalysis of networks that also provides a web interface for collectingsocial media data using'vosonSML'.Type PackageImports data.table,graphics,httpuv,httr,igraph(>=1.2.2),lattice,magrittr,RColorBrewer,shiny(>=1.3.2),SnowballC,systemfonts,syuzhet,textutils,tm,utils,vosonSML(>=0.29.0),wordcloudSuggests dplyr,DT,htmlwidgets,rtweet(>=0.6.8),shinydashboard,shinyjs,visNetworkDepends R(>=3.2.0)Encoding UTF-8Author Bryan Gertzel,Robert AcklandMaintainer Bryan Gertzel<*********************.au>License GPL(>=3)RoxygenNote7.1.1NeedsCompilation noURL https:///vosonlab/VOSONDashBugReports https:///vosonlab/VOSONDash/issuesRepository CRANDate/Publication2020-07-2713:20:02UTCR topics documented:VOSONDash-package (2)addAdditionalMeasures (2)applyCategoricalFilters (3)applyComponentFilter (4)12addAdditionalMeasures applyGraphFilters (4)applyPruneFilter (5)corpusFromGraph (5)getNetworkMetrics (7)getRedditUrlSubreddit (7)getRedditUrlThreadId (8)getVertexCategories (8)getYoutubeVideoId (9)loadPackageGraph (9)mixmat (10)runVOSONDash (11)wordCloudPlot (11)wordFreqChart (12)wordFreqFromCorpus (13)wordSentChart (13)wordSentData (14)wordSentValenceChart (15)Index16 VOSONDash-package Interface for collection and interactive analysis of social networksDescriptionVOSONDash provides functions and an interface in the form of an interactive R Shiny web appli-cation for the visualisation and analysis of network data.The app has sections for visualising and manipulating network graphs,performing text analysis,and displaying network metrics.It also has an interface for the collection of social network data using the vosonSML R package.Author(s)Bryan Gertzel and Robert Ackland.addAdditionalMeasures Add additional measures to graph as vertex attributesDescriptionAdds degree,in-degree,out-degree,betweenness and closeness measures to graph as vertex at-tributes.UsageaddAdditionalMeasures(g)applyCategoricalFilters3Argumentsg igraph graph object.ValueAn igraph graph object.applyCategoricalFiltersFilter out graph vertices not in selected categoryDescriptionThis function removes vertices that are not in the selected categories values list or sub-categories. UsageapplyCategoricalFilters(g,selected_cat,selected_subcats,cat_prefix="vosonCA_")Argumentsg igraph graph object.selected_cat Character string.Selected vertex category without prefix.selected_subcatsList.Selected sub-category values to include in graph.cat_prefix Character string.Category attribute prefix format to match.Default is"vosonCA_". ValueAn igraph graph object.Examples##Not run:#return a graph containing only vertices that have the vertex category#attribute"vosonCA_Stance"value"liberal"g<-loadPackageGraph("DividedTheyBlog_40Alist_release.graphml")g<-applyCategoricalFilters(g,"Stance",c("liberal"))##End(Not run)4applyGraphFilters applyComponentFilter Filter out graph vertices not in component size rangeDescriptionThis function removes any graph vertices that are in components that fall outside of the specified component size range.UsageapplyComponentFilter(g,component_type="strong",component_range)Argumentsg igraph graph object.component_type Character e strongly or weakly connected components by specifying "strong"or"weak".Ignored for undirected graphs.Default is"strong".component_rangeNumeric vector.Min and max values or size range of component.ValueAn igraph graph object.applyGraphFilters Filter out graph vertices and edges from graph object that are isolates,multi edge or edge loopsDescriptionThis function removes isolate vertices,multiple edges between vertices and or vertex edge loops from a graph.UsageapplyGraphFilters(g,isolates=TRUE,multi_edge=TRUE,loops_edge=TRUE)Argumentsg igraph graph object.isolates Logical.Include isolate vertices in graph.Default is TRUE.multi_edge Logical.Include multiple edges between vertices in graph.Default is TRUE.loops_edge Logical.Include vertex edge loops in graph.Default is TRUE.applyPruneFilter5 ValueAn igraph graph object.NoteRemoving multiple edges or edge loops from a graph will simplify it and remove other edge at-tributes.applyPruneFilter Prune vertices from graph by vertex idDescriptionThis function removes a list of vertices from the graph object by vertex id value.UsageapplyPruneFilter(g,selected_prune_verts)Argumentsg igraph graph object.selected_prune_vertsList.Selected vertex ids to remove.ValueAn igraph graph object.corpusFromGraph Create a text corpus from graph text attribute dataDescriptionThis function creates a text corpus from node or edge text attribute data in an igraph.6corpusFromGraph UsagecorpusFromGraph(g=NULL,txt_attr=NULL,type="vertex",iconv=FALSE,html_decode=TRUE,rm_url=TRUE,rm_num=TRUE,rm_punct=TRUE,rm_twit_hashtags=FALSE,rm_twit_users=FALSE,sw_kind="SMART",rm_words=NULL,stem=FALSE)Argumentsg an igraph graph object.txt_attr Character of graph text attribute.Default is NULL.type Character string.Graph attribute type.Default is"vertex".iconv e the iconv function to attempt UTF8conversion.Default is FALSE.html_decode Logical.HTML decode text.Default is TRUE.rm_url Logical.Remove URL’s.Default is TRUE.rm_num Logical.Remove numbers.Default is TRUE.rm_punct Logical.Remove punctuation.Default is TRUE.rm_twit_hashtagsLogical.Remove twitter hashtags.Default is FALSE.rm_twit_users Logical.Remove twitter user names.Default is FALSE.sw_kind Character string.Stopword dictionary.Refer stopwords kind parameter.De-fault is"SMART".rm_words Character er defined stopwords.Default is NULL.stem Logical.Apply word stemming.Default is FALSE.ValueA tm text corpus object.getNetworkMetrics7 getNetworkMetrics Get graph network metricsDescriptionFunction creates a vector of calculated network metrics for a graph.UsagegetNetworkMetrics(g,component_type="strong")Argumentsg igraph graph object.component_type Character e strongly or weakly connected components by specifying "strong"or"weak".Ignored for undirected graphs.Default is"strong". ValueNetwork metrics as named vector.getRedditUrlSubreddit Get subreddit name from urlDescriptionThis function extracts the subreddit name from a reddit thread url.UsagegetRedditUrlSubreddit(url)Argumentsurl Character string.Reddit thread url.ValueSubreddit name as character string.8getVertexCategories getRedditUrlThreadId Get a reddit thread id from urlDescriptionThis function extracts the thread id from a reddit thread url.UsagegetRedditUrlThreadId(url)Argumentsurl Character string.Reddit thread url.ValueReddit thread id as character string.getVertexCategories Get a list of vertex category attribute names and valuesDescriptionThis function returns a list of graph vertex attribute names that match a category attribute prefix format and their unique values.UsagegetVertexCategories(g,cat_prefix="vosonCA_")Argumentsg igraph graph object.cat_prefix Character string.Category attribute prefix format to match.Default is"vosonCA_".ValueA named list of vertex category attributes and values.getYoutubeVideoId9Examples##Not run:#get a list of voson vertex categories and valuesg<-loadPackageGraph("DividedTheyBlog_40Alist_release.graphml")vcats<-getVertexCategories(g)#vcats#$Stance#[1]"conservative""liberal"##End(Not run)getYoutubeVideoId Get a youtube video id from urlDescriptionThis function extracts the youtube video id from a youtube video url.UsagegetYoutubeVideoId(url)Argumentsurl Character string.Youtube video url.ValueVideo id as character string.loadPackageGraph Load package included network graphDescriptionThis function loads a network graph included in the extdata directory of the VOSONDash package byfile name.UsageloadPackageGraph(fname)10mixmat Argumentsfname Character of demonstration graphmlfile.ValueAn igraph graph object.Examples##Not run:#load the"Divided They Blog"package included network graph by file nameg<-loadPackageGraph("DividedTheyBlog_40Alist_release.graphml")##End(Not run)mixmat Create a mixing matrixDescriptionFunction creates a mixing matrix by graph vertex attribute.Usagemixmat(g,attrib,use_density=TRUE)Argumentsg igraph graph object.attrib Character string.Vertex attribute or category.use_density e edge density.Default is TRUE.ValueA mixing matrix.NoteMixing matrix original function written by Gary Weissman.See:https:///gweissman/2402741.runVOSONDash11Examples##Not run:#create a mixing matrix of the demonstration network based on vertex#categorical attribute for political stance"vosonCA_Stance"g<-loadPackageGraph("DividedTheyBlog_40Alist_release.graphml")mm<-mixmat(g,"vosonCA_Stance",use_density=FALSE)##End(Not run)runVOSONDash Run the VOSON Dashboard Shiny ApplicationDescriptionThis function launches the VOSONDash Shiny app in the default web browser.UsagerunVOSONDash(pkgStartupMsgs=FALSE,isLocal=NULL)ArgumentspkgStartupMsgs Logical.Display app package loading messages.Default is FALSE.isLocal Logical.Manually set app local or server modeflag.ValueNonewordCloudPlot Create a wordcloud plotDescriptionThis function creates a wordcloud plot from word frequencies.UsagewordCloudPlot(word_freqs,seed=NULL,min_freq=1,max_words=50,pcolors=NULL,family=NULL,...)12wordFreqChartArgumentsword_freqs Table.Table of word frequencies.seed Numeric.Seed value can be supplied to reproduce a word cloud layout.min_freq Numeric.Minimum word frequency to include a word in the word cloud.De-fault is1.max_words Numeric.Maximum number of words to render in the word cloud.Default is50.pcolors List.Colors to assign categorical variable in the plot or palette to use if random.color.Default is NULL.family Character.Set a font family for plot labels.Default is NULL....Arguments passed on to wordcloud::wordcloudrandom.order plot words in random order.If false,they will be plotted indecreasing frequencyrandom.color choose colors randomly from the colors.If false,the color ischosen based on the frequencyrot.per proportion words with90degree rotationValueA wordcloud plot.wordFreqChart Create a word frequency chartDescriptionThis function creates a horizontal barchart of word frequencies.UsagewordFreqChart(word_freqs,min_freq=1,top_count=20,pcolors=NULL,family=NULL)Argumentsword_freqs Dataframe.Word frequencies.min_freq Numeric.Minimum frequency for a word to be included in the chart.Default is1.top_count Numeric.Top count of words to render in word frequency chart.Default is20.pcolors List.Colors to assign categorical variable in the plot.Default is NULL.family Character string.Set a font family for plot labels.Default is NULL.wordFreqFromCorpus13ValueA barchart plot.wordFreqFromCorpus Create a word frequency dataframeDescriptionCreate a word frequency dataframe from a text corpus.UsagewordFreqFromCorpus(corp,rm_sparse=0.99,word_len=c(3,26),word_freq=c(1,Inf))Argumentscorp a tm text corpus object.rm_sparse Logical.Remove proportion of sparse terms.Default is0.99.word_len Numeric vector.Min and max length of words to include.Default is c(3,26).word_freq Numeric vector.Min and max frequency of words to include.Default is c(1, Inf).ValueA data.table of word frequencies.wordSentChart Create an NRC emotion chartDescriptionThis function creates a horizontal barchart measuring and sorting the eight NRC lexicon emotions.Emotions are measured as the proportion of the total value of the eight emotions in the text as a percentage.UsagewordSentChart(data,pcolors=NULL)14wordSentData Argumentsdata Dataframe.NRC emotions table.pcolors List.Colors to assign categorical variable in the plot.Default is NULL.ValueA barchart plot.NoteUses the syuzhet package implementation of Saif Mohammad’s NRC Emotion lexicon.wordSentData Create NRC emotion dataDescriptionThis function creates an NRC emotion dataframe from a text corpus.UsagewordSentData(corp,word_len=c(3,26))Argumentscorp tm package document Corpus object.word_len Numeric vector.Min and max length of words to include.Default is c(3,26).ValueAn NRC sentiment dataframe.NoteUses the syuzhet package implementation of Saif Mohammad’s NRC emotion lexicon.wordSentValenceChart15 wordSentValenceChart Create an NRC sentiment valence chartDescriptionThis function creates a vertical barchart of the sum of negative and positive sentiments,and the valence or net sentiment in a text corpus.UsagewordSentValenceChart(data)Argumentsdata Dataframe.NRC emotions table.ValueA barchart plot.IndexaddAdditionalMeasures,2 applyCategoricalFilters,3 applyComponentFilter,4applyGraphFilters,4applyPruneFilter,5Corpus,14corpusFromGraph,5getNetworkMetrics,7 getRedditUrlSubreddit,7 getRedditUrlThreadId,8 getVertexCategories,8 getYoutubeVideoId,9loadPackageGraph,9mixmat,10runVOSONDash,11VOSONDash(VOSONDash-package),2 VOSONDash-package,2wordcloud::wordcloud,12wordCloudPlot,11wordFreqChart,12wordFreqFromCorpus,13wordSentChart,13wordSentData,14wordSentValenceChart,1516。

BasicGraphs(Minitab基本图表)

BasicGraphs(Minitab基本图表)

图形探索
时间跨度数据的连续图
.时间序列图(Time Series Plot)-针对等时间 间隔采集的数据,按年代顺序排列 .区域图(Area Graph)-针对堆叠数据随时间更 改的成分总量
.散点图(Scatterplot)-针对采集的数据不是按 规则的间隔时间或按年代顺序排列
评估三个变量之间的关系
在数据更改后,图形能实时反映出更改 方法 在要更新的图形上右击鼠标,选择Update Graph Automatically
在其他应用程序中直接更改图形选项

把图形复制到Word中后,仍然可以直 接修改图形选项
工具栏
评估分布
.直方图(Histogram)-显示了数据的成型和中心化趋势
.点图(Dotplot)-类似于柱状图,对于小数量的数据来说更 加有用
.茎叶图(Stem-and-Leaf)-用行的方式来显示实际数据 .概率图(Probability Plot)-显示了数据是如何遵循某个 特定的趋势 .样本经验分布函数(Empirical CDF)-类似于概率图,但它 针对的范围总是线性的 .箱形图(Boxplot)-比较样本分布特征,比如中值,极差和 对称性及标示异常点等
பைடு நூலகம்
点击Scale,选择Reference Lines标签 在Show Reference Lines for Y positions,输入5.25
散点图(Scatterplot)
常用图形选项

Scale:坐标轴,坐标点,网格线,参考线和百分点线 Labels:数据标签,标题和脚注 Data View:数据显示项目,包括拟合线 Multiple Graphs:多图形放置和分组变量 Data Options:过滤数据,处理丢失的数据值,按频率 数据列

多个视频切换时,只改变SourceFilter,不改变Filter Graph中其他Filter的C#实现

多个视频切换时,只改变SourceFilter,不改变Filter Graph中其他Filter的C#实现

大概测试了一下,如果直接RenderFile播放的话,视频之间从上一个视频Stop到下一个视频Run之间所需的时间为下面方法的至少3倍时间,对于采用同一种视频编码的多个视频,可以采用只改变SourceFilter,而其他Filter不用改变的方式来切换视频。

实现方式如下,注意需要DirectShowLibNETDirectShowLibNET - A library to allow .NET applications to use DirectShow functions复制代码1 public void ChangeFileSource(string newfilename)2 {3 // 先加入新加入的文件名代表的SourceFilter4 IPin nextOutPin = null;5 int hr = 0;6 IBaseFilter sourceFilter = null;7 hr = m_FilterGraph.AddSourceFilter(newfilename, newfilename, out sourceFilter);8 DsError.ThrowExceptionForHR(hr);910 hr = sourceFilter.FindPin("Output", out nextOutPin);11 DsError.ThrowExceptionForHR(hr);1213 //然后停止当前FilterGraph的播放,14 hr = m_mediaCtrl.Stop();15 DsError.ThrowExceptionForHR(hr);1617 //然后枚举所有Filter18 IEnumFilters enumFilters = null;19 hr = m_FilterGraph.EnumFilters(out enumFilters);2021 int iFiltCount = 0;2223 while (0 == enumFilters.Skip(1))24 {25 iFiltCount++;26 }27 enumFilters.Reset();2829 int iPos = 0;30 IBaseFilter[] filters = new IBaseFilter[iFiltCount];31 while (iPos < iFiltCount)32 {33 int numFiltersToGet = 1;34 IBaseFilter[] filter = new IBaseFilter[numFiltersToGet];35 IntPtr fetched = IntPtr.Zero;36 hr = enumFilters.Next(1, filter, fetched);37 DsError.ThrowExceptionForHR(hr);38 filters[iPos] = filter[0];39 iPos++;40 }4142 //此循环将新加入的SourceFilter加入到FilterGraph中,并将原SourceFilter 移除并释放掉43 for (iPos = 0; iPos < iFiltCount; iPos++)44 {45 m_FilterGraph.RemoveFilter(filters[iPos]);46 if (filters[iPos] != m_currentSource)47 {48 m_FilterGraph.AddFilter(filters[iPos], null);49 }50 else51 {52 Marshal.ReleaseComObject(filters[iPos]);53 }54 }5556 hr = m_FilterGraph.Render(nextOutPin);57 DsError.ThrowExceptionForHR(hr);58 m_currentSource = sourceFilter;59 sourceFilter = null;6061 m_mediaCtrl.Run();6263 if (enumFilters != null)64 {65 Marshal.ReleaseComObject(enumFilters);66 enumFilters = null;67 }68 }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档