2012年数学竞赛试卷(预赛)[1]
2011-2012年第3届全国大学生数学竞赛各赛区预赛及决赛试题和答案(非数学类&数学类)
…………………5 分
这个引力在水平方向的分量为 dFx
Gm xdx . 从而 ( h 2 x 2 )3 2
Fx
Gmxdx Gm 2 2 3/ 2 (h x ) 2 a
d (x2 ) Gm (h 2 x 2 ) 1 / 2 2 2 3/ 2 a (h x ) a
2 2 2
I f ( ax by cz ) dS . 求证: I 2 f ( a 2 b 2 c 2 u )du
1
1
解:由 的面积为 4 可见:当 a, b, c 都为零时,等式成立. 当它们不全为零时, 可知:原点到平面 ax by cz d 0 的距离是
…………………2 分
|d | a2 b2 c2
设平面 Pu : u
.
…………………………5 分
ax by cz a2 b2 c2
n
2. 如果存在正整数 p,使得 lim( an p an ) ,则 lim
an . n n p
证明:1. 由 lim an a , M 0 使得 | an | M ,且 0, N1 ,当 n > N1 时,
n
2 N ( M | a |) 因为 N 2 N1 ,当 n > N2 时, 1 . n 2
解:令 S ( x )
x
x
2n 1 2 n 2 ,则其的定义区间为 ( 2, 2) . x ( 2, 2) , x 2n n 1
2n 1 2 n 2 x 2 n 1 x x 2 S ( t ) dt t dt n n 2 2 2 n 1 2 n 1 n 1 0 0
2012年全国初中数学竞赛试题(正题)参考答案
2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE, BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得 (2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得 27x-26≤487,81x-80>487.解得 7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以 Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得 BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点 D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理, CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为 (a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n (m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)。
2012年全国高中数学联赛试题及详细解析
2012年全国高中数学联赛一试参考答案及详细评分标准一、填空题:本大题共8小题,每题8分,共64分.把答案填在题中的横线上. 1.设P 是函数2y x x=+〔0x >〕的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 . 2.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=, 则tan tan AB的值是 .3.设,,[0,1]x y z ∈,则M =是 .4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的 两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N , 则||||MN AB 的最大值是 . 5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.假设正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.假设对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 . 7.满足11sin 43n π<<的所有正整数n 的和是 . 8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .〔用最简分数表示〕二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤. 9.〔本小题总分值16分〕已知函数131()sin cos 2,,022f x a x x a a R a a =-+-+∈≠ 〔1〕假设对任意x R ∈,都有()0f x ≤,求a 的取值范围; 〔2〕假设2a ≥,且存在x R ∈,使得()0f x ≤,求a 的取值范围.10.〔本小题总分值20分〕已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23331212()n n a a a a a a +++=+++〔1〕当3n =时,求所有满足条件的三项组成的数列123,,a a a ;〔2〕是否存在满足条件的无穷数列{}n a ,使得20132012?a =-假设存在, 求出这样的无穷数列的一个通项公式;假设不存在,说明理由.11.〔本小题总分值20分〕如图,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==.〔1〕求证:||||OA OC ⋅为定值;〔2〕当点A 在半圆22(2)4x y -+=〔24x ≤≤〕上运动时, 求点C 的轨迹.2012年全国高中数学联赛加试试题一、〔此题总分值40分〕如图,在锐角ABC ∆中,,,AB AC M N >是BC 边上不同的两点,使得.BAM CAN ∠=∠设ABC ∆和AMN ∆的外心分别为12,O O ,求证:12,,O O A三点共线。
2012年数学竞赛试题答案
…………………………(4 分)
四、(本题 12 分)设函数 y = f (x) 的二阶可导,且 f ''(x) > 0, f (0) = 0, f '(0) = 0 ,求
lim
x→0
x3 f (u) f (x) sin3 u
,其中 u 是曲线
y
=
f (x) 上点
p(x,
f (x)) 处的切线在 x 轴上的截距.
解:曲线 y = f (x) 在点 p(x, f (x)) 处的切线方程为
Y − f (x) = f '(x)( X − x) ,
令Y = 0 ,则有 X = x − f (x) ,由此 u = x − f (x) , ……………………………(3 分)
f '(x)
f '(x)
且有
f (x) − f (0)
⎪⎩ z = z
⎧
则Ω:
⎪ ⎨
0 ≤ θ ≤ 2π 0≤r≤a
,其中 a 满足 a2 + a4 = t 2 , a =
⎪ ⎩r2
≤
z
≤
t2 −r2
1+ 4t2 −1 2
………(2 分)
故有
∫ ∫ ∫ ∫ ∫ F(t) =
2π a
dθ rdr
t2 −r2
f(r 2
+ z 2 )dz
=
2π
a
r
⎜⎛ ⎜
t2 −a2
( ) ( ) (4)由
∂ ∂x
u[x + u3 ]
=
∂ ∂y
((
x
+
2
y)u )
得
x + 4u3
历届全国大学生数学竞赛预赛试卷
历届全国⼤学⽣数学竞赛预赛试卷全国⼤学⽣数学竞赛预赛试卷(⾮数学类)2009年第⼀届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、填空题(每⼩题5分,共20分)1.计算()ln(1)d yx y x y ++=??____________,其中区域D 由直线1=+y x 与两坐标轴所围成三⾓形区域.2.设)(x f 是连续函数,且满⾜220()3()d 2f x x f x x =--?,则()f x =____________.3.曲⾯2222x z y =+-平⾏平⾯022=-+z y x 的切平⾯⽅程是__________.4.设函数)(x y y =由⽅程29ln )(y y f e xe=确定,其中f 具有⼆阶导数,且1≠'f ,则=22d d xy________________. ⼆、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =?,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平⾯区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π?≥--Ly yx ye y xe.五、(10分)已知xxexe y 21+=,xx exe y -+=2,x xx e exe y --+=23是某⼆阶常系数线性⾮齐次微分⽅程的三个解,试求此微分⽅程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,⼜已知该抛物线与x 轴及直线1=x 所围图形的⾯积为31.试确定c b a ,,,使此图形绕x 轴旋转⼀周⽽成的旋转体的体积V 最⼩.七、(15分)已知)(x u n 满⾜1()()1,2,n xnn u x u x x e n -'=+=L ,且n eu n =)1(,求函数项级数∑∞=1)(n n x u 之和.⼋、(10分)求-→1x 时,与∑∞=02n n x 等价的⽆穷⼤量.2010年第⼆届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、(25分,每⼩题5分)(1)设22(1)(1)(1)nnx a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞+ ?.(3)设0s >,求0(1,2,)sx nn I e x dx n ∞-==?L .(4)设函数()f t有⼆阶连续导数,1(,)r g x y f r ??==,求2222g g x y ??+??. (5)求直线10:0x y l z -=??=?与直线2213:421x y z l ---==--的距离. ⼆、(15分)设函数()f x 在(,)-∞+∞上具有⼆阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在⼀点0x ,使得0()0f x <.证明:⽅程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数⽅程22(1)()x t t t y t ψ?=+>-?=?所确定,且22d 3d 4(1)y x t =+,其中()t ψ具有⼆阶导数,曲线()y t ψ=与22132t u y e du e-=+在1t =出相切,求函数()t ψ. 四、(15分)设10,nn n k=>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、⽅向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于⽅向(,,)αβγ的最⼤值和最⼩值.六、(15分)设函数()x ?具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0L xy x x y x y ?+=+??的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ?+=+??;(2)求函数()x ?;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x y x y ?++??.2011年第三届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、计算下列各题(本题共3⼩题,每⼩题各5分,共15分)(1)求11cos 0x x x -→??;(2).求111lim ...12n n n n n →∞??++++++;(3)已知()2ln 1arctan tt x e y t e=+=-,求22d d y x .⼆、(本题10分)求⽅程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有⼆阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯⼀⼀组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h→++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球⾯1∑在Γ上各点的切平⾯到原点距离的最⼤值和最⼩值.五、(本题16分)已知S 是空间曲线22310x y z ?+=?=?绕y 轴旋转形成的椭球⾯的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平⾯,(,,)x y z ρ是原点到切平⾯∏的距离,,,λµν表⽰S 的正法向的⽅向余弦.计算:(1)()d ,,SzS x y z ρ??;(2)()3d Sz x y z S λµν++??六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满⾜(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤?请说明理由.2012年第四届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、(本⼤题共5⼩题,每⼩题6分,共30分)解答下列各题(要求写出重要步骤).(1)求极限21lim(!)n n n →∞.(2)求通过直线2320:55430x y z l x y z +-+=??+-+=?的两个互相垂直的平⾯1π和2π,使其中⼀个平⾯过点(4,3,1)-.(3)已知函数(,)ax byz u x y e+=,且20ux y=.确定常数a 和b ,使函数(,)z z x y =满⾜⽅程20z z zz x y x y--+=?. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d Lx y u x x u u y +++?在右半平⾯与路径⽆关,求(,)u x y .(5)求极限1limx xx t +.⼆、(本题10分)计算20sin d x e x x +∞-?.三、(本题10分)求⽅程21sin2501x x x=-的近似解,精确到0.001. 四、(本题12分)设函数()y f x =⼆阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330() lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最⼩实数C ,使得满⾜10 ()d 1f x x =?的连续函数()f x都有1f dx C ≤?.六、(本题12分)设()f x 为连续函数,0t >.区域Ω是由抛物⾯22z x y =+和球⾯2222x y z t ++=(0)z >所围起来的部分.定义三重积分222()()d F t f x y z v Ω=++,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛;(2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散. 2013年第五届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、解答下列各题(每⼩题6分,共24分,要求写出重要步骤) 1.求极限(lim 1sin nn →∞+.2.证明⼴义积分0sin d xx x+∞不是绝对收敛的.3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值.4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平⾯图形的⾯积为34,求点A 的坐标.⼆、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-?=+?.三、(满分12分)设()f x 在0x =处存在⼆阶导数(0)f '',且()0lim 0x f x x →=.证明:级数11n f n ∞=??∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤. 五、(满分14分)设∑是⼀个光滑封闭曲⾯,⽅向朝外.给定第⼆型的曲⾯积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-??.试确定曲⾯∑,使积分I 的值最⼩,并求该最⼩值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+?,其中a 为常数,曲线C为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和. 2014年第六届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、填空题(共有5⼩题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次⼆阶常系数线性微分⽅程的解,则该⽅程是.2.设有曲⾯22:2S z x y =+和平⾯022:=++z y x L .则与L 平⾏的S 的切平⾯⽅程是.3.设函数()y y x =由⽅程21sin d 4y xt x t π-??=所确定.求d d x y x ==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1x x f x x e x →??++= ??,则=→20)(lim x x f x . ⼆、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-??=. 三、(本题14分)设函数()f x 在]1,0[上有⼆阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤.证明:对任意]1,0[∈x ,有2 2|)('|B A x f +≤.四、(本题14分)(1)设⼀球缺⾼为h ,所在球半径为R .证明该球缺体积为2)3(3h h R -π,球冠⾯积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平⾯6:=++z y x P 所截的⼩球缺为Ω,记球缺上的球冠为∑,⽅向指向球外,求第⼆型曲⾯积分d d d d d d I x y z y z x z x y ∑=++??.五、(本题15分)设f 在],[b a 上⾮负连续,严格单增,且存在],[b a x n ∈,使得-=b ann n dx x f a b x f )]([1)]([.求n n x ∞→lim .六、(本题15分)设2222212n n n nA n n n n =++++++L ,求??-∞→n n A n 4lim π. 2015年第七届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、填空题(每⼩题6分,共5⼩题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞??+++= ?+++ ?L . (2)设函数(),z zx y =由⽅程,0z z F x y y x ?++= ??所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zxy x y+=. (3)曲⾯221z x y =++在点()1,1,3M-的切平⾯与曲⾯所围区域的体积是.(4)函数()[)[)3,5,00,0,5x f x x ?∈-?=?∈??在(]5,5-的傅⽴叶级数在0x =收敛的是.(5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=?,则()u x 的初等函数表达式是.⼆、(12分)设M 是以三个正半轴为母线的半圆锥⾯,求其⽅程. 三、(12分)设()f x 在(),a b 内⼆次可导,且存在常数,αβ,使得对于(),x a b ?∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内⽆穷次可导.四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()110,1f x dx xf x dx ==??.试证:(1)[]00,1x ?∈使()04f x >;(2)[]10,1x ?∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的⼆阶偏导数,且2222xx xy yy f f f M ++≤.若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤.2016年第⼋届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、填空题(每⼩题5分,满分30分)1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞?+=__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x=,求()f x 在0x >的表达式. 4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲⾯22 2x z y =+平⾏于平⾯220x y z +-=的切平⾯⽅程.⼆、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >?.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx fn n →∞=-=- ? ?∑?. 五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1d 0I f x x =≠?,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.⽤Fourier 级数理论证明()f x 为常数.2017年第九届全国⼤学⽣数学竞赛预赛试卷(⾮数学类)⼀、1.已知可导函数f (x )满⾜?+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2.求??+∞→n n n 22sin lim π.3.设(,)w f u v =具有⼆阶连续偏导数,且==+u x cy v x cy -,,其中c 为⾮零常数.则21xx yy w w c -=_________. 4.设()f x 有⼆阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____.5.不定积分sin 2sin 2(1sin )x e xI dx x -=-?=________. 6.记曲⾯222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz =___________.⼆、(本题满分14分)设⼆元函数(,)f x y 在平⾯上有连续的⼆阶偏导数.对任何⾓度α,定义⼀元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>.证明)0,0(f 是(,)f x y 的极⼩值. 三、(本题满分14分)设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的⼀段.求曲线积分?Γ++=xdz zdy ydx I.四、(本题满分15分)设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x ef x dx +∞---∞≤?,则,()a b a b ?<,2()2bab a f x dx -+≤. 五、(本题满分15分)设{}n a 为⼀个数列,p 为固定的正整数。
2012年全国高中数学联合竞赛(江西赛区)预赛于2012年9月23
2012年全国高中数学联合竞赛(江西赛区)预赛获奖名单各学校:2012年全国高中数学联合竞赛(江西赛区)预赛于2012年9月23日在南大附中举行,现将我市获奖情况公布如下,凡获得二等奖(含二等奖)以上的同学,同时获得参加2012年10月14日(星期日)的决赛资格一等奖学校姓名年级江西师大附中胡一凡高三江西师大附中谢睿高三江西师大附中胡浩高三江西师大附中杨博文高三江西师大附中熊尉坤高三南昌大学附中汪昱东高三南昌大学附中乐慧高三南昌大学附中车希明高三江西师大附中白韡高三南昌二中涂文涛高三南昌外国语学校王竞成江西师大附中陈际宇高三南昌县莲塘一中江金发高三江西师大附中周心涵高三南昌县莲塘一中罗刚高三江西师大附中汪鸿锋高三南昌三中杨晨高三南昌县莲塘一中涂俊高三南昌二中杨航远高一江西师大附中李金俊高三南昌二中陈子轩高三南昌二中史斌华高三江西师大附中熊一帆高三进贤一中谢星星高三江西师大附中邬军高二江西师大附中江松高三江西师大附中周思昊高二学校姓名年级南昌县莲塘一中喻祥敏高三江西师大附中邹飞善高三江西师大附中魏际维高三江西师大附中胡家昊高三南昌大学附中张乐怡高三江西师大附中胡恩文高二南昌外国语学校万直上南昌外国语学校杨杰南昌县莲塘一中杨敏高三江西师大附中杨欢高二江西师大附中缪洋高三南昌大学附中李智禹高三南昌县莲塘一中邹金伟高三江西师大附中童乐棋高三江西师大附中唐博浩高三新建二中谌冲高三江西师大附中徐炀炀高二南昌县莲塘一中黄豪豪高三江西师大附中黄沄高三南昌二中徐可高三江西师大附中陈奕新高三南昌十中刘怡慧高二安义中学杨城斌高三南昌外国语学校杨文涛南昌二中熊择正高三南昌县莲塘一中吴天昊高三南昌外国语学校余鹏二等奖学校姓名年级江西师大附中郑蔚宇高三进贤一中邬文亮高三江西师大附中黄天昊高二江西师大附中邓曲奇高三学校姓名年级南昌大学附中胡一文高三江西师大附中魏岭北高三江西师大附中徐浩岚高三南昌十中章俊彦高二南昌县莲塘一中杨彰昭高三江西师大附中张臻宸高三南昌二中赵磊高三南昌十中李昌华高二南昌大学附中刘庆高三南昌大学附中周自超高三南昌外国语学校许悦南昌二中骆明远江西师大附中谢洪乐高二南昌县莲塘一中陈馨怡高三江西师大附中魏正威高三江西师大附中郭世捷高三南昌二中田润高三南昌大学附中黄雨昕高三南昌二中喻含笑高三江西师大附中彭跃华高三南昌二中郑蔡云高一江西师大附中徐华韬高三进贤一中何康高三南昌二中蔡钰芸高三南昌十中黄炜琛高二安义中学吴俊高三江西师大附中李旺高二南昌二中周豪高三南昌外国语学校吴凡南昌二中郭志强高一南昌外国语学校刘心宇南昌县莲塘一中邹俊诚高三南昌县莲塘一中伍信高三江西师大附中王裕康高三江西师大附中曾姜杰高三南昌大学附中张蒙南昌外国语学校张海南昌五中吴礼祥高三新建二中谈超鹏高三南昌二中张紫中高三南昌县莲塘一中廖宇凡高三进贤一中王志强高三新建二中熊一远高三南昌县莲塘一中何良高三南昌县莲塘一中彭轩宇高三南昌大学附中上官婉芸高三江西师大附中黄宗超高二南昌县莲塘一中黄亚奇高三南昌县莲塘一中周韵品高三南昌县莲塘一中谌聪高三进贤一中王宇乐高三南昌外国语学校涂日昌晶安义中学杜禹仙高三进贤一中支珞昀高三进贤一中曾睿高三南昌十中朱宇斌高一新建二中祖超高三南昌十中张经纬高二南昌县莲塘一中胡长安高三江西师大附中施靖高三江西师大附中易瀚翔高三南昌十中邝明高一南昌二中郑威高一南昌大学附中喻历明高三南昌外国语学校郭星远南昌二中刘逸豪高三南昌外国语学校龚宇璇南昌大学附中葛茁高三南昌二中汪涵高三南昌十中徐李洋高二南昌十中汤福海高二南昌县莲塘一中刘文龙高三南昌三中涂康斌高三南昌县莲塘一中张力高三江西师大附中王鈺祥高三江西师大附中唐欣伟高三进贤二中郑耀辉高二新建二中夏永亮高三新建二中刘俊高三进贤二中李志锋高三南昌县莲塘一中叶琪高三南昌外国语学校严晨毓新建二中徐旷高二新建二中谭文根高三南昌十中曾明昊高二进贤一中付能高三进贤一中付雨高三南昌二中王厚鑫高三江西师大附中张超高三进贤一中王小涛高三江西师大附中钟粟晗高三南昌县莲塘一中涂政乾高三南昌三中余璟坤高三南昌二中熊桐高三南昌外国语学校叶心怡南昌十中熊雨涛高二南昌外国语学校马遇乐进贤二中喻家健高二新建二中周佳俊高三南昌二中涂仪寰高三南昌二中王剑雄高三新建二中刘婷高三南昌县莲塘一中何采高三南昌二中黎爱迪高三南昌二中涂琰高三南昌二中欧阳冲高一南昌二中潘曦宇高一南昌二中吴双高一南昌二中万宇驰高一新建一中陈智杰高三三等奖学校姓名年级新建二中吴昆高三南昌三中童佳韵高三江西师大附中陈鹏高三安义中学刘龙萍高三江西师大附中邵逸豪高二南昌大学附中熊文珍高三南昌二中万坤高一南昌十中熊浩君高二南昌县莲塘一中杨锦文高三南昌二中辛松高三进贤二中郑一帆高二南昌二中鲁子倩高三南昌十中左德阳高二南昌县莲塘一中涂鸿鹄高三南昌县莲塘一中张鸽灵高三南昌二中熊健豪高三南昌十中马氲樵高二南昌十中刘思翼高二进贤一中胡康高三南昌二中陈宇曲高三新建二中徐礼超高三南昌外国语学校李嘉鑫进贤一中江波高三南昌外国语学校伍佳昱南昌二中张维高三江西师大附中吕梦杨高二江西师大附中胡雅淇高三江西师大附中段谟斌高二江西师大附中魏鹏宇高三南昌县莲塘一中张兆宇高三新建二中张梦圆高三江西师大附中吴峥高二学校姓名年级南昌十中卢振元高一江西师大附中潘超高三南昌县莲塘一中蒋伟高三南昌十中姚伶俐高二新建二中熊三清高三南昌二中熊鹏高三进贤一中徐阳高三江西师大附中肖立康高二南昌大学附中桂从松高三新建二中李雪强高三南昌县莲塘一中熊江浩高三南昌大学附中徐周芳高三南昌县莲塘一中王树云高三南昌大学附中胡涛高三南昌十中周一奇高二新建二中万声超高三江西师大附中付志强高二南昌县莲塘一中喻志高高三南昌五中陈家明高三进贤一中吴志远高三新建二中谈智高三南昌大学附中边文治高三新建二中张伟高三南昌十中韩恺桢高二南昌大学附中杨龙军高三新建二中熊毛毛高三南昌二中吴雨霏高三江西师大附中刘璟高三新建二中夏强兵高三进贤一中揭开高三南昌二中何巡石高一江西师大附中郭万洋高三进贤一中万盛波高三南昌十中刘坤元高二南昌十中彭忻怡高二新建二中熊宇高三安义中学喻子龙高三新建二中曾磊高三新建二中江振豪高二南昌三中万瑜廷高三新建二中闵杨霞高三新建二中姜佩东高三南昌县莲塘一中唐剑锋高三南昌三中南昌三中高三新建二中张乾高三新建二中熊聪高二南昌十中胡浩铭高一南昌县莲塘一中杜勇高三新建二中刘鑫高三南昌三中梅颖洁高三江西师大附中王昕悦高二新建二中叶良良高三新建二中熊昭高二江西师大附中姚坤良高三江西师大附中于太典高二江西师大附中胡擎昊高二江西师大附中李子涵高二江西师大附中胡俊杨高三进贤一中艾潼高三新建二中陶儒笛高二江西师大附中姚望高三南昌十中刘子彧高二南昌二中杨坤高一南昌县莲塘一中朱启运高三江西师大附中唐雨璐高二南昌三中姚青云高三南昌县莲塘一中范志康高三安义中学余盛斌高三新建二中吴文阳高三江西师大附中衷子雅高二南昌县莲塘一中肖锐高三南昌三中罗晟哲高三江西师大附中李钟灵高三南昌外国语学校秦缘江西师大附中华林泉高二南昌十中刘孟宇高二江西师大附中黄晨晖高二江西师大附中杨云天高二江西师大附中李广瑞高二新建二中万会高三南昌外国语学校丁宇晨南昌二中卢泽辉高一南昌二中余希恺高一江西师大附中雷旸高三南昌大学附中曾俊高三进贤二中周贤琛高三江西师大附中刘秦鹏高二进贤一中连帮高三注:获奖证书请到市教研室孙建民老师处领取。
-2012年全国初中数学竞赛试题及答案
2012年全国初中数学竞赛试题及答案(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为.9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m的值为.9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.(第10(甲)题)10(乙).已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I 是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD= 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值.2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE =4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n= y+4,2n=.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得(k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO= 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E 的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI= CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI= AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE= BD.故AB+AD= 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab= (a-b)2,所以(2a-m)2-4n2= m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。
全国高中数学竞赛(四川预赛试题及解答)(1)
2012年全国数学竞赛(四川初赛)一、单项选择题(本大题共6个小题,每小题5分,共30分)1、设集合{}2|560S x x x =--<,{}|2|3T x x =+≤,则S T ⋂=( ) A 、{|51}x x -≤<- B 、{|55}x x -≤< C 、{|11}x x -<≤ D 、{|15}x x ≤<2、正方体1111ABCD A B C D -中1BC 与截面11BB D D 所成的角是( ) A 、6π B 、4π C 、3πD 、2π3、已知2()23f x x x =-+,()1g x kx =-,则“||2k ≤”是“()()f x g x ≥在R 上恒成立”的( )A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件4、设正三角形1∆的面积为1S ,作1∆的内切圆,再作内切圆的内接正三角形,设为2∆,面积为2S ,如此下去作一系列的正三角形34,,∆∆L ,其面积相应为34,,S S L , 设11S =,12n n T S S S =+++L,则lim n n T →+∞=()A 、65B 、43C 、32D 、25、设抛物线24y x =的焦点为F ,顶点为O ,M 是抛物线上的动点,则||||MO MF 的最大值为( )A 、B 、C 、43D6、设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为( )A 、rB 、r 2C 、r 312D 、r 315二、填空题(本大题共6个小题,每小题5分,共30分)7、如图,正方形ABCD 的边长为3E为DC的中点,AE 与BD 相交于F ,则FD DE ⋅u u u r u u u r的值是.8、261()x x x+-的展开式中的常数项是 .(用具体数字作答)9、设等比数列{}n a 的前n 项和为n S ,满足2(1)4n n a S +=,则20S 的值为 .10、不超过2012的只有三个正因数的正整数个数为 .11、已知锐角,A B 满足tan()2tan A B A +=,则tan B 的最大值是 .12、从1,2,3,4,5组成的数字不重复的五位数中,任取一个五位数abcde,满足条件“a b c d e<><>”的概率是.三、解答题(本大题共4个小题,每小题20分,共80分)13、设函数()sin1f x x x=+,(I)求函数()f x在[0,]2π上的最大值与最小值;(II)若实数cba,,使得1)()(=-+cxbfxaf对任意Rx∈恒成立,求a cb cos的值.14、已知,,a b c R+∈,满足()1abc a b c++=,(I)求()()S a c b c=++的最小值;(II)当S取最小值时,求c的最大值.15、直线1y kx =+与双曲线221x y -=的左支交于A 、B 两点,直线l 经过点(2,0)-和AB的中点,求直线l 在y 轴的截距b 的取值范围.16、设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,3,n =L ).(I )求数列{}n a 的通项公式;(II )求证:对任何正整数(2)n n ≥,都有21(2)n a n ≤+成立;(III )设数列{}n a 的前n 项和为n S ,求证:对任意正整数n ,都有716n S <成参考解答一、选择题(本大题共6个小题,每小题5分,共30分)1、C2、A3、A4、B5、B6、D二、填空题(本大题共6个小题,每小题5分,共30分) 7、32- 8、5- 9、0 10、14 11、412、215三、解答题(本大题共4个小题,每小题20分,共80分)13、解:(I )由条件知()2sin()13f x x π=++,(5分)由02x π≤≤知,5336x πππ≤+≤,于是1sin()123x π≤+≤ 所以2x π=时,()f x 有最小值12122⨯+=; 当6x π=时,()f x 有最大值2113⨯+=. (10分)(II )由条件可知2sin()2sin()133a xb xc a b ππ+++-++=对任意的x R ∈恒成立,∴2sin()2sin()cos 2cos()sin (1)0333a xb xc b x c a b πππ+++⋅-+⋅++-= ∴2(cos )sin()2sin cos()(1)033a b c x b c x a b ππ+⋅+-⋅+++-=∴cos 0sin 010a b c b c a b +=⎧⎪=⎨⎪+-=⎩,(15分)由sin 0b c =知0b =或sin 0c =。
第四届全国大学生数学竞赛试题(非数学类)2012
第四届全国大学生数学竞赛预赛试卷(非数学类,2012)一、(本题共5小题,每小题各6分,共30分)解答下列各题 (1)求极限21lim(!);n n n →∞ (2)求通过直线2320:55430x y z L x y z +−+=⎧⎨+−+=⎩的两个相互垂直的平面1π和2π,使其中一个平面过点(4,-3,1); (3)已知函数(,)ax byz u x y e +=,且20u x y ∂=∂∂,确定常数a 和b ,使函数(,)z z x y =满足方程20z z z z x y x y∂∂∂−−+=∂∂∂∂; (4)设函数()u u x =连续可微,(2)1u =,且3(2)()L x y udx x u udy +++∫在右半平面上与路径无关,求();u x(5)求极限1lim ;x x x + 二、(本题10分) 计算20sin x e x dx +∞−∫三、(本题10分) 求方程21sin 2501x x x=−的近似解,精确到0.001. 四、(本题12)设函数()y f x =二阶可导,且()0,(0)0,(0)0,f x f f ′′′>== 求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距。
五、(本题12)求最小实数C ,使得对满足10()1f x dx =∫的连续的函数()f x ,都有10f dx C ≤∫。
六、(本题12)设()f x 为连续函数,0t >,区域Ω是由抛物面22z x y =+和球面2222x y z t ++=所围起来的上半部分,定义三重积分222()()F t f x y z dv Ω=++∫∫∫。
求()F t 的导数()F t ′。
七、(本题14) 设1n n a∞=∑与1n n b ∞=∑为正项级数,那么(1) 若111lim(0,n n n nn a a b b →∞++−>则1n n a ∞=∑收敛; (2) 若111lim(0,n n n n n a a b b →∞++−<且1n n b ∞=∑发散,则1n n a ∞=∑发散。
2012年全国高中数学联赛郑州市预赛高一试题及答案(1)
2012年全国高中数学联赛郑州市预赛试卷及答案高中一年级(2012年5月13日上午8:30---11:00)考生注意:本试卷共五道大题,满分140分.一、填空题:本题满分30分,每小题5分.本题要求直接把结果写在横线上.1.设集合{1,3,5},{2,4,6}.A B ==若集合{|,,},C s s a b a A b B ==+∈∈在集合C 的元素个数为 .解:5.2.与圆22(2)1x y -+=相切且在两坐标轴上截距相等的直线共有 . 过原点有2条;斜率为-1的也有2条,共4条.3.已知221a b +=,c a b <+ 恒成立,则c 的取值范围是. (,-∞4.设125()()(),236xxxt =++则关于x 的方程(1)(2)(3)0t t t ---=的所有实数解的和为 .解:4.125()()()()236x x x f x =++是单调减函数,当0,1,3x =时其值分别为3,2,1,其和为4.5.当,x y 满足条件||||1x y +≤时,变量2z x y =-+的范围是 . [1,3]6.方程2220x x a a ---=的根为(,a a αβ)(1,2,2012a =). 则2012112222012201211111111()a aaαβαβαβαβ=+=++++++∑的值为 .解:方程2220x x a a ---=的根应满足22,,a a a a a a αβαβ+=⋅=--则201220122012211111211()2()1a a a a a a a a a αβ===+=-=--++∑∑∑140242(1).20132013=--=- 二、选择题:在每小题给出的四个答案中只有一个是正确的,请把正确的结果选出来填在题后的小括号里.7.若两个正数的算术平均数为 ) A .3 B .4C .5D .68. 函数23log ()(,1y x ax a =----∞在上单调递增,则实数a 的取值范围是________.答案:a ≤≤2( 2. 解析:23log ()y x ax a =--- 在(,1-∞所以2y x ax a =--∞在(-,0.,,.a ax a ≤≤对称轴为=可知,即2(22(0,f a a ≥≤≤≤得 2.所以 ,2( 2.9.函数()y f x =的定义域为(0,+∞),且满足21()2()30,f x xf x x-+=则()y f x =的最小值为( )A .1B .2C .3D .4解:C. 由21()2()30,f x xf x x-+=得2113()2()0,f f x x x x-+= 所以22211() 3.f x x x x x x=+=++≥ 10.一个盒子里有3个黑球和4个白球,现从盒子里随即每次取出1个球,取出后不在放回,每个球被取出的可能性相等,直到某种颜色的球全部被取出,则最后取出的是黑球的概率是( ) A .35 B .47 C .12 D .37解:B.11.已知函数222,3;1024,3,x x x y x x x ⎧-≤=⎨-+>⎩若y k =成立的x 的值恰有3个,则k 的值为( )A .3B .2C .1D .0 解:A.结合图像易得.12.设,a b 是两个相互垂直的单位向量,已知OP OQ OR r k ===a,b,a + b.若PQR ∆为等边三角形,则k ,r 的取值为( )解:C.A .12k r -±==B .1122k r -±±==C .12k r ±==D .1122k r ±-±==三、(本题满分20分)在一条直线上依次排列3点A,B,C , 且6,24,AB AC D ==为直线外一点,且,DA AB ⊥当BDC ∠取最大值时,求AD 的值.解:设,(90)BDC θθ∠=<BDC ∆的外接圆的半径为R , 则sin ,2BCRθ=当R 变小时,θ变大,(此处可以利用平面几何的知识去证明,从略) 所以当AD 与圆相切与D 点时,θ最大, 此时2212,AD AB AC =⋅=所以12.AD = (用三角函数同样给分)四、(本题满分20分)正方体1111ABCD A BC D -中,棱长为1,在侧面对角线1A D 上取一点M ,1CD 取点N ,11//MN A ACC 面,求这样的MN 的最小值.解:作11,MM AD NN DC ⊥⊥,易得11//,M N AC 设11,DM DN x ==则11,1,MM x NN x ==-作1,MH NN ⊥则1112,,NH x M N =-=所以222211)(12)6(),33MN x x =+-=-+当13x =时,MN 五、(本题满分20分)为了了解《中华人民共和国道路交通安全法》在郑州市高中学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 【解】(1)总体平均数为()156789107.5.6+++++= (2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果。
2012年全国初中数学竞赛试题(正题)参考答案
2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。
2012年全国高中数学联合竞赛湖北省预赛试题
2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分64分,每小题8分。
直接将答案写在横线上。
)1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 .2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则=++++963741a a a a aa . 3.函数741)(2+++=x x x x f的值域为. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 5.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n n n a a a a a 如果29321=++a a a ,则=1a 5 .6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=Asin 4. 7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则qp 的值为32. 8.设321,,x x x 是方程013=+-x x 的三个根,则535251x x x ++的值为 -5 . 二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a满足=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a , 所以11)=. ------------------------------------------4分 令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以n n n b b 4411=⋅=-. ------------------------------------------8分所以n nn a a 4111=+++,即 n n n a a ]1)14[(21--=+. ------------------------------------------12分 于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令 θθsin cos +=x ,则 ]2,1()4sin(2∈+=πθx ,且21s i n c o s 2-=x θθ.------------------------------10分于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.因此,m 的最小值为2423)2(-=f . ------------------------------------------20分11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上1)(≤x f 恒成立,求a 的取值范围.解 22225()l o g (56)l o g [()]24a aa a f x x ax a x =-+=--.由⎩⎨⎧>->-,03,02a x a x 得a x 3>,由题意知a a 33>+,故23<a ,从而53(3)(2)022a a a +-=->,故函数225()()24a a g x x =--在区间]4,3[++a a 上单调递增.------------------------------------------5分(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥a 或275-≤a . 结合10<<a 得10<<a . ------------------------------------------10分(2)若231<<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得4411344113+≤≤-a . 易知2344113>-,所以不符合. ------------------------------------------15分综上可知:a 的取值范围为(0,1). ------------------------------------------20分。
2012年高中数学联赛甘肃预赛试题与答案 (含填空题详解)
一、填空题( 本题满分 56 分,每小题 7 分)
得分 评卷人
本题共有 8 小题,请将正确答案直接写在横线上。
1. 空间四点 A , B , C , D 两两间的距离均为 1 ,点 P 与点 Q 分别在线段 AB 与 CD 上运动, 则点 P 与点 Q 间的最小距离为____________;
0 OPOA 1 2. 向量 OA (1, 0) , OB (1,1) , O 为坐标原点,动点 P ( x, y ) 满足 , 则点 OP OB 0 2 Q( x y, y ) 构成的图形的面积为___________;
(18 分)设 a, b, c 为正实数,且 a b c 1 ,求证: 11、 证明:由排序不等式,有
a
2
b c 1 a b2 c2 ≥ . bc ac ab 2
a 2 b 2 c 2 ≥ ab bc ca a 2 b 2 c 2 ≥ ac ba cb
_________;
7.
设 函 数
f :RR , 满 足
f (0) 1
且 对 任 意
x, y R 都 有
f ( xy 1) f ( x) f ( y ) f ( y ) x 2 ,则 f ( x) =____________________________;
8. 实数 x 、 y 、 z 满足 x y z 1 ,则 xy yz 的最大值为
y1 y2
又 y1 y2
2p 2
x1 x2 x1 x2
x
2p ( x1 x2 ) 2
2 p ( x1 x2 ) ,从而
1
历届全国大学生数学竞赛预赛试题
全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足22()3()d 2f x x f x x =--⎰,则()f x =.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy.二、(5分)求极限x enx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类) 一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰L .(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. (5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离.二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转.(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值. 六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0Lxy x x yx y ϕ+=+⎰Ñ的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx yϕ+=+⎰Ñ; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x yx y ϕ++⎰Ñ.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值. 五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类) 一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂.(4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限1lim x x x t +. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类) 一、解答下列各题(每小题6分,共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值. 4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m ≤⎰.五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I xx y z y y z x z z x y∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞. 七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和.2014年 第六届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x tπ-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x== .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim . 5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n n A n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z z x y xy∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 . (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .(5)设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若z z x∂=∂,求()f x 在0x >的表达式.4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M xy z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx f n n →∞=⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x .2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c为非零常数. 则21xx yy w w c-. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →. 5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰. 6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x ef x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2ba b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。
2012全国初中数学竞赛试题及答案(现只有选择题答案)
中国教育学会中学数学教学专业委员会答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1. 如果2a =-+11123a+++的值为( ).(A )(B (C )2 (D )解:B∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )5 解:B解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内, 画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3. 如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 解:4. 如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 解:C∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x∴正根为3242<++qp p 解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5. 黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 解:C1)1)(1(-++=++b a ab b a∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分)6. 如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 . 解:7 在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++a c b c b a b a c 即7=+++++ac b c b a b a c7. 如图,正方形ABCD 的边长为2E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 解:8易证△ABF ≌△DAE ,因此AF ⊥DE ∴()()351515222=+==AF DE∴323515152=⋅=AM ,()()343215222=-=DM易证△AND ∽△FNB ,且相似比为2:1∴331032==AF AN ,33531==AF FN ∴334323310=-=MN ∴83433421=⋅⋅=∆DMN S8. 设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1600个数9. 如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则a c的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac a c a c -<-化简得0322<+-c ac a ,两边除以2c 得0132<+-⎪⎭⎫⎝⎛c a c a所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤ca综合得1253≤<-ca10. 已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 . 解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个三、解答题(共4题,每题20分,共80分)11. 已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 解:12. 如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13.给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可14.将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c以相同)使得b a c=,求n的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学竞赛(初赛)试卷2012.5
一、计算:(21分)
1. 直接写出得数(7分)
918÷9= 0.125×1.6= (32)= 20
9
÷0.4=
125-4
1
= 3.7+3.7÷0.37= 167+43-167+43= 2. 摆竖式计算(4分)
18÷0.375= 10.16×9.37≈ (得数保留两位小数)
3. 用你喜欢的方法计算(10分)
2010-489+121 (1.28+1.28+1.28+1.28)×0.25
158÷115-157×5
11
2(X -0.25)-1=2
32+43+75+87
+2811+24
11
二、填空:(每空2分,共38分)
1、45秒=( )分 10立方米40立方厘米=( )立方分米
2、填上合适的单位。
一个水库的水面面积大约是5.6 。
瓯江长约388 。
3、一个数,亿位上是最小的质数,千万位和百位上都是最小的奇数,其余各位上都是0,这个数写作( ),改写成用万作单位是( )万。
4、一根绳子长12米,第一次剪了31,第二次剪了5
3
米。
共剪去( )米。
5、一个三位小数,四舍五入到百分位约是5.00,这个三位小数最大是( ),最小是( )。
6、括号里最大能填几?
< 0.45 54> >2
1
7、分子是a 的最大真分数是( );分母是b 的最小假分数是( )。
(a 、b 都是非零自然数)
8、小明用若干个大小相同的正方体木块堆成一个几何体,从正面看是
,从上面
看 ,那么这个几何体至少用了( )块木块。
9、一个梯形,它的高与上底的乘积是36.8平方厘米,高与下底的乘积是56平方厘米。
这个梯形的面积是( )平方厘米。
10、把一个棱长为a 分米的正方体切成两个大小相等的长方体,一个长方体的表面积是
( )平方分米。
11.已知a=0.00……025,b=0.00……02。
求:a ×b=( )。
12.将边长为10厘米的正方形纸片,按下图依次重叠。
1000个0
1000个0
( ) 9 7 ( ) 3 学校 班级 姓名 学号
(1)将8张正方形纸片如上重叠后,新图形的周长是( )厘米。
(2)将n 张正方形纸片如上重叠后,新图形的周长是( )厘米。
三、操作题:(11分)
1.在下面的平行线之间画一个三角形、一个梯形和一个平行四边形,使它们的面积都相等。
(3分)
2. 在一个正方体上,沿着某个平面切去一个顶点,还剩下几个顶点?先在图上画一画,再数一数。
(8分)
剩下(
)个; 剩下(
)个;
剩下( )个; 剩下( )个。
四、解决问题:(30分)
1
. 做一件工作服用布1.7米,100米布可以做多少件这样的工作服?
2. 380个零件正好装满3个同样的大箱子和5个同样的小箱子。
每个大箱子比每个小箱子多装20个。
每个大箱子和每个小箱子各装多少个零件?
3.李先生打算乘出租车从甲地去乙地,甲、乙两地相距33千米。
付款方式有两种方案。
方案一:一次性付款80元。
方案二:出租车起步价3千米以内10元,超过3千米每千米付2.2元。
你觉得李先生选择哪种方案付款比较合算?
4.如下图所示,要在街道AB 和BC 的一边装路灯,要求每两盏路灯之间的距离都相等,
并且A 、B 、C 处各装一盏。
这条街道最少装路灯多少盏?
5.如下图,一个长方体木块,从左、右两面分别截去2厘米和3厘米后,变成一个正方体,表面积是150平方厘米。
求原长方体的体积。
6.工程队修一条公路,第一个月修了全长的31
,第二个月修了余下的31,第三个月又修
了余下的3
1
,最后还剩12千米没有修。
这条公路长多少千米?(要求:先画出线段图,
再解答)
175米
125米
B
A
C。