PPT1 高分子物理 绪论
高分子物理第一章完整ppt课件
理研究组,开展了高分子溶液性质研究。
钱保功50年代初在应化所开始了高聚物粘
弹性和辐射化学的研究。
徐僖先生50年初成都工学院(四川大学)
开创了塑料工程专业。
王葆仁先生1952年上海有机所建立了集
PMMA、PA6研究完组整编。辑ppt
33
高分子工业:采取引进-消化-再引 进的道路。
高分子科学:则采取追踪、学习国外 的过程中不断发展。
完整编辑ppt
34
二、高分子结构的内容
构造
近程结构
链结构
构型
(一级结构)
高 分 子
远程结构 分子大小(分子量) 构象(柔顺性
(二级结构) )
结
晶态结构
构
非晶态结构
(三级结构)
聚集态结构 取向态结构
液晶态结构
织态结构
(更高级结构)
完整编辑ppt
35
完整编辑ppt
36
完整编辑ppt
37
三、 高分子结构的特点
Flory
完整编辑ppt
13
高分子发展上的几个重要事件
3)Merrifield和功能高分子的发展
70年代,固相有机合成创立 1984年诺贝尔化学奖。
完整编M辑pept rrifield,生物化学家 14
高分子发展上的几个重要事件
4)液晶高分子
1991年诺贝尔 物理学奖
Pierre-Gilles de
30完整编辑ppt来自31(四)高分子科学发展新动向
1、向生命现象靠拢 2、功能化、精细化、复合化。
完整编辑ppt
32
我国:
长春应化所1950年开始合成橡胶工作(王
佛松,沈之荃);
冯新德50年代在北大开设高分子化学专业。
(推荐)《高分子物理绪论》PPT课件
绪论
一、高分子科学的发展
1. 高分子科学发展历史
2. 我国高分子科学发展历史
二、高分子物理的教学内容
1. 高聚物结构的特点
2. 高分子材料的性能特点
3. 高分子材料的应用
4. 高分子物理知识解决实际生产问题
5. 高分子物理的学习方法
2
高分子科学
高分子科学既是一门应用学科,也是一门基础学科,它是建立在有机化 学、物理化学、生物化学、物理学和力学等学科的基础上逐渐发展而成 的一门新兴学科。
面临机遇和挑战的一些领域: 1.催化过程和新的聚合方法 2.非线性结构聚合物 3.超分子组装和高度自组织的 大分子 4.聚合物结晶和形态工程 5.刺激-响应聚合物 6.聚合物的循环利用和处理
高分子材料的发展方向
1.高性能化 2.高功能化 3.复合化 4.精细化 5.智能化
27
二、高分子物理的教学内容
• 高分子的结构:包括高分子链的结构和凝聚态结构, 链段、柔顺性、球晶、片晶、分子量和分子量分布、 θ 溶液概念。
• 高分子材料的性能:力学性能、热、电、光、磁等性 能。力学性能包括拉伸性能、冲击性能等、银纹、剪 切带、强度、模量。
• 高分子的分子运动:玻璃化转变、粘弹性、熵弹性、 结晶动力学、结晶热力学、熔点、流变性能、粘度、 非牛顿流体。
18
液晶高分子
• 液晶高分子作为一类新型的高性能材料,极大地引起 了科学界和工业界的关注,得到了广泛的应用,并发 展为高分子科学中最活跃的领域之一。
19
• 竹子地板 • 地毯则可以选择耐久的羊
毛制品或者PET地毯 • 主要采用水性涂料、粉末
涂料和辐射固化涂料等 • 用于户外美化环境的产品:
可以回收的塑料做成长椅、 桌子和交通标志牌。
《高分子物理》ppt课件
《高分子物理》ppt课件目录•高分子物理概述•高分子链结构与形态•高分子溶液性质与行为•高分子聚集态结构与性能•高分子材料力学性能与增强机制•高分子材料电学、光学等其他性能•高分子物理研究方法与技术PART01高分子物理概述高分子物理定义与特点定义高分子物理是研究高分子物质物理性质的科学,是高分子科学的一个重要分支。
特点高分子物理的研究对象是具有高分子量的聚合物,这些聚合物具有独特的结构和性质,如链状结构、分子量分布、粘弹性、相转变等。
高分子链结构高分子聚集态结构高分子溶液性质高分子固体性质高分子物理研究内容研究高分子链的化学结构、构象、链的柔顺性和刚性等。
研究高分子溶液的粘度、扩散、沉降、凝胶化等性质。
研究高分子在溶液中的形态、高分子液晶、高分子膜等。
研究高分子的力学性能、电学性能、热学性能、光学性能等。
高分子物理与化学关系联系高分子物理和高分子化学都是研究高分子的科学,两者相互联系,互为补充。
高分子化学合成出具有特定结构和功能的高分子,而高分子物理则研究这些高分子的结构和性质之间的关系。
区别高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关系。
此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种物理手段和理论计算的方法。
PART02高分子链结构与形态高分子链化学结构链的组成与结构单元高分子链由许多结构单元通过共价键连接而成,每个结构单元通常包含一个或多个原子或原子团。
链的规整性高分子链的规整性是指链上原子或基团的排列顺序和空间构型的规律性。
规整性好的高分子链往往具有较高的结晶能力和力学性能。
链的支化与交联支化是指高分子链上分支结构的形成,而交联则是指不同高分子链之间的连接。
支化和交联都会对高分子的物理性质产生显著影响。
高分子链的构象是指链上原子或基团在空间的排列方式。
不同的构象会导致高分子链呈现不同的形态和性质。
高分子物理第一章-绪论
在写聚乙烯结构式时,习惯上还是以其单体单元来表示.
又如聚对苯二甲酸乙二酯: 不管它由何种单体聚合而成,其重复结构单元始终是:
但单体单元则可能因所用单体不同而异,如果使用的单体是对 苯二甲酸和乙二醇两种单体:
生成两种单体单元.
而假设聚合反应时用的是对苯二甲酸二乙二酯一种单体:
单体单元与重复结构单元相同
缩聚反应是指聚合产物分子的单体单元组成比相应单体分子 少若干原子的聚合反应,在聚合反应过程中伴随有水、醇等小分 子副产物生成,其聚合产物称缩聚物。如己二酸和己二胺合成聚 酰胺-6,6(尼龙-6,6):
但随着高分子化学的发展,新的聚合反应不断开发,这种分类 方法就越来越难以适应,如聚酰胺-6的合成:
如果聚合物分子结构中只有一种重复结构单元、并且该重复结 构单元可以只由一种(事实上的、隐含的或假想的)单体衍生而 来,则该聚合物为均聚物,否则为共聚物。
何谓事实上的、隐含的或假设的单体?
CH 2CH Cl
氯乙烯单体 (事实上的)
O
O
C
C OCH 2CH2O
由对苯二甲酸和乙二醇反应 生成的“隐含单体”:
天然高分子 一般有与其来源、化学性能与作用、主要用途相关的专用名
称。如纤维素(来源)、核酸(来源与化学性能)、酶(化学 作用)。
合成高分子 根据聚合物合成时所用单体进行命名,并不描述聚合物分子
的实际结构。可分几种情形。
(I)由一种单体合成的均聚物: 通常是在实际或假想的单体名称前加前缀“聚”,如 聚苯乙烯 聚乙烯醇
这类单体的聚合反应通过单体功能基之间的反应进行,为逐 步聚合反应。
(b)含多重键的单体,如: C=C双键:乙烯、丙烯、苯乙烯等 C≡C三键:乙炔及取代乙炔 C=O双键:甲醛等
高分子基础及绪论课件
松弛时间是描述高分子运动速度的一个重要参数,它决定了高分子材料在不同温度下的响 应速度。了解松弛时间对高分子材料的加工和应用具有重要意义。
玻璃化转变温度
当高分子材料的温度低于其玻璃化转变温度时,其分子运动变得非常缓慢,材料从柔韧状 态变为脆硬状态。了解玻璃化转变温度对高分子材料的加工和应用具有重要意义。
VS
详细描述
随着人工智能和物联网技术的快速发展, 对高分子材料的智能化要求越来越高。研 究者们通过引入智能化的元素,如传感器 、驱动器、执行器等,使高分子材料具备 感知、响应和调控外部刺激的能力。这种 智能化的高分子材料在机器人、智能穿戴 设备、智能家居等领域具有广泛的应用前 景。
绿色化
总结词
高分子材料的绿色化是指降低高分子材料的生产和使用过程中的环境影响。
高分子合成
通过化学反应将小分子转化成 高分子链的过程。
03 高分子物理基础
高分子的聚集态结构
01
晶态结构
高分子的晶态结构是指分子链在三维空间的有序排列,具有长程有序性
。晶态结构对高分子的力学性能、热性能等有重要影响。
02
取向态结构
当高分子链或链段在某些方向上排列比较整齐时,就形成了取向态结构
。取向态结构对高分子材料的力学性能和光学性能有显著影响。
电绝缘性能
高分子材料具有良好的电绝缘性能,可用 于制造电线绝缘层、绝缘器件等。
ቤተ መጻሕፍቲ ባይዱ
优异的化学稳定性
大多数高分子材料具有良好的耐腐蚀性和 抗氧化性,能够在各种化学环境下保持稳 定。
02 高分子化学基础
高分子合成反应
自由基聚合
利用自由基引发剂引发 单体聚合,形成高分子
链的过程。
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
《高分子物理》课件
高分子加工技术
探索高分子材料的加工技术,如挤出、注塑、吹塑等,讨论每种技术的优缺点以及在实际生产中的应用。
高分子材料应用范围
展示高分子材料在不同领域的广泛应用,包括医疗、电子、汽车等,并讨论其在可持续发展中的作用。
总结与展望
总结高分子物理的重要概念,并展望未来的发展方向,探讨高分子物理在新材料研究中的前景。
《高分子物理》PPT课件
这份PPT课件将帮助您了解《高分子物理》的重要概念和应用。通过丰富的 内容和精美的图片,让我们一起探索高分子物理的奇妙世界。
高分子物理概述
介绍高分子物理学的基本概念和理论,包括分子结构、分子力学以及高分子 的物理特性。
高分子材料的物理性质
深入了解高分子材料的物理性质,例如强度、弹性、热传导性等,解释其在 不同应用领域中的优势。
高分子物理(共90张PPT)
高分子物理(共90张PPT)高分子物理是研究高分子的性质、结构和行为的物理学科。
高分子物理是在20世纪初形成的,它涉及的领域非常广泛,包括高分子合成、高分子材料制备、高分子加工与成型等。
本文将结合90张PPT,对高分子物理的基本概念、研究方法、高分子结构与性质、高分子的加工与成型等方面进行介绍。
第一部分:高分子物理的基本概念1、高分子的定义高分子是由无数个重复单元组成的巨大分子,其分子量通常大于10^3,由于其特殊的结构和物理化学性质,广泛应用于生活、工业等众多领域。
2、高分子物理的研究对象高分子物理的研究对象是大分子化合物。
这些化合物的分子量很大,通常大于10^3,有时甚至可达到10^7。
这就意味着高分子物理不仅涉及到分子级性质的研究,还要考虑宏观级别的物理特性。
3、高分子物理的主要内容高分子物理的主要内容包括高分子的结构、性质、动力学、形态、相变、流变、加工与成型等方面。
4、高分子物理的研究方法高分子物理的研究方法包括实验研究和计算模拟两种,其中实验研究主要包括材料合成与制备、结构表征、物理性质测试等,计算模拟主要包括分子动力学模拟、量子力学计算、有限元分析等。
第二部分:高分子结构与性质1、高分子的结构分类高分子可分为线性高分子、支化高分子、交联高分子、网络高分子等四种结构。
其中,线性高分子的分子结构最为简单,具有线性分子链结构;支化高分子分子链呈树枝状结构;交联高分子中分子链相互交联形成三维网格状结构;网络高分子则形成分子链与交联点间互相交联的巨分子结构。
2、高分子的物理性质由于高分子材料具有特殊的分子结构,因此具有一系列独特的物理性质,例如:高强度、高耐磨性、高耐热性、高透明度、高电绝缘性等。
在高分子加工中,可以通过改变处理条件和添加剂等方式来控制高分子的物理性质。
第三部分:高分子的加工与成型1、高分子的加工方法高分子的加工方法包括:挤出成型、注塑成型、压缩成型、吹塑成型、热模压成型、注液成型等多种方式,其中以挤出成型和注塑成型应用最为广泛。
高分子物理共90张PPT
高分子物理共90张PPT第一部分:高分子物理基础知识1. 高分子物理概述高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。
高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。
2. 高分子材料的结构高分子材料的分子结构可以分为线性、支化和交联三种。
其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。
3. 高分子材料的物理性质高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。
其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。
4. 高分子材料的分子运动高分子材料的分子运动是高分子物理学研究的一个重要方面。
高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。
第二部分:高分子材料的物理加工工艺1. 高分子材料的成型加工高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。
2. 高分子材料的复合加工高分子材料的复合加工是目前最为关注的技术之一,它将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。
高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。
3. 高分子材料的改性加工高分子材料的改性加工是指通过添加改性剂来改变高分子材料的属性,以得到更好的性能。
常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。
4. 高分子材料的表面处理高分子材料的表面处理是一种重要的加工技术,它可以提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。
高分子化学与物理-第1章-绪论
涂料与粘合剂
01
涂料是一种能够涂覆在物体表面 并形成保护膜的高分子材料,具 有装饰和保护作用。
02
粘合剂是一种能够将两个物体粘 结在一起的物质,广泛应用于建 筑、机械、电子等领域。
05
高分子化学与物理的未来发展
高分子材料的绿色化
高分子结晶学
高分子结晶的结构与形态
01
描述高分子结晶的结构特点,以及不同形态的高分子结晶的形
成机制。
高分子结晶的成核与生长
02
研究高分子结晶的成核和生长过程,以及成核剂和生长因子对
高分子结晶形成的影响。
高分子结晶的动力学与热力学
03
探讨高分子结晶的动力学和热力学性质,如结晶速率、晶体熔
点和热稳定性等对高分子结晶性质的影响。
高分子化学与物理-第1章绪论
• 绪论 • 高分子的基本概念 • 高分子化学与物理的基本理论 • 高分子材料 • 高分子化学与物理的未来发展
01
绪论
高分子化学与物理的定义
01
02
03
高分子化学
研究高分子化合物的合成、 反应、结构和性能的化学 分支。
高分子物理
研究高分子物质的结构、 运动和转变的物理分支。
塑料的回收和再利用是当前研究的热 点,旨在减少环境污染和资源浪费。
橡胶
01
02
03
04
橡胶是一种具有高弹性和耐摩 擦性能的高分子材料,常用于 制造轮胎、密封件、减震器等
。
天然橡胶主要来源于橡胶树, 而合成橡胶则是由多种单体聚 合而成,如丁苯橡胶、顺丁橡
胶等。
橡胶的硫化是制造橡胶制品的 重要过程,通过硫化可以使其 具有更好的力学性能和耐久性
高分子物理课件第一章概论(1)
种类数用i表示,第I种分子的相对分子质量为Mi, 摩尔数为ni,重量为wi,在整个试样中的重量分 数为Wi,摩尔分数为Ni,则这些量之间存在下 列关系:
教学ppt
4
常用的平均分子量
平均分子量= ∑(统计单元的权重×该单元的分子量)
首先要确定用什么作为统计的单元, 用不同的统计单元得出来的平均分子量不 一样。
0
0 W(M)MdM
1
M WMMdM 0
N(M)称为分子量的数量微分分布函数;
W(M)称为分子量的重量微分分布函数。
教学ppt
11
根据统计方法不同,有多种统计平均分子量
现有5g重的金链4根,8g重的金链条5根, 10g重的金链3根,求金链的平均重量
教学ppt
12
按数量进行平均:数均分子量
平 均 5 g 4 8 重 g 5 1 g 量 0 3 9 g 0 7 .5 g
M3
i
i
i
N1M 1N2M2N3M 3 NiM i
NiM i
i
教学ppt
定义 数量分数:
N i
ni ni
i
14
数量分数:
N i
ni ni
i
4/12 5/12 3/12
数均分子量
Mn NiMi
7.5
i
教学ppt
15
按重量进行平均:重均分子量
共重20g 共重40g 共重30g
重量 5 g 2 平 g 0 8 g 4 均 g 0 1 g 值 0 3 g 0 7g 2 2 8 .0 0 g 2 g 0 4 g 0 3 g 0 9 g 0
数据可作成分布图, 这种图表达的是一种离 散型分布,只能粗略的 描述各级分的含量和分 子量的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
举例
LDPE是具有一定柔性的塑料(但当升高温度时 为弹性)。 HDPE 则 是 具 有 一 定 刚 性 ( rigidity ) 与 柔 性 (flexibility)的塑料。 单根PE柔性好,但聚集态(aggregation state)由于 结晶(crystallize)而变为塑料。 PP的刚性则大于PE(HDPE、LDPE)。 EPR则为弹性(elastic)、耐老化(ageing resistance) 性能优越的橡胶。
4.教学特点
理论学习:讲授、自学、习题。 实践学习:(实验)观察聚合物晶态结 构(crystalline state structure),热机械性能 测试,电性能测试等。 材实验班课时数减少,由56减至40学时, 相应有些内容,课堂讲授要做相应调整。
高 分 子 物 理
南京工业大学材料学院高分子系 张 军
《高分子物理》教学大纲
英文名称:Polymer physics 学 分:2.5学分 学 时:40学时 先修课程:有机化学、物理化学、高分 子化学等 教学对象:材实验和材强
教
学
目
的
本课程是高分子材料科学与工程系本科 生的专业基础课,是学生学习专业课和 从事本专业的科研、生产工作必备的理 论基础。 通过本课程的学习,使学生掌握高分子 物理的基本概念和基本规律,正确地理 解和掌握高聚物结构和性能之间的关系, 为分析和解决高分子材料的科研和生产 中的问题提供坚实的理论基础。
教
Hale Waihona Puke 学要求
本课程的教学与学习要侧重于准确理解高 分子物理的基本概念和基本规律; 掌握高聚物结构和性能之间的关系; 对重要的公式要会推导,明确这些公式的 物理意义,结合课后的习题练习和专业实 验加深对高分子物理的理解。 使学生能顺利学习后续的专业课,提高自 学与更新本专业知识的能力。
绪
论
第五章 聚合物的松弛与转变(6学时) (relaxation and transition of polymer ) 第六章 橡胶弹性(4学时) (rubber-elasticity) 第七章 聚合物的粘弹性(6学时) (viscoelasticity of polymer) 第八章 聚合物的屈服和断裂(4学时) (yield and rupture of polymer) 第九章 聚合物的流变性(4学时) (rheology of polymer)
举例
NBR 耐 油 、 BR 耐 寒 、 硅 橡 胶 耐 热 (heat resistance)耐寒、氟橡胶耐热耐溶剂。 PVC为刚性塑料(rigid plastic)。 增塑PVC则柔软而具有弹性(elasticity),甚 至可以代替橡胶。 性能之差异是由什么所决定的? 上述内容都是高分子物理学课程所需要解 决的内容。
重点包括四个内容 1.什么是高分子物理 2.高分子物理学研究内容 3.高分子物理学教学的内容 4.教学特点
1.什么是高分子物理
高分子物理形成于20世纪50年代,主要创始人 是P.J.Flory、H.Standinger、M.L.Huggins。 它是研究高聚物结构与性能关系(relation of structure and property)的科学,也是研究大分子 运动规律的科学。 它是在物理学、物理化学、有机结构理论、材 料力学与流体力学等基础上发展起来的一门新 兴学科。 目前很多方面尚不很成熟。
高分子物理学研究内容
通过高分子物理学的学习,将其应用于实 际中去,指导科学研究和实践。
例如SBS合成出来后,其耐老化性不佳, 通过结构分析可知:
可采用加氢饱和(saturate)方法,使双键不 存在,从而提高耐老化性。
PA66与弹性体共混制备超韧尼龙
研究了三种弹性体体系(elastomer systems) EPR、 EPDM-g-MAH、PE-g-MAH。 PA6/PA66/EPR中,发现EPR的溶度参数(solubility parameter)随着丙烯组分的减小而升高,但并不能升高 到与PA的溶度参数相同的数值,因而这一体系始终是 不相容(incompatible)的。 EPDM、PE接枝MAH后,在与PA熔融共混(melting blend)的过程中,在界面(interface)间形成了化学键接。 EPDM—MAH(COOH)….. NH2—PA
3.高分子物理学教学的内容
第一章 高分子链的结构(4学时) (chain structure of polymer) 第二章 聚合物的凝聚态结构(4学时) (aggregation state structure of polymer) 第三章 高分子溶液(5学时) (polymer solution) 第四章 聚合物的分子量和分子量分布(3学时) (molecular weight and molecular weight distribution of polymer)
PA66/EVA3307(70/30)
PA66/EVA3307-g-MAH( 70/30)
指导分子设计
乙烯和醋酸乙烯酯共聚物EVA和PVC相容性不好, 通过结构分析可知,EVA极性(polarity)低,其溶度 参数δ =8.6,而PVC极性强δPVC=9.4~9.5 。 人们考虑可在EVA结构中引入极性单体(polar monomer)来提高其溶度参数 。杜邦公司于20世纪 70年代推出乙烯-醋酸乙烯酯-CO三元共聚物, Elvaloy741,使其δ = 9.2~9.3,满足了使用要求。 这里高分子物理学知识起到了一个指导分子设计 的作用。
2.高分子物理学研究内容
常用高分子材料的英文名称和缩写
高密度聚乙烯HDPE( high density polyethylene) 低密度聚乙烯LDPE (low density polyethylene) 聚丙烯PP( polypropylene) 聚氯乙烯PVC (polyvinyl chloride) 聚苯乙烯PS (polystyrene) ABS (acrylonitrile-butadiene-styrene) 树脂(resin) 热塑性塑料(thermoplastic) 热固性塑料(thermoset/thermosetting plastic) 聚合物(polymer) 大分子(macromolecule/macromole)
常用高分子材料的英文名称和缩写
橡胶(rubber) 热塑性弹性体TPE(thermoplastic elastomer) 天然橡胶NR(natural rubber) 合成橡胶SR(synthetic rubber) 顺丁橡胶BR(butadiene rubber) 丁苯橡胶SBR(butadiene-styrene rubber) 丁腈橡胶NBR(acrylonitrile-butadiene rubber) 乙丙橡胶EPR(ethylene-propylene rubber) 氯丁橡胶CR(chloroprene rubber) 丁苯热塑性橡胶SBS(butadiene-styrene thermoplastic rubber)