2013年杭州市各类高中招生文化考试数学试卷及答案
2013年杭州市各类高中招生文化模拟考试数学试题
2013年杭州市各类高中招生文化模拟考试数学考生须知:1、 本卷为数学卷,满分120分,考试时间100分钟;2、 所有答案必须写在答题卷的相应位置,答在试题卷,草稿纸或答卷其余地方均不得分,注意题号序号;3、 本卷选择题部分一律使用2B 铅笔填涂,非选择题部分一律使用0.5mm 及以上签字笔或钢笔答题;4、 考试结束后,上交试题卷,答题卷,草稿纸。
试题卷一、选择题(每小题3分,共10小题,满分30分)本大题每小题只有一个符合题意的选项,多选、错选、不选均不得分,并且可以使用多种方法解答。
1、计算:(-2+3)-(-1)的值为( )A 、2B 、-2C 、1D 、-1A 、-1B 、0C 、1D 、23、若a <b ,则下列各式一定成立的是( )A 、-a <-bB 、2a >2bC 、ac <bcD 、a-1<b-14、如图,在菱形ABCD 中,AC 、BD 为对角线,若菱形ABCD 满足AC ×BD=AB ²,则∠ABC 的度数为( )(菱形中A 、B 、C 、D 四点需自己标出)A 、60°B 、30°C 、60°或120°D 、30°或150°5、二次函数y=ax ²+bx+c 的图像如图所示,反比例函数y= 与正比例函数y=(b+c )x 在同一直角坐标系中的图像大致是( )6、如图两个同心圆,大圆的弦AB 切小圆于P ,且CD=13,CP=4,则两圆组成的圆环面积为( )A 、16πB 、36πC 、52πD 、81π7.如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2 ≥ y 1时,x 的取值范围 ( )A .x≥0B .0≤x≤1C .-2≤x≤1D .x≤-2或x≥18. 下列说法不正确...的是( ) A .一组邻边相等的矩形是正方形 B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形9.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。
浙江省杭州市2013年各类高中招生文化考试模拟卷数学试题(二)
2013年杭州市各类高中招生文化模拟考试数学试题卷考生须知:1、本试卷满分120分, 考试时间100分钟.2、答题前, 在答题纸上写姓名和准考证号.3、必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4、考试结束后, 试题卷和答题纸一并上交.一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案. 1、下列计算正确的是( )A .33--=-B .030=C .133-=- D .93=±2、“0a b >>,0ab >”这一事件是( )A .必然事件B .不确定事件C .随机事件D .不可能事件3、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是 ( )4、下列各式计算正确的是( ) A .532=+ B .2222=+ C .22223=- D .5621012-=-5、2012年春云南发生了严重干旱,政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表.月用水量(吨)5 6 7 户数262则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是46、把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )ABCPDA .B .C .D .7、如图,边长12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF=3,则小正方形的边长是( ) A .12 B .154C .5D .6 8、如图,在Rt△ABC 中,∠C=90°,AC =6,BC =8,⊙O 为△ABC 的内切 圆,点D 是斜边AB 的中点,则cos∠ODA=( ) A .55 B .33 C .23 D .21 9、若不等式组⎩⎨⎧≤≥b x ax 无解,则下列不等式组有解是( ) A .⎩⎨⎧-<->a x b x B .⎩⎨⎧-<->a b x b a x C . ⎩⎨⎧<>a x b x -1-1 D . ⎩⎨⎧-<->bx a x10、已知关于x 、y 的方程组322235x y ax y a -=⎧⎨+=-⎩的解也是方程345x y m +=的解,其中21m -≤≤,给出下列结论:①62x y =⎧⎨=-⎩是方程组的解;②当27m =-时,x 、y 的值互为相反数;③当2m =-时,方程组的解也是42x y m +=的解;④若0x ≤,则514y -≤≤-. 其中正确的是( ) A .①③ B .②③ C .②③④ D .②④ 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11、等腰三角形ABC 中有一个角为70°,则底角为 .12、若26279ba ==,则22(2)(2)2(2)(2)a b a b a b a b ++---+的值为 .13、已知△ABC 中,AB=AC ,CH 是AB 上的高,且CH=35AB ,BC=10,则tanB=_____;CH=______。
【VIP专享】2013杭州中考数学答案详解
a2
6
B
ab
3 6=54
,则
7
C
k
a2 a2
8
C
b2 ab
9
B
a
a
b
10
1
A
则 B 不正确
则 D 不正确
3 ,而通过左视图可得 h 2 ,所
b a
,由
9、B
解析:通过 sinA 3 , AB 4 ,可得出 sinB 4 , BC 12 ,如 AB 边的垂线交 AB5边于点 D ,则根据 sinB CD5 4 , 5
6、B
解析:甲阴影部分面积
图得出 b a ,所以 0 b 1,则1 k 2 a
7、C
解析:A:如图
C:如图
a2
b2
,而乙阴影部分的面积
则 A 不正确;B:如图
则 C 正确;D:如图
8、A 解析:由俯视图和主视图易得此图形为正六边形,根据主视图得其六边形的边长为 6,而正六边形由 6 个
正三角形所组成, S正三角形 =62
以V =S正六边形 h 54 3 2=108 3
3 =9 4
3 ,则 S正六边形 =9
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
2013年杭州市中考数学试题及答案(解析版)
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
2013年杭州市中考数学试卷及答案(解析版)
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
2013年杭州中考数学试卷及答案
2013年杭州中考数学试卷及答案2013年杭州市各类高中招生文化考试数 学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高); 圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+ B.623m m m =⋅C.1)1)(1(2-=+-m m m D.12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是 A.AC⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A ≠∠C4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长 6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有 A.2>k B.21<<kC. 121<<k D.210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径8. 如图是某几何体的三视图,则该几何体的体积是 A. 318B. 354C. 3108D.32169. 在Rt △ABC 中,∠C=90°,若AB=4,sinA=53,则斜边上的高等于A. 2564B.2548 C.516D. 51210. 给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a >>,那么10<<a ; ②如果aa a12>>,那么1>a ; ③如果aaa >>21,那么01<<-a ; ④如果a aa >>12时,那么1-<a 。
2013年高考文科数学浙江卷word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,文1)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=().A.[-4,+∞)B.(-2,+∞)C.[-4,1] D.(-2,1]答案:D解析:集合S与集合T都表示连续的实数集,此类集合的运算可通过数轴直观表示出来.,故S∩T={x|-2<x≤1},故选D.2.(2013浙江,文2)已知i是虚数单位,则(2+i)(3+i)=().A.5-5i B.7-5i C.5+5i D.7+5i答案:C解析:(2+i)(3+i)=6+5i+i2,因为i2=-1,所以(2+i)(3+i)=5+5i,故选C.3.(2013浙江,文3)若α∈R,则“α=0”是sin α<cos α”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当α=0时,sin α<cos α成立;若sin α<cos α,α可取π6等值,所以“α=0”是“sin α<cos α”的充分不必要条件.故选A.4.(2013浙江,文4)设m,n是两条不同的直线,α,β是两个不同的平面().A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案:C解析:A选项中直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B选项中,α与β也可能相交,此时直线m平行于α,β的交线;D选项中,m也可能平行于β.故选C. 5.(2013浙江,文5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是().A.108 cm3B.100 cm3C.92 cm3D.84 cm3答案:B解析:由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.6.(2013浙江,文6)函数f (x )=sin x cos x cos 2x 的最小正周期和振幅分别是( ). A .π,1 B .π,2 C .2π,1 D .2π,2 答案:A解析:由y =sin x cos x +2cos 2x =12sin 2x +2cos 2x =πsin 23x ⎛⎫+ ⎪⎝⎭,因为ω=2,所以T =2πω=π,又观察f (x )可知振幅为1,故选A.7.(2013浙江,文7)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ).A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 答案:A解析:由f (0)=f (4)知二次函数f (x )=ax 2+bx +c 对称轴为x =2,即22ba-=.所以4a +b =0,又f (0)>f (1)且f (0),f (1)在对称轴同侧,故函数f (x )在(-∞,2]上单调递减,则抛物线开口方向朝上,知a >0,故选A.8.(2013浙江,文8)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如右图所示,则该函数的图象是( ).答案:B解析:由导函数图象知,函数f (x )在[-1,1]上为增函数.当x ∈(-1,0)时f ′(x )由小到大,则f (x )图象的增长趋势由缓到快,当x ∈(0,1)时f ′(x )由大到小,则f (x )的图象增长趋势由快到缓,故选B.9.(2013浙江,文9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D .2答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=2a =4,|F 1F 2|=2c =又四边形AF 1BF 2为矩形,∴∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,∴|AF 1|=2|AF 2|=2C 2中,2c =2a =|AF 2|-|AF 1|=e ==,故选D. 10.(2013浙江,文10)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =,,,,a a b b a b ≤⎧⎨>⎩a ∨b =,,,.b a b a a b ≤⎧⎨>⎩若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ).A .a ∧b ≥2,c ∧d ≤2B .a ∧b ≥2,c ∨d ≥2C .a ∨b ≥2,c ∧d ≤2D .a ∨b ≥2,c ∨d ≥2 答案:C解析:由题意知,运算“∧”为两数中取小,运算“∨”为两数中取大,由ab ≥4知,正数a ,b 中至少有一个大于等于2.由c +d ≤4知,c ,d 中至少有一个小于等于2,故选C.非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,文11)已知函数f (x )若f (a )=3,则实数a =__________.答案:10解析:由f (a )3,得a -1=9,故a =10.12.(2013浙江,文12)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.答案:15解析:从3男,3女中任选两名,共有15种基本情况,而从3女中任选2名女同学,则有3种基本情况,故所求事件的概率为31155=. 13.(2013浙江,文13)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于__________.答案:解析:圆的圆心为(3,4),半径是5,圆心到直线的距离d ==,可知弦长l ==14.(2013浙江,文14)若某程序框图如图所示,则该程序运行后输出的值等于__________.答案:9 5解析:该程序框图为循环结构.当k=1时,S=1+112⨯=32;当k=2时,3152233 S=+=⨯;当k=3时,5173344S=+=⨯;当k=4时,7194455S=+=⨯,循环结束,输出95S=.15.(2013浙江,文15)设z=kx+y,其中实数x,y满足2,240,240.xx yx y≥⎧⎪-+≥⎨⎪--≤⎩若z的最大值为12,则实数k=__________.答案:2解析:满足条件2,240,240xx yx y≥⎧⎪-+≥⎨⎪--≤⎩的区域D如图阴影部分所示,且A(2,3),B(4,4),C(2,0).作直线l0:y=-kx,当k>0时,y=-kx为减函数,在B处z最大,此时k=2;当k<0时,y=-kx为增函数,当-k∈10,2⎛⎫⎪⎝⎭时,在B处z取最大值,此时k=2(舍去);当-k>12时,在A处取得最大值,92k=(舍去),故k=2.16.(2013浙江,文16)设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab=__________.答案:-1解析:令x=1,得0≤1-1+a+b≤0,整理,得a+b=0,①令x=-1,得0≤1-(-1)-a+b≤0,整理,得a-b=2,②解①②组成的方程组,得1,1. ab=⎧⎨=-⎩∴ab=-1.17.(2013浙江,文17)设e1,e2为单位向量,非零向量b=x e1+y e2,x,y∈R.若e1,e2的夹角为π6,则||||xb的最大值等于__________.答案:2解析:因为b≠0,所以b=x e1+y e2,x≠0,y≠0.又|b|2=(x e1+y e2)2=x2+y2+xy,22222||1||1xyx==++b,不妨设ytx=,则22||||x=b,当2t=-时,t2+1取得最小值14,此时22||||xb取得最大值,所以||||xb的最大值为2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,文18)(本题满分14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2a sin B.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.解:(1)由2a sin B及正弦定理sin sina bA B=,得sin A=2.因为A是锐角,所以π3A=.(2)由余弦定理a2=b2+c2-2bc cos A,得b2+c2-bc=36.又b+c=8,所以283bc=.由三角形面积公式S=12bc sin A,得△ABC19.(2013浙江,文19)(本题满分14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0. 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *.(2)设数列{a n }的前n 项和为S n ,因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩20.(2013浙江,文20)(本题满分15分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =BC =2,AD =CDP AABC =120°,G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值; (3)若G 满足PC ⊥平面BGD ,求PGGC的值. 解:(1)设点O 为AC ,BD 的交点.由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线. 所以O 为AC 的中点,BD ⊥AC .又因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .所以BD ⊥平面APC .(2)连结OG .由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD 是DG 与平面APC 所成的角.由题意得OG =12P A=2.在△ABC 中, AC= 所以OC =12AC在直角△OCD 中,OD=2.在直角△OGD 中,tan ∠OGD=OD OG =所以DG 与平面APC所成的角的正切值为3.(3)连结OG .因为PC ⊥平面BGD ,OG ⊂平面BGD ,所以PC ⊥OG . 在直角△P AC 中,得PC所以GC=AC OC PC ⋅=从而PG,所以32PG GC =.21.(2013浙江,文21)(本题满分15分)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值. 解:(1)当a =1时,f ′(x )=6x 2-12x +6, 所以f ′(2)=6.又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得到x 1=1,x 2=a . 当a比较f (0)=0和f (a )=a 2(3-a )的大小可得g (a )=23, 3.a a a ⎧⎨(-)>⎩ 当a 得g (综上所述,f (x )在闭区间[0,2|a |]上的最小值为g (a )=231,1,0,13,3, 3.a a a a a a -<-⎧⎪<≤⎨⎪(-)>⎩22.(2013浙江,文22)(本题满分14分)已知抛物线C 的顶点为O (0,0),焦点为F (0,1).(1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则12p=, 所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由21,4y kx x y=+⎧⎨=⎩消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=由11,2,y y x x y x ⎧=⎪⎨⎪=-⎩解得点M 的横坐标1121111122844M x x x x x y x x ===---. 同理点N 的横坐标x N =284x -. 所以|MN ||x M -x N |284x --=令4k -3=t ,t ≠0,则34t k +=. 当t >0时,|MN |=当t <0时,|MN |=≥综上所述,当253t =-,即43k =-时,|MN |.。
浙江省杭州市2013年中考数学各类高中招生文化考试模拟卷试题(一) 浙教版
2013年某某市各类高中招生文化模拟考试数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2. 答题时, 不能使用计算器,在答题卷指定位置内写明校名, 某某和班级.3. 所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题序号相对应.4. 参考公式: 抛物线2(0)y ax bx c a =++≠的顶点坐标(-ab 2,a b ac 442-)一. 仔细选一选(本题有10个小题, 每小题3分, 共30分) 下面每小题给出的四个选项中, 只有一个是正确的,注意可以用多种不同的方法来选取正确答案. 1.-3的相反数是( )A .-3B .3C .13-D .312.如图,已知a ∥b ,∠1=55°,则∠2的度数是( ) A .35° B.45° C.55° D.125°3.截至2013年第一季度末,某某省企业养老保险参保人数达8500000人,则数字8500000用科学记数法表示为( )A .×106B .×105C .×106D .8.5×1074.如下图,由几个小正方体组成的立体图形的俯视图是( )5.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( )A .125B .512C .135D .13126.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值X 围是( )A .3>mB .3<mC .3->mD .3-<m7.实数a ,b 在数轴上的位置如图所示,则式子22b a +可化简为() A .a +b B .a -b C .-a -b D .-a +b8.将分别写有数字2,3,4的三X 卡片(除数字外,其余均相同)洗匀后背面朝上摆放,然后从中任意抽取两X ,则抽到的两X 卡片上的数字之和为偶数的概率是()a b12(第2题图)θ hl(第5题图)A .B .C .D .A .32B .21C .31D .619.若[]x 表示不大于x 的最大整数,如:[]2=2,[]8.2=2.某校要召开学生代表大会,规定各班每10人推选一名代表,x 名学生,则该班可推选的学生代表人数可表示为() A .⎥⎦⎤⎢⎣⎡10x B .⎥⎦⎤⎢⎣⎡+103x C .⎥⎦⎤⎢⎣⎡+104x D .⎥⎦⎤⎢⎣⎡+105x 10.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点M ,N ,则线段MN长度的最小值是( )A .316B .5C .524D .512二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.9-2sin45°+|-2013|=▲;12.某企业两年前创办时的资金为1000万元,现在已有资金1440万元.若设该企业这两年资金的年平均增长率为x ,则根据题意可列方程为▲;13.如图,⊙O 是△ABC 的外接圆,∠BAC =55°,点P 在半径AO 上(不与A ,O 重合),则∠BPC 可能为▲ 度(写出一个即可);14. 如图,已知A (0,1),B (2,0),把线段AB 平移后得到线段CD ,其中C (1,a ),D (b ,1)则a +b =▲;15.如图,Rt△ABC 的直角边BC 在x 轴正半轴上,点D 为斜边AC 的中点,DB 的延长线交y 轴负半轴于点E ,反比例函数)0(>=x x ky 的图象经过点A .若S △BEC =3,则k 的值为▲;16.如图,□ABCD 中,AC ⊥AB ,AB=3cm ,BC=5cm ,点E 为AB 上一点,且AE=31AB .点P 从B 点出发,以1cm/s 的速度沿BC →CD →DA 运动至A 点停止. 则当运动时间 为 ▲秒时,△BEP 为等腰三角形.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.(第10题图)AB CMN(第15题图) yxABCD E OA B C DE(第16题图) A BCDO x y(第14题图) (第13题图)A BCP O17.(本题6分) 如图,已知点B ,E ,C ,D 在同一直线上,AB=FD ,∠B =∠D ,请你添加一个条件,使AC=FE ,并给出证明(不再添加其它线段,不再标注或使用其他字母).你添加的条件是:▲;证明:18.(本题8分)一艘中国海监船自西向东航行,在A 处测得钓鱼岛C 在海监船的北偏东68°方向,继续向东航行80海里到达B 处,此时测得钓鱼岛C 在海监船的北偏东26°方向上.问:海监船再继续向东航行多少海里,距离钓鱼岛C 最近?(结果保留整数)(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)19.(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于...1.小时...为了解学生参加户外活动的情况,某区教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)这次抽样共调查了▲名学生,并补全条形统计图; (2)计算扇形统计图;(3)本次调查学生参加户外活动的平均时间是否符合要求?(写出..判断..过程..)20.(本题10分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,沿同一条道路匀速行驶.设行驶时间为t (h ),两车之间的距离为s (km )A -B -C -D 表示s 与t 之间的函数关系.(1)甲、乙两地相距▲km ,两车出发后▲h 相遇;﹒2小时 1小时小时部分学生每天户外活部分学生每天户外活动时间条形统计图人数 时间(小时)4080 120 160 200 100140 80ABC 68°26° 北东(第18题图)s (km )AC D900(2)通过计算说明,当快车到达乙地时,慢车还要多少时间才能到达甲地?21.(本题10分)如图,AB 是⊙O 的直径,点C 在圆上,P 是AB 延长线上一点,连结AC ,PC ,过点O 作AC 的垂线交 AC 于点D ,交⊙O 于点E .若AC=PC ,AB=8,∠P=30°.(1)求证:PC 是⊙O 的切线; (2)求阴影部分的面积.22.(本题12分)如图1,抛物线y=-x 2+2bx +c (b >0)与y 轴交于点C ,点P 为抛物线顶点,分别作点P ,C 关于原点O 的对称点P′,C′,顺次连接四点得四边形PC P′C′. (1)当b=c=1时,求顶点P 的坐标;(2)当b=2,四边形PC P′C′为矩形时(如图2),求c 的值;(3)请你探究:四边形PC P′C′能否成为正方形?若能,求出符合条件的b ,c 的值;若不能,请说明理由.23.(本题12分)如图,过点A (0,3)的直线l 1与x 轴交于点B ,tan ∠ABO=43.过点A 的另一直线l 2:y =-34tx +b (t >0)与x 轴交于点Q ,点P 是射线AB 上的一个动点,过P 作PH ⊥x 轴于点H ,设PB =5t .(1)求直线l 1 的函数解析式;(2)当点P 在线段AB 上运动时,设△PHQ 的面积为S (S ≠0),求S 与t 之间的函数关系式(要求写出自变量t 的取值X 围);(3)当点P 在射线AB 上运动时,是否存在这样的t 值,Ay(第21题图)BCPE D O(第22题图1)P ′C PC ′ OxyPP ′CC ′Oxy (第22题图2)使以P ,H ,Q 为顶点的三角形与△AOQ 相似?若存在, 直接写出所有满足条件的t 值所对应的P 点坐标; 若不存在,请说明理由.2013年某某市各类高中招生文化模拟考试数学参考答案一、选择题 (每题3分,共30分)题 号 1 2 3 4 5 6 7 8 9 10 选 项BCADABDCBC二、填空题(每题4分,共24分)11. 2015 ; 12. 1000(1+x )2=1440 ; 13. 不唯一,55°<∠BPC <110°即可14. 5; 15. 6 ; 16.35,2,512,521268三、简答题(本题有8小题,共66分,每小题要求写出必要的求解过程)17.(本题6分)答案不唯一,例如∠A =∠F ,∠ACB =∠FED,BC =DE,AC ∥EF 等 ------2分以添加∠A =∠F 为例证明:∵∠B =∠D ,AB=FD ,∠A =∠F ∴△ABC ≌△FDE∴AC=FE -------------4分18.(本题8分)解:过点C 作CD ⊥AB 于点D ,由题意得∠ACD =68°,∠BCD =26°,AB=80 在Rt △BCD 中,BD =CD tan26°≈ CD -------------2分 在Rt △ACD 中,AD =CD tan68°≈ CD -------------2分∵AB= AD -BD=80∴ CD - CD=80 解得CD ≈∴BD = CD ≈20-------------3分答:轮船继续向东航行约20海里,距离钓鱼岛C 最近. -------------1分19.(本题8分)(1)500 -------------2分 图略,对应的人数为180,正确得2分AB CDEFA B C68°26°北东D(2)360500100⨯=72°-------------2分 (3)∵)8021405.118011005.0(5001⨯+⨯+⨯+⨯=>1∴本次调查中学生参加户外活动的平均时间符合要求. -------------2分20.(本题10分)(1)900 , 5 -------------每空2分,共4分(2)快车速度:900÷9=100(km /h ) 慢车速度 900÷5-100=80(km /h )900÷80-9=49(h ) 答:当快车到达乙地时,慢车还要49小时才能到达甲地.-------------6分 21.(本题10分)(1)证明:∵AC=PC , ∠P=30°∴∠CAO=30°连接OC∴∠COP=2∠CAO=60°∴∠PCO=180°—∠ACO —∠COP=90° 即PC ⊥OC∴PC 是⊙O 的切线 -------------5分(2)∵AB=8,∴AO=AB 21=4 又∵∠CAO=30°,OE ⊥AC ∴OD=21OA=2 CD=AD=OA 23=32 ∴S 阴影部分=OCD OCE S S ∆-扇形=3238322214360602-=⨯⨯-⨯ππ -------------5分22.(本题12分)解:(1)当b=c=1时,y=-x 2+2x +1=-(x -1)2+2------------2分∴顶点P 的坐标为(1,2) ------------2分 (2)当b=2时,c x c x x c bx x y ++--=++-=++-=4)2(42222∴顶点P 的坐标为(2,4+c )当0=x 时,c y =∴点C 的坐标为(0,c )ABCPE D Oword当四边形PC P′C′为矩形时OP=OC 即222)4(2c c =++ 解得25-=c -------------4分 (3)当四边形PC P′C′能成为正方形时,PP ′⊥CC ′ 且OP=OC此时点P 必在x 轴上, ∴0)1(4)2()1(422=+=-⨯-⨯-⨯b c b c ①∵OP=OC 点C 必在y 轴的负半轴上 ∴c b -=② 由①②得,c=0(舍去),c=-1,b=1-------------4分23.(本题12分)解:(1)∵A (0,3),且tan ∠ABO=43∴B (4,0) 设y=kx+b ,将A (0,3) B (4,0)代入上式得b=30=4k +b解得k=43-,b=3∴函数解析式为y=43-x +3-------------3分 (2)由B (4,0).∴OB =4,∵OA =3, ∴AB =5. 由题意,得△BHP ∽△BOA , ∵OA ∶OB ∶AB =3∶4∶5, ∴HP ∶HB ∶BP =3∶4∶5, ∵PB =5t ,∴HB =4t ,HP =3t . ∴OH =OB -HB =4-4t .由y =-34tx +3与x 轴交于点Q , 得Q (4t ,0)①当H 在Q 、B 之间时(如图1)QH =OH -OQ =(4-4t )-4t =4-8t .S=21(4-8t )×3t=)210(6122≤<+-t t t -------------2分 ②当H 在O 、Q 之间时(如图2)QH =OQ -OH =4t -(4-4t )=8t -4.S=21(8t -4) 3t=)121(6122≤<-t t t -------------2分 (图1)ABO P QHxy 1l 2ABO PQH x y l 1l 2(图2)PP ′C C ′O xyword(3)存在t的值,使以P、H、Q为顶点的三角形与△AOQ相似①当H在Q、B之间t1=732,P1)3221,825(或者t2=2-1,P2)323,248(--②当H在O、Q之间t3=2532.得P3)3275,87(或者t4=1,P4(0,3)③当H在B的右侧t5=1,P5(8,-3) -------------5分。
2013年初中毕业统一考试数学卷(浙江省杭州卷)(Word版)
2013年杭州市各类高中招生文化考试数 学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+ B. 623m m m =⋅ C. 1)1)(1(2-=+-m m m D. 12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是A. AC ⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A ≠∠C 4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有A. 2>kB. 21<<kC. 121<<kD. 210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径8. 如图是某几何体的三视图,则该几何体的体积是A. 318B. 354C. 3108D. 32169. 在Rt △ABC 中,∠C=90°,若AB=4,sinA=53,则斜边上的高等于 A. 2564 B. 2548 C. 516 D. 51210. 给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a>>,那么10<<a ; ②如果aa a 12>>,那么1>a ;③如果a a a>>21,那么01<<-a ;④如果a aa >>12时,那么1-<a 。
2013杭州中考数学真题试卷试卷及答案完整版
2013年杭州市各类高中招生文化考试数 学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+ B. 623m m m =⋅ C. 1)1)(1(2-=+-m m m D. 12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是A. AC ⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A ≠∠C 4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长 6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有A. 2>kB. 21<<kC. 121<<kD. 210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径8. 如图是某几何体的三视图,则该几何体的体积是A. 318B. 354C. 3108D.32169. 在Rt △ABC 中,∠C=90°,若AB=4,sinA=53,则斜边上的高等于 A. 2564 B. 2548 C. 516 D. 51210. 给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a>>,那么10<<a ; ②如果aa a 12>>,那么1>a ;③如果a a a>>21,那么01<<-a ; ④如果a aa >>12时,那么1-<a 。
2013杭州中考数学答案详解
2013年杭州市各类高中招生文化考试数学参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DDBADBCCBA选择题解析1、D2、D3、B4、A5、D解析:由图得,A :2010年到2011年的GDP 增长略大于1000亿元左右,但2011年到2012年的GDP 增长小于1000亿元,故两次增长率必不相同。
B :2012年的GDP 为小于8000亿元,而2008年的GDP 大于4000亿元,所以没有翻一番。
C :2010年GDP 接近6000亿元,图中很显然超过5500亿元 6、B解析:甲阴影部分面积22=-a b ,而乙阴影部分的面积2=-a ab ,则2221-+===+-a b a b bk a ab a a,由图得出<b a ,所以01<<ba,则12<<k 7、C解析:A :如图则A 不正确;B :如图则B 不正确C :如图则C 正确;D :如图则D 不正确8、A解析:由俯视图和主视图易得此图形为正六边形,根据主视图得其六边形的边长为6,而正六边形由6个正三角形所组成,23=6=934正三角形⨯S ,则=936=543正六边形⨯S ,而通过左视图可得2=h ,所以=5432=1083正六边形⋅=⨯V S h9、B解析:通过3sinA 5=,4=AB ,可得出4sinB 5=,125=BC ,如图,过点C 做AB 边的垂线交AB 边于点D ,则根据4sinB 5==CD BC ,125=BC ,得出4825=CD10、A解析:如图分析:交点坐标已给出,由图得① 描述正确。
② 如果21>>a a a,则根据图像可得1>a 或10-<<a ,所以②描述错误。
③ 如果21>>a a a,则根据图像没有这样的a 存在,所以③描述错误。
④ 描述正确。
二、填空题11、0; 12、3777-<<; 13、②③④; 14、4.75; 15、4π; 16、2=t 或37≤≤t 或8=t填空题解析 11、012、3777-<<解析:7的平方根有正负,需注意 13、②③④解析:根据题意,因为=90∠C ,2=AB BC ,则该直角三角形是含30 角的直角三角形,则::1:2:3=BC AB AC ,令1=BC ,2=AB ,=3AC ,作出图形①1sinA =2=BC AB ,②1cos =2=BC B AB ,③3tanA =3=BC AC ,④tan =3=AC B BC ,则答案为②③④。
【VIP专享】2013年杭州市各类高中招生文化考试模拟考试数学试卷2
(第 8 题)
D. 5
1
D.
3
D.a3 a3
D.点(5,1)
D.中位数是 4
(第 9 题)
A.a= -3
B.b> -2
C.c< -3
10.点 A,B 的坐标分别为(-2,3)和(1,3),抛物线 y ax 2 bx c (a<0)的顶点在线
段 AB 上运动时,形状保持不变,且与 x 轴交于 C,D 两点(C 在 D 的左侧),给出下
2013 年杭州市各类高中招生文化考试模拟考试数学试卷 2 姓名:
一、仔细选一选 (本题有 10 个小题, 每小题 3 分, 2.下列各等式一定成立的是( )
B.3
A.a2 (a)2 B.a3 (a)3 C. a2 a2
3.对于一组统计数据: 3,7,6,2,9,3,下列说法错误的是( )
列结论:① c <3;②当 x <-3 时,y 随 x 的增大而增大;③若点 D 的横坐标最大值为 5,则点 C 的横坐标最小值为-5;④当四边形 ACDB 为平行四边形时, a 4 .其中正
3
确的是 ( )
A.②④
B.②③
二、认真填一填(本题有 6 个小题,每小题 4 分,共 24 分)
5.右图是一个由 7 个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称
图形又是中心对称图形的是( )
A.主视图和俯视图
C.俯视图和左视图
6.已知 m 1 2 , n 1 2 ,则代数式 m2 n2 3mn 的值为( )
A. 9
B. ±3
B. 俯视图
D. 主视图
C. 3
7.如图,在四边形 ABCD 中,E,F 分别是 AB,AD 的中点,若 EF=2,BC=5,CD=3,则
2013年杭州市各类高中招生文化考试上城区二模数学试卷
2013年杭州市各类高中招生文化考试上城区二模试卷数 学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,请在答题卷密封区内写明校名、姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.-2的倒数是( ) A .2 B .21-C .-2D .212.已知地球上海洋的面积约为361 000 000 2km ,361 000 000这个数用科学记数法表示为( )A .61061.3⨯ B .71061.3⨯ C .81061.3⨯ D .91061.3⨯ 3.不等式2x +3≥5的解集在数轴上表示正确的是( )4.下列关于x 的方程一定有实数解的是( )A .22-=x B .0132=+-+-x xC .0120132=-+x x D .1111x x x +=--A .B .C .D .5.从正五边形的五个顶点中,任取四个顶点连成四边形,则这个四边形是等腰梯形的概率是( )A .1B .25C .15D .06.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,直线AE 是⊙O 的切线,CD 平分ACB ∠,若︒=∠21CAE ,则BFC ∠的度数为() A .66°B .111°C .114° D .119°7.已知函数))((n x m x y --=(其中n m <)的图象如下面右图所示,则函数m nx y +=的图象可能正确的是( )8.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( )A .43B .53C .63 D .739.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( ) A .15个 B .13个 C .11个 D .5个 10.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=y a 则yx a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个.(第6题)(第7题)(第8题)(第9题)其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.数轴上到-3的距离等于2的数是____________.12.已知一组数据1,3,x ,32-,-1的平均数为1,则这组数据的极差是____________.13.折叠三角形纸片ABC ,使点A 落在BC 边上的点F ,且折痕BC DE //,若︒=∠70A ,︒=∠60C ,则BDF ∠的度数为____________.14.如图,已知点A 的坐标为(32,6),AB ⊥x 轴,垂足为B ,连结OA ,反比例函数(0)ky k x=>的图象与线段OA ,AB 分别交于点C,D .若AB =3BD ,则点C 的坐标为 .15.关于x 的方程a (x +m )2+b =0的解是x 1=-3,x 2=5(a ,m ,b 均为常数,0≠a ),则方程a (x +m +2)2+b =0的解是____________. 16.如图,已知24AB AD ==,,90DAB ∠=,AD BC ∥.E是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点,连结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,则线段BE 的长为____________. 三、全面答一答(本题共7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写的解答写出一部分也可以. 17.(本小题满分6分)已知a =(13)-1,b =2sin45°+1,c =(2013-π)0,d =|1-2|,e=4(1)化简这五个数;(2)从这五个数中取出四个,通过适当运算后使得结果为2.请列式并写出运算过程.(第13题)(第14题)(第16题)18.(本小题满分8分)如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C . (1)用尺规作图,画出BAC 所在圆的圆心O (保留作图痕迹,不写作法);(2)设△ABC 是等腰三角形,底边BC =10cm ,腰AB =6cm ,求圆片的半径R (结果保留根号),若R 的值满足n <R <m (m ,n 为相邻的正整数),求出m 和n 的值.19.(本小题满分8分)某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?20.(本小题满分10分)一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)求参加本次测试的总人数,以及从左至右最后一组的频率; (2)若图中从左至右各组的跳绳平均次数分别为137 次,146次,156次,164次,177次.小丽按以 下方法计算参加测试学生跳绳次数的平均数是: (137+146+156+164+177)÷5=156.请你判断小 丽的算式是否正确,若不正确,写出正确的算式 (只列式不计算);(3)如果本次测试所得数据的中位数是160次,那么1 分钟跳绳次数为160次的学生至少有多少人?21.(本题满分10分)如图,在ABC ∆中,D 是BC 边上的中点,过A 点作//AF BC , 且BD AF =,连结CF 交AD 于点E . (1)求证:ED AE =;(2)若AC AB =,试判断四边形AFBD 形状,并说明理由.(第18题)(第20题)(第21题)22.(本题满分12分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).(1)要使y随x的增大而增大,求x的取值范围;(2)设点P1(m,y1),P2(m+1,y2),P3(m+2,y3),P4(-2,y4)在这个二次函数的图像上,m≥5.①比较y1与y4的大小,说明理由;②y1,y2,y3能否作为同一个三角形的三边的长?为什么?23.(本题满分12分)如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,点P的运动速度是点Q的5倍,设运动的时间为t秒.点Q的横坐标x(单位长度)关于运动时间t(秒)的函数图象如图②所示.(1)请写出点Q开始运动时的坐标及点P的运动速度;(2)当点P在边AB上运动时,求△OPQ的面积最大时点P的坐标;(3)如果点P,Q保持原速度不变,当点P沿A→B→C→D→A匀速运动时,OP与PQ能否相等?若能,直接写出所有符合条件的t的值.(第23题)2013年杭州市各类高中招生文化考试上城区二模试卷数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11. -5或-1 12. 4 13. ︒80 14. (2, 15. 3,521=-=x x 16. 8或2 三、解答题:(7小题,共66分) 17.(本题满分6分)解:(1)a =(13)-1=3, b =2cos45°+1=2×22+1=2+1, c =(2010-π)0=1,d =|1-2|=2-1, e=2 …………………………………………………3分 (对1个或2个,得1分;对3个或4个,得2分;5个全对,得3分) (2)列式正确………………2分; 计算正确……………………1分18.(本题满分8分)解:(1)画图略.………………………………………………………………………3分 (2)连结OB ,OA,OA 交BC 于E,∵AB=AC,∴AB AC =,∴AE ⊥BC,BE=12BC=5.在Rt △ABE 中,在Rt △OBE 中,R 2=52)2, 解得1118=R .……………………………3分∵m ,n 为连续整数,25<115291118=<36 ∴56<<,∴m =6,n =5. ………………………………………………2分19.(本题满分8分)解:设每盆花苗增加x 株,则每盆花苗有(x +3)株,平均单株盈利为(3-0.5x )元, 由题意得(x +3)(3-0.5x )=10,…………………………………………3分 化简,整理,得:x 2-3x +2=0解这个方程,得:x 1=1,x 2=2,……………………………………………3分 答:要使每盆的盈利达到10元,每盆应该植入4株或5株.…………2分20.(本题满分10分)解:(1)50 ……………………2分 12÷50=0.24 ……………………1分 (2)不正确.……………………1分正确的算法:(137×4+146×6+156×8+164×20+177×12)÷50.……………………3分 (3)50÷2-18+1=8 ,即次数为160次的学生至少有8人. ……………………3分21.(本题满分10分) (1)连结DF .D 是BC 边上的中点,∴DC BD = //AF BC ,且BD AF =∴//AF DC ,且DC AF = ∴四边形ACDF 是平行四边形∴ED AE =…………………………5分 (2)四边形AFBD 是矩形.………………1分. 理由如下:由(1)得,四边形ACDF 是平行四边形AC AB =,DC BD =. ∴AD ⊥BC ,即∠ADB =90°.∴平行四边形ACDF 是矩形………………4分ABECDF22.(本题满分12分)解:(1)把点P (-2,5)代入二次函数解析式,得5= (-2)2-2b -3,解得b =-2.……………………………………………………………2分 ∴223y x x =--,对称轴为直线x =1,∴当x ≥1时,y 随x 的增大而增大. ………………………………………2分 (2)①P 4(-2,y 4)关于对称轴的对称点为(4,y 4),因为当x ≥1时y 随x 的增大而增大,m ≥5>4,∴y 1>y 4.………………4分 ② 1<5≤m <m+1<m+2, ∴y 1<y 2<y 3。
2013年浙江杭州中考真题数学
2013年浙江省杭州市中考真题数学一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是( )A.B.C.D.解析:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;答案:D.2.(3分)下列计算正确的是( )A. m3+m2=m5B. m3·m2=m6C. (1-m)(1+m)=m2-1D.解析:A、不是同类项,不能合并,答案:项错误;B、m3·m2=m5,答案:项错误;C、(1-m)(1+m)=1-m2,选项错误;D、正确.答案:D.3.(3分)在▱ABCD中,下列结论一定正确的是( )A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.答案:B.4.(3分)若a+b=3,a-b=7,则ab=( )A. -10B. -40C. 10D. 40解析:联立得:,解得:a=5,b=-2,则ab=-10.答案:A.5.(3分)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是( )A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长解析:A、2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B、2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C、2010年杭州市的GDP超过到5500亿元,故此选项错误;D、2008~2012年杭州市的GDP逐年增长,故此选项正确,答案:D.6.(3分)如图,设k=(a>b>0),则有( )A. k>2B. 1<k<2C.D.解析:甲图中阴影部分面积为a2-b2,乙图中阴影部分面积为a(a-b),则k====1+,∵a>b>0,∴0<<1,答案:B.7.(3分)在一个圆中,给出下列命题,其中正确的是( )A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径解析:A、圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B、当圆经过两条直线的交点时,圆与两条直线有三个交点;C、两条平行弦所在直线没有交点,故本选项正确;D、两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,答案:C.8.(3分)如图是某几何体的三视图,则该几何体的体积是( )A.B.C.D.解析:由三视图可看出:该几何体是-个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.答案:C.9.(3分)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A.B.C.D.解析:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC·BC=AB·CD,∴CD==. 答案:B10.(3分)给出下列命题及函数y=x,y=x2和y=的图象:①如果,那么0<a<1;②如果,那么a>1;③如果,那么-1<a<0;④如果时,那么a<-1.则( )A. 正确的命题是①④B. 错误的命题是②③④C. 正确的命题是①②D. 错误的命题只有③解析:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(-1,-1),①如果,那么0<a<1,故①正确;②如果,那么a>1或-1<a<0,故②错误;③如果,那么a值不存在,故③错误;④如果时,那么a<-1,故④正确.综上所述,正确的命题是①④,错误的命题是②③.答案:A.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)32×3.14+3×(-9.42)= .解析:原式=3×9.42+3×(-9.42)=3×[9.42+(-9.42)]=3×0=0.答案:0.12.(4分)把7的平方根和立方根按从小到大的顺序排列为 .解析:7的平方根为-,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为-<<.答案:-<<.13.(4分)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)解析:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.答案:②③④.14.(4分)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表解析:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5-435.75=4.75(分);答案:4.75.15.(4分)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= (平方单位)解析:绕AB旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π;绕CD旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π,则|S1-S2|=4π.答案:4π.16.(4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)解析:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm-2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm-1cm=3cm,即t=3,当⊙P于AC切于C点时,连接P′C,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图3,当⊙P切BC于N′时,连接PN′则PN′=cm,∠PN′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;答案:t=2或3≤t≤7或t=8.三、全面答一答(本题有7个小题,共66分)17.(6分)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.解析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.答案:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.18.(8分)当x满足条件时,求出方程x2-2x-4=0的根.解析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程x2-2x-4=0的根,由x的取值范围来取舍该方程的根.答案:由,求得,则2<x<4.解方程x2-2x-4=0可得x1=1+,x2=1-,∵2<<3,∴3<1+<4,符合题意∴x=1+.19.(8分)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF. 求证:△GAB是等腰三角形.解析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.答案:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.20.(10分)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.解析:根据OC的长度确定出n的值为8或-8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=-8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.答案:根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(-6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,且a<0,∴x≥2;②n=-8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在对称轴两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(-10,0),而A、B关于对称轴对称,∴对称轴直线x==-2,要使y1随着x的增大而减小,且a>0,∴x≤-2.综上所述,x≥2或x≤-2.21.(10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.解析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.答案:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平;∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其它序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)22.(12分)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.解析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.答案:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=2,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴D(1,+2),∵点D也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)23.(12分)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.解析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.答案:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°-45°=135°;而在△PFC中,由于PC为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°-45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CFP,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD-S四边形AEPN-S2=16--2x,∴y===+-1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=-8a2+8a-1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4-2-1=1.∴y关于x的函数解析式为:y=+-1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=-2.。
2013年普通高等学校招生全国统一考试 文数(浙江卷)解析版
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|2},{|41}S x x T x x =>-=-≤≤,则S ∩T=( )A 、[-4,+∞)B 、(-2, +∞)C 、[-4,1]D 、(-2,1]即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题.2.已知i 是虚数单位,则(2+i)(3+i)= ( )A 、5-5iB 、7-5iC 、5+5iD 、7+5i3.若a R ∈,则“0α=”是“sin cos αα<”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件4.设m 、n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是( )A 、若//,//m n αα,则//m nB 、若//,//m m αβ,则//αβC 、若//,m n m α⊥,则n α⊥D 、若//,m ααβ⊥,则m ⊥β//,m m m ααβββ⊥⇒⊂⊥或,所以D 错误.所以选C.【考点定位】此题考查线线、线面、面面平行与垂直的判定定理和性质定理.5.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A 、3108cmB 、3100cmC 、392cmD 、384cm【考点定位】此题考查三视图知识、多面体的体积计算公式.6.函数()sin cos 2f x x x x =+的最小正周期和振幅分别是( )A 、,1πB 、,1πC 、,1πD 、,1π7.已知,,a b c R ∈,函数2()f x ax bx c =++,若(0)(4)(1)f f f =>,则( )A 、0,40a a b >+=B 、0,40a a b <+=C 、0,20a a b >+=D 、0,20a a b <+=在对称轴左边递增,在对称轴右边递减.8.已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f ’(x)的图像如右图所示,则该函数的图像是( )9.如图12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点A 、B 分别是1C 、2C 在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A 、 2B 、3 C 、32 D 、 62 【答案】D【解析】解决此类问题有三种思路,一是求出,,a b c 三个量中的任何两个,然后利用离心率的计算公式求解.二是求出,a c 或10.设,a b R ∈,定义运算“∧”和“∨”如下: ,(),(),,(),()a a b b a b a b a b b a b a a b ≤≤⎧⎧∧=∨=⎨⎨>>⎩⎩若正数a b c d 、、、满足4,4,ab c d ≥+≤则( )A 、2,2ab c d ∧≥∧≤ B 、2,2a b c d ∧≥∨≥ C 、2,2a b c d ∧≥∨≥ D 、2,2a b c d ∨≥∨≥二、填空题:本大题共7小题,每小题4分,共28分.11.已知函数()f x =,若()3f a =,则实数a =____________.12.从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.13.直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.【考点定位】此题考查直线被圆所截弦长的计算,即弦长等于,其中r 是圆的半径,d 是圆心到直线的距离.考查圆的方程形式的互化、点到直线距离公式的应用.14、 某程序框图如图所示,则该程序运行后输出的值等于_________.15.设z kx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩, 若z 的最大值为12,则实数k =________ .16.设,a b R ∈,若0x ≥时恒有43220(1)x x ax b x ≤-++≤-,则ab 等于______________.17.设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈、 若12,e e 的夹角为6π,则||||x b 的最大值等于_______. 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.在锐角△ABC 中,内角,,A B C 的对边分别为,,a b c, 且2sin a B=, (Ⅰ)求角A 的大小.(Ⅱ) 若6,8a b c =+=,求△ABC 的面积.19.在公差为d 的等差数列{}n a 中,已知a 1=10,且123,22,5a a a +成等比数列. (Ⅰ)求,n d a .(Ⅱ) 若0d <,求123||||||||n a a a a ++++.【答案】(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+【考点定位】此题考查等差数列、等比数列的定义和等差数列通项公式、前n项和公式的求法,考查分类讨论思想和方程思想的应用. 考查学生的推理论证和运算求解能力.20.如图,在在四棱锥P-ABCD 中,PA ⊥面ABCD ,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值.(Ⅲ)若G 满足PC ⊥面BGD ,求PG GC的值.的角是DGO ∠,由已知及(1)知:1,2BO AO CO DO =====,21.知a R ∈,函数32()23(1)6f x x a x ax =-++ (Ⅰ)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程.(Ⅱ)若||1a >,求()f x 在闭区间[0,2||]a 上的最小值. 【答案】(Ⅰ)当1a=时,32()266(2)1624124f x x x x f =-+∴=-+=,所以.已知抛物线C 的顶点为(0,0)O ,焦点(0,1)F(Ⅰ)求抛物线C 的方程.(Ⅱ) 过点F 作直线交抛物线C 于A 、B 两点.若直线AO 、BO 分别交直线l :2y x =-于,M N 两点,求|MN|的最小值.考查学生的逻辑推理能力和综合运算能力.。
2013年浙江省杭州市中考真题数学
2013年浙江省杭州市中考真题数学一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是( )A.B.C.D.解析:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;答案:D.2.(3分)下列计算正确的是( )A. m3+m2=m5B. m3·m2=m6C. (1-m)(1+m)=m2-1D.解析:A、不是同类项,不能合并,答案:项错误;B、m3·m2=m5,答案:项错误;C、(1-m)(1+m)=1-m2,选项错误;D、正确.答案:D.3.(3分)在▱ABCD中,下列结论一定正确的是( )A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.答案:B.4.(3分)若a+b=3,a-b=7,则ab=( )A. -10B. -40C. 10D. 40解析:联立得:,解得:a=5,b=-2,则ab=-10.答案:A.5.(3分)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是( )A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长解析:A、2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B、2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C、2010年杭州市的GDP超过到5500亿元,故此选项错误;D、2008~2012年杭州市的GDP逐年增长,故此选项正确,答案:D.6.(3分)如图,设k=(a>b>0),则有( )A. k>2B. 1<k<2C.D.解析:甲图中阴影部分面积为a2-b2,乙图中阴影部分面积为a(a-b),则k====1+,∵a>b>0,∴0<<1,答案:B.7.(3分)在一个圆中,给出下列命题,其中正确的是( )A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径解析:A、圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B、当圆经过两条直线的交点时,圆与两条直线有三个交点;C、两条平行弦所在直线没有交点,故本选项正确;D、两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,答案:C.8.(3分)如图是某几何体的三视图,则该几何体的体积是( )A.B.C.D.解析:由三视图可看出:该几何体是-个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.答案:C.9.(3分)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A.B.C.D.解析:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC·BC=AB·CD,∴CD==. 答案:B10.(3分)给出下列命题及函数y=x,y=x2和y=的图象:①如果,那么0<a<1;②如果,那么a>1;③如果,那么-1<a<0;④如果时,那么a<-1.则( )A. 正确的命题是①④B. 错误的命题是②③④C. 正确的命题是①②D. 错误的命题只有③解析:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(-1,-1),①如果,那么0<a<1,故①正确;②如果,那么a>1或-1<a<0,故②错误;③如果,那么a值不存在,故③错误;④如果时,那么a<-1,故④正确.综上所述,正确的命题是①④,错误的命题是②③.答案:A.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)32×3.14+3×(-9.42)= .解析:原式=3×9.42+3×(-9.42)=3×[9.42+(-9.42)]=3×0=0.答案:0.12.(4分)把7的平方根和立方根按从小到大的顺序排列为 .解析:7的平方根为-,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为-<<.答案:-<<.13.(4分)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)解析:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.答案:②③④.14.(4分)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表解析:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5-435.75=4.75(分);答案:4.75.15.(4分)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= (平方单位)解析:绕AB旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π;绕CD旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π,则|S1-S2|=4π.答案:4π.16.(4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)解析:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm-2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm-1cm=3cm,即t=3,当⊙P于AC切于C点时,连接P′C,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图3,当⊙P切BC于N′时,连接PN′则PN′=cm,∠PN′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;答案:t=2或3≤t≤7或t=8.三、全面答一答(本题有7个小题,共66分)17.(6分)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.解析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.答案:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.18.(8分)当x满足条件时,求出方程x2-2x-4=0的根.解析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程x2-2x-4=0的根,由x的取值范围来取舍该方程的根.答案:由,求得,则2<x<4.解方程x2-2x-4=0可得x1=1+,x2=1-,∵2<<3,∴3<1+<4,符合题意∴x=1+.19.(8分)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF. 求证:△GAB是等腰三角形.解析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.答案:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.20.(10分)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.解析:根据OC的长度确定出n的值为8或-8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=-8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.答案:根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(-6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,且a<0,∴x≥2;②n=-8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在对称轴两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(-10,0),而A、B关于对称轴对称,∴对称轴直线x==-2,要使y1随着x的增大而减小,且a>0,∴x≤-2.综上所述,x≥2或x≤-2.21.(10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.解析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.答案:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平;∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其它序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)22.(12分)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.解析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.答案:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=2,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴D(1,+2),∵点D也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)23.(12分)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.解析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.答案:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°-45°=135°;而在△PFC中,由于PC为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°-45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CFP,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD-S四边形AEPN-S2=16--2x,∴y===+-1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=-8a2+8a-1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4-2-1=1.∴y关于x的函数解析式为:y=+-1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=-2.。
【VIP专享】2013年杭州市各类高中招生文化考试数学问卷答案
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年杭州市各类高中招生文化考试数学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列“表情图”中,属于轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A .m 3+m 2=m 5B .m 3•m 2=m 6C .(1-m )(1+m )=m 2-1D .)1(24m --=12-m3.在□ABCD 中,下列结论一定正确的是( )A .AC ⊥BDB .∠A +∠B =180°C .AB =AD D .∠A ≠∠C 4.若a +b =3,a -b =7,则ab =( )A .-10B .-40C .10D .405.根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是( )A .2010~2012年杭州市每年GDP 增长率相同B .2012年杭州市的GDP 比2008年翻一番C .2010年杭州市的GDP 未达到5500亿元D .2008~2012年杭州市的GDP 逐年增长 6.如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有( )A . 2>kB . 21<<kC .121<<k D . 210<<k 7. 在一个圆中,给出下列命题,其中正确的是( )A .若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B .若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C .若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D .若两条弦平行,则这两条弦之间的距离一定小于圆的半径 8.如图是某几何体的三视图,则该几何体的体积是( )A .318B .354C .3108D .3216 9.在Rt △ABC 中,∠C =90°,若AB =4,sin A =53,则斜边上的高等于( ) A .2564 B . 2548 C . 516 D . 512 10.给出下列命题及函数y =x ,y =x 2和y =x1, ①如果a 1>a >a 2,那么0<a <1;②如果a 2>a >a 1,那么a >1; ③如果a 1>a 2>a ,那么-1<a <0;④如果a 2>a1>a 时,那么a <-1. 则( )A .正确的命题是①④B .错误..的命题是②③④C .正确的命题是①②D .错误..的命题只有③二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11.)42.9(314.332-⨯+⨯=__________.12.把7的平方根和立方根按从小到大的顺序排列为______ ____.13.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sin A =23;②cos B =21;③tan A =33;④tan B =3,其中正确的结论是__________.(只需填上正确结论的序号)14.杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为1x ,2x ,则12x x =__________分.15. 四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥BC ,且BC =CD =2,AB =3,把梯形ABCD 分别绕直线AB ,CD 旋转一周,所得几何体的表面积分别为S 1,S 2,则| S 1-S 2|=__________(平方单位).16. 射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值__________(单位:秒).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)如图,四边形ABCD 是矩形,用直尺和圆规作出∠A 的平分线与BC 边的垂直平分线的交点Q (不写作法,保留作图痕迹).连结QD ,在新图形中,你发现了什么?请写出一条.18.(本小题满分8分)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21,331x x x x 时,求出方程x 2-2x -4=0的根19.(本小题满分8分)如图,在等腰梯形ABCD 中,AB ∥DC ,线段AG ,BG 分别交CD 于点E ,F ,DE =CF . 求证:△GAB 是等腰三角形.20.(本小题满分10分)已知抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数n x y +=432的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.21.(本小题满分10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取....1.张.卡片 (1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率(2)若规定:取到的卡片上序号是k (k 是满足1≤k ≤50的整数),则序号是k 的倍数或能整除k (不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.22.(本小题满分12分) (1)先求解下列两题:①如图①,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB =BC =CD =DE ,已知∠EDM =84°,求∠A 的度数;②如图②,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC =2,点D 在AC 上,且横坐标为1,若反比例函数)0(>=x xky 的图象经过点B ,D ,求k 的值. (2)解题后,你发现以上两小题有什么共同点?请简单地写出.23.(本小题满分12分)如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF =45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1. (1)求证:∠APE =∠CFP ; (2)设四边形CMPF 的面积为S 2,CF =x ,21S S y =. ①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值; ②当图中两块阴影部分图形关于点P 成中心对称时,求y 的值.参考答案1.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断. 【解答】D【点评】判断轴对称的关键寻找对称轴.2.【考点】平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.【分析】A 、不是同类项,不能合并,故选项错误;B 、m 3•m 2=m 5,故选项错误;C 、(1-m )(1+m )=1-m 2,选项错误;D 、正确.故选D . 【解答】D【点评】根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质判断.3.【考点】平行四边形的性质. 【分析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠A +∠B =180°. 【解答】B4.【考点】完全平方公式.【分析】联立得⎩⎨⎧=-=+,7,3b a b a 解得a =5,b =-2,则ab =-10.【解答】A【点评】解二元一次方程组,求出a 与b 的值是解题的关键.5.【考点】条形统计图.【分析】A 、2010年~2011年GDP 增长率约为600060007000-=61,2011年~2012年GDP 增长率约为700070007900-=709,增长率不同,故此选项错误;B 、2012年杭州市的GDP 约为7900,2008年GDP 约为4900,故此选项错误;C 、2010年杭州市的GDP 超过到5500亿元,故此选项错误;D 、2008~2012年杭州市的GDP逐年增长,故此选项正确,故选D . 【解答】D【点评】条形统计图能清楚地表示出每个项目的数据.6.【考点】分式的乘除法.【分析】甲图中阴影部分面积为a 2-b 2,乙图中阴影部分面积为a (a -b ),则k =)(22b a a b a --=)())((b a a b a b a --+=a ba +=1+ab ,∵a >b >0,∴0<a b <1.【解答】B7.【考点】直线与圆的位置关系;命题与定理.【分析】A 、圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直;B 、当两圆经过两条直线的交点时,圆与两条直线有三个交点;C 、两条平行弦所在直线没有交点;D 、两条平行弦之间的距离一定小于直径,但不一定小于半径.【解答】C【点评】根据直线与圆的位置关系进行判断.8.【考点】由三视图判断几何体.【分析】由三视图可看出:该几何体是-个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×43×62×2=1083. 【解答】C【点评】根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.9.【考点】解直角三角形.【分析】根据题意画出图形,如图所示,在Rt △ABC 中,AB =4,sinA =53,∴BC =ABsinA =2.4,根据勾股定理得AC =22BC AB -=3.2,∵S △ABC =21AC •BC =21AB •CD ,∴CD =ABBC AC ⋅=2548. 【解答】B【点评】注意三角形的面积求法.10.【考点】二次函数与不等式(组);命题与定理.【分析】易求x =1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y =x 和y =x1在第三象限的交点坐标为(-1,-1),①如果a 1>a >a 2,那么0<a <1正确;②如果a 2>a >a1,那么a >1或-1<a <0,故本小题错误;③如果a 1>a 2>a ,那么a 值不存在,故本小题错误;④如果a 2>a1>a 时,那么a <-1正确.综上所述,正确的命题是①④.【解答】A【点评】求出两交点的坐标,并准确识图是解题的关键.11.【考点】有理数的混合运算. 【分析】原式=3×9.42-3×(-9.42)=0. 【解答】0【点评】理解运算顺序是关键.12.【考点】实数大小比较.【分析】7的平方根为-7,7;7的立方根为37,所以7的平方根和立方根按从小到大的顺序排列为-7<37<7.【解答】-7<37<7【点评】实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.【考点】特殊角的三角函数值;含30度角的直角三角形. 【分析】∵在Rt △ABC 中,∠C =90°,AB =2BC ,∴sinA =AB BC =21,故①错误;∴∠A =30°,∴∠B =60°,∴cos B=cos 60°=21,故②正确;∵∠A =30°,∴tanA =tan 30°=33,故③正确;∵∠B =60°,∴tanB =tan 60°=3,故④正确.【解答】②③④【点评】熟记各特殊角度的三角函数值.14.【考点】算术平均数.【分析】2011年的平均最低录取分数线1x =(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线2x =(442+442+439+439)÷4=440.5(分),则2x -1x =440.5-435.75=4.75(分). 【解答】4.75【点评】掌握平均数的计算公式.15.【考点】圆锥的计算;点、线、面、体;圆柱的计算. 【分析】AB 旋转一周形成的圆柱的侧面的面积是2π×2×3=12π,AC 旋转一周形成的圆柱的侧面的面积是2π×2×2=8π,则|S 1-S 2|=4π. 【解答】4π【点评】梯形ABCD 分别绕直线AB ,CD 旋转一周所得的几何体的表面积的差就是AB 和CD 旋转一周形成的圆柱的侧面的差.16.【考点】切线的性质;等边三角形的性质. 【分析】∵△ABC 是等边三角形,∴AB =AC =BC =AM +MB =4cm ,∠A =∠C =∠B =60°,∵QN ∥AC ,AM =BM .∴N 为BC 中点,∴MN =21AC =2cm ,∠BMN =∠BNM =∠C =∠A =60°,分为三种情况:①如图1,当⊙P 切AB 于M′时,连接PM′,则PM′=3cm ,∠PM′M =90°,∵∠PMM′=∠BMN =60°,∴M′M =1cm ,PM =2MM′=2cm ,∴QP =4cm -2cm=2cm ,即t =2; ②如图2,当⊙P 于AC 切于A 点时,连接PA ,则∠CAP =∠APM =90°,∠PMA =∠BMN =60°,AP =3cm ,∴PM =1cm ,∴QP =4cm -1cm=3cm ,即t =3,当当⊙P 于AC 切于C 点时,连接PC ,则∠CP′N =∠ACP′=90°,∠P′NC =∠BNM =60°,CP′=3cm ,∴P′N=1cm ,∴QP =4cm +2cm +1cm=7cm ,即当3≤t ≤7时,⊙P 和AC 边相切;③如图3,当⊙P 切BC 于N′时,连接PN′,则PN′=3cm ,∠PN′N =90°,∵∠PNN′=∠BNM =60°,∴N′N =1cm ,PN =2NN′=2cm ,∴QP =4cm +2cm +2cm=8cm ,即t =8. 【解答】t =2或3≤t ≤7或t =8【点评】综合运用定理进行计算,注意要进行分类讨论.17.【考点】作图(复杂作图).【分析】根据角平分线的作法以及线段垂直平分线的作法得出Q 点位置,进而利用垂直平分线的作法得出答案.【解答】解:如图所示:发现:DQ =AQ 或者∠QAD =∠QDA 等.18.【考点】解一元二次方程(公式法);解一元一次不等式组.【分析】通过解一元一次方程组求得2<x <4.然后利用求根公式x =aacb b 242-±-求得方程程x 2-2x -4=0的根,由x 的取值范围来取舍该方程的根.【解答】解:由⎪⎩⎪⎨⎧-<--<+)4(31)4(21,331x x x x 求得⎩⎨⎧<<,4,2x x 则2<x <4. 解方程x 2-2x -4=0可得x 1=1+5,x 2=1-5, ∵2<1+5<4,∴x =1+5.【点评】本题考查了解一元二次方程--公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.【考点】等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定. 【分析】由在等腰梯形ABCD 中,AB ∥DC ,DE =CF ,利用SAS ,易证得△ADE ≌△BCF ,即可得∠DAE =∠CBF ,则可得∠GAB =∠GBA ,然后由等角对等边,证得△GAB 是等腰三角形. 【解答】证明:∵在等腰梯形中ABCD 中,AD =BC , ∴∠D =∠C ,∠DAB =∠CBA ,在△ADE 和△BCF 中,AD =BC ,∠D =∠C ,DE =CF , ∴△ADE ≌△BCF (SAS ),∴∠DAE =∠CBF , ∴∠GAB =∠GBA ,∴GA =GB , 即△GAB 为等腰三角形.20.【考点】二次函数的性质;抛物线与x 轴的交点.【分析】根据OC 的长度确定出n 的值为8或-8,然后分①n =8时求出点A 的坐标,然后确定抛物线开口方向向下并求出点B 的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x 的取值范围;②n =-8时求出点A 的坐标,然后确定抛物线开口方向向上并求出点B 的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x 的取值范围.【解答】解:根据OC 长为8可得一次函数中的n 的值为8或-8. 分类讨论:①n =8时,易得A (-6,0)如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0, ∵AB =16,且A (-6,0),∴B (10,0),而A 、B 关于对称轴对称, ∴对称轴直线x =2106+-=2,要使y 1随着x 的增大而减小,则a <0, ∴x >2;(2)n =-8时,易得A (6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0, ∵AB =16,且A (6,0),∴B (-10,0),而A 、B 关于对称轴对称, ∴对称轴直线x =2106-=-2,要使y 1随着x 的增大而减小,且a >0, ∴x <-2.【点评】要分情况讨论.21.【考点】游戏公平性.【分析】(1)由在序号中,是20的倍数的有20,40,能整除20的有1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解得出答案;(2)由无论k 取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.【解答】解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为207; (2)不公平,∵无论k 取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是501) 【点评】断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.【考点】等腰三角形的性质;反比例函数图象上点的坐标特征.【分析】(1)①根据等边对等角可得∠A =∠BCA ,∠CBD =∠BDC ,∠ECD =∠CED ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A +∠BCA =∠CBD ,∠A +∠CDB =∠ECD ,∠A +∠CED =∠EDM ,然后用∠A 表示出∠EDM ,计算求解;②先根据反比例函数图象上的点的坐标特征表示出点B 的坐标,再表示出点C 的坐标,然后根据AC ∥x 轴可得点C 、D 的纵坐标相同,从而表示出点D 的坐标,再代入反比例函数解析式进行计算得解.(2)从数学思想上考虑解答.【解答】解:(1)①∵AB =BC =CD =DE ,∴∠A =∠BCA ,∠CBD =∠BDC ,∠ECD =∠CED ,根据三角形的外角性质,∠A +∠BCA =∠CBD ,∠A +∠CDB =∠ECD ,∠A +∠CED =∠EDM ,又∵∠EDM =84°,∴∠A +3∠A =84°,解得∠A =21°;②∵点B 在反比例函数y=x k 图象上,点B ,C 的横坐标都是3,∴点B (3,3k ), ∵BC =3,∴点C (3,3k +2), ∵AC ∥x 轴,点D 在AC 上,且横坐标为1,∴A (1,3k +2), ∵点A 也在反比例函数图象上,∴3k +2=k , 解得k =3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)23.【考点】四边形综合题.【分析】(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y 与x 之间的函数解析式.①首先分别用x 表示出S 1与S 2,然后计算出y 与x 的函数解析式.这是一个二次函数,求出其最大值; ②注意中心对称、轴对称的几何性质.【解答】(1)证明:∵∠EPF =45°,∴∠APE +∠FPC =180°-45°=135°,而在△PFC 中,由于PF 为正方形ABCD 的对角线,则∠PCF =45°,则∠CFP +∠FPC =180°-45°=135°, ∴∠APE=∠CFP .(2)解:①∵∠APE =∠CFP ,且∠FCP =∠PAE =45°,∴△APE ∽△CPF ,则CF AP =PCAE . 而在正方形ABCD 中,AC 为对角线,则AC=2AB=42,又∵P 为对称中心,则AP =CP =22,∴AE =CF PC AP ⋅=x2222⋅=x 8. 如图,过点P 作PH ⊥AB 于点H ,PG ⊥BC 于点G ,P 为AC 中点,则PH ∥BC ,且PH =21BC =2,同理PG =2.S △APE =21PH •AE =21×2×x 8=x 8, ∵阴影部分关于直线AC 轴对称,∴△APE 与△APN 也关于直线AC 对称,则S 四边形AEPN =2S △APE =x 16;而S 2=2S △PFC =2×2CF PG ⋅=2x , ∴S 1=S 正方形ABCD -S 四边形AEPN -S 2=16-x 16-2x ,∴y =21S S =xx x 221616--=-28x +x 8-1. ∵E 在AB 上运动,F 在BC 上运动,且∠EPF=45°,∴2≤x ≤4.令x 1=a ,则y =-8a 2+8a -1,当a =-828⨯-=21,即x =2时,y 取得最大值. 而x =2在x 的取值范围内,代入x =2,则y 最大=4-2-1=1.∴y 关于x 的函数解析式为y =-28x +x 8-1(2≤x ≤4),y 的最大值为1. ②图中两块阴影部分图形关于点P 成中心对称,而此两块图形也关于直线AC 成轴对称,则阴影部分图形自身关于直线BD 对称,则EB =BF ,即AE =FC ,∴x8=x ,解得x =22, 代入x =22,得y =22-2.【点评】重点与难点在于求出y 与x 的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。