数学建模13道题
2023国赛数学建模赛题
1. 问题描述:某城市的交通网络由多个路口和道路组成。
每个路口都有一个繁忙程度指标,表示该路口的交通流量。
现在需要选取一个路口作为交通枢纽,使得离该路口最近的其他路口的平均距离最短。
请设计一个数学模型,并找出最佳的交通枢纽路口。
2. 问题描述:某公司有多个产品线,每个产品线的市场需求量不同,并且不断变化。
公司想要确定产量的分配策略,使得总成本最小。
已知每个产品线的生产成本和市场需求,以及各个产品线的最大产能。
请设计一个数学模型,并确定最优的产量分配方案。
3. 问题描述:一家快递公司需要设计一个最优的快递路线,以便在规定时间内完成所有快递的派送任务。
已知快递员的工作时间、快递的数量和派送地点之间的距离。
请建立一个数学模型,确定最佳的快递路线,使得总路程最短。
4. 问题描述:某公司的生产线上有多个工序,每个工序的加工时间和工人数量都不同。
公司想要确定每个工序的工人数量,以保证整个生产线的产量最大。
请设计一个数学模型,并找出最佳的工人分配方案。
5. 问题描述:某城市的垃圾处理中心需要合理安排垃圾运输车辆的路线,以最小化运输成本。
已知垃圾产生的位置、垃圾处理中心的位置、路网的拓扑结构以及各路段的运输成本。
请建立一个数学模型,确定最佳的垃圾运输车辆路线,使得总运输成本最小。
东三省数学建模竞赛试题
A题:垃圾分类处理与清运方案设计垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。
在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。
2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。
在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。
其中对于居民垃圾,基本的分类处理流程如下:在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。
不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。
2)可回收垃圾将收集后分类再利用。
3)有害垃圾,运送到固废处理中心集中处理。
4)其他不可回收垃圾将运送到填埋场或焚烧场处理。
所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。
显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。
本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。
为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是:1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。
以期达到最佳经济效益和环保效果。
2)假设转运站允许重新设计,请为问题1)的目标重新设计。
仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。
其他所需数据资料自行解决。
数学建模比赛题目
数学建模比赛题目
数学建模比赛的题目通常涉及现实生活中的问题,需要参赛者运用数学方法和计算机技术来解决。
以下是一些可能的数学建模比赛题目示例:
1. 城市交通流量预测:给定一个城市的交通流量数据,要求参赛者预测未来的交通流量,以便为城市规划和交通管理提供依据。
2. 股票价格预测:给定历史股票价格数据,要求参赛者预测未来的股票价格变动,以便为投资者提供参考。
3. 天气预报:给定历史气象数据,要求参赛者预测未来的天气状况,以便为农业、航空和旅游等行业提供依据。
4. 人口增长预测:给定一个国家或地区的人口数据,要求参赛者预测未来的人口增长趋势,以便为政府制定政策和规划提供依据。
5. 物流优化:给定一个物流网络和相关数据,要求参赛者优化物流路线和资源分配,以便降低成本和提高效率。
6. 医疗数据分析:给定医院的医疗数据和病例信息,要求参赛者分析病情趋势和患者特征,以便为医疗研究和治疗提供依据。
7. 能源消耗预测:给定一个地区的能源消耗数据,要求参赛者预测未来的能源需求,以便为政府和企业制定能源政策和规划提供依据。
8. 机器学习算法设计:给定一组数据和任务,要求参赛者设计一种机器学习算法来解决该任务,例如分类、回归或聚类等。
这些题目只是数学建模比赛的一部分示例,实际上比赛的题目非常多样化,可以根据实际情况进行设计。
数学建模例题题
数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。
要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。
【注】线性规划在MATLAB的库函数为:linprog。
语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
2023年全国数学建模题目
2023年全国数学建模题目
一、优化模型
题目:全球能源分配优化问题
问题描述:全球各国对能源的需求不断增长,而能源资源有限。
为了实现可持续发展,需要优化全球能源分配,确保各国都能获得适量的能源供应。
请运用优化模型和方法,设计一个全球能源分配方案,以满足各国能源需求,并尽量减少能源浪费和环境污染。
二、统计分析
题目:社交媒体用户行为分析
问题描述:社交媒体平台上积累了大量用户数据,包括用户发布的内容、关注对象、互动情况等。
请运用统计分析方法,分析社交媒体用户的偏好、行为模式和社交网络结构,为相关企业提供营销策略建议。
三、机器学习
题目:基于机器学习的文本分类问题
问题描述:文本数据包括各种主题,如政治、经济、文化等。
请运用机器学习算法,对给定的文本数据进行分类,并评估分类效果。
同时,请探讨如何提高分类准确率和泛化能力。
四、预测模型
题目:商品价格预测问题
问题描述:商品价格受到多种因素的影响,如市场需求、生产成本、政策因素等。
请运用预测模型和方法,预测未来一段时间内某种商品的价格走势,为投资者和企业提供决策依据。
五、决策分析
题目:企业投资决策问题
问题描述:企业需要在多个项目中做出投资决策,以实现利润最大化。
请运用决策分析方法,评估各项目的风险和收益,为企业制定最优投资策略。
六、系统动力学
题目:城市交通拥堵问题研究
问题描述:城市交通拥堵是一个复杂的问题,涉及多个因素之间的相互作用。
请运用系统动力学方法,建立城市交通拥堵问题的动力学模型,分析各因素之间的因果关系和动态变化规律,提出缓解交通拥堵的策略建议。
数学建模线性规划上机题
例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。
每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。
现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。
它准备向生产这些钢板旳A1,A2,A3三家工厂订货。
该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。
而它们销售多种型号钢板旳价格如表4.3所示。
该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。
该怎样处理这个问题。
若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。
通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。
如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。
数学建模简单13个例子
总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
分析:在这场“价格战”中,我们将站在乙加油站的立 场上为其制定价格对策.因此需要组建一个模型来描述 甲站汽油价格下调后乙加油站销售量的变化情况.
为描述价格和汽油销售量之间的关系,我们引入如下 一些指标:
影响乙加油站汽油销售量的因素 (1)甲加油站汽油降价的幅度; (2)乙加油站汽油降价的幅度; (3)两站之间汽油销售价格之差.
在这场“价格战”中,我们假设汽油的正常销售价格 保持定常不变,并且假定以上各因素对乙加油站汽油 销售量的影响是线性的.于是乙加油站的汽油销售量 可以由下式给出
返回
13、遗传模型
1.问题分析
所谓常染色体遗传,是指后代从每个亲体的基因 中各继承一个基因从而形成自己的基因型.
如果所考虑的遗传特征是由两个基因A和B控制的, 那么就有三种可能的基因型:AA,AB和BB.
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到 点点故他,返,后那回故仍么相由似载这遇相乎着一点遇条他天这点件开他一到不往就段会够会不路合哦合会的点。地提缘需。 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
2023数学建模赛题
有关“数学建模”的赛题
数学建模赛题通常涉及到各种实际问题,需要通过建立数学模型进行解决。
有关“数学建模”的赛题如下:
1.人口预测问题:给定历史人口数据,要求预测未来人口数量和年龄结构。
2.传染病传播问题:给定传染病传播的参数和初始感染人数,要求预测疾病传播的趋势
和影响。
3.物流优化问题:给定运输网络和货物需求,要求设计最优的运输方案,降低运输成
本。
4.金融风险管理问题:给定投资组合和风险因子,要求评估投资组合的风险和回报,制
定最优投资策略。
5.生产计划问题:给定市场需求和生产成本,要求制定最优的生产计划,满足市场需求
并实现利润最大化。
6.资源分配问题:给定有限资源的数量和各种需求,要求分配资源以满足需求,并实现
资源利用的最大化。
7.交通运输问题:给定运输网络和货物需求,要求设计最优的运输方案,提高运输效率
并降低成本。
8.环境保护问题:给定环境污染数据和环境质量标准,要求制定最优的环境治理方案,
改善环境质量。
数学建模简单13个例子讲义.
支 球队中的胜者及轮空者进入下一轮,直至比赛结
束。问共需进行多少场比赛?
一般思维:
36 18 10 4 2 1 18 9 5 2 1 1 36 2 2 2 2 2
逆向思维:
每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么? 解法一: 将两天看作一天,一人两天的运动看作一天两 人同时分别从山下和山顶沿同一路径相反运功,因为 两人同时出发,同时到达目的地,又沿向一路径反向 运动,所以必在中间某一时刻t两人相遇,这说明某人 在两天中的同一时刻经过路途中的同一地点。
1、从包汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S V s v s v
…
s v
( 共 n个 )
定性分析
根据题意,A点的坐标为(-300,0), 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风中 心在运动过程中处于以A为圆心、半径 为250 km的圆内(即MN上)时,气象台 A所在地区将遭受台风的影响。 因为圆的方程为: 直线BC的方程为: 当台风中心处于圆内时,有: 解得 其中参数t 为时间(单 位为h)。
马路的宽度D是容易测得的,问题的关键在于L的确定。 为确定L,还应当将L划分为两段:L1和L2。 其中 L1是司机在发现黄灯亮及判断应当刹车的反应 时间内驶过的路程,L2为刹车制动后车辆驶过的路程。 L1较容易计算,交通部门对司机的平均反应时间 t1早有测 算,反应时间过长将考不出驾照),而此街道的行驶速度 v 也是交管部门早已定好的,目的是使交通流量最大,可 另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线拟 合方法得出,也可利用牛顿第二定律计算出来 黄灯究竟应当亮多久现在已经变得清楚多了。 第一步,先计算出L应多大才能使看见黄灯的司机停 得住车。 第二步,黄灯亮的时间应当让已过线 D 的车顺利穿过马路, L 即T 至少应当达到 (L+D)/v。
数学建模测试地的题目-线性规划部分
313数学教育1、2班,510数学教育1、2、3班数学建模上机测试题,需要把运行结果写出来。
模型包括目标函数、约束条件,编写的程序和程序运行结果四部分内容。
写在作业本上。
按学号顺序做,如35号同学做习题35习题1:某厂计划生产甲、乙、丙三种零件,有机器、人工工时和原材料的限制,有关数据1、2、若原材料为2元/公斤,试建立获得最大利润生产计划的线性规划模型。
习题2:一塑料厂利用四种化工原料合成一种塑料产品。
这四种原料含A、B、C的成分见下表,这种塑料产品要求含A为25%,含B、C都不得少于30%。
问各种原料投放比例为多少能习题3:建立以下线性规划模型1)某家具厂生产桌椅,每张桌子耗用木材0.28立方米、2小时人工,售价288元;每把椅子耗用木材0.13立方米、0.8小时人工,售价147元。
且1张桌子必须配4把椅子。
已知木材本月供应量不得超过52立方米,且每立方米成本价为500元。
本月人工工时上限为288小时,且每小时成本为20元。
(1)写出最大月收益线性规划模型;(2)写出月收益不低于8000元而动用木材最省的线性规划模型(其余条件不变)。
习题4 某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如右表。
问:该厂应如何安排生产,使利润收入为最大?习题5、某部门现有资金200万元,今后五年内考虑给以下的项目投资。
已知:项目A :从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B :从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不超过30万元;项目C :需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D :需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元;问:a.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大? b.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?习题6 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到第三年年初都可以投资。
数学建模美国赛历年试题.
历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (4)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (5)MCM89问题-A 蠓的分类 (5)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (6)MCM91问题-B 通讯网络的极小生成树 (6)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (7)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (8)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (9)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (10)MCM96问题-B 竞赛评判问题 (10)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (11)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (13)MCM2000问题-A空间交通管制 (13)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (14)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (15)MCM2002问题-A风和喷水池 (15)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (17)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (18)MCM2004问题-A:指纹是独一无二的吗? (18)MCM2004问题-B:更快的快通系统 (18)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2008问题A:给大陆洗个澡 (23)MCM2008问题B:建立数独拼图游戏 (23)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
数学建模13道题
数学建模13道题数学建模是数学中的一个分支,它是指将现实世界中的问题抽象成数学模型,并用数学方法来解决这些问题。
数学建模题一般包含数学模型的建立,问题的分析和求解等几个方面。
下面介绍13道数学建模题,希望读者可以从中得到启发。
题目一:如何预测股票价格?这是一个经典的数学建模题。
股票价格是由多种因素决定的,如市场供求关系、经济政策等。
数学建模者需要考虑这些因素,并根据历史数据建立合适的模型来预测未来的股票价格。
题目二:如何优化物流配送?对于物流配送问题,数学建模者需要考虑到多种因素,如配送距离、时间、运输工具等。
通过建立运输成本函数,制定合适的配送策略,可以实现物流配送的优化。
题目三:如何求解最优化问题?在最优化问题中,数学建模者需要考虑多种因素,如成本、效率、质量等。
通过建立目标函数、限制条件等方程,可以求得最优解。
题目四:如何优化网络布局?网络布局优化是一个复杂的问题。
数学建模者需要考虑到多种因素,如节点距离、带宽、延迟等。
通过建立合适的模型,可以制定出最优的网络布局方案。
题目五:如何预测自然灾害?自然灾害是不能预测的,但数学建模可以通过历史数据、气象预报等多种信息来建立模型,以预测未来可能发生的自然灾害,提前做好应对措施。
题目六:如何优化生产流程?生产流程优化需要考虑多种因素,如成本、效率、质量等。
数学建模者可以通过建立合适的模型,分析生产流程的瓶颈和优化空间,从而实现生产流程的优化。
题目七:如何优化城市规划?城市规划优化需要考虑多种因素,如人口密度、交通拥堵、环境保护等。
数学建模者可以通过建立合适的模型,预测城市未来的发展趋势,制定出最优的城市规划方案。
题目八:如何提高学生的学习成绩?学生的学习成绩受多种因素影响,如个人能力、学习环境、教学质量等。
数学建模者可以建立合适的模型,帮助学生发现自己的学习问题,并制定出最优的学习策略。
题目九:如何优化教学质量?教学质量优化需要考虑多种因素,如教师水平、教材质量等。
数维杯数学建模比赛题目
数维杯数学建模比赛题目1、Matlab使用三维[R G B]来表示一种颜色,则黑色为()? [单选题] *A、[1 0 1]B、 [1 1 1]C、 [0 0 1]D、 [0 0 0](正确答案)2、下列属于物理模型的是:()? [单选题] *A、水箱中的舰艇(正确答案)B、分子结构图C、火箭模型D、电路图3、Matlab软件中,把二维矩阵按一维方式寻址时的寻址访问是按()?优先的。
[单选题] *A、行B、列(正确答案)C、对角线D、左上角4、下面哪个变量是正无穷大变量?()? [单选题] *A、 Inf(正确答案)B、 NaNC、 realmaxD、 Realmin5、下列不属于最优化理论的三大非经典算法的是:()? [单选题] *A、模拟退火法B、神经网络C、随机算法(正确答案)D、遗传算法6、矩阵(或向量)的范数是用来衡量矩阵(或向量)的()?的一个量。
[单选题] *A、维数大小(正确答案)B、元素的值的绝对值大小C、元素的值的整体差异程度D、所有元素的和7、关于Matlab的矩阵命令与数组命令,下列说法正确的是()? [单选题] *A、矩阵乘A*B是指对应位置元素相乘B、矩阵乘A、*B是指对应位置元素相乘(正确答案)C、数组乘A、*B是指对应位置元素相乘D、数组乘A*B是指对应位置元素相乘8、下列有关变量的命名不正确的是()? [单选题] *A、变量名区分大小写B、变量名必须是不含空格的单个词C、变量名最多不超过19个字符D、变量名必须以数字打头(正确答案)9、计算非齐次线性方程组AX=b的解可转化为计算矩阵X=A-1b,可以用Matlab 的命令()? [单选题] *A、左除命令x=A\b(正确答案)B、左除命令x=A/bC、右除命令x=A\bD、右除命令x=A/b10、Matlab命令a=[65 72 85 93 87 79 62 73 66 75 70];find(a>=70 & a<80)得到的结果为()? [单选题] *A、[72 79 73 75]B、[72 79 73 75 70]C、[2 6 8 10 11](正确答案)D、[0 1 0 0 0 1 0 1 0 1 1]11、生成5行4列,并在区间[1:10]内服从均分布的随机矩阵的命令是()? [单选题] *A、rand(5,4)*10B、rand(5,4,1,10)C、rand(5,D、+10 D、rand(5,4)*9+1(正确答案)12、关于矩阵上下拼接和左右拼接的方式中,下列描述是正确的是()? [单选题] *A、上下拼接的命令为C=[A, B],要求矩阵A, B的列数相同;B、左右拼接的命令为C=[A; B],要求矩阵A, B的行数相同;C、上下拼接的命令为C=[A; B],要求矩阵A, B的行数相同;D、左右拼接的命令为C=[A, B],要求矩阵A, B的行数相同。
数学建模大作业题目
A 题:图书馆购书计划的制定现代化图书馆馆藏图书,主要目的不是为了收藏而是为了使用。
除了国家图书馆等特大型的图书馆以外,一般图书馆都有特定的服务群体,办馆宗旨就是要尽量好地为这些特定群体服务,提高馆藏资源的利用率、读者文献信息需求的满足率以及对图书馆服务功能的满意率。
图书馆每年用于购书的经费是有限的,如何合理分配使用,以便使有限的购书经费最大限度地发挥其特定的经济效益是图书馆工作的重要环节之一。
以学校图书馆为例,要实现办馆效益,必须做到入藏文献合乎本校教师、学生(有时也兼顾社会)的需求,使图书馆藏书结构(学科结构、文种结构、文献类型结构等)满足本校教学科研的要求,以求藏书体系与本校专业设置相适应。
所购图书要能够真实地反映读者的实际需要,使读者结构和藏书结构尽量吻合,以便减少读者借不到图书的现象,即降低读者被借的比率、增加满足率。
文献只有在流通中才能传播信息,产生效益。
文献资料得不到利用,购置文献资料所耗费的资金就体现不出其价值。
因此,图书馆在增加藏书规模的同时,要千方百计地把文献提供给读者,以增加图书的出借次数、出借时间以及在借图书的数量等,力求使有限的价值投入获得最大的办馆效益。
设某普通高校现有十个系:计算机科学与技术系,在校学生960 人,信息科学与工程系,在校学生900 人,信息与计算科学系,在校学生280 人,生物与制药工程系,在校学生1500 人,机电工程系,在校学生1440 人,建筑工程系,在校生960 人,外语系,在校学生720 人,法律系,在校学生460 人,新闻系,在校学生642 人,经济与管理系,在校学生2400 人。
此外,该校目前还有“药物分子设计及生物化工”和“土木建筑工程”2 个重点学科;“外国语言学及应用语言学”重点扶植学科以及“计算机科学与技术”、“市场营销”2 个重点专业。
该校图书馆每学年都要投入大量资金购置图书,图书覆盖全院各学科专业、具有较完整的中外文文献资源。
高教社杯数学模型竞赛赛题
高教社杯数学模型竞赛赛题
高教社杯全国大学生数学建模竞赛赛题涵盖了多个领域,如附件1提供了企业近5年402家原材料供应商的订货量和供货量数据,附件2给出了8家
转运商的运输损耗率数据。
这些赛题要求参赛者结合实际情况,对相关数据进行深入分析,研究问题如下:
1. 根据附件1,对402家供应商的供货特征进行量化分析,建立反映保障企业生产重要性的数学模型,在此基础上确定50家最重要的供应商,并在论
文中列表给出结果。
2. 参考问题1,该企业应至少选择多少家供应商供应原材料才可能满足生产的需求?针对这些供应商,为该企业制定未来24周每周最经济的原材料订
购方案,并据此制定损耗最少的转运方案。
请制定新的订购方案及转运方案,并分析方案的实施效果。
3. 该企业通过技术改造已具备了提高产能的潜力。
根据现有原材料的供应商和转运商的实际情况,确定该企业每周的产能可以提高多少,并给出未来
24周的订购和转运方案。
以上赛题仅供参考,如需更多信息,可访问中国大学生在线网站获取。
(完整版)数学建模期末考试题
班级:通工13**学号:0313****姓名:***成绩:西安邮电大学理学院2014年12月3日一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了一定的目的,人们对原型的一个抽象。
通过抽象和化简,使用数学语言,对实际问题的一个近似描述,以便于人们更深刻的认识所研究的对象。
举例:牛顿定律。
假设:(1)物体为质点,忽略物体的大小和形状。
(2)没有阻力、摩擦力及其他外力。
令x (t )表示在t 时刻物体的位置,则F =ma =m d 2x dt 22.数学模型答:数学模型是架于数学与实际问题之间的桥梁,在数学发展的进程中无时无刻不留下数学模型的印记。
它包括三大特征:1.实践性:有实际背景,有针对性,接受实践的检验。
2.应用性:注意实际问题的要求。
强调模型的实用价值。
3.综合性:数学知识的综合,模型的综合。
举例:管道包扎问题:用带子包扎管道,使带子全部包住管道,且用料最省。
假设:(1)直圆管,粗细一致。
(2)带子无弹性等宽。
(3)带宽小于圆管截面周长。
(4)包扎时不剪断带子且不重叠。
设W 为带宽,C 为截面周长,L 为管长,M 为带长。
则M=+LC W C 2‒W 23.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓抽象模型。
举例:如汽车司机对方向盘的操作。
二、简答题(每小题满分8分,共24分)1.模型的分类答:(1) 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩展模型等。
(2) 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
(3) 按是否考虑随机因素分:确定性模型、随机性模型。
(4) 按是否考虑模型的变化分:静态模型、动态模型。
(5) 按应用的离散方法或连续方法分:离散模型、连续模型。
数学建模竞赛赛题
数学建模竞赛赛题
数学建模竞赛赛题通常涉及现实生活中的复杂问题,需要参赛者运用数学知识和技能建立数学模型进行解决。
以下是一些数学建模竞赛的赛题示例:
1.投资规划问题:给定一定数量的资金,要求参赛者设计一个投资
方案,使得在一定时间内获得最大的收益。
这个问题涉及到概率论、统计学和线性规划等数学知识。
2.供应链优化问题:要求参赛者设计一个供应链系统,使得在满足
客户需求的同时,总成本最低。
这个问题需要考虑采购、库存、运输和配送等方面的因素,需要运用优化理论、线性规划等数学知识。
3.传染病传播模型:给定一个传染病传播的情况,要求参赛者预测
疾病的传播趋势,并制定相应的防控措施。
这个问题需要建立传染病传播的数学模型,涉及到微分方程、偏微分方程等数学知识。
4.交通流量预测:要求参赛者运用历史数据,预测未来一段时间内
的交通流量。
这个问题需要考虑时间序列分析、回归分析等数学知识。
5.图像处理问题:给定一张图片,要求参赛者设计一个算法,实现
图片的分类、识别或美化。
这个问题需要运用数字图像处理、机器学习等数学知识。
这些赛题都需要参赛者具备扎实的数学基础和良好的编程能力,
同时还需要具备创新思维和团队合作能力。
2021高社杯数学建模题目
2021高社杯数学建模题目
2021年高教社杯全国大学生数学建模竞赛的题目如下:
A题:FAST主动反射面的形状调节
中国天眼——500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST),是我国具有自主知
识产权的目前世界上单口径最大、灵敏度最高的射电望远镜。
它的落成启用,对我国在科学前沿实现重大原创突破、加快创新驱动发展具有重要意义。
主索网由柔性主索按照短程线三角网格方式构成,用于支承反射面板(含背架结构),每个三角网格上安装一块反射面板,整个索网固定在周边支承结构上。
B题:乘公交,看奥运
国内人民翘首企盼第29届奥运会来年8月将在北京举办,届时有大量观众
到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,涉及公汽、地铁等)出行。
这些年来,都市公交系统有了很大发展,北京市公交线路已达800条以上,使得公众出行更加畅通、便利,但同时也面临多
条线路选择问题。
针对市场需求,某公司准备研制开发一种解决公交线路选择问题自主查询计算机系统。
以上内容仅供参考,如需更多信息,可访问中国大学生在线网站获取更多内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。
该投资者列出了她的投资组合目标为:
1)年收益至少为5000美元; 2)股票投资至少为10000美元;
3)股票投资额不能超过储蓄和市政债券投资额之和; 4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。
2.用长8米的角钢切割钢窗用料。
每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?
3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:
此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?
4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合
受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?
5.某公司用木头雕刻士兵模型出售。
公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。
制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。
制作一个“联军”士兵需要使用3张木板,花费3.5小时的木工,再经过3小时的整修。
该公司每周得到100张木板,可供使用的木工(机器时间)为120小时,整修时间为90小时。
确定每种士兵的生产数量,使得周利润最大。
6.有两个煤场A 和B ,每月进煤分别不少于60吨和100吨,它们负担三个居民区供煤任务,
这三个居民区每月需用煤分别为45吨,75吨和40吨。
A场离这三个居民区分别为10公里,5公里,6公里。
B场离这三个居民区分别为4公里,8公里,15公里。
问这两煤场如何分配供煤,才使总运输力最小?
如果每个服务员每天连续工作8小时,试求满足以上条件的最少服务员人数。
8.某钢管从钢管厂进货,然后根据顾客的要求进行切割出售。
假设进货的原料钢管都是1850mm,现有一顾客需要15根290mm,28根315mm,21根350mm 和30根455mm的钢管。
为了简化切割过程,如果使用的切割模式不超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多,一根原料钢管最多生产5根产品。
此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm。
为了使得总费用最小,问应如何下料?
9.某厂按合同规定须于当年每个季度末分别提供10,15,25和20台同一规格的发动机,
如果生产出来的发动机当季不交货,每台每积压一个季度另需存储等各项费用0.15万元,要求在完成合同的情况下,作出使该厂全年费用总和最小的决策。
10.某厂接受加工零件7万件任务,其中甲、乙、丙、丁四种零件分别为2万、3万、1万、1万件,该厂有三个车间A、B、C能承担任务,各车间的加工能力分别为3、3、1万件。
问如何安排加工生产,可使消耗总工时最少。