道路亮度计算

道路亮度计算
道路亮度计算

道路亮度计算

1、路面上任意点的亮度计算

(1)根据等光强曲线图和r 表进行计算

亮度系数(q )的概念:表示路面反光性能的一个系数,为路面上某点的亮度和该点的水平照度之比,即q=L/E 。它除了与路面材料有关外,还取决与观察者和光源相对于路面所考察的那一点的位置,即q=q (β,γ)。其中β为光的入射平面和观察平面之间的角度,γ为入射光线的投射(高度)角。

一个灯具在P 点上产生的亮度计算式:

),(

)

,(cos ),(),(),(cos ),(2

32

3

2γβγγγβγγβγγr h

c I q h

c I q h c I q E L P P ==?=

=

确定路面亮度系数的角度图

式中:(c ,γ)——计算点(P )相对于灯具的坐标;

I (c ,γ)——指向P 点的光强值;

r (β,γ)——简化亮度系数,查表可得; h ——灯具安装高度。

从上式中可知,要进行亮度计算,关键是要知道路面亮度系数(q )或简化亮度系数(r )。

实际路面的q 或r 只有通过实测才能获得,且非常复杂。目前通常采用国际照明委员会(CIE )和道路代表大会国际常设委员会(PIARC )共同推荐的简化亮度系数表:

简化亮度系数表1

简化亮度系数表2

说明: 表1适用于沥青路面,表2适用于混凝土路面。

n 个灯具在P 点上产生的总亮度计算式:

),(),(cos ),(),(),(cos ),(2

1

3

21321

i i i n

i i i i i i n i i i i i i n

i P P i r h c I q h c I q h c I q E L γβγγγβγγβγγ∑∑∑

=====?== 注意,计算路面上某一点的亮度时,需要考虑位于计算点前方(向观察位置一方)5倍安装高度、

后方(远离观察位置一方)12(书中有误,应该是2)倍安装高度、两侧各5倍安装高度范围内的灯具对计算点的亮度贡献。

(2)根据路面等亮度曲线图计算

依据——灯具的光度测试报告中的等亮度曲线图。

其计算的过程就是一个读图的过程,与照度计算相类似;但也有区别,因为等亮度曲线图是对于平行于路轴并经过灯具的垂直平面(c=0°),在路面上距离灯具的垂直投影点为10 h 的观察者进行计算和绘制的。所以,使用该图的方法与观察者的实际位置有关,可以分为两种情况考虑。 1)观察者位于灯具排列线上

观察者位于灯具排列线上示意图

由于此时观察者的位置和计算、绘制等亮度曲线图时所依据的条件一致,可以直接读图。

即在图上标出计算点相对于各灯具的位置,就可以读数了。注意,由于等亮度曲线图是对距离灯具投影点10h 的观察者而作的,当对第一个灯具的距离是准确的时,对第二、第三个灯具的距离就肯定是不正确的,即人为地移动了观察者的位置,但这样做的误差很小。把读得的结果叠加,再进行

简单的换算就可以求得计算点的亮度值。 2)观察者位于灯具排列线外

由于等亮度曲线图是对位于灯具排列线上的观察者计算绘制的,严格说来不能直接应用于观察者位于灯具排列线以外的情况。但基于以下情况,可以把灯亮度曲线图切成两部分来应用: ①灯具后面这一部分的等亮度图事实上与观察者的位置无关,所以还可以按原方法使用;

②灯具前面(面向观察者)这一部分的等亮度图主要取决于道路表面的反光特性,和灯具光分布关系不那么大,因此可以将这一部分图形转向观察者来使用。

观察者位于灯具排列线外示意图

详细的使用在举例中说明。

需要说明的是,若路面上灯具排列是交错或对称排列,则必须考虑对侧灯具对亮度的贡献,但要注意保持正确的人行道侧和车道侧,还需要把图形颠倒过来。(一句话,计算点与灯具的相对位置必须正确)

另外可以肯定的是,当等亮度图的旋转角度小于5°时,此方法的误差不会大于±10%,相当于计算点距离c=0°平面的横向距离必须小于0.875h (观察距离10h )。

当旋转角度大于5°时,计算比较复杂,请有兴趣的朋友自行钻研。

2、路面平均亮度计算

(1)根据点亮度计算数值计算(按照测量的布点方法)

计算式:∑==

n

i i av n L L 1

/

式中:

L av ——路面平均亮度;

L i ——第个计算点上的亮度; n ——计算点的总数。

(2)按照亮度产生曲线图进行计算——比较简便的一种计算方法

计算公式:ws

M Q L L av Φ

=

式中:ηL ——亮度产生系数。根据道路的宽度和灯具的安装高度、悬挑长度和观察者的位置,

从灯具的亮度产生曲线图中查得(方法后面举例说明);

Q 0——路面的平均亮度系数(cd/m 2

/lx );

M ——维护系数; Φ——光源光通量; w ——路面宽度; s ——灯间距。

当观察者的位置和亮度产生曲线图中所给出的A 、B 、C 不一致时,可用内插法作出一条和实际观察者位置一致的曲线,然后由图中读出亮度产生系数即可。

再介绍一种计算路面平均亮度的最简化的方法,当然其精确度是不高的。

05新版《城市道路照明设计标准》指出,可以利用平均照度换算系数计算平均亮度值。

平均照度换算系数是得到1cd/m 2

的路面平均亮度所必须的路面平均照度值。它可由路面简化亮度系数(r)表进行路面平均亮度和平均照度计算得到,也可通过实际测量而得到。

平均照度换算系数表

路面种类 平均照度换算系数

(lx/cd/m 2

)

沥青 15 混凝土

10

3、亮度计算举例 例一、

已知一条单幅道路,路面宽度w=12m ,采用单侧布灯,间距s=30m ,安装高度h=10m ,悬挑长度O=2m 。试计算位于距不设灯的一侧路缘1/4路宽,且距L 3为60m 的观察者所观察到的P 点的亮度(等光强曲线图同照度计算示例三)。 解:(1)确定β角(光入射平面和观看平面之间的角度)。 β1:(注意β1′的对顶角和δ的互位角的关系) tg β1′=(30―4)/4=6.5 β1′=81.25° tg δ=(60+30+4)/3=31.333 δ=88.17° β1=δ―β1′=88.17°―81.25°=6.92°

β2:(β2等于β1′的对顶角加β2′的对顶角加β1之和) tg β2′=4/4=1 β2′=45°

β2=β1′+β2′+β1=81.25°+45°+6.92°=133.17° β3:(β3为β2加β3′的对顶角之和)

tg (β2′+β3′)=(30+4)/4=8.5 β2′+β3′=83.29° β3′=83.29°―β2′=83.29°―45°=38.29° β3=β2+β3′=133.17°+38.29°=171.46° (2)分别确定(γ1,c 1)、(γ2,c 2)和(γ3,c 3)。 对L 1 tg γ1=63.210/3.2610/4)430(2

2==+- γ1=69° cos c 1=269886.03.26/264)430(/2

2==+- c 1=8.7°

对L 2 tg γ2=5656.010/656.510/442

2==+ γ2=29.5°

tgc 2=14/4= c 2=180°-45°=135°

对L 3 tg γ3=423.310/234.3410/4)430(2

2

==++ γ3=73.7°

cos c 3=34

993

.023.34/344)430(/22==++ c 3=180°- 6.7

=173.3°

道路几何尺寸、灯具布置和计算点

(P )的位置以及亮度计算角度图解

(3)从等光强曲线图上读出L1、L2、L3分别指向P 点的光强值。 假定灯具仰角为0°时,得: I L1=110cd I L2=175cd I L3=75cd (4)根据(β1,tg γ1)、(β2,tg γ2)和(β3,tg γ3)的值,查r 表(见前述)并通过内插计算可得:

r 1=171.87×10―4 r 2=188.78×10―4

r 3=11.73×10 ―4

(计算有误差) 内插法的基本计算式:

A C

B a c=a+(b-a) ×(B-C)/(B-A) b

(5)计算各个灯具在P 点上产生的亮度值 拟采用灯具的等光强曲线图

L 1=

21h I L r 1=110/102×171.87×10―4=189.06×10―4

L 2=22h I L r 2=175/102×188.78×10―4=330.36×10―4

L 3=23h

I L r 3=75/102×11.73×10―4=8.79×10―4

(6)求P 点的总亮度。

光源光通量(NG250)Φ=22500lm ,维护系数M=0.65,则

L P =(L 1+L 2+L 3) ×22500/1000×0.65=(189.06+330.36+8.79) ×10―4

×22.5×0.65=0.77cd/m 2

例二、

从下面所提供的等亮度曲线图确定图中A 和B 点的亮度值。并且道路为单幅,灯具左侧排列,光源光通量Φ=40000 lm ,灯具安装高度h=10m ,间距s=40m ,路面宽度w=15m ,观察者位于距右侧路缘4m (0.4h ),至L 1的距离100m (10h ),路面为I 类。

利用等亮度曲线图计算亮度方法图

解:(1)以与等亮度曲线图相同的h 为单位画出道路平面图并标出观察者的位置。

(2)将等亮度图的中心点(0,0)分别放在灯具L 1和L 2的投影位置上,令其纵轴平行于路轴。 (3)因A 、B 点在L 2的后方,可以直接读数;A 、B 点在L 1的前方,须将叠加在其上的等亮度图旋转,使其纵轴指向观察者。

(4)检查转过的角度,因小于5°(3.4°),可以直接读数 (5)分别读出两个灯具在A 点和B 点产生的亮度值,并求和。 A 点:灯具L 1:该灯具所产生的L max 的100%; 灯具L 2:该灯具所产生的L max 的1%。 所以A 点亮度为一个灯具所产生的L max 的101%。 B 点:灯具L 1:该灯具所产生的L max 的4%;

灯具L 2:该灯具所产生的L max 的4%。 所以B 点亮度为一个灯具所产生的L max 的8%。 (6)一个灯具所产生的最大亮度为

L max =0.104(ΦQ 0/h 2)=0.104×(40000×0.1)/102=4.16cd/m 2

(7)A 点和B 点的亮度分别为:

L A =1.01×4.16=4.2cd/m 2

L B =0.08×4.16=0.33cd/m 2

例三、

道路的几何条件如图所示,光源光通量Φ=20000 lm ,灯具安装高度h=10m ,间距s=50m ,单向车行道宽度w=6m ,观察者位于右侧灯具的排列线上。路面的Q 0=0.1,亮度产生系数曲线如下图,试求出右侧车行道的路面平均亮度。

道路几何条件图 所采用灯具的亮度产生曲线图

解:(1)求左侧灯具在右侧车行道上产生的亮度。 因观察者位于灯具排列线外(车道侧)10 m 处(1h ),故必须采用ηL 曲线组中的曲线C 。 可从图中读出:Y 2=0到Y 2=1.2h 的ηL =0.29; Y 2=0到Y 2=0.6h 的ηL =0.19 因此,Y 2=0.4h 到Y 2=1.2h 的ηL =0.29―0.19=0.10。 (2)求右侧灯具在右侧车行道上产生的亮度。

因观察者位于灯具排列线上,故必须采用ηL 曲线组中的曲线B 。

可从图中读出:Y 2=0到Y 2=0.4h 的ηL =0.15; Y 1=0到Y 1=0.2h 的ηL =0.09 因此,Y 2=0.4h 到Y 1=0.2h 的ηL =0.15+0.09=0.24。 (3)右侧车行道的路面平均亮度

L av =(0.1+0.24) ×(0.10×20000)/(50×6)=0.34×2000/300=2.27cd/m 2

如果要计算平均维持亮度值,则还需要乘上维护系数M 。

三、不舒适眩光计算

前面已经讲过,不舒适眩光可用眩光控制等级(G )来度量。而且也给出了G 的计算公式: G=13.84-3.31lgI 80+1.3(lg

8880I I )1/2-0.08 lg 88

80

I I +1.29lgF+0.97lg L av +4.41lgh ′-1.46logP+c 式中:I 80、I 88—灯具在和路轴平行的平面内,与向下垂轴形成80°、88°夹角方向上的光强值(cd );

该值可以通过灯具的光强表查得,适用范围50≤I 80≤7000(cd ); 1≤I 80/ I 88≤50;

F —灯具在和路轴平行的平面内,投影在76°角方向上的发光面积(m 2

);该值可以通过实际

采用的灯具计算而得,适用范围7×10-3≤F ≤4×10-1(m 2

);

L av ——路面上的平均亮度(cd/m 2);0.3≤L av ≤7(cd/m 2

); h ′—水平视线(1.5m )距灯具的高度(m );5≤h ′≤20(m);

P —每公里安装灯具数目;20≤P ≤100;

c —光源颜色修正系数,对低压钠灯c=+0.4,对其它光源c=0。

一旦光源、灯具选定,并且灯具的安装条件和道路的几何条件都确定,路面的反光特性也知道的话,就可以计算G 值。其中确定比较困难的是L av 。 举例如下:

假定有一条9m 宽的道路(Q 0=0.1),选用半截光型灯具,内装250W 高压钠灯(光通量22500lm ),

安装高度h=10m ,灯具间距s=33m ,悬挑长度O=1m ,I 80=40cd/1000lm ,I 90=12cd/1000lm ,F=0.084m 2

,试计算G 。 解:(1)根据给定条件进行路面平均亮度计算。

假定给出了亮度产生曲线并且从图中读得ηL =0.23,则:

L av =0.23×(0.10×22500)/(33×9)=0.23×2250/297=1.74cd/m 2

0.97lg L av =0.97lg 1.74=0.233

(2)因为I 80=40cd/1000lm ,Φ=22500 lm ,得I 80=40×22.5=900cd -3.31lgI 80=-3.31lg900=-9.78 (3)用内插法可求得:

I 88= I 90+(I 90 ―I 80)×(90―88)/(90―80)=12+28×0.2=17.6(cd/1000lm) I 88=17.6×22.5=396cd 所以-0.08 lg

8880I I =-0.08 lg 6.1740=-0.029 (4) 1.3(lg 8880I I )1/2=1.3(lg 6

.1740)1/2

=0.78

(5)因F=0.084m 2

,得1.29lgF= 1.29lg0.084=-1.38

(6) h ′= h ―h 0=10―1.5=8.5m 4.41lgh ′=4.41lg8.5=4.10

(7) 因s=33m P=1000/33=30.3 -1.46lgP=-1.46lg30.3=-2.16

将以上各计算值代入得G=13.84-9.78+0.78-0.029-1.38+0.233+4.1-2.16=5.6 对照CIE 推荐标准可知G 略高于最低要求值(刚刚可以接受)。

四、失能眩光计算

失能眩光可用阈值增量来定量描述,失能眩光的计算就是阈值增量的计算,其计算公式为:

8.065

av

v L

L TI =; 其适用范围为0.05<L av <5。 而v L =2

1

i

n

i i

E K θθ∑

=?

; 此式适用范围为1.5°

≤θ≤60°,常数K 取值为10(当θ以度为单位时)或3×10-3

(当θ以弧度为单位时)。 在进行等效光幕亮度或失能眩光计算时,CIE 作了下列规定和假定:

(1)观察点位于距右侧路缘1/4路宽处。

(2)假定车辆顶棚的挡光角度为20°,这意味着位于20°倾斜面以上的灯具不应包括在眩光计算中。

(3)观察者一直注视着前方路面90m 的一点(即观察方向和水平轴夹角为1°),该点距右侧路缘也为1/4路宽。

失能眩光的计算程序和范围:第一个灯具总是位于20°平面上,逐一依次计算500m 以内同一排灯

具所产生的光幕亮度并进行累加,但只要计算到某一个灯具所产生的光幕亮度小于其累加光幕亮度的20%时为止,对其它排灯具的计算也应遵照这一程序。

[例5-8]假定有一条道路,采用单侧排列布灯方式,灯具间距S=33m ,安装高度h=10m ,灯具的排列线在路面上的投影距右侧路缘正好为1/4路宽,灯具内光源光通量为9600lm ,灯具在通过灯具发光中心且与路轴平行的平面的光强分布表如下。 光强分布表

γ(°) 65 70 75 80 83 85 87 88 89 90 I (cd/1000lm )

238

123

77

42

28

23

17

15

13

10

解:根据CIE 的规定和题中计算条件,可有下图所示的几何关系。

失能眩光计算图解

(1)各个灯具至观察点的水平距离

对第一个灯具 γ1=71°, L 1=(10-1,5)tg71°=24.69m ;

对第二个灯具 L 2=33+24.69=57.69m ,γ2=tg -1

(57.69/8.5)=81.61°;

对第三个灯具 L 3=90.69m ,γ3=84.64°;对第四个灯具 L 4=123.69m ,γ4=86.06°; 对第五个灯具 L 5=156.69m ,γ5=86.69°;对第六个灯具 L 6=189.69m ,γ6=87.43°; 对第七个灯具 L 7=222.69m ,γ7=87.81°;对第八个灯具 L 8=255.69m ,γ8=88.09°; 对第九个灯具 L 9=288.69m ,γ9=88.31°; 对第十个灯具 L 10=321.69m ,γ10=88.48°; 对第十一个灯具 L 11=354.69m ,γ11=88.62°;对第十二个灯具 L 12=387.69m ,γ12=88.74°。 (2)由已知配光求各个灯具指向观察点的光强。可用内插法,由I 70和I 75可求出I 71 : I 71= I 70-(I 70- I 75)

70757071--=123-46×5

1

=113.8= I 1

同理可求出: I 81.61°=34.48=I 2 ; I 84.64°=23.9=I 3 ; I 86.06°=19.82=I 4 ; I 86.69°=17.33=I 5

I 87.43°=16.14=I 6 ; I 87.81°=15.38=I 7 ; I 88.09°=14.82=I 8 ; I 88.31°=14.38=I 9 I 88.48°=14.04=I 10 ; I 88.62°=13.76=I 11 ;I 88.74°=13.52=I 12

(3)计算各灯具(眩光源)在垂直于视线方向上所产生的照度。

ξi =90°-1°-(90°-γi )=γi -1°;H i =d i sin ξi ; E i =

H I i

i

2

sin 3

ξi =i

i

i d I ξsin 2

2

sin 3

ξi =

d

I i

i 2 sin ξi

因d i = L h i 22)5.1(+-,经计算得:

d 1=26.112; d 2=58.312; d 3=91.087; d 4=123.981; d 5=156.920; d 6=189.88; d 7=222.852; d 8=255.831; d 9=288.815; d 10=321.802; d 11=354.791; d 12=387.783 故E 1 =

d

I 21

1 sin ξ1=

112

.268.1132

×0.9396=0.1568

E 2=0.0100; E 3=0.00286; E 4=0.001284; E 5=0.0007019;E 6=0.0004467;E 7=0.000309 E 8=0.0002261; E 9=0.0001721; E 10=0.0001354;E 11=0.0001092;E 12=0.0000898; (4)计算视线方向和各灯具(眩光源)射向眼睛的光线之间的夹角。 θi =90°-γi +1°,故计算得: θ1=20°

θ

21

1

=0.0025; θ2=9.39°

θ2

2

1

=0.0110; θ3=6.36° θ

2

3

1

=0.0247;

θ4=4.94°

θ2

4

1

=0.0409; θ5=4.11° θ2

5

1

=0.0591; θ6=3.57° θ

2

6

1

=0.0784;

θ7=3.19°

θ2

7

1

=0.0982; θ8=2.91° θ2

8

1

=0.1180; θ9=2.69° θ

2

9

1

=0.1381

θ10=2.52°

θ

210

1

=0.1574; θi1=2.38°

θ

211

1

=0.1765; θi2=2.26°

θ

212

1

=0.1957

(5)求光幕亮度L v

L v =K

∑n

i

i

Ei

θ

2;

θ

21

1

E =0.0025×0.1568=0.000392

θ

22

2

E =0.00011;

θ

2

3

3

E =0.0000700;

θ

24

4

E =0.0000525;

θ

25

5

E =0.0000414;

θ

2

6

6

E =0.000035;

θ

27

7

E =0.0000303

θ

28

8

E =0.0000266;

θ

29

9

E =0.0000237;

θ

210

10

E =0.0000213;

θ

211

11

E =0.0000192;

θ

212

12

E =0.0000175;

需要注意的是,以上计算结果是当光源光通量为1000lm 时计算得到的,实际上光源光通量为9.6Klm ,故需乘以第数9.6。

当K=10时, L v =10×0.0008401×9.6=0.0806cd/m

2

求出了L v 后,若再计算出或测量出L av ,便可计算出TI 。

若观察者不是位于通过灯具发光中心且与路轴平行的平面(C 0平面)内,则计算就要复杂些了。

道路工程测量(圆曲线缓和曲线计算)

内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量 (center line survey) 1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。 2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。即测设直线上、圆曲线上或缓和曲线上中桩。

道路通行能力计算题

1、已知平原区某单向四车道高速公路,设计速度为120km/h,标准路面宽度和侧向净宽,驾驶员主要为经常往返于两地者。交通组成:中型车35%,大型车5%,拖挂车5%,其余为小型车,高峰小时交通量为725 pcu/h/ln,高峰小时系数为0.95。试分析其服务水平,问其达到可能通行能力之前还可以增加多少交通量? 解:由题意,fw=1.0,fp=1.0; fHV =1/{1+[0.35×(1.5-1)+0.05 ×(2.0-1)+0.05 ×(3.0-1)]}=0.755 通行能力:C=Cb × fw× fHV × fp =2200×1.0×0.755×1.0 =1661pcu/h/ln 高峰15min流率:v15=725/0.95=763pcu/h/ln V/C比:V15/C=763/1661=0.46 确定服务水平:二级 达到通行能力前可增加交通量:V=1661-763=898pcu/h/ln 2、已知某双向四车道高速公路,设计车速为100km/h,行车道宽度3.75m,内侧路缘带宽度0.75m,右侧硬路肩宽度3.0m。交通组成:小型车60%,中型车35%,大型车3%,拖挂车2%。驾驶员多为职业驾驶员且熟悉路况。高峰小时交通量为1136pcu/h/ln,高峰小时系数为0.96。试分析其服务水平. 解:由题意,ΔSw= -1km/h,ΔSN= -5km/h ,fp=1.0,SR=100-1-5=94km/h ,CR=2070pcu/h/h fHV =1/{1+[0.35×(1.5-1)+0.03 ×(2.0-1)+0.02 ×(3.0-1)]}=0.803 通行能力:C=CR×fHV ×fp =2070×0.803×1.0 =1662pcu/h/ln 高峰15min流率:v15=1136/0.96=1183pcu/h/ln V/C比:v15/C=1183/1662=0.71 确定服务水平:三级 3、今欲在某平原地区规划一条高速公路,设计速度为120km/h,标准车道宽度与侧向净空,其远景设计年限平均日交通量为55000pcu/d,大型车比率占30%,驾驶员均为职业驾驶员,且对路况较熟,方向系数为0.6,设计小时交通量系数为0.12,高峰小时系数取0.96,试问应合理规划成几条车道? 解:由题意,AADT=55000pcu/d,K=0.12,D=0.6 单方向设计小时交通量:DDHV=AADT×K×D=55000×0.12×0.6=3960pcu/h 高峰小时流率:SF=DDHV /PHF=3960/0.96=4125pcu/h 标准的路面宽度与侧向净空,则fw=1.0,fp=1.0,fHV=1/[1+0.3×(2-1)]=0.769 所需的最大服务流率:MSFd =SF/(fw×fHV×fp) =3375/0.769=5364pcu/h 设计通行能力取为1600pcu/h/ln,则所需车道数为:N =5364/1600=3.4,取为4车道。 4、郊区多车道一级公路车道数设计,设计标准:平原地形,设计速度100km/h,标准车道宽,足够的路侧净空,预期单向设计小时交通量为1800pcu/h,高峰小时系数采用0.9,交通组成:中型车比例30%,大型车比例15%,小客车55%,驾驶员经常往返两地,横向干扰较轻。 解:计算综合影响系数fC。 由题意,fw=1.0,fP=1.0,fe=0.9 (表2.9),Cb =2000pcu/h/ln, fHV =1/[1+ΣPi(Ei- 1)]=1/[1+0.3 ×(1.5-1)+0.15 ×(2-1)]=0.769 fc=fw×fHV×fe×fp=1.0 ×0.769×0.9×1.0=0.692 计算单向所需车道数:

公路竖曲线高程计算程序

fx-4800P计算器 公路竖曲线高程计算程序 (程序名:GAO CHENG-HP) Lb1 0︰{CDAB}︰C“K1=”︰D“H1=”︰A“PV-K0=”︰B “PV-H0=”↙ Lb1 1 ︰{REF }︰R“R=”︰E“K2=”︰F“H2=”↙Lb1 2︰U =(B-D)÷(A-C)︰V =(F-B)÷(E-A)︰U >V =>N = 0︰T = R ( U-V ) ÷2︰≠>N = 1︰T = R ( V-U ) ÷2 ︰⊿G = A -T ︰Q = A +T ︰W = T 2÷(2 R)↙ Lb1 3︰{K}︰K “I.T.E.ZY-K.YZ-K=0,1”︰ K =0 =>Goto 4 ︰⊿U “I 1”= U ▲V “I 2”= V ▲T = T ▲W “E”= W ▲G “ZY-K”= G ▲Q “YZ-K”= Q▲↙ Lb1 4︰{M}︰M“PK=”︰M ≤A =>Goto 5︰⊿Goto 6 ↙Lb1 5︰M ≤G =>H = B-U ( A-M ) ︰Goto 7 ︰≠>Prog “H1 ”︰N = 1 =>H = B+X-Y ︰Goto 7︰≠>N = 0 =>H = B-X -Y ︰Goto 7↙ Lb1 6︰M ≥Q =>H = B+V ( M-A ) ︰Goto 7 ︰≠>Prog “H2 ”︰N = 1 =>H = B+X+Y ︰Goto 7︰≠>N = 0 =>H = B-X +Y ↙ Lb1 7︰H “HP”= H ▲{L}︰L“BZ-T=0,L”︰L = 0 =>Goto 8 ︰⊿{S}︰S “IL=”︰H “HL”= H +S L ▲↙

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

道路坐标计算公式(简单实用)

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

【道路运输】通行能力计算

下面只是相关的计算方法只是要寻找更为专业只是还是要看专业书籍的。 道路通行能力 第3.2.1条路段通行能力分为可能通行能力与设计通行能力。 在城市一般道路与一般交通的条件下,并在不受平面交叉口影响时,一条机动车车道的可能通行能力按下式计算: Np=3600/ti(3.2.1-1) 式中Np——一条机动车车道的路段可能通行能力(pcu/h); ti——连续车流平均车头间隔时间(s/pcu)。 当本市没有ti的观测值时,可能通行能力可采用表3.2.1-1的数值。 不受平面交叉口影响的机动车车道设计通行能力计算公式如下: Nm=αc·Np(3.2.1-2) 式中Nm——一条机动车车道的设计通行能力(pcu/h); αc——机动车道通行能力的道路分类系数,见表3.2.1-2。

受平面交叉口影响的机动车车道设计通行能力应根据不同的计算行车速度、绿信比、交叉口间距等进行折减。 第3.2.2条一条自行车车道宽1m。不受平面交叉口影响时,一条自行车车道的路段可能通行能力按下公式计算: Npb=3600Nbt/(tf(ωpb-0.5))(3.2.2-1) 式中Npb——一条自行车车道的路段可能通行能力(veh/(h· m)); tf——连续车流通过观测断面的时间段(S); Nbt——在tf时间段内通过观测断面的自行车辆数(veh); ωpb——自行车车道路面宽度(m)。 路段可能通行能力推荐值,有分隔设施时为2100veh/(h·m);无分隔设施时为1800veh/(h·m)。 不受平面交叉口影响一条自行车车道的路段设计通行能力按下式计算: Nb=αb·Npb(3.2.2-2) 式中Nb——一条自行车车道的路段设计通行能力(veh/(h· m)); αb——自行车道的道路分类系数,见表3.2.2。 受平面交叉口影响一条自行车车道的路段设计通行能力,设有分隔设施时,推荐值为1000~1200veh/(h·m);以路面标线划分机动车道与非机动车道时,推荐值为800~1000veh/(h·m)。自行车交通量大的城市采用大值,小的采用小值。 第3.2.3条信号灯管制十字形交叉口的设计通行能力按停止线法计算。

excel自动计算表格

竭诚为您提供优质文档/双击可除excel自动计算表格 篇一:excel表间怎样实现自动计算 excel表间怎样实现自动计算?我在银行工作,日常业务是制作如下的表格,其中表1是分户账,表2是总账。 如果我在表1的第2、3、4行分别输入数据后,自动生成余额,那么在表2中怎样才能自动生成所需的数据呢?您可以用excel97中的宏来解决这个问题。这里向您提供一个例子,具体的实现您可以仿照此例子进行设计。下面假设表1为sheet1,表2为sheet2,并 仅就借方发生额进行您所要的自动统计。选择“工具”*“宏”*“宏...”,输入一宏名“test”,并输入如下代码:subtest() dimiasinteger dimkasinteger dimjasstring sheets(“sheet1”).select i=0 Fork=1to2

j=“b” j=j&k Range(j).select i=i+Val(activecell.FormulaR1c1) nextk sheets(“sheet2”).select Range(“b1”).select activecell.FormulaR1c1=i endsub 执行该宏后,表2中的借方发生额就是您所要的值了。您可以对此段程序分析并修改为适合您需求的宏。 简述excel中“合并计算”的功能作用,并叙述步骤 最佳答案所谓合并计算,用财务人员通俗的话讲,就是 把多个格式一致的报表,汇总起来 主要做法是: 新建一个与各报表格式一致的表格用作汇总表 点击要汇总的数据项所在单元格 点菜单:"数据-合并计算" 弹出"合并计算"对话框 在引用位置中,选择某一报表的相同位置 点添加 如此,把所有报表相同位置都添加进去

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

通行能力及服务水平整理版

通行能力分析 一、道路通行能力的概述 1、基本通行能力:指在一定的时段,理想的道路、交通、控制和环境条件下,道路的一条车道或一均匀段上或一交叉点,合情合理地期望通过人或车辆的最大小时流率。(基本通行能力是在理想条件下道路具有的通行能力,也称为理想通行能力。) 2、实际通行能力(可能通行能力):指在一定时段,在实际的道路、交通、控制及环境条件下,一条车道或一均匀段上或一交叉点,合情合理地期望通过人或车辆的最大小时流率。(可能通行能力则是在具体条件的约束下,道路具有的通行能力,其值通常小于基本通行能力。) 3、设计通行能力:指在一定时段,在具体的道路、交通、控制及环境条件下,一条车道或一均匀段上或一交叉点,对应服务水平的通行能力。(指在设计道路时,为保持交通流处于良好的运行状况所采用的特定设计服务水平对应的通行能力,该通行能力不是道路所能提供服务的极限。) 二、多车道路段通行能力 1、一条车道的理论通行能力 理论通行能力是指在理想的道路与交通条件下,车辆以连续车流形式通过时的通行能力。在通行能力的理论分析过程中,通常以时间度量的车头时距t h和空间距离度量的车头间距s h为基础,推导通行能力的理论分析模型。其计算公式为: 或 1000 = s V N h 式中: N——一条车道的理论通行能力(辆/h); t h——饱和连续车流的平均车头时距(s); V——行驶车速(km/h) s h——连续车流的车头间距(m)。 我国对一条车道的通行能力进行了专门研究,在《城市道路工程设计规范 CJJ37-2012》中建议的一条车道的基本通行能力和设计通行能力的规定如下表所示。 表4.2.2 快速路基本路段一条车道的通行能力

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

市政道路高速公路曲线高程计算公式

市政道路 高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度

α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算

道路通行能力的计算方法

道路通行能力的计算方法 土木073班陈雷 200711003227 摘要:探讨道路路段的通行能力和交叉口的通行能力的计算方法;并提出了道路通行能力有待进一步研究的若干问题。 关键词: 通行能力;计算方法;交通规则;交通管理。 道路通行能力是指在特定的交通条件、道路条件及人为度量标准下单位时间能通过的最大交通量。在道路建设和管理过程中,如何确定道路建设的合理规模及建设时间,如何科学地进行公路网规划、项目可行性研究、道路设计以及道路建设后评价,如何知道道路网的最优管理模式,都需要以道路通行能力系统研究的成果为依据。本文对道路与交叉口的通行能力计算方法进行简单的探讨。 一、道路路段通行能力 1、基本通行能力 基本通行能力是指道路与交通处于理想情况下,每一条车道(或每一条道路) 在单位时间内能够通过的最大交通量。 65 m , 路旁的侧向余宽作为理想的道路条件,主要是车道宽度应不小于3. 不小于1.75 m , 纵坡平缓并有开阔的视野、良好的平面线形和路面状况。作为交通的理想条件, 主要是车辆组成单一的标准车型汽车, 在一条车道上以相同的速度,连续不断的行驶,各车辆之间保持与车速相适应的最小车头间隔, 且无任何方向的干扰。 在这样的情况下建立的车流计算模式所得出的最大交通量,即基本通行能力,其公式如下:

其中: v ———行车速度(km/ h) ; t0车头最小时距(s) ; l0 ———车头最 小间隔(m) ; lc ———车辆平均长度(m) ; la ———车辆间的安全间距(m) ; lz ———车辆的制动距离(m) ; lf ———司机在反应时间内车辆行驶的距离(m) ; l0 = lf + lz + la + lc。 2、可能通行能力 计算可能通行能力Nk 是以基本通行能力为基础考虑到实际的道路和交通 确定其修正系数,再以此修正系数乘以前述的基本通行能力,即得实际道状况, 路、交通与一定环境条件下的可能通行能力。影响通行能力不同因素的修正 系数为: 1)道路条件影响通行能力的因素很多, 一般考虑影响大的因素, 其修正系数 有: ?车道宽度修正系数γ1 ; ?侧向净空的修正系数γ2 ; ?纵坡度修正系数 γ3 ; ?视距不足修正系数γ4 ; ?沿途条件修正系数γ5 。 2) 交通条件的修正主要是指车辆的组成, 特别是混合交通情况下, 车辆类型 众多, 大小不一, 占用道路面积不同,性能不同, 速度不同, 相互干扰大, 严重地 影响了道路的通行能力。一般记交通条件修正系数为γ6 。 于是,道路路段的可能通行能力为 Nk = Nmaxγ1γ2γ3γ4γ5γ6 (辆/ h) 3、实际通行能力 实际通行能力Ns 通常可作为道路规划和设计的依据。只要确定道路的可能通 行能力,再乘以给定服务水平的服务交通量与通行能力之比,就得到实际通行能力, 即 Ns = Nk ×服务交通量?通行能力(辆/ h) 。 二、平面交叉口的通行能力

曲线道路坐标计算(Excel)

曲线道路坐标计算 §1 曲线要素计算 缓和曲线是在不改变直线段方向和保持圆曲线半径不变的条件下,插入到直线段和圆曲线之间的。其曲率半径ρ从直线的曲率半径∞(无穷大) 逐渐变化到圆曲线的半径R ,在缓和曲线上任意一点的曲率半径ρ与缓和曲线的长度l 成反比,以公式表示为:l 1 ∝ρ 或 C l =?ρ(C 为常数,称 曲线半径变更率)。当o l l =时,R =ρ,应有o l R l C ?=?=ρ 以上几式是缓和曲线必要的前提条件。在实际应用中,可采取符合这一前提条件的曲线作为缓和曲线。常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 为了在圆曲线与直线之间加入一段缓和曲线o l ,原来的圆曲线需要在垂直于其切线的方向移动一段距离p ,因而圆心就由'O 移到O ,而原来的半径R 保持不变,如图。 由图中可看出,缓和曲线约有一半的长度是靠近原来的直线部分,而另一半是靠近原来的圆曲线部分,原来圆曲线的两端其圆心角o β相对应的那部分圆弧,现在由缓和曲线所代替,因而圆曲线只剩下缓圆点(HY )到圆缓点(YH )这段长度即y l 。 o β为缓和曲线的切线角,即缓圆点或圆缓点切线与直缓点或缓直点切线的交角,亦即圆曲线HY→YH 两端各延长 2 o l 部分所对应的圆心角。 γ为缓和曲线总偏角,即从直缓点(ZH )测设缓圆点(HY )或从缓直点(HZ )测设圆缓点(YH )的偏角。 q 为切线增量(切垂距),即ZH (或HZ )到从圆心O 向ZH (或HZ )的切线作垂线垂足的距离。 p 为圆曲线内移值,即垂线(从圆心O 向ZH (或HZ )的切线作垂线)长与圆曲线半径R 之差。

道路通行能力计算

第二节道路通行能力 第3.2.1条路段通行能力分为可能通行能力与设计通行能力。 在城市一般道路与一般交通的条件下,并在不受平面交叉口影响时,一条机动车车道的可能通行能力按下式计算: Np=3600/ti(3.2.1-1) 式中Np——一条机动车车道的路段可能通行能力(pcu/h); ti——连续车流平均车头间隔时间(s/pcu)。 当本市没有ti的观测值时,可能通行能力可采用表3.2.1-1的数值。 不受平面交叉口影响的机动车车道设计通行能力计算公式如下: Nm=αc·Np(3.2.1-2) 式中Nm——一条机动车车道的设计通行能力(pcu/h); αc——机动车道通行能力的道路分类系数,见表3.2.1-2。 受平面交叉口影响的机动车车道设计通行能力应根据不同的计算行车速度、绿信比、交叉口间距等进行折减。 第3.2.2条一条自行车车道宽1m。不受平面交叉口影响时,一条自行车车道的路段可能通行能力按下公式计算: Npb=3600Nbt/(tf(ωpb-0.5))(3.2.2-1)

式中Npb——一条自行车车道的路段可能通行能力(veh/(h· m));tf——连续车流通过观测断面的时间段(S); Nbt——在tf时间段内通过观测断面的自行车辆数(veh); ωpb——自行车车道路面宽度(m)。 路段可能通行能力推荐值,有分隔设施时为2100veh/(h·m);无分隔设施时为1800veh/(h·m)。 不受平面交叉口影响一条自行车车道的路段设计通行能力按下式计算: Nb=αb·Npb(3.2.2-2) 式中Nb——一条自行车车道的路段设计通行能力(veh/(h· m));αb——自行车道的道路分类系数,见表3.2.2。 受平面交叉口影响一条自行车车道的路段设计通行能力,设有分隔设施时,推荐值为1000~1200veh/(h·m);以路面标线划分机动车道与非机动车道时,推荐值为800~1000veh/(h·m)。自行车交通量大的城市采用大值,小的采用小值。 第3.2.3条信号灯管制十字形交叉口的设计通行能力按停止线法计算。 十字形交叉口的设计通行能力为各进口道设计通行能力之和。 进口道设计通行能力为各车道设计通行能力之和。 一、各种直行车道的设计通行能力。 1.直行车道设计通行能力应按下式计算: Ns=3600ψs((tg-t1)/tis+1)/tc(3.2.3-1) 式中Ns——一条直行车道的设计通行能力(pcu/h); tc——信号周期(s); tg——信号周期内的绿灯时间(s); t1——变为绿灯后第一辆车启动并通过停止线的时间(s),可采用2.3s;tis——直行或右行车辆通过停止线的平均间隔时间(s/pcu); ψs——直行车道通行能力折减系数,可采用0.9。

道路放样曲线计算公式汇总

一、对称曲线 1、曲线要素计算(α表示偏角、l s 表示缓和曲线长,R 表示半径) 切线角:错误!未找到引用源。 内移值:错误!未找到引用源。R 242s l P = 切线增量: 错误 ! 未找到引用源。2R 2403s l -2s l q = 切线长:错误!未找到引用源。 曲线长:错误!未找到引用源。 外矢距:错误!未找到引用源。R -2 c os P R E 0α+= 切曲差:错误!未找到引用源。 2、曲线主点里程计算

3、曲线中桩计算 (1)当点在ZH →HY 之间时 错误!未找到引用源。 (l i 为该点里程减去 ZH 点里程) 任意点的切线角: 任意点的偏角:πβδ? ?==180l 6li 3/s 2i i R 任意点的弦的方位角:i i δγθ±=ZH (右+,左—) 任意点的弦长:2i Y 2i X i C += 任意点的坐标:i i i i sin cos θθ?+=?+=C Y Y C X X ZH ZH (2)当点在HY →YH 之间时 HY 点的切线方位角:0βγγ±=ZH HY (右+,左—) 任意点的切线角:π ??=?180R l i i (li 为该点里程减去HY 点里程) 偏角:π ??==18022/i i R l i ?δ 弦的方位角:i i δγθ±=HY (右+,左—) i i R X ?sin ?= 错误!未找到引用源。)(i i cos -1??=R Y 弦长:2 i 2i i Y X C +=

坐标:i i i i sin cos θθ?+=?+=C Y Y C X X HY HY (3)当点在YH→HZ 之间时 错误!未找到引用源。 (l i 为HZ 点里程减去该点里程) 任意点的切线角: 偏角:πβδ? ?==180l 6li 3/s 2i i R 弦的方位角i i δγθ±=HZ (右—,左+) 弦长:2i 2i i Y X C += 坐标:i i i i sin cos θθ?+=?+=C Y Y C X X HZ HZ

相关文档
最新文档