江苏专用2018高考数学一轮复习第一章集合与常用逻辑用语第1课集合的概念与运算教师用书
(新)江苏专用2018版高考数学大一轮复习第一章集合与常用逻辑用语1_2命题及其关系充分条件与必要条件教师
第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题; ②命题“如果△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题; ③命题“若a >b >0,则3a >3b >0”的逆否命题;④命题“若m >1,则不等式mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题. 其中真命题的序号为________. 答案 ①②③解析 ①命题“若b 2-4ac <0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题为:“若b 2-4ac ≥0,则方程ax 2+bx +c =0(a ≠0)有实根”,根据一元二次方程根的判定知其为真命题. ②命题“如果△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB =BC =CA ”,由等边三角形的定义可知其为真命题.③原命题“若a >b >0,则3a >3b >0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一命题及其关系例1 (2016·扬州模拟)下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是________.(填序号)答案③④解析对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确.思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P .∴[-2,10][1-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >a }{x |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1;④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的序号为____________.答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数.当x ∈[3,4]时,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立.反之,若x ∈[3,4]时,f (x )是减函数,此时x -4∈[-1,0],∵T =2,∴f (x )=f (x -4),则当x ∈[-1,0]时,f (x )是减函数.∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧ -1<m -1,m +1≤3,∴0≤m ≤2. 13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________.答案 [32,+∞) 解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32. 故所求λ的取值范围是[32,+∞). *14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n +q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1;当n ≥2时,a n =S n -S n -1=pn -1(p -1), 当n =1时也成立.∴a n =p n -1(p -1),n ∈N *. 又a n +1a n =p n p -1p n -1p -1=p , ∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列,∴a 2a 1=a n +1a n =p . ∴p p -1p +q=p ,即p -1=p +q ,∴q =-1. 综上所述,q =-1是数列{a n }为等比数列的充要条件.。
高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}
高考数学一轮复习 第一章 集合与常用逻辑用语 第1课
第1课集合的概念及运算1.集合的含义与表示①集合中元素的三个特征:确定性、互异性、无序性.②集合中元素与集合的关系意义符号表示a属于集合A a是集合A的元素a∈Aa不属于集合A a不是集合A的元素a∉A③集合的表示法:列举法、描述法、韦恩图.④常用数集的表示集合自然数集正整数集整数集有理数集实数集表示N N*Z Q R2.集合间的基本关系①子集:若对∀x∈A,都有x∈B,则A⊆B.②真子集:若A⊆B,但∃x∈B,且x∉A,则AÜB.③相等:若A⊆B,且B⊆A,则A=B.④空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合A元素的个数为n则n-.①A的子集个数为2n.②A的真子集个数为215. 集合的运算及性质A B A A B =⇔⊆I ,A B A B A =⇔⊆U .【例1】(2013延庆一模)已知集合{A =,{1,}B m =,A B A =U ,则m =( )A .0或.0或3 C .1.1或3【答案】B【解析】∵A B A =Y ,∴A B ⊆,∴3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A =Y . 若m m =,解得0=m 或1=m .若0=m ,则{1,3,0},{1,0}A B ==,满足A B A =Y .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上:0=m 或3=m .【变式】(2014黑龙江质检)设集合223|144x y A x ⎧⎫=+=⎨⎬⎩⎭,2{}B y y x ==,则A B =I ( )A .[2,2]-B .[0,2]C .[0,4]D .[0,8]【答案】B 【解析】∵2223|1|1444x y x A x x ⎧⎫⎧⎫=+==≤⎨⎬⎨⎬⎩⎭⎩⎭{}{}2|4|22[2,2]x x x x =≤=-≤≤=- 2{}{0}[0,)B y y x y y ===≥=+∞,∴[0,2]A B =I .【例2】(2013惠州调研)已知集合{1,1}A =-,{10}B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为( )A .{1}-B .{1}C .{1,1}-D .{1,0,1}-【答案】D【解析】(1)若0a =时,得B =∅,满足B A ⊆;(2)若0a ≠时,得1B a ⎧⎫=-⎨⎬⎭⎩.B A ⊆,∴11a -=-或11a -=,解得1a =,或1a =-. 故所求实数a 的值为0,或1,或1-.【变式】已知集合A ={|25}x x -<≤,}121|{-≤≤+=m x m x B 且A B A =U ,则实数m 的取值范围是( )A .[2,3]B .(2,3]C .(,3]-∞D .(2,)+∞【答案】C【解析】 ∵ A B A =U ,∴ B A ⊆.(1)当B =∅时,则121m m +>-,解得2m <.(2)当B ≠∅时,则12121512m m m m +≤-⎧⎪-≤ ⎨⎪+>-⎩,解得23m ≤≤. ∴实数m 的取值范围是3m ≤.【例3】(2013揭阳一模)已知集合2{|log (1)}A x y x ==+,集合1{|(),0}2x B y y x ==>,则A B =I ( )A .(1,)+∞B .(1,1)-C .(0,)+∞D .(0,1)【答案】D【解析】∵{|1}(1,)A x x =>-=-+∞, {|01}(0,1)B y y =<<=,∴(0,1)A B =I .【变式】(2013山东高考)已知集合A 、B 均为全集{1,2,3,4}U =的子集,且U (){4}A A B =U ð,{1,2}B =,则U ()A B =I ð( )A .{3}B .{4}C .{3,4}D .∅【答案】A【解析】∵U (){4}A B =U ð,∴4A ∉且4B ∉,∵{1,2}B =,∴3B ∉,3A ∈,∴{3}A =,或{1,3}A =,或{2,3}A =,或{1,2,3}A =,∴U {3,4}B =ð,U ()A B =I ð{3}.【例4】(2013珠海一模)设U 为全集,对集合X Y 、,定义运算“⊕”,满足U ()X Y X Y ⊕=U ð,则对于任意集合X Y Z 、、,()X Y Z ⊕⊕=( )A .U ()()X Y Z U U ðB .U ()()X Y Z I U ðC .U U [()()]X Y Z U I 痧D .U U ()()X Y Z U U 痧【答案】D【解析】()[()]()()U U U X Y Z X Y Z X Y Z ⊕⊕=⊕=U U U 痧?.【变式】设P 、Q 为两个非空实数集合,定义集合{,}P Q a b a P b Q +=+∈∈,若{0,2,5}P =,{1,2,6}Q =,则P Q +中元素的个数为( )A .9B .8C .7D .6 【答案】B 【解析】∵{,}P Q a b a P b Q +=+∈∈,{0,2,5}P =,{1,2,6}Q =,∴当0a =时,a b +的值为1,2,6;当2a =时,a b +的值为3,4,8;当5a =时,a b +的值为6,7,11,∴{1,2,3,4,6,7,8,11}P Q +=,∴P Q +中有8个元素.第1课 集合的概念及运算的课后作业1.(2013福建高考)若集合}4,3,1{},3,2,1{==B A ,则B A I 的子集个数为( )A .2B .3C .4D .16【答案】C【解析】∵{1,3}A B =I ,∴A B I 的子集为,{1},{3},{1,3}∅.2.(2014惠州调研)已知集合{1,2,3}M =,{14}N x Z x =∈<<,则( )A .N M ⊆B .N M =C .}3,2{=N M ID .)4,1(=N M Y【答案】C 【解析】{14}{2,3}N x Z x =∈<<=,故{2,3}M N =I .3.(2013全国高考)设集合{}{}1,2,3,4,5,A B =={}|,,,M x x a b a A b B ==+∈∈则M 中的元素个数为( )A .3B .4C .5D .6【答案】B【解析】{5,6,7,8}M =,M 有4个元素.4.(2014中山质检)设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8【答案】B 【解析】阴影部分表示U ()A B I ð,故选B .5.(2013·惠州一模)若集合2450{|}A x x x =--= ,21{|}B x x == ,则A∩B=( )A .-1B .{-1}C .{-1,5}D .{1,-1}【答案】B【解析】由集合A 中的方程2450x x --=,解得:5x = 或1x =-,所以集合,5{}1A =- ,由集合B 中的方程21x =,解得:1x = 或1x =-,所以集合,1{}1B =- ,则1{}A B =-I .故选B.6. (2013·新课标全国卷Ⅰ)已知集合{}1,2,3,4A = ,2{|}B x x n n A ==∈,,则A B =I ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】因为2x n n A =∈,,所以1,4,9,16x = .所以{}1,4,9,16B = . 所以{}1,4A B =I ,故选A.7.(2013·梅州二模)已知集合2{}3,A a = ,集合1{}0,,B b a =-,且A∩B={1},则A∪B=( )A .{0,1,3}B .{1,2,4}C .{0,1,2,3}D .{0,1,2,3,4}【答案】C【解析】因为2{}3,A a =,集合1{}0,,B b a =- ,且A∩B={1},所以21a =,解得:1a = 或1a =- ,当1a = 时,1110a -=-= ,不合题意,舍去;当1a =- 时,(1112)a ---== ,此时1b =,所以{}3,1A = ,集合{}0,1,2B = ,则{}0,1,2,3A B U = .故选C.8.若全集U R = ,集合{|}{|}10A x x x x =≥≤U ,则U A =ð ________.【答案】{x|0<x<1}9.(2012·上海卷)若集合1{}0|2A x x =-> ,{|1}B x x =< ,则A∩B=________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1 【解析】解得集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12,集合B ={x|-1<x <1},求得A∩B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1. 10.(2013·河南调研)设全集22,3{,23}I a a +-= ,{|21|}A a =,+ ,{}I 5A =ð,|2{}M x x log a == ,则集合M 的所有子集是________________.【答案】∅ 、{1}、{2}、{1,2}【解析】因为I ()I A A =U ð,所以2{}{2,3,232,5,|1|}a a a +-=+,所以|a +1|=3,且2235a a +-= ,解得4a =- 或2a = .所以{}22,241|2|,{}M log log -== . 11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x∈R ,220{|}B x x x m =--< ,若{|}14A B x x -=<<I ,求实数m 的值.【解析】由6x +1>1,得x -5x +1≤0,所以-1<x≤5,即A ={x|-1<x≤5}, 又A∩B={x|-1<x <4},所以4是方程220x x m --= 的根,于是24240m -⨯-=,解得m =8.此时24{|}B x x =<<- ,符合题意,故实数m 的值为8.12.设全集I R =,已知集合2{|()}30M x x =+≤ ,2}6{|0N x x x =+-= .(1)求I ()M N I ð;(2)记集合I ()A M N =I ð,已知集合{|}15,B x a x a a R =-≤≤-∈,若B∪A=A , 求实数a 的取值范围.【解析】(1)∵2{|()30}{3}M x x =+=-≤ ,26{|}{32}0,N x x x =+-==-, ∴I |}3{M x x R x =∈≠-且ð ,{}I ()2M N ∴=I ð .(2){}I 2()A M N =I =ð ,∵A B A U =,B A ∴⊆ ,∴B =∅ 或{}2B = ,当B =∅时,15a a ->- ,∴3a > ;当{}2B =时,1252a a -=⎧⎨-=⎩,解得3a =从而3a ≥,综上所述,所求a 的取值范围为[3,)+∞.。
2018年高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念与运算课件理
• 1.已知集合A={x|x2-3x+2=0,x∈R},B ={x|0<x<5,x∈N},则满足条件A⊆C⊆B的 集合C的个数为( D ) • A.1 B.2 • C.3 D.4 • 解析:A={1,2},B={1,2,3,4},∵A⊆C⊆B, ∴满足条件的集合C有{1,2},{1,2,3}, {1,2,4},{1,2,3,4}共4个,故选D.
• 【例4】 (1)(2014·湖北卷)已知集合A={(x,y)|x2+y2≤1,x, y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合 A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B 中元素的个数为( ) C • A.77 B.49 • C.45 D.30 • (2)设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且 k+1∉A,那么k是A的一个“单一元”,给定S= {1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含 “单一元”的集合共有________ 个. 6
解析:(1)∵A={0,1,2},∴B={x-y|x∈A,y∈A}={0,-1,-2,1,2}.故集合 B 中有 5 个元素. 9 (2)当 a=0 时,显然成立;当 a≠0 时,Δ=(-3) -8a=0,即 a= . 8
2
(3)因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
•二 集合的基本关系
• (1)空集是任何集合的子集,在涉及集合关系 时,必须优先考虑空集的情况,否则会造成 漏解. • (2)已知两个集合间的关系求参数时,关键是 将条件转化为元素或区间端点间的关系,进 而转化为参数所满足的关系,常用数轴、 Venn图等来直观解决这类问题.
高考数学一轮复习 第一章 集合与常用逻辑用语 第1讲 集合的概念和运算 理(2021年最新整理)
2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念和运算理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念和运算理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合的概念和运算理的全部内容。
第一章集合与常用逻辑用语第1讲集合的概念和运算一、选择题1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}解析∵A={y|x2+y2=1},∴A={y|-1≤y≤1}.又∵B={y|y=x2},∴B={y|y≥0}.A∩B={y|0≤y≤1}.答案 B2。
设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}解析由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.答案 B3.设集合U={x|x〈5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3}D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.答案B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=±错误!.故“a=1”是“N⊆M"的充分不必要条件.答案A6.设集合A=错误!,B={y|y=x2},则A∩B=( ).A.[-2,2] B.[0,2]C.[0,+∞)D.{(-1,1),(1,1)}解析A={x|-2≤x≤2},B={y|y≥0},∴A∩B={x|0≤x≤2}=[0,2].答案B二、填空题7.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.解析∵3∈B,又a2+4≥4,∴a+2=3,∴a=1。
江苏2018版高考数学复习第一章集合与常用逻辑用语1.1集合及其运算教师用书文苏教版
1.1 集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合间的基本关系AB (或BA )3.集合的基本运算【知识拓展】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n-1. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B .3.A ∩∁U A =∅;A ∪∁U A =U ;∁U (∁U A )=A . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)任何一个集合都至少有两个子集.( × )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若{x 2,1}={0,1},则x =0,1.( × ) (4){x |x ≤1}={t |t ≤1}.( √ )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( √ ) (6)若A ∩B =A ∩C ,则B =C .( × )1.(教材改编)设A ={x |x 2-4x -5=0},B ={x |x 2=1},则A ∪B =__________. 答案 {-1,1,5}解析 ∵A ={-1,5},B ={-1,1},∴A ∪B ={-1,1,5}.2.已知集合A ={x |x 2-6x +5≤0},B ={x |y =x -3},则A ∩B =__________. 答案 {x |3≤x ≤5}3.(教材改编)设全集U =R ,A ={x |x <1},B ={x |x ≥m }.若A ∩B =∅,A ∪B =R ,则m =________. 答案 1解析 ∵A ∩B =∅,A ∪B =R ,∴B =∁U A ,故m =1.4.(2016·天津改编)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________.答案 {1,4}解析 因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4; 当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10; 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.5.(2016·苏州模拟)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________. 答案 2解析 ∵A ∪B ={1,3,m }∪{3,4}={1,2,3,4}, ∴2∈{1,3,m },∴m =2.题型一 集合的含义例1 (1)已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为________. (2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 (1)4 (2)0或98解析 (1)∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3, 又∵x ∈Z ,∴x 值分别为5,3,1,-1, 故集合A 中的元素个数为4.(2)若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型是数集、点集还是其他类型的集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)(2016·盐城模拟)已知A ={x |x =3k -1,k ∈Z },则下列表示正确的是________. ①-1∉A②-11∈A ③3k 2-1∈A (k ∈Z )④-34∉A(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =________.答案 (1)③ (2)2解析 (1)∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A . (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,得ba=-1, 所以a =-1,b =1,所以b -a =2. 题型二 集合的基本关系例2 (1)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是________. (2)已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________________.答案 (1)4 (2)[2 016,+∞)解析 (1)∵{1,2}⊆B ,I ={1,2,3,4},∴满足条件的集合B 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)由x 2-2 017x +2 016<0,解得1<x <2 016, 故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 016},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(1)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为____________.(2)(2016·连云港模拟)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________. 答案 (1)-13或12或0 (2)(-∞,4]解析 (1)由题意知A ={2,-3}. 当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a,由B ⊆A ,可得1a =-3或1a=2,∴a =-13或a =12.综上,a 的值为-13或12或0.(2)当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2017·江苏前黄中学月考)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.(2)设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为________.答案(1){7,9} (2){x|-2≤x<1}解析(1)U={1,2,3,4,5,6,7,8,9,10},画出Venn图,如图所示,阴影部分就是所要求的集合,即(∁U A)∩B={7,9}.(2)阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.命题点2 利用集合的运算求参数例 4 (1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是____________.(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________. 答案(1)(-1,+∞)(2)4解析(1)因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)由题意可得{a,a2}={4,16},∴a=4.思维升华(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)已知A={x|2a≤x≤a+3},B={x|x>5},若A∩B=∅,则实数a的取值范围为________.(2)已知集合A={x|x2-x-12≤0},B={x|2m-1<x<m+1},且A∩B=B,则实数m的取值范围为________.答案(1)a≤2或a>3 (2)[-1,+∞)解析 (1)要使A ∩B =∅,则⎩⎪⎨⎪⎧2a ≤a +3,a +3≤5,或2a >a +3,∴a ≤2或a >3.(2)由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例5 若对任意的x ∈A ,1x ∈A ,则称A 是“伙伴关系集合”,则集合M ={-1,0,12,1,2}的所有非空子集中,具有伙伴关系的集合的个数为________. 答案 7解析 具有伙伴关系的元素组有-1;1;2和12共三组,它们中任一组、两组、三组均可组成非空伙伴关系集合,所以非空伙伴关系集合分别为{1},{-1},{12,2},{-1,1},{-1,12,2},{1,12,2},{-1,1,12,2},共7个.思维升华 解决以集合为背景的新定义问题,要抓住两点(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =____________. 答案 {x |3≤x ≤4}解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}.1.集合关系及运算典例 (1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =____________. (2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________. 错解展示解析 (1)由A ∪B =A 得B ⊆A ,∴m =3或m =m , 故m =3或m =0或m =1. (2)∵B ⊆A ,讨论如下:①当B =A ={0,-4}时,⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1.②当B A 时,由Δ=0得a =-1, 此时B ={0}满足题意,综上,实数a 的取值范围是{1,-1}. 答案 (1)1或3或0 (2){1,-1} 现场纠错解析 (1)A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3. (2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得 ⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1; ②当B ≠∅且BA 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a=-1,此时B={0}满足题意;③当B=∅时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1.综上所述,所求实数a的取值范围是(-∞,-1]∪{1}.答案(1)0或3 (2)(-∞,-1]∪{1}纠错心得(1)集合的元素具有互异性,参数的取值要代入检验.(2)当两个集合之间具有包含关系时,不要忽略空集的情况.1.(2016·江苏苏州暑期检测)已知集合A={0,1},B={-1,0},则A∪B=________.答案{0,-1,1}解析由集合并集的定义可得A∪B={0,-1,1}.2.(2017·扬州月考)已知集合A={x|x2-2x<0},B={0,1,2},则A∩B=__________.答案{1}解析因为A={x|0<x<2},B={0,1,2},所以A∩B={1}.3.(2016·盐城模拟)已知集合A={1,2,3,4,5},B={1,3,5,7,9},C=A∩B,则集合C的子集的个数为________.答案8解析因为A∩B={1,3,5},所以C={1,3,5},故集合C的子集的个数为23=8.4.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则下图中阴影部分所表示的集合为__________.答案{1}解析因为A∩B={2,3,4,5},而图中阴影部分为A去掉A∩B,所以阴影部分所表示的集合为{1}.5.若集合A={(1,2),(3,4)},则集合A的真子集的个数是________.答案 3解析 集合A 中有两个元素,则集合A 的真子集的个数是22-1=3.6.已知集合A ={(x ,y )| x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素的个数为_____________________________________________________________. 答案 2解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素.7.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是__________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.8.(2015·浙江改编)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =__________. 答案 {x |1<x <2}解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2}.9.设集合Q ={x |2x 2-5x ≤0,x ∈N },且P ⊆Q ,则满足条件的集合P 的个数是________. 答案 8解析 因为Q ={x |2x 2-5x ≤0,x ∈N }={x |0≤x ≤52,x ∈N }={0,1,2},所以满足P ⊆Q 的集合P 的个数是23=8.10.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是________. 答案112解析 由已知,可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,即0≤m ≤14;⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1,所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112. 11.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________.答案 -32解析 ∵3∈A ,∴m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,不符合集合的互异性,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意, ∴m =-32. 12.(2016·南通模拟)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________.答案 (-∞,-1]∪(1,+∞)解析 因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}.13.(2016·江苏无锡新区期中)设P 、Q 为两个非空实数集合,定义集合P *Q ={z |z =ab ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________. 答案 3解析 按P *Q 的定义,P *Q 中元素为2,-2,0,共3个.14.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是________. 答案 5解析 当x =0,y =0时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时, x -y =1;当x =1,y =1时,x -y =0;当x =1,y =2时, x -y =-1;当x =2,y =0时,x -y =2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.15.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________. 答案(-∞,-2]解析集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].。
2018版高考数学文江苏专用大一轮复习讲义课件 第一章
跟踪训练1 已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命
②③ 题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是______.
答案 解析
当x>y时,-x<-y,
故命题p为真命题,从而綈p为假命题.
当x>y时,x2>y2不一定成立,
故命题q为假命题,从而綈q为真命题.
答案 解析
綈p为真知p为假,可得p∧q为假; 反之,若p∧q为假,则可能是p真q假, 从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件.
3.( 教材改编 ) 若不等式 x2 - x>x - a 对 ∀x∈R 都成立,则 a 的取值范围是 a>1 _____. 答案
解析
方法一 不等式x2-x>x-a对∀x∈R都成立,
2.全称量词和存在量词 量词名词 常见量词 表示意、全部、每一个、任给等
存在一个、至少有一个、有一个、某个、有些、 某些等
存在量词
∃ ___
3.全称命题和存在性命题
命题名称 全称命题 命题结构 对M中任意一个x,有p(x)成立 命题简记 ∀x∈M,p(x) ____________ ∃x∈M,p(x) ____________
π 5.(2015· 山东)若“∀x∈ 0, 4
,tan x≤m”是真命题,则实数m的最小值
1 为____.
答案
解析
π 在0,4 上是增函数,
∵函数 y=tan x
π ∴ymax=tan 4=1.
依题意,m≥ymax,即m≥1. ∴m的最小值为1.
4.已知实数a满足1<a<2,命题p:y=loga(2-ax)在[0,1]上是减函数,命题 q:|x|<1是x<a的充分不必要条件,则下列命题: ①p∨q为真;②p∧q为假;③(綈p)∧q为真;④(綈p)∧(綈q)为假.其中正确 ①④ 的命题是______.
高三理科数学一轮总复习第一章 集合与常用逻辑用语
第一章集合与常用逻辑用语高考导航知识网络1.1 集合及其运算典例精析题型一 集合中元素的性质【例1】设集合A ={a +1,a -3,2a -1,a 2+1},若-3∈A ,求实数a 的值. 【解析】令a +1=-3⇒a =-4,检验合格; 令a -3=-3⇒a =0,此时a +1=a 2+1,舍去; 令2a -1=-3⇒a =-1,检验合格; 而a 2+1≠-3;故所求a 的值为-1或-4.【点拨】此题重在考查元素的确定性和互异性.首先确定-3是集合A 的元素,但A 中四个元素全是未知的,所以需要讨论;而当每一种情况求出a 的值以后,又需要由元素的互异性检验a 是否符合要求.【变式训练1】若a 、b ∈R ,集合{1,a +b ,a }={0,ba,b },求a 和b 的值.【解析】由{1,a +b ,a }={0,ba,b },得①⎪⎪⎩⎪⎪⎨⎧===+a b a b b a ,1,0 或②⎪⎪⎩⎪⎪⎨⎧===+1,,0b a a b b a 显然①无解;由②得a =-1,b =1.题型二 集合的基本运算【例2】已知A ={x |x 2-8x +15=0},B ={x |ax -1=0},若B ⊆A ,求实数a .【解析】由已知得A ={3,5}.当a =0时,B =∅⊆A ;当a ≠0时,B ={1a}.要使B ⊆A ,则1a =3或1a =5,即a =13或15.综上,a =0或13或15.【点拨】对方程ax=1,两边除以x的系数a,能不能除,导致B是否为空集,是本题分类讨论的根源.【变式训练2】(2010江西)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B等于()A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.【解析】选C.A=[-1,1],B=[0,+∞),所以A∩B=[0,1].题型三集合语言的运用【例3】已知集合A=[2,log2t],集合B={x|x2-14x+24≤0},x,t∈R,且A⊆B.(1)对于区间[a,b],定义此区间的“长度”为b-a,若A的区间“长度”为3,试求t的值;(2)某个函数f(x)的值域是B,且f(x)∈A的概率不小于0.6,试确定t的取值范围.【解析】(1)因为A的区间“长度”为3,所以log2t-2=3,即log2t=5,所以t=32.(2)由x2-14x+24≤0,得2≤x≤12,所以B=[2,12],所以B的区间“长度”为10.设A的区间“长度”为y,因为f(x)∈A的概率不小于0.6,所以y10≥0.6,所以y≥6,即log2t-2≥6,解得t≥28=256.又A⊆B,所以log2t≤12,即t≤212=4 096,所以t的取值范围为[256,4 096](或[28, 212]).【变式训练3】设全集U是实数集R,M={x|x2>4},N={x|2x-1≥1},则图中阴影部分所表示的集合是()A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【解析】选C.化简得M={x<-2或x>2},N={x|1<x≤3},故图中阴影部分为∁R M∩N={x|1<x≤2}.总结提高1.元素与集合及集合与集合之间的关系对于符号∈,∉和⊆,⊈的使用,实质上就是准确把握两者之间是元素与集合,还是集合与集合的关系.2.“数形结合”思想在集合运算中的运用认清集合的本质特征,准确地转化为图形关系,是解决集合运算中的重要数学思想.(1)要牢固掌握两个重要工具:韦恩图和数轴,连续取值的数集运算,一般借助数轴处理,而列举法表示的有限集合则侧重于用韦恩图处理.(2)学会将集合语言转化为代数、几何语言,借助函数图象及方程的曲线将问题形象化、直观化,以便于问题的解决.3.处理集合之间的关系时,是一个不可忽视、但又容易遗漏的内容,如A⊆B,A∩B=A,A∪B=B等条件中,集合A可以是空集,也可以是非空集合,通常必须分类讨论.1.2命题及其关系、充分条件与必要条件典例精析题型一四种命题的写法及真假判断【例1】写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若m,n都是奇数,则m+n是奇数;(2)若x+y=5,则x=3且y=2.【解析】(1)逆命题:若m+n是奇数,则m,n都是奇数,假命题;否命题:若m,n不都是奇数,则m+n不是奇数,假命题;逆否命题:若m+n不是奇数,则m,n不都是奇数,假命题.(2)逆命题:若x=3且y=2,则x+y=5,真命题;否命题:若x+y≠5,则x≠3或y≠2,真命题;逆否命题:若x≠3或y≠2,则x+y≠5,假命题.【点拨】写命题的四种形式,关键是找出命题的条件与结论,根据四种命题结构写出所求命题.判断四种命题真假,要熟悉四种命题的相互关系,注意它们之间的相互性.【变式训练1】已知命题“若p,则q”为真,则下列命题中一定为真的是()A.若⌝p,则⌝qB.若⌝q,则⌝pC.若q,则pD.若⌝q,则p【解析】选B.题型二充分必要条件探究【例2】设m>0,且为常数,已知条件p:|x-2|<m,条件q:|x2-4|<1,若⌝p是⌝q的必要非充分条件,求实数m的取值范围.【解析】设集合A={x||x-2|<m}={x|2-m<x<2+m},B={x||x2-4|<1}={x|3<x<5或-5<x<-3}.由题设有:⌝q⇒⌝p且⌝p不能推出⌝q,所以p⇒q且q不能推出p,所以A⊆B.因为m>0,所以(2-m,2+m)⊆(3,5),故由2+m≤5且2-m≥3⇒0<m≤5-2,故实数m的取值范围为(0,5-2].【点拨】正确化简条件p和q,然后将充分条件、必要条件问题等价转化为集合与集合之间的包含问题,借助数轴这个处理集合问题的有力工具使问题得以解决.【变式训练2】已知集合A={x|a-2<x<a+2},B={x|x≤-2或x≥4},则A∩B=∅的充要条件是()A.0≤a≤2B.-2<a<2C.0<a≤2D.0<a<2【解析】选A.因为A={x|a-2<x<a+2},B={x|x≤-2或x≥4},且A∩B=∅,所以如图,由画出的数轴可知,即0≤a≤2.题型三充分必要条件的证明【例3】设数列{a n}的各项都不为零,求证:对任意n∈N*且n≥2,都有1a1a2+1a2a3+…+1a n-1a n=n-1a1a n成立的充要条件是{a n}为等差数列.【证明】(1)(充分性)若{a n}为等差数列,设其公差为d,则1a1a2+1a2a3+…+1a n-1a n=1d[(1a1-1a2)+(1a2-1a3)+…+(1a n-1-1a n)]=1d(1a1-1a n)=a n-a1da1a n=n-1a1a n.(2)(必要性)若1a 1a 2+1a 2a 3+…+1a n -1a n =n -1a 1a n ,则1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=na 1a n +1, 两式相减得1a n a n +1=n a 1a n +1-n -1a 1a n ⇒a 1=na n -(n -1)a n +1.①于是有a 1=(n +1)a n +1-na n +2,②由①②得na n -2na n +1+na n +2=0,所以a n +1-a n =a n +2-a n +1(n ≥2). 又由1a 1a 2+1a 2a 3=2a 1a 3⇒a 3-a 2=a 2-a 1,所以n ∈N *,2a n +1=a n +2+a n ,故{a n }为等差数列.【点拨】按照充分必要条件的概念,分别从充分性和必要性两方面进行探求. 【变式训练3】设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选B.若x sin x <1,因为x ∈(0,π2),所以x sin x >x sin 2x ,由此可得x sin 2x <1,即必要性成立.若x sin 2x <1,由于函数f (x )=x sin 2x 在(0,π2)上单调递增,且π2sin 2π2=π2>1,所以存在x 0∈(0,π2)使得x 0sin 2x 0=1.又x 0sin x 0>x 0sin 2x 0=1,即x 0sin x 0>1,所以存在x 0′∈(0,x 0)使得x 0′sin 2x 0′<1,且x 0′sin x 0′≥1,故充分性不成立.总结提高1.四种命题的定义和区别,主要在于命题的结论和条件的变化上.2.由于互为逆否命题的两个命题是等价的,所以我们在证明一个命题的真假时,可以通过其逆否命题的证明来达到目的.适合这种处理方法的题型有:①原命题含有否定词“不”、“不能”、“不是”等;②原命题含有“所有的”、“任意的”、“至少 ”、“至多”等;③原命题分类复杂,而逆否命题分类简单;④原命题化简复杂,而逆否命题化简简单.3.p 是q 的充分条件,即p ⇒q ,相当于分别满足条件p 和q 的两个集合P 与Q 之间有包含关系:P ⊆Q ,即P Q 或P =Q ,必要条件正好相反.而充要条件p ⇔q 就相当于P =Q .4.以下四种说法表达的意义是相同的:①命题“若p ,则q ”为真;②p ⇒q ;③p 是q 的充分条件;④q 是p 的必要条件.1.3 简易逻辑联结词、全称量词与存在量词典例精析题型一 全称命题和特称命题的真假判断 【例1】判断下列命题的真假.(1)∀x ∈R ,都有x 2-x +1>12;(2)∃α,β使cos(α-β)=cos α-cos β; (3)∀x ,y ∈N ,都有x -y ∈N ; (4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.【解析】(1)真命题,因为x 2-x +1=(x -12)2+34≥34>12.(2)真命题,例如α=π4,β=π2,符合题意.(3)假命题,例如x =1,y =5,但x -y =-4∉N . (4)真命题,例如x 0=0,y 0=3,符合题意.【点拨】全称命题是真命题,必须确定对集合中的每一个元素都成立,若是假命题,举反例即可;特称命题是真命题,只要在限定集合中,至少找到一个元素使得命题成立.【变式训练1】已知命题p :∃x ∈R ,使tan x =1,命题q :∀x ∈R ,x 2>0.则下面结论正确的是( )A.命题“p ∧q ”是真命题B.命题“p ∧⌝q ”是假命题C.命题“⌝p ∨q ”是真命题D.命题“⌝p ∧⌝q ”是假命题【解析】选D.先判断命题p 和q 的真假,再逐个判断.容易知命题p 是真命题,如x =π4,⌝p 是假命题;因为当x =0时,x 2=0,所以命题q 是假命题,⌝q 是真命题.所以“p ∧q ”是假命题,A 错误;“p ∧⌝q ”是真命题,B 错误;“⌝p ∨q ”是假命题,C 错误;“⌝p ∧⌝q ”是假命题,D 正确.题型二 含有一个量词的命题的否定 【例2】写出下列命题的否定,并判断其真假.(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x ,使x 3+1=0. 【解析】(1) ⌝p :∃x ∈R ,x 2-x +14<0,是假命题.(2) ⌝q :至少存在一个正方形不是矩形,是假命题. (3) ⌝r :∀x ∈R ,x 2+2x +2>0,是真命题. (4)⌝s :∀x ∈R ,x 3+1≠0,是假命题.【点拨】含有一个量词的命题否定中,全称命题的否定是特称命题,而特称命题的否定是全称命题,一般命题的否定则是直接否定结论即可.【变式训练2】已知命题p :∀x ∈(1,+∞),log 3x >0,则⌝p 为 .【解析】∃x 0∈(1,+∞),log 3x 0≤0. 题型三 命题的真假运用【例3】若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0,如果“对任意的x ∈R ,r (x )为假命题”且“对任意的x ∈R ,s (x )为真命题”,求实数m 的取值范围.【解析】因为由m <sin x +cos x =2sin(x +π4)恒成立,得m <-2;而由x 2+mx +1>0恒成立,得m 2-4<0,即-2<m <2.依题意,r (x )为假命题且s (x )为真命题,所以有m ≥-2且-2<m <2, 故所求m 的取值范围为-2≤m <2.【点拨】先将满足命题p 、q 的m 的取值集合A 、B 分别求出,然后由r (x )为假命题(取A 的补集),s (x )为真命题同时成立(取交集)即得.【变式训练3】设M 是由满足下列性质的函数f (x )构成的集合:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.已知下列函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos πx ,其中属于集合M 的函数是 (写出所有满足要求的函数的序号).【解析】②④.对于①,方程1x +1=1x+1,显然无实数解;对于②,由方程2x +1=2x +2,解得x =1;对于③,方程lg[(x +1)2+2]=lg(x 2+2)+lg 3,显然也无实数解; 对于④,方程cos[π(x +1)]=cos πx +cos π, 即cos πx =12,显然存在x 使等式成立.故填②④.总结提高1.同一个全称命题,特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活选择.2.命题的否定,一定要注意与否命题的区别:全称命题的否定,先要将它变成特称命题,然后将结论加以否定;反过来,对特称命题的否定,先将它变成全称命题,然后对结论加以否定.而命题的否命题,则是将原命题中的条件否定当条件,结论否定当结论构成一个新的,即否命题.。
高考数学大一轮复习 第一章 集合与常用逻辑用语 1.2 集合的运算教案(含解析)
§1.2集合的运算考情考向分析集合的交、并、补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式、函数相结合,解题时常用到数轴和韦恩(Venn)图.考查学生的数形结合思想和计算推理能力.题型主要为填空题,低档难度.集合的基本运算运算自然语言符号语言Venn图由所有属于集合A且属于集合BA∩B={x|x∈A且x∈B}交集的元素组成的集合由所有属于集合A或属于集合BA∪B={x|x∈A或x∈B}并集的元素组成的集合设A⊆U,由全集U中不属于集合∁U A={x|x∈U且x∉A}补集A的所有元素组成的集合由运算A∩B=A可以得到集合A,B具有什么关系?提示A∩B=A⇔A⊆B⇔A∪B=B.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意非空集合A,B,都有(A∩B)(A∪B).( ×)(2)若A∩B=A∩C,则B=C.( ×)(3)对于任意集合A,都有∅A.( ×)(4)对于任意集合A,B,∁S(A∪B)=(∁S A)∩(∁S B).( √)题组二教材改编2.[P14习题T11]若全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则∁U(A∩B)=________.答案{1,4,5}3.[P10习题T4]已知集合A={0,2,4,6},∁U A={-1,1,-3,3},∁U B={-1,0,2},则集合B=________.答案{1,4,6,-3,3}解析 ∵∁U A ={-1,1,-3,3},∴U ={-1,1,0,2,4,6,-3,3}. 又∁U B ={-1,0,2},∴B ={1,4,6,-3,3}.4.[P14习题T10]设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个. 答案 3解析 ∵全集U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9}, ∴∁U (A ∩B )={3,5,8},∴共有3个元素. 题组三 易错自纠5.设集合A ={-1,1,3},B ={a +2,a 2+4},若A ∩B ={3},则实数a =________. 答案 1解析 显然a 2+4≠3,由a +2=3得a =1,符合题意.6.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =______________. 答案 {x |x ≤1或x >2}解析 由已知可得集合A ={x |1<x <3}, 又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}.7.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________. 答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,则A ∩B 中有两个元素. 题型一 集合的运算1.已知集合A ={1,4},B ={x |1≤x ≤3},则A ∩B =________. 答案 {1}解析 依题意,根据集合交集的定义与运算, 可得A ∩B ={1}.2.设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=________. 答案 {x |-3<x ≤-1}解析 由题意知,A ={x |x 2-9<0}={x |-3<x <3}. 因为B ={x |-1<x ≤5}, 所以∁R B ={x |x ≤-1或x >5}.所以A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}.3.已知M ={y |y =x 2,x ∈R },N ={y |x 2+y 2=1,x ∈R ,y ∈R },则M ∩N =________. 答案 [0,1]解析 由题意得M =[0,+∞),由x 2+y 2=1,得到-1≤y ≤1,即N =[-1,1],则M ∩N =[0,1].4.已知集合A ={x |x 2-5x -6<0},B ={x |2x<1},则图中阴影部分表示的集合是________. 答案 {x |0≤x <6}解析 由x 2-5x -6<0,解得-1<x <6, 所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}. 又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.思维升华在进行集合的运算时,若集合中的元素是离散的,可用Venn 图表示;若集合中的元素是连续的,可用数轴表示集合,要特别注意端点的取舍. 题型二 利用集合的运算求参数例1 (1)设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为________.答案 1解析 0∈⎩⎨⎧⎭⎬⎫a -1,a +1a ,由a +1a≠0,则a -1=0,则实数a 的值为1.经检验,当a =1时满足题意.(2)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是________. 答案 [2,+∞)解析 集合B ={x |x 2-3x +2<0}={x |1<x <2}, 由A ∩B =B 可得B ⊆A ,作出数轴如图. 可知a ≥2.(3)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1} 解析 因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.思维升华利用集合的运算求参数值或范围,要根据集合中元素的关系,灵活使用数轴工具,找出参数适合的条件,求参数的值要检验元素的互异性,求参数的取值范围要对端点的情况单独考虑.跟踪训练1(1)集合A ={1,3},B ={a 2+2,3},若A ∪B ={1,2,3},则实数a 的值为________. 答案 0解析 ∵A ={1,3},B ={a 2+2,3},且A ∪B ={1,2,3}, ∴a 2+2=2,a 2=0,a =0,即实数a 的值为0.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为________. 答案 [-1,+∞)解析 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞).题型三 集合的新定义问题例2(1)(2018·江苏洪泽中学月考)对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =______________. 答案 [-3,0)∪(3,+∞)解析 由题意知,A -B ={x |x >3},B -A ={x |-3≤x <0},A *B =(A -B )∪(B -A )=[-3,0)∪(3,+∞).(2)设数集M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +34,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -13≤x ≤n,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________. 答案112解析 在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23≤x ≤34, 长度为34-23=112;当n =13且m =14时,M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14≤x ≤13, 长度为13-14=112.综上,M ∩N 的长度的最小值为112.思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练2(1)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为________. 答案 21解析 由x 2-2x -3≤0,x ∈N ,得(x +1)(x -3)≤0,x ∈N ,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B中的所有元素数字之和为21.(2)用C (A )表示非空集合A 中元素的个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )=________. 答案 3解析 因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.综上,S ={0,-22,22},故C (S )=3.1.已知集合A ={1,a },B ={2,3,4},A ∩B ={3},则A ∪B =________. 答案 {1,2,3,4}解析 由集合A ={1,a },B ={2,3,4},A ∩B ={3},则a =3,故A ∪B ={1,2,3,4}. 2.已知全集为R ,集合A ={x |2x≥4},B ={x |x 2-3x ≥0},则A ∩(∁R B )=________. 答案 [2,3)解析 A ={x |2x≥4}={x |x ≥2},B ={x |x 2-3x ≥0}={x |x ≤0或x ≥3},∁R B =(0,3), 则A ∩(∁R B )=[2,3).3.设全集U ={x |x ∈N *,x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 答案 {5,6,7,8,9}解析 因为全集U ={1,2,3,4,5,6,7,8,9},∁U (A ∪B )={1,3}, 所以A ∪B ={2,4,5,6,7,8,9},由A ∩(∁U B )={2,4}知,{2,4}⊆A ,{2,4}⊆∁U B . 所以B ={5,6,7,8,9}.4.已知集合A ={x |-2<x <4},B ={x |y =lg(x -2)},则A ∩(∁R B )=________. 答案 (-2,2]解析 由题意得B ={x |y =lg(x -2)}=(2,+∞),∴∁R B =(-∞,2],∴A ∩(∁R B )=(-2,2].5.(2018·苏州调研)已知集合A ={1,2a},B ={-1,1,4},且A ⊆B ,则正整数a =________. 答案 2解析 ∵A ={1,2a},B ={-1,1,4},且A ⊆B , ∴2a =4=22,a =2.6.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =________. 答案 {1,3}解析 ∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.7.已知全集U ={x ∈N |x 2-5x -6<0},集合A ={x ∈N |-2<x ≤2},B ={1,2,3,5},则(∁U A )∩B =________. 答案 {3,5}解析 由题意知,U ={0,1,2,3,4,5},A ={0,1,2},则(∁U A )∩B ={3,5}.8.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意.9.已知集合P ={x |y =-x 2+x +2,x ∈N },Q ={x |ln x <1},则P ∩Q =________. 答案 {1,2}解析 由-x 2+x +2≥0,得-1≤x ≤2,因为x ∈N ,所以P ={0,1,2}.因为ln x <1,所以0<x <e ,所以Q =(0,e),则P ∩Q ={1,2}.10.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(∁U B )=________________. 答案 {x |x <-1或x ≥2}解析 集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, ∵log 3(2-x )≤1=log 33,∴0<2-x ≤3, ∴-1≤x <2,∴B ={x |-1≤x <2},∴∁U B ={x |x <-1或x ≥2}, ∴A ∩(∁U B )={x |x <-1或x ≥2}.11.设A ,B 是非空集合,定义A ×B ={x |x ∈A ∪B ,且x ∉A ∩B }.若A ={x |y =x 2-3x },B ={y |y =3x},则A ×B =________. 答案 (-∞,3)解析 集合A 即为函数y =x 2-3x 的定义域,由x 2-3x ≥0⇒x ≤0或x ≥3,故集合A =(-∞,0]∪[3,+∞),集合B 即为函数y =3x的值域,故B =(0,+∞),从而有A ∪B =R ,A ∩B =[3,+∞),由定义知A ×B =(-∞,3).12.设集合A ={x |a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪(∁R B )=∁R B ,则a 的取值范围是________. 答案 [-1,2]解析 由补集的定义知∁R B ={x |-1≤x ≤5}, ∵A ∪(∁R B )=∁R B ,∴A ⊆∁R B .由图得⎩⎪⎨⎪⎧a ≥-1,a +3≤5,解得-1≤a ≤2.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________. 答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m =-1,则B ={x |-1<x <2},画出数轴,可得m =-1,n =1.14.已知集合A ={x |y =x -1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12a ≤x ≤2a -1.若A ∩B =∅,则实数a 的取值范围是________. 答案 (-∞,1)解析 由题意知,A =[1,+∞), 当B =∅,即12a >2a -1时,a <23.符合题意.当B ≠∅时,令⎩⎪⎨⎪⎧12a ≤2a -1,2a -1<1,解得23≤a <1.综上,实数a 的取值范围是(-∞,1).15.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R },若对任意实数k ,A ∩B ≠∅,则实数m 的取值范围是____________. 答案 [-2,2]解析 由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22=1上或在其内部,∴m 2≤2,∴-2≤m ≤ 2. 16.已知A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =log 36-xx -2,B ={x |x 2-2x +1-a 2≤0}(a >0),若A ∪B =B ,则实数a的取值范围是______. 答案 [5,+∞)解析 由6-xx -2>0可得(x -2)(x -6)<0,∴2<x <6,∴A =(2,6).又x 2-2x +1-a 2≤0可化为[x -(1-a )][x -(1+a )]≤0. 又a >0,∴B =[1-a,1+a ]. 由A ∪B =B ,得A ⊆B ,∴⎩⎪⎨⎪⎧2≥1-a ,6≤1+a ,∴a ≥5.∴实数a 的取值范围是[5,+∞).。
2018高考(江苏专版)大一轮数学(文)复习课件第一章集合与常用逻辑用语1
12 3 +x+1=x+2 +4>0,所以綈
q 为真.
(3) r:等圆的面积相等,周长相等; 【解答】否定为“存在一对等圆,其面积不相等或周长不
相等”,由平面几何知识得,綈r为假.
(4) s:对任意角α,都有sin2α+cos2α=1. 【解答】否定为“∃α∈R,使sin2α+cos2α≠1”, 由三角函数知识得,显然错误,所以綈s为假.
(2,+∞) . a≤0”为假命题,则实数a的取值范围是__________
【解析】“存在x∈R,ax2+4x+a≤0”为假命题,则其否
定“对任意 x∈R, ax2 + 4x +a>0” 为真命题.当 a = 0 时, 4x>0 不恒成立,故舍去;当a≠0时,解得a>2.综上,实数a的取值范 围是(2,+∞).
2 2
实数 x
2 的取值范围为(-∞,-1)∪3,+∞.
课堂评价
1. 已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2 >y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命 ②③ 题为__________ .(填序号) 【解析】依题意可知,命题p为真命题,命题q为假命
变式
写出下列命题的否定形式,并判定其真假.
(1) p:不论m取何实数,方程x2+x-m=0必有实数根;
【解答】 否定为“ ∃ m∈R,使方程 x2 +x - m =0没有实数
根”,因为Δ=1+4m<0有解,所以綈p为真.
(2) q:存在一个实数x,使得x2+x+1≤0;
【解答】否定为“∀x∈R,有 x2+x+1>0”, 因为 x
【解析】 由“ p 且 q” 是真命题,知 p 为真命题, q 也为真命
江苏专用2018版高考数学大一轮复习第一章集合与常用逻辑用语1.3简单的逻辑联结词全称量词与存在量词课件理
解析
题型三 求含参数命题中参数的取值范围
例4 (1)已知命题p:关于x的方程x2-ax+4=0有实根;命题 q:关于x的
函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的
[-12,-4]∪[4,+∞) 取值范围是_______________________. 答案 若命题p是真命题,则Δ=a2-16≥0,
(1)p∨q:p、q中有一个为真,则p∨q为真,即有真为真; (2)p∧q:p、q中有一个为假,则p∧q为假,即有假即假; (3)綈p:与p的真假相反,即一真一假,真假相反. 2.含一个量词的命题的否定的规律是“改量词,否结论”.
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1)命题p∧q为假命题,则命题p、q都是假命题.( × ) (2)命题p和綈p不可能都是真命题.( √ ) (3)若命题p、q至少有一个是真命题,则p∨q是真命题.( √ ) (4)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.( × ) (5)“长方形的对角线相等”是存在性命题.( × )
题型二 含有一个量词的命题 命题点1 全称命题、存在性命题的真假 例2
x+y≥1, 不等式组 的解集记为D, 有下面四个命题: p1:∀(x,y)∈D, x-2y≤4
x+2y≥-2,p2:∃(x,y)∈D, x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:
∃(x,y)∈D,x+2y≤-1. p1,p2 其中的真命题是________.
则f(x)min>g(x)max,即2>2+m,解得m<0,
故实数m的取值范围是(-∞,0).
高频小考点1
常用逻辑用语
有关四种命题及其真假判断、充分必要条件的判断或求参数
2018高考数学(理)一轮复习课件 第一章 集合与常用逻辑用语 第1讲 课件
集合 A 中所有元素都在集
表示 关系
自然语言 集合 A 是集合 B 的子集,
符号 语言
A B _________ (或 B A) ________
Venn 图
真子集
且集合 B 中至少有一个元 素不在集合 A 中
集合相等
集合 A,B 中元素相同
A=B
3.集合的基本运算 集合的并集 图形 语言 符号 语言 A∪B= _____________ 集合的交集 集合的补集
简单不 等式的 解法
模型. 2.通过函数图象了解一元二次不等式与相应的二 次函数、一元二次方程的联系. 3.会解一元二次不等式,对给定的一元二次不等 式,会设计求解的程序框图.
第一章
集合与常用逻辑用语
知识点 命题及其关 系、充分条件 与必要条件 简单的逻辑 联结词、全称 量词与存在 量词
考纲下载 1.理解命题的概念. 2.了解“若 p,则 q”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的含义. 1.了解逻辑联结词“或”“且”“非”的含义. 2.理解全称量词和存在量词的意义. 3.能正确地对B=A⇔B⊆A,A∩B=A⇔A⊆ B. (2)A∩A=A,A∩∅=∅. (3)A∪A=A,A∪∅=A. (4)A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A. (5)A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB⇔A∩(∁UB)=∅. (6)若集合 A 中含有 n 个元素,则它的子集个数为 2n,真子集 个数为 2n-1,非空真子集个数为 2n-2.
1.教材习题改编 已知集合 A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( A.A⊆B C.D⊆C B.C⊆B D.A⊆D
(江苏专用)2018版高考数学一轮复习 第一章 集合与常用逻辑用 1.1 集合的概念与运算课时作业 文
第一章集合与常用逻辑用语第1讲集合的概念与运算基础巩固题组(建议用时:20分钟)1.(2017·苏北四市调研)已知集合A={0,1,2,3},B={2,3,4,5},则A∪B中元素的个数为________.解析由并集定义可得A∪B={0,1,2,3,4,5},有6个元素.答案 62.(2016·全国Ⅱ卷改编)已知集合A={1,2,3},B={x|x2<9},则A∩B=________.解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案{1,2}3.(2017·苏州调研)设全集U={x|x≥2,x∈N},集合A={x|x2≥5,x∈N},则∁U A=________.解析由题知集合A={x|x≥5,x∈N},故由补集定义可得∁U A={2}.答案{2}4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则实数a的取值范围为________.解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案[-1,1]5.(2016·山东卷改编)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=________.解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A∪B=(-1,+∞).答案(-1,+∞)6.(2016·浙江卷改编)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=________.解析∵U={1,2,3,4,5,6},P={1,3,5},∴∁U P={2,4,6},∵Q={1,2,4},∴(∁U P)∪Q={1,2,4,6}.答案{1,2,4,6}7.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]8.(2016·天津卷)已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________.解析 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 答案 {1,3}9.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 310.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )________.解析∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.答案 {x |0<x <1}11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).答案 [-1,0)12.(2017·石家庄质检)已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.解析 由x 2-2 016x -2 017≤0,得A =[-1,2 017],又B ={x |x <m +1},且A ⊆B ,所以m +1>2 017,则m >2 016.答案 (2 016,+∞)能力提升题组(建议用时:10分钟)13.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =________.解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3),因此(∁R S )∩T =(2,3).答案 (2,3)14.(2017·苏州调研)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是________.解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.答案 {x |1≤x <2}15.(2017·徐州、宿迁、连云港三市模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N|14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N , ∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.答案 116.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0.答案 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与常用逻辑用语第1课集合的概念与运算[最新考纲]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.2.集合间的基本关系(1)子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,但∃x∈B,且x∉A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(3)若{x2,1}={0,1},则x=0,1.( )(4)若A∩B=A∩C,则B=C.( )[解析](1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1时,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.[答案](1)×(2)×(3)×(4)×2.(教材改编)已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________.{x|x≤2,或x≥10}[∵A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2,或x≥10}.]3.(2016·江苏高考)已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.{-1,2} [在集合A中满足集合B中条件的元素有-1,2两个,故A∩B={-1,2}.] 4.集合{-1,0,1}共有________个子集.8[由于集合中有3个元素,故该集合有23=8(个)子集.]5.(2017·盐城期中模拟)若集合A={x|x≤m},B={x|-2<x≤2},且B⊆A,则实数m 的取值范围是________.[2,+∞) [∵A={x|x≤m},B={x|-2<x≤2},且B⊆A,∴2≤m,即实数m的取值范围是[2,+∞).](1)________个. (2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________.【导学号:62172000】(1)5 (2)0或98 [(1)当x =0,y =0,1,2时,x -y =0,-1,-2;当x =1,y =0,1,2时,x -y =1,0,-1; 当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个.(2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根. 当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.][规律方法] 1.研究集合问题,首先要抓住元素,其次看元素应满足的属性;特别地,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性,如题(1).2.由于方程的不定性导致求解过程用了分类讨论思想,如题(2).[变式训练1] (1)(2017·启东中学高三第一次月考)已知x 2∈{0,1,x },则实数x 的值是________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________. (1)-1 (2)⎝ ⎛⎭⎪⎫-∞,-98 [(1)由集合中元素的互异性可知x ≠0且x ≠1.又x 2∈{0,1,x },所以只能x 2=1,解得x =-1或x =1(舍去). (2)∵A =∅,∴方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意;当a ≠0时,Δ=9+8a <0,∴a <-98.](1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为________.(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.(1)4 (2)(-∞,4] [(1)∵A ={x |x 2-3x +2=0,x ∈R }={1,2},B ={x |0<x <5,x ∈N }={1,2,3,4}.∴由A ⊆C ⊆B 可知C 中至少含有1,2两个元素,故满足条件的集合C 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.][规律方法] 1.空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解,如题(2).2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图化抽象为直观进行求解.[变式训练2] (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.(2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________.(1)2 (2)(-∞,-1]∪{1} [(1)由题意可知a ,b ≠0,由集合相等的定义可知,a +b =0,∴a =-b ,即ba=-1,∴b =1,故b -a =2b =2.(2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4 a +1 2-4 a 2-1 >0,-2 a +1 =-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1. 综上所述,所求实数a 的取值范围是a ≤-1或a =1.]☞角度1(1)(2017·南京二模)设集合A ={x |-2<x <0},B ={x |-1<x <1},则A ∪B =________.(2)(2017·如皋市高三调研一)设集合P ={1,2,3,4},Q ={x |-2≤x ≤2,x ∈R },则P ∩Q =________.(1){x |-2<x <1} (2){1,2} [(1)∵A ={x |-2<x <0},B ={x |-1<x <1},∴A ∪B ={x |-2<x <1}.(2)∵P ={1,2,3,4},Q ={x |-2≤x ≤2,x ∈R }, ∴P ∩Q ={1,2}.]☞角度2 交、并、补的混合运算(1)(2017·苏锡常镇二调)已知集合U ={1,2,3,4,5},A ={1,2},B ={2,3,4},则A ∪(∁U B )=________.(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分表示的集合是________.图11(1){1,2,5} (2)(-3,-1) [(1)由题意可知∁U B ={1,5},又A ={1,2},∴A ∪(∁U B )={1,2,5}.(2)由题意可知,M =(-3,1),N =[-1,1],∴阴影部分表示的集合为M ∩(∁U N )=(-3,-1).]☞角度3 利用集合的运算求参数(1)(2017·南通二调)设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为________. 【导学号:62172001】(2)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =________.(3)设集合A ={0,1},集合B ={x |x >a },若A ∩B =∅,则实数a 的取值范围是________.(1)1 (2)0或3 (3)[1,+∞) [(1)∵A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},∴a -1=0或a +1a=0(舍去),∴a =1.(2)由A ∪B =A 可知B ⊆A , 又A ={1,3,m },B ={1,m },所以m =3或m =m ,解得m =0或m =3或m =1(舍去). (3)由A ∩B =∅可知,a ≥1.][规律方法] 1.求集合的交集和并集时首先应明确集合中元素的属性,然后利用交集和并集的定义求解.2.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.易错警示:在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽视空集的情况,一定要先考虑∅是否成立,以防漏解.[思想与方法]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,对求出的字母的值,应检验是否满足集合元素的互异性,以确保答案正确.2.求集合的子集(真子集)个数问题,需要注意的是:首先,过好转化关,即把图形语言转化为符号语言;其次,当集合的元素个数较少时,常利用枚举法解决.3.对于集合的运算,常借助数轴、Venn图求解.(1)对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围,关键在于转化成关于参数的方程或不等式关系.(2)对离散的数集间的运算,或抽象集合间的运算,可借助Venn图,这是数形结合思想的又一体现.[易错与防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,以防漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.课时分层训练(一) A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·苏州期中)已知集合A ={0,1},B ={-1,0},则A ∪B =________. {-1,0,1} [A ∪B ={0,1}∪{-1,0}={-1,0,1}.]2.(2017·南京模拟)设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B =________. 【导学号:62172002】{x |0≤x ≤2} [A ∩B ={x |-1≤x ≤2}∩{x |0≤x ≤4} ={x |0≤x ≤2}.]3.(2017·南通第一次学情检测)已知集合A ={x |0<x ≤3,x ∈R },B ={x |-1≤x ≤2,x ∈R },则A ∪B =________.{x |-1≤x ≤3,x ∈R } [∵A ={x |0<x ≤3,x ∈R },B ={x |-1≤x ≤2,x ∈R }, ∴A ∪B ={x |-1≤x ≤3,x ∈R }.]4.(2017·如皋中学高三第一次月考)已知集合A ={1,cos θ},B =⎩⎨⎧⎭⎬⎫12,1,若A =B ,则锐角θ=________.π3 [由A =B 可知cos θ=12,又θ为锐角,∴θ=π3.] 5.(2017·盐城三模)已知集合A ={1,2,3,4,5},B ={1,3,5,7,9},C =A ∩B ,则集合C 的子集的个数为________.8 [由题意可知A ∩B ={1,3,5}, ∴C ={1,3,5},∴集合C 的子集共有23=8个.]6.(2017·南京三模)已知全集U ={-1,2,3,a },集合M ={-1,3}.若∁U M ={2,5},则实数a 的值为________.5 [∵M ∪∁U M =U ,∴U ={-1,2,3,5},∴a =5.]7.(2017·泰州中学高三摸底考试)已知集合A ={x |x >0},B ={-1,0,1,2},则A ∩B =________.{1,2} [A∩B={x|x>0}∩{-1,0,1,2}={1,2}.]8.设全集U={1,2,3,4},集合A={1,3},B={2,3},则B∩(∁U A)=________.【导学号:62172003】{2} [∵A={1,3},∴∁U A={2,4},∴B∩(∁U A)={2,3}∩{2,4}={2}.]9.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为________.6[∵A={1,2,4},B={2,3,4,5,6,8},∴集合B中共有6个元素.]10.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为________.2[集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.]11.(2017·无锡模拟)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a=________. 【导学号:62172004】0[∵1∈{a+2,(a+1)2,a2+3a+3},∴1=a+2,或(a+1)2=1,或a2+3a+3=1.①当a+2=1,即a=-1时,此时a2+3a+3=1,不满足集合中元素的互异性;②当(a+1)2=1时,a=0或a=-2,又当a=-2时,a2+3a+3=1,不满足集合中元素的互异性;③当a2+3a+3=1时,a=-1或-2,由①②可知,均不满足题意.综上可知,a=0.]12.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=________.{3} [∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3},又∁U B={3,4},∴A∩(∁U B)={3}.]B组能力提升(建议用时:15分钟)1.(2016·全国卷Ⅱ改编)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=________.{0,1,2,3} [B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1}.又A={1,2,3},所以A∪B={0,1,2,3}.]2.(2016·天津高考改编)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=________.{1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4; 当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10. 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.]3.(2017·盐城模拟)已知全集U =R ,集合A ={x |y =lg(x -1)},集合B ={y |y =x 2+2x +5},则A ∩B =________.[2,+∞) [∵A ={x |y =lg(x -1)}={x |x -1>0}={x |x >1},B ={y |y =x 2+2x +5}={y |y ≥2},∴A ∩B ={x |x ≥2}.]4.(2017·南通中学月考)已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为________.4 [由题意可知P ={3,4},故集合P 的子集共有22=4个.]5.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},若A ∩B =B ,则实数a 的值为________. 【导学号:62172005】0,1,2 [∵A ={x |x 2-3x +2=0}={1,2}. 由A ∩B =B 可知B ⊆A .①当a =0时,B =∅,满足A ∩B =B ;②当a ≠0时,B =⎩⎨⎧⎭⎬⎫2a ,由B ⊆A 可知,2a =1或2a=2,即a =1或a =2.综上可知a 的值为0,1,2.]6.若x ∈A ,且1x ∈A ,就称A 是伙伴关系集合,则集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数为________.3 [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.]。