山东省东明县一中2017-2018学年高一下学期期末考试数学试卷

合集下载

菏泽市东明县一中2018-2019学年下学期高一数学期末考试卷附答案详析

菏泽市东明县一中2018-2019学年下学期高一数学期末考试卷附答案详析

菏泽市东明县一中2018-2019学年下学期期末考高一数学试卷一、单选题 1.19sin6π=( ) A .12 B .12-C .32D .32-2.在锐角ABC V 中,若30,4,42A BC AC ︒===,则角B 的大小为( )A .30°B .45°C .60°D .75°3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l )班先抽,则他们抽到的出场序号小于4的概率为( ) A .710B .15C .25D .3104.已知tan 3θ=-,则22cos sin sin cos θθθθ-=( )A .83-B .43C .83D .1035.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为( )A .84,85B .85,84C .84,85.2D .86,856.已知向量(2,tan ),(1,1)ab θ==-r r,且//a br r ,则tan()4πθ-=( )A .2B .3-C .1-D .13-7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为( ) A .50%B .30%C .10%D .60%8.已知向量1a =v ,2b =r ,a v ,b r 的夹角为45°,若c a b =+r v v ,则a c ⋅=v v ( )A .2B .322C .2D .39.在ABC ∆中,若sin2sin2A C =,则ABC ∆的形状是( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形10.函数()sin(2)(0)f x x ϕϕπ=+<<的图象如图所示,为了得到()sin 2g x x =的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位 D .向左平移6π个单位 11.已知单位向量OA u u u v ,OB uuu v ,满足0OA OB ⋅=u u u v u u u v.若点C 在AOB ∠内,且60AOC ∠=︒,(,)OC mOA nOB m n =+∈R u u u v u u u v u u u v,则下列式子一定成立的是( )A .1m n +=B .1mn =C .221+=m nD .33m n =本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .二、填空题13.已知三个事件A ,B ,C 两两互斥且0.30.60.2()()()P A P B P C ===,,,则P (A ∪B ∪C )=__________.14.己知函数()2cos 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R ,则6f π⎛⎫- ⎪⎝⎭的值为______. 15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团 未参加书法社团 参加演讲社团 8 5 未参加演讲社团 230若从该班随机选l 名同学,则该同学至少参加上述一个社团的概率为__________. 16.己知函数()sin cos f x x x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦有以下结论:∪()f x 的图象关于直线y 轴对称 ∪()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减 ∪()f x 的一个对称中心是,02π⎛⎫⎪⎝⎭∪()f x 的最大值为12则上述说法正确的序号为__________(请填上所有正确序号). 三、解答题17.已知向量a v ,b r 满足||2a =v ,||3b =r,且2()1a b +=rv .(1)求,a b rv ;(2)在ABC ∆中,若AB a =u u u v v ,AC b =r u u uv ,求BC u u u v .18.如图所示,在平面直角坐标系中,锐角α、()ββα>的终边分别与单位圆交于A ,B 两点,点43,55A ⎛⎫⎪⎝⎭.(1)若点512,1313B ⎛⎫⎪⎝⎭,求cos()αβ+的值:(2)若31010OA OB ⋅=u u u v u u u v,求sin β.19.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,设222sin sin sin sin sin B C A B C +-=. (1)求A ; (2)若2sin sin 2sin A B C +=,求C .20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(x 元)试销l 天,得到如表单价x (元)与销量y (册)数据: 单价x (元) 18 19 20 21 22 销量y (册) 61 56504845(l )根据表中数据,请建立y 关于x 的回归直线方程:(2)预计今后的销售中,销量y (册)与单价x (元)服从(l )中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:1221ˆni ii ni i x y nx ybx nx==-=-∑∑,ˆˆa y bx=-,515160i i i x y ==∑,5212010i i x ==∑.21.手机支付也称为移动支付(Mobile Payment),是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图. 组数 第l 组第2组第3组第4组第5组分组 [15,25)[25,35)[35,45)[45,55)[55,65)频数 203630104(1)求x ;(2)从第l ,3,4组中用分层抽样的方法抽取6人,求第l ,3,4组抽取的人数: (3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.22.已知函数2133()sin 2cos 424f x x x =-+. (1)求()f x 的最小正周期T 和[0,]π上的单调增区间: (2)若2()(1)0nf x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.解析菏泽市东明县一中2018-2019学年下学期期末考高一数学试卷一、单选题 1.19sin6π=( ) A .12 B .12-C .32D .32-【答案】B【解析】利用诱导公式得到答案. 【详解】191sin sin(3)sin 6662ππππ=+=-=- 故答案选B 【点睛】本题考查了诱导公式,属于简单题. 2.在锐角ABC V 中,若30,4,42A BC AC ︒===,则角B 的大小为( )A .30°B .45°C .60°D .75°【答案】B【解析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理得到:442sin 30sin B=︒,故2sin 2B =,ABC V 是锐角三角形,故45B =︒. 故选:B . 【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.3.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l )班先抽,则他们抽到的出场序号小于4的概率为( ) A .710B .15C .25D .310【答案】D【解析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:310P =故答案选D 【点睛】本题考查了概率的计算,属于简单题.4.已知tan 3θ=-,则22cos sin sin cos θθθθ-=( )A .83-B .43C .83D .103【答案】C【解析】利用齐次式,上下同时除以2cos θ得到答案.【详解】222cos sin 1tan 8sin cos tan 3θθθθθθ--==故答案选C 【点睛】本题考查了三角函数值的计算,上下同时除以2cos θ是解题的关键.5.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和平均数分别为( )A .84,85B .85,84C .84,85.2D .86,85【答案】A【解析】剩余数据为:84.84,86,84,87,计算中位数和平均数. 【详解】剩余数据为:84.84,86,84,87 则中位数为:84 平均数为:8484848687855++++=故答案为A 【点睛】本题考查了中位数和平均数的计算,属于基础题型.6.已知向量(2,tan ),(1,1)a b θ==-r r ,且//a b r r ,则tan()4πθ-=( )A .2B .3-C .1-D .13-【答案】B【解析】根据向量平行得到tan 2θ=-,再利用和差公式计算得到答案.【详解】向量(2,tan ),(1,1)a b θ==-r r ,且//a b r r ,则tan 2θ=-. tantan 4tan()341tan tan 4πθπθπθ--==-+⋅. 故选:B . 【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.7.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为( ) A .50% B .30%C .10%D .60%【答案】A【解析】甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案. 【详解】甲不输的概率等于甲获胜或者平局的概率相加 甲、乙下成平局的概率为:90%40%50%P =-= 故答案选A 【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.8.已知向量1a =v ,2b =r ,a v ,b r 的夹角为45°,若c a b =+r v v ,则a c ⋅=v v ( )A .2B .322C .2D .3【答案】C【解析】利用向量乘法公式得到答案. 【详解】向量1a =r ,2b =r ,a r ,b r的夹角为45°22()11222a c a ab a a b ⋅=⋅+=+⋅=+⨯⨯=r r r r r r r r故答案选C 【点睛】本题考查了向量的运算,意在考查学生的计算能力.9.在ABC ∆中,若sin2sin2A C =,则ABC ∆的形状是( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形【答案】D【解析】sin 2sin 2sin 2sin(2)A C A C π=⇒=-,两种情况对应求解. 【详解】sin 2sin 2sin 2sin(2)A C A C π=⇒=-所以A C =或2A C π+=故答案选D 【点睛】本题考查了诱导公式,漏解是容易发生的错误.10.函数()sin(2)(0)f x x ϕϕπ=+<<的图象如图所示,为了得到()sin 2g x x =的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位 D .向左平移6π个单位 【答案】A【解析】函数过7(,1)12π- 代入解得ϕ,再通过平移得到()sin 2g x x =的图像. 【详解】()sin(2)(0)f x x ϕϕπ=+<<,函数过7(,1)12π- 71sin()63ππϕϕ-=+⇒= ()sin(2)3f x x π=+向右平移6π个单位得到()sin 2g x x =的图象故答案选A 【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解. 11.已知单位向量OA u u u v ,OB uuu v ,满足0OA OB ⋅=u u u v u u u v.若点C 在AOB ∠内,且60AOC ∠=︒,(,)OC mOA nOB m n =+∈R u u u v u u u v u u u v,则下列式子一定成立的是( )A .1m n +=B .1mn =C .221+=m nD .33m n =【答案】D【解析】设OC r =u u u r ,1322OC rOA rOB =+u u u r u u u r u u ur 对比得到答案.【详解】设OC r =u u u r ,则1313(,),2222OC rOA rOB mOA nOB m n m r n r =+=+∈⇒==R u u u r u u u r u u u r u u u r u u u r33m n =故答案为D 【点睛】本题考查了向量的计算,意在考查学生的计算能力.12.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .【答案】B【解析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.二、填空题13.已知三个事件A ,B ,C 两两互斥且0.30.60.2()()()P A P B P C ===,,,则P (A ∪B ∪C )=__________. 【答案】0.9【解析】先计算()P B ,再计算()P A B C U U 【详解】0.60.4()()P B P B =⇒=()()()()0.9P A B C P A P B P C =++=U U故答案为0.9 【点睛】本题考查了互斥事件的概率计算,属于基础题型. 14.己知函数()2cos 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R ,则6f π⎛⎫- ⎪⎝⎭的值为______. 【答案】1 【解析】将6x π=-代入函数计算得到答案.【详解】 函数()2cos 12f x x π⎛⎫=- ⎪⎝⎭2cos 2cos()166124f ππππ⎛⎫⎛⎫-=--=-= ⎪ ⎪⎝⎭⎝⎭故答案为:1 【点睛】本题考查了三角函数的计算,属于简单题.15.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团 未参加书法社团 参加演讲社团 8 5 未参加演讲社团 230若从该班随机选l 名同学,则该同学至少参加上述一个社团的概率为__________. 【答案】13【解析】直接利用公式得到答案. 【详解】至少参加上述一个社团的人数为15151453P == 故答案为13【点睛】本题考查了概率的计算,属于简单题. 16.己知函数()sin cos f x x x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦有以下结论:∪()f x 的图象关于直线y 轴对称 ∪()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减 ∪()f x 的一个对称中心是,02π⎛⎫⎪⎝⎭∪()f x 的最大值为12则上述说法正确的序号为__________(请填上所有正确序号). 【答案】②②【解析】根据三角函数性质,逐一判断选项得到答案. 【详解】3,22x ππ⎡⎤∈-⎢⎥⎣⎦,1sin 2,,222()sin cos 13sin 2,,222x x f x x x x x ππππ⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦==⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩根据图像知:②()f x 的图象关于直线y 轴对称,错误 ②()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减,正确②()f x 的一个对称中心是,02π⎛⎫⎪⎝⎭,错误 ②()f x 的最大值为12,正确 故答案为②② 【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题17.已知向量a v ,b r 满足||2a =v ,||3b =r ,且2()1a b +=r v .(1)求,a b r v ;(2)在ABC ∆中,若AB a =u u u v v ,AC b =r u u uv ,求BC u u u v .【答案】(1) 5,6a b π=rv (2) 13BC =u u u v【解析】(1)将2()1a b +=r r展开得到答案.(2)BC AC AB b a =-=-u u u r u u u r u u u r r r,平方计算得到答案.【详解】解:(1)因为()2222a ba b a b +=++⋅r r r r rr()222321a b =++⋅=r r所以,3a b ⋅=-r r,所以,33cos ,223a b a b a b ⋅-<>===-⨯r rr r r r ,又夹角在[0,]π上,②5,6a b π<>=r r ;(2)因为BC AC AB b a =-=-u u u r u u u r u u u r r r,所以,()22222BC b a b a b a =-=+-⋅u u u r r r r r r r ()()22322313=+-⨯-=,所以,BC 边的长度为13BC =u u u r.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.18.如图所示,在平面直角坐标系中,锐角α、()ββα>的终边分别与单位圆交于A ,B 两点,点43,55A ⎛⎫⎪⎝⎭.(1)若点512,1313B ⎛⎫⎪⎝⎭,求cos()αβ+的值: (2)若31010OA OB ⋅=u u u v u u u v,求sin β. 【答案】(1) 1665-(2) 131050【解析】(1)根据43,55A ⎛⎫ ⎪⎝⎭512,1313B ⎛⎫⎪⎝⎭计算3sin 5α=,4cos 5α=,12sin 13β=5cos 13β=代入公式得到答案.(2)根据31010OA OB ⋅=u u u r u u u r ,得到310cos()10βα-=,根据sin sin[()]βαβα=+-计算得到答案. 【详解】解:(1)因为α是锐角,且43,55A ⎛⎫ ⎪⎝⎭,512,1313B ⎛⎫⎪⎝⎭在单位圆上,所以3sin 5α=,4cos 5α=,12sin 13β=5cos 13β=, ②cos()cos cos sin sin αβαβαβ+=-453121651351365=⨯-⨯=- (2)因为31010OA OB ⋅=u u u r u u u r ,所以310||||cos()10OA OB βα⋅-=u u u r u u u r ,且1OA OB ==u u u r u u u r ,所以,310cos()10βα-=,可得:10sin()()10βαβα-=>,且4cos 5α=,3sin 5α= 所以,sin sin[()]βαβα=+-sin cos()cos sin()αβααβα=-+-3310410131051051050=⨯+⨯=. 【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用. 19.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,设222sin sin sin sin sin B C A B C +-=. (1)求A ; (2)若2sin sin 2sin A B C +=,求C .【答案】(1)3π(2) 512C π= 【解析】(1)由正弦定理得222b c a bc +-=,再利用余弦定理的到3A π=.(2)将3A π=代入等式,化简得到答案.【详解】解:(1)由222sin sin sin sin sin B C A B C +-= 结合正弦定理得222b c a bc +-=;②2221cos 22b c a A b c +-==⋅⋅又(0,)A π∈,②3A π=.(2)由2sin sin 2sin A B C +=,②2sin sin()2sin A A C C ++=②6sin 2sin 23C C π⎛⎫++= ⎪⎝⎭, ②312sin cos 222C C -=②2sin 62C π⎛⎫-= ⎪⎝⎭ 又203Cπ<<②662C πππ-<-< 解得:64C ππ-=,512C π=. 【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20.某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(x 元)试销l 天,得到如表单价x (元)与销量y (册)数据:单价x (元) 18 19 20 21 22 销量y (册) 61 56504845(l )根据表中数据,请建立y 关于x 的回归直线方程:(2)预计今后的销售中,销量y (册)与单价x (元)服从(l )中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆˆa y bx=-,515160i ii x y==∑,5212010i i x ==∑.【答案】(1) ˆˆ4132yx =-+ (2) 当单价应定为22.5元时,可获得最大利润 【解析】(l )先计算,x y 的平均值,再代入公式计算得到ˆˆ4132yx =-+ (2)计算利润为:2(12)41801584W x y x x =-=-+-计算最大值.【详解】 解:(1)1819202122205x ++++==,6156504845525y ++++==515160i ii x y==∑,5212010i i x ==∑1221ˆni ii nii x y nx ybxnx =-=-=-∑∑2516052052404201052010-⨯⨯-===--⨯,ˆˆ52(4)20132ay bx =-=--⨯= 所以y 对x 的回归直线方程为:ˆˆ4132yx =-+. (2)设获得的利润为W ,2(12)41801584W x y x x =-=-+-,因为二次函数241801584Wx x =-+-的开口向下,所以当22.5x =时,W 取最大值,所以当单价应定为22.5元时,可获得最大利润. 【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21.手机支付也称为移动支付(Mobile Payment),是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图. 组数 第l 组第2组第3组第4组第5组分组 [15,25)[25,35)[35,45)[45,55)[55,65)频数 203630104(1)求x ;(2)从第l ,3,4组中用分层抽样的方法抽取6人,求第l ,3,4组抽取的人数: (3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 【答案】(1)0.030x = ;(2) 第1组2人,第3组3人,第4组1人;(3) 415P =【解析】(1)直接计算11300.03010010x =⨯⨯=. (2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为1A ,2A ,第3组抽取的3人为1B ,2B ,3B ,第4组抽取的1人为C ,排列出所有可能,再计算满足条件的个数,相除得到答案. 【详解】解:(1)由题意可知,11300.03010010x =⨯⨯=, (2)第1,3,4组共有60人,所以抽取的比例是110则从第1组抽取的人数为120210⨯=,从第3组抽取的人数为130310⨯=,从第4组抽取的人数为110110⨯=;(3)设第1组抽取的2人为1A ,2A ,第3组抽取的3人为1B ,2B ,3B ,第4组抽取的1人为C ,则从这6人中随机抽取2人有如下种情形:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()1,A C ,()21,A B ,()22,A B ,()23,A B ,()2,A C ,()12,B B ,()13,B B ,()1,B C ,()23,B B ,()2,B C ,()3,B C 共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有()12,A A ,()12,B B ,()13,B B ,()23,B B 共4个基本事件,所以抽取的2人来自同一个组的概率415P =. 【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力. 22.已知函数2133()sin 2cos 424f x x x =-+. (1)求()f x 的最小正周期T 和[0,]π上的单调增区间: (2)若2()(1)0nf x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.【答案】(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间. (2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 2cos 424f x x x =-+131cos 23sin 24224x x +=-⨯+131sin 2cos 2sin 24423x x x π⎛⎫=-=- ⎪⎝⎭故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭ ②,34x ππ⎡⎤∈-⎢⎥⎣⎦②2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,②1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0nf x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立, 则2()(1)nf x m +-⋅的最小值大于零.当n 为偶数时,10m -+>,所以,1m > 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.。

山东省菏泽市东明县第一中学2018年高三数学文下学期期末试卷含解析

山东省菏泽市东明县第一中学2018年高三数学文下学期期末试卷含解析

山东省菏泽市东明县第一中学2018年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们到直线x=-2的距离之和等于5,则这样的直线() A.有且仅有一条 B.有且仅有两条C.有无穷多条 D.不存在参考答案:2. 若某多面体的三视图(单位:cm)如图(1)所示,且此多面体的体积V=6cm3,则a=:A.9 B.3 C.6 D.4参考答案:A3. 高为的四棱锥的底面是边长为1的正方形,点、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A. B.C. D.参考答案:D4. 过点M(1,2)的直线l与圆C:(x﹣3)2+( y﹣4)2=25交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程是( )A.x﹣2y+3=0 B.2x+y﹣4=0 C.x﹣y+1=0 D.x+y﹣3=0参考答案:D考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:当直线AB与直线CM垂直时,∠ACB最小,由M与C的坐标求出直线CM的斜率,利用两直线垂直时斜率的乘积为﹣1求出直线AB的斜率,由M坐标与求出的斜率即可得出此时直线l的方程.解答:解:将圆的方程化为标准方程为(x﹣3)2+(y﹣4)2=25,∴圆心坐标C为(3,4),∵M(1,2),∴k CM==1,∴k AB=﹣1,则此时直线l的方程为y﹣2=﹣(x﹣1),即x+y﹣3=0.故选:D.点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆的位置关系由d与r的大小关系来判断,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径).根据题意得出当直线AB与直线CM垂直时∠ACB最小是解本题的关键.5. 将函数y=cos x+sin x(x∈R)的图像向左平移m(m>0)个单位长度后,所得到的图像关于y轴对称,则的最小值是A. B. C. D.参考答案:A6. 下列有关命题的说法正确的是()A.命题“若,则”的否命题为:“若,则”;B.“”是“”的必要不充分条件;C.命题“存在使得”的否定是:“对任意均有”;D.命题“若,则”的逆否命题为真命题.参考答案:DA.命题“若,则”的否命题为:“若,则”;B.“”是“”的充分不必要条件;C.命题“存在使得”的否定是:“对任意均有”;D.因为命题“若,则”为真,所以它的的逆否命题为真命题,因此正确的命题只有选项D。

【全国市级联考】山东省2017-2018学年高一下学期期末考试数学试题+答案

【全国市级联考】山东省2017-2018学年高一下学期期末考试数学试题+答案

2017-2018学年度第二学期期末考试高一数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的最小正周期是()A. 4B.C. 8D.2. 某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是()A. 4B. 5C. 6D. 73. 已知角的终边上一点,则()A. B. C. D.4. 圆和圆的位置关系是()A. 相离B. 相交C. 内切D. 外切5. 某中学举行英语演讲比赛,右图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和方差分别为()A. 84,4.84B. 84,1.6C. 85,4D. 86,1.66. 已知,则的概率为()A. B. C. D.7. 已知向量,则在上的投影为()A. B. C. 1 D. -18. 已知,且,则()A. B. C. D.9. 袋中有形状、大小都相同的4个球,其中2个红球、2个白球.从中随机一次摸出2个球,则这2个球中至少有1个白球的概率为()A. B. C. D.10. 函数的单调递增区间是()A. B.C. D.11. 过点作圆的两条切线为切点,则()A. 6B. -6C. 10D.12. 函数的图象向右平移个单位后得到的函数是奇函数,则函数的图象()A. 关于点对称B. 关于直线对称C. 关于点对称D. 关于直线对称第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题纸上13. 已知扇形的圆心角为120°,弧长为,则这个扇形的面积等于__________.14. 下列程序框图输出的的值为__________.15. 圆上的点到直线的距离的最小值为__________.16. 已知为所在平面内一点,且,现将一粒黄豆随机撒在内,则黄豆落在的概率为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,且.(2)求的值.18. 下表提供了某厂生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?附:回归直线的斜率和截距的最小二乘估计分别为: .19. 已知 .(1)求与的夹角;(2)在中,若,求边的长度.20. 随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.(1)求和的值,并根据频率分布直方图估计这组数据的众数;(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.21. 已知函数(其中)的图象的两条相邻对称轴之间的距离为,且图象上一个最低点为.(2)当时,求函数的值域;(3)若方程在上有两个不相等的实数根,求的值.22. 已知圆心为的圆过原点,且直线与圆相切于点. (1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 函数的最小正周期是()A. 4B.C. 8D.【答案】A【解析】函数的最小正周期是:.故选:A.2. 某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是()A. 4B. 5C. 6D. 7【答案】C【解析】某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,∴抽样间隔为:,现将300名职工从1到300进行编号,从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是:36−15×2=6.故选:C.3. 已知角的终边上一点,则()A. B. C. D.【答案】C【解析】∵角α的终边上一点P(−4,3),∴x=−4,y=3,r=|OP|=5,则,故选:C.4. 圆和圆的位置关系是()A. 相离B. 相交C. 内切D. 外切【答案】B【解析】因,且,所以两圆的位置关系是相交,应选答案B。

2017-2018学年高一数学下学期期末模拟试卷及答案(三)

2017-2018学年高一数学下学期期末模拟试卷及答案(三)

2017-2018学年高一数学下学期期末模拟试卷及答案(三)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1A.29 B.30 C.31 D.323.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与305.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.38.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±310.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥1111.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<212.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是;(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.16.对于数列{a n},定义数列{a n﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差+1数列”的通项公式为3n,则数列{a n}的通项公式a n=.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n成+1等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数据5,7,7,8,10,11的标准差是()A.8 B.4 C.2 D.1【考点】极差、方差与标准差.【专题】计算题.【分析】先算出平均数,再根据方差公式计算方差,求出其算术平方根即为标准差.【解答】解:这组数据的平均数=(5+7+7+8+10+11)÷6=8,方差= [(5﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2+(11﹣8)2]=4,标准差=2.故选C.【点评】本题考查了标准差的求法,计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)再根据公式求出数据的方差.标准差即方差的算术平方根,注意标差和方差一样都是非负数.A.29 B.30 C.31 D.32【考点】归纳推理.【专题】综合题;方程思想;综合法;推理和证明.【分析】由表格可知,年份构成首项为1896、公差为4的等差数列,根据等差数列的通项公式求出n的值.【解答】解:由表格可知,年份构成首项为1896、公差为4的等差数列,则2016=1896+4(n﹣1),解得n=31,所以n的值是31,故选:C.【点评】本题考查归纳推理,以及等差数列的通项公式的应用,属于基础题.3.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a|c|>b|c|【考点】不等关系与不等式.【专题】计算题.【分析】本选择题利用取特殊值法解决,即取符合条件的特殊的a,b的值,可一一验证A,B,D不成立,而由不等式的基本性质知C成立,从而解决问题.【解答】解:对于A,取a=1,b=﹣1,即知不成立,故错;对于B,取a=1,b=﹣1,即知不成立,故错;对于D,取c=0,即知不成立,故错;对于C,由于c2+1>0,由不等式基本性质即知成立,故对;故选C.【点评】本小题主要考查不等关系与不等式、不等关系与不等式的应用、不等式的基本性质等基础知识,属于基础题.4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A.23与26 B.31与26 C.24与30 D.26与30【考点】众数、中位数、平均数;茎叶图.【专题】图表型.【分析】由茎叶图写出所有的数据从小到大排起,找出出现次数最多的数即为众数;找出中间的数即为中位数.【解答】解:由茎叶图得到所有的数据从小到大排为:12,14,20,23,25,26,30,31,31,41,42∴众数和中位数分别为31,26故选B【点评】解决茎叶图问题,关键是将图中的数列出;求数据的中位数时,中间若是两个数时,要求其平均数.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键6.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有()A.60辆B.80辆C.70辆D.140辆【考点】频率分布直方图.【专题】计算题.【分析】根据已知中的频率分布直方图,我们可以计算出时速在[50,70)的数据对应的矩形高之和,进而得到时速在[50,70)的数据的频率,结合样本容量为200,即可得到时速在[50,70)的数据的频数,即时速在[50,70)的汽车的辆数.【解答】解:由于时速在[50,70)的数据对应的矩形高之和为0.03+0.04=0.07 由于数据的组距为10故时速在[50,70)的数据的频率为:0.07×10=0.7故时速在[50,70)的数据的频数为:0.7×200=140故选D【点评】本题考查的知识点是频率分布直方图,其中频率=矩形高×组距=是解答此类问题的关键.7.已知等差数列{a n}的前n项和为S n,且满足﹣=1,则数列{a n}的公差是()A.B.1 C.2 D.3【考点】等差数列的性质.【专题】计算题.【分析】先用等差数列的求和公式表示出S3和S2,进而根据﹣=,求得d.【解答】解:S3=a1+a2+a3=3a1+3d,S2=a1+a2=2a1+d,∴﹣==1∴d=2【点评】本题主要考查了等差数列的性质.属基础题.8.同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.【考点】等可能事件的概率;互斥事件与对立事件.【专题】计算题.【分析】本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,根据对立事件的概率公式得到结果.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,∴至少一次正面向上的概率是1﹣=,故选A.【点评】本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率,这样使得运算简单.9.已知a1,4,a2,1成等差数列,b1,4,b2,1,b3成等比数列,则b2(a2﹣a1)=()A.±6 B.﹣6 C.3 D.±3【考点】等差数列与等比数列的综合.【专题】计算题;等差数列与等比数列.【分析】先由已知条件和等差数列以及等比数列的性质求得a2﹣a1=1﹣4=﹣3,b2=±2,再求b2(a2﹣a1).【解答】解:由题得,∵a1,4,a2,1成等差数列,∴a2﹣a1=1﹣4=﹣3,∵b1,4,b2,1,b3成等比数列,∴b22=4∴b2=±2,∴b2(a2﹣a1)=±6.故选:A.【点评】本题是对等差数列以及等比数列性质的综合考查.在做关于等差数列以及等比数列的题目时,其常用性质一定要熟练掌握.10.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥11【考点】循环结构.【专题】图表型.【分析】由本程序的功能是计算的值,由S=S+,故我们知道最后一次进行循环时的条件为i=10,当i≥11应退出循环输出S的值,由此不难得到判断框中的条件.【解答】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,从中找出规律.11.正数x、y满足,若x+2y>m2+2m恒成立,则实数m的取值范围是()A.m≤﹣2或m≥4 B.m≤﹣4或m≥2 C.﹣2<m<4 D.﹣4<m<2 【考点】基本不等式;函数恒成立问题.【专题】不等式的解法及应用.【分析】利用基本不等式的性质可得x+2y的最小值,由x+2y>m2+2m恒成立⇔m2+2m<(x+2y)min.【解答】解:∵正数x、y满足,∴x+2y=(x+2y)=4+=8,当且仅当,即x=2y=4时取等号.∵x+2y>m2+2m恒成立,∴m2+2m<8,解得﹣4<m<2.故实数m的取值范围是﹣4<m<2.故选D.【点评】熟练掌握基本不等式的性质和正确转化恒成立问题是解题的关键.12.△ABC中,∠B=60°,b=2,则△ABC周长的最大值为()A.2 B.2C.3D.6【考点】正弦定理.【专题】计算题;转化思想;综合法;解三角形.【分析】由已知可得A+C=120°,结合正弦定理可表示a,c,利用三角函数恒等变换的应用可得△ABC周长l=2+4sin(A+30°),结合A的范围,利用正弦函数的性质可求△ABC周长的最大值.【解答】解:△ABC中,∵B=60°,b=2,∴A+C=120°由正弦定理可得a===4sinA,c===4sinC,则△ABC周长l=a+b+c=4sinA+4sinC+2=2+4sinA+4sin=2+4(sinA+cosA)=2+4sin(A+30°),∵0<A<120°,∴30°<A+30°<150°,∴<sin(A+30°)≤1,可得:2+4sin(A+30°)∈(4,6],∴l的最大值为6.故选:D.【点评】本题主要考查了正弦定理在求解三角形中的应用,而辅助角公式及正弦函数的性质的灵活应用是求解问题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在横线上. 13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为15,10,20.【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高一年级抽取的人数是300×=15人,高二年级抽取的人数是200×=10人,高三年级抽取的人数是400×=20人,故答案为:15,10,20.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.14.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是(2);(1)A与C互斥(2)B与C互斥(3)任两个均互斥(4)任两个均不互斥.【考点】互斥事件与对立事件.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用互斥事件、对立事件的定义直接求解.【解答】解:∵从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,∴事件A与事件C能同时发生,A与C不是互斥事件,∴(1)错误;(2)事件B与事件C不能同时发生,但能同时不发生,∴B与C是互斥事件,故(2)正确;(3)由A与C不是互斥事件,故(3)错误;(4)由B与C是互斥事件,知(4)错误.故答案为:(2).【点评】本考查命题真假的判断,是基础题,解题时要认真审题,注意互斥事件的概念的合理运用.15.若不等式ax2+5x﹣2>0的解集是,则不等式ax2﹣5x+(a2﹣1)>0的解集是.【考点】一元二次不等式的应用.【分析】先由二次不等式的解集形式,判断出,2是方程ax2+5x﹣2=0的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:∵ax2+5x﹣2>0的解集是,∴a<0,且,2是方程ax2+5x﹣2=0的两根韦达定理×2=,解得a=﹣2;则不等式ax2﹣5x+a2﹣1>0即为﹣2x2﹣5x+3>0,解得故不等式ax2﹣5x+a2﹣1>0的解集.故答案为:【点评】本题考查的知识点是一元二次不等式的解法,及“三个二次”(三个二次指的是:二次函数,一元二次不等式,一元二次方程)之间的关系,“三个二次”之间的关系及应用是数形结合思想的典型代表.16.对于数列{a n},定义数列{a n+1﹣a n}为数列{a n}的“差数列”,若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=.【考点】数列的函数特性;数列的概念及简单表示法.【专题】计算题;等差数列与等比数列.【分析】依题意,a1=1,a n+1﹣a n=3n,利用累加法与等比数列的求和公式即可求得答案.【解答】解:∵a1=1,a n+1﹣a n=3n,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=3n﹣1+3n﹣2+…+31+1==.故答案为:.【点评】本题考查数列的求和,着重考查累加法与等比数列的求和公式,属于中档题.三、解答题:本大题共6小题,共70分,请写出各题的解答过程或演算步骤. 17.一个包装箱内有6件产品,其中4件正品,2件次品,随机抽出两件产品(1)求恰好有一件次品的概率(2)求都是正品的概率.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)所有的取法共有种,而恰好有一件次品的取法有2×4种,由此求得恰好有一件次品的概率.(2)所有的取法共有种,而取出的2件产品都是正品的取法有种,由此求得取出的2件产品都是正品的概率.【解答】解:(1)所有的取法共有=15种,而恰好有一件次品的取法有2×4=8种,故恰好有一件次品的概率为.(2)所有的取法共有=15种,而取出的2件产品都是正品的取法有=6种,故取出的2件产品都是正品的概率为.【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.(2)用最小二乘法计算利润额y对销售额x的回归直线方程;(3)当销售额为8(千万元)时,估计利润额的大小.(附:b=)【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】(1)画出散点图,两个变量具有线性相关关系;(2)由求出所给的这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程;(3)由利润额y对销售额x的回归直线方程,能求出当销售额为8(千万元)时的利润额.【解答】解:(1)画出散点图:∴两个变量具有线性相关关系.﹣﹣﹣﹣﹣(2)设线性回归方程为=x+,由=(3+5+6+7+9)=6,=(2+3+3+4+5)=3.4,∴===0.5,=﹣•=0.4,∴y对x的线性回归方程为y=0.5x+0.4﹣﹣﹣﹣﹣﹣﹣(3)当销售额为8(千万元)时,利润额约为y=0.5×8+0.4=4.4(百万元).﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查散点图的作法和相关关系的判断,考查回归直线方程的求法和应用,解题时要认真审题,仔细解答,注意最小二乘法的合理运用,属于中档题.19.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a n log a n,求数列{b n}的前n项和S n.【考点】等差数列与等比数列的综合;数列的求和.【专题】计算题.【分析】(I)根据a3+2是a2,a4的等差中项和a2+a3+a4=28,求出a3、a2+a4的值,进而得出首项和a1,即可求得通项公式;(II)先求出数列{b n}的通项公式,然后求出﹣S n﹣(﹣2S n),即可求得的前n 项和S n.【解答】解:(I)设等比数列{a n}的首项为a1,公比为q∵a3+2是a2,a4的等差中项∴2(a3+2)=a2+a4代入a2+a3+a4=28,得a3=8∴a2+a4=20∴∴或∵数列{a n}单调递增∴a n=2n(II)∵a n=2n∴b n==﹣n•2n∴﹣s n=1×2+2×22+…+n×2n①∴﹣2s n=1×22+2×23+…+(n﹣1)×2n+n2n+1②∴①﹣②得,s n=2+22+23+…+2n﹣n•2n+1=2n+1﹣n•2n+1﹣2【点评】本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般采取错位相减的办法.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.【考点】等比数列的性质;三角函数中的恒等变换应用;解三角形.【专题】三角函数的求值;解三角形.【分析】(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=可求.【解答】(I)证明:∵sinB(tanA+tanC)=tanAtanC∴sinB()=∴sinB•=∴sinB(sinAcosC+sinCcosA)=sinAsinc∴sinBsin(A+C)=sinAsinC,∵A+B+C=π∴sin(A+C)=sinB即sin2B=sinAsinC,由正弦定理可得:b2=ac,所以a,b,c成等比数列.(II)若a=1,c=2,则b2=ac=2,∴,∵0<B<π∴sinB=∴△ABC的面积.【点评】本题主要考查了三角形的切化弦及两角和的正弦公式、三角形的内角和定理的应用及余弦定理和三角形的面积公式的综合应用.21.如图,正方形OABC的边长为2.(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件“|OP|>1”的概率;(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率是.【考点】几何概型;列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】(1)分析出正方形的四边和内部取点P(x,y),且x,y∈Z的全部基本事件个数,及满足“|OP|>1”的基本事件个数,代入古典概型公式可得事件“|OP|>1”的概率;(2)求出满足条件的所有基本事件对应的平面区域Ω的面积,及满足条件“△POA,△PAB,△PBC,△PCO的面积均大于的平面区域面积,代入几何概型公式,可得事件“△POA,△PAB,△PBC,△PCO的面积均大于”的概率【解答】解:(1)在正方形的四边和内部取点P(x,y),且x,y∈Z,所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中满足|OP|>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),所以满足|OP|>1的概率为.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA,△PAB,△PBC,△PCO的面积均大于,应该三角形的高大于,所以这个区域为每个边长从两端各去掉后剩余的正方形,其面积为×=,所以满足条件的概率为.【点评】本题考查的知识点是几何概型,及古典概型,其中求出所有基本事件个数(对应区域面积)和满足条件的基本事件个数(对应区域面积)是解答的关键.22.设数列{a n}的前n项和为S n,其中a n≠0,a1为常数,且﹣2a1,S n,2a n+1成等差数列.(1)当a1=2时,求{a n}的通项公式;(2)当a1=2时,设b n=log2(a n2)﹣1,若对于n∈N*, +++…+<k恒成立,求实数k的取值范围;(3)设c n=S n+1,问:是否存在a1,使数列{c n}为等比数列?若存在,求出a1的值,若不存在,请说明理由.【考点】等差数列与等比数列的综合;数列的求和.【专题】等差数列与等比数列.【分析】(1)由已知中﹣2a1,S n,2a n+1成等差数列,可得S n=a n+1﹣a1,进而可得a n+1=2a n,结合a1=2时,可得{a n}的通项公式;(2)由(1)结合对数的运算性质,可得数列{b n}的通项公式,进而利用拆项法可求出+++…+的表达式,进而可得实数k的取值范围;(3)由c n=a1×2n﹣a1+1,结合等比数列的定义,可得当且仅当﹣a1+1=0时,数列{c n}为等比数列.【解答】解:(1)∵﹣2a1,S n,2a n+1成等差数列∴2S n=﹣2a1+2a n+1,∴S n=a n+1﹣a1,…①当n≥2时,S n﹣1=a n﹣a1,…②两式相减得:a n=a n+1﹣a n,即a n+1=2a n,﹣﹣﹣﹣﹣﹣当n=1时,S1=a2﹣a1,即a2=2a1,适合a n+1=2a n,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以数列{a n}是以a1=2为首项,以2为公比的等比数列,所以a n=2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由(1)得a n=2n,所以b n=log2(a n2)﹣1=2n﹣1∴+++…+=+++…+=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)∵n∈N*,∴(1﹣)<若对于n∈N*, +++…+<k恒成立,∴k≥﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)由(1)得数列{a n}是以a1为首项,以2为公比的等比数列所以c n=S n+1==a1×2n﹣a1+1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣要使{c n}为等比数列,当且仅当﹣a1+1=0即a1=1所以存在a1=1,使{c n}为等比数列﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是等差数列与等比数列的通项公式,数列求和,恒成立问题,是数列的综合应用,难度较大,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档