有机化合物光谱和波谱分析-2.2

合集下载

有机化合物波谱解析

有机化合物波谱解析

仪器分析:测定复杂结构的化合物 样品用量少
• 四谱同时用或联用技术 • 四谱比较: • 灵敏度:MS>UV>IR>1HNMR>13CNMR
MS: 微克级
UV: ppb级
IR:毫克级(可微克级,FTIR)
1HNMR:0.5mg }可回收
13CNMR: 0.5mg
四谱的信息量比较:
1HNMR及13CNMR
loge2
max1
max2
/nm
不论纵坐标选用什么单位,同一化合物的最大吸收对应 的波长(λmax)不变。
四、朗伯-比耳定律(Lambert—Beer定律)
样品的吸光度A与浓度之间的关系为:
A= lc=lgI0/I=lgT-1 式中T—透射率(或透射比);
I0——入射光强度, I——透过光强度; c——被测液浓度, l——被测液厚度,亦称样品槽厚度。 ——吸光系数 ε——摩尔吸光系数(L/mol·cm) E1%1cm ——百分吸光系数,亦称比吸光系数
液浓度为1g/100ml(1%),液层厚度为1cm时,溶液的吸光 度。
3.两种表示方法的换算关系
设吸光物质的摩尔质量为M g/mol ,则
1mol/L=M g/1000ml=M/10·1g/100ml
∴ ε=M/10·E1%1cm
通过紫外光谱测定获得吸收度或透光率,使用 Beer-Lambert定律便可计算ε值。
有机化合物波谱解析
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品

有机化合物的光谱解析实验教案

有机化合物的光谱解析实验教案

有机化合物的光谱解析实验教案有机化合物的光谱解析实验教案一、实验目的:1.学习并掌握光谱解析的基本原理和方法。

2.通过实验,观察有机化合物的红外光谱、核磁共振氢谱和质谱,解析其结构特征。

3.培养学生对有机化合物光谱解析的实际操作能力和结构推断能力。

二、实验原理:光谱解析是利用物质吸收光、发射光或散射光的波长与强度,来确定物质的结构和组成的一种方法。

在有机化合物光谱解析中,常用的光谱技术包括红外光谱(IR)、核磁共振氢谱(1H-NMR)和质谱(MS)。

1.红外光谱(IR):利用不同化学键或基团在红外区域的吸收特性,研究有机化合物的分子结构。

不同类型的化学键或基团在红外光谱中表现出独特的吸收峰。

2.核磁共振氢谱(1H-NMR):利用核磁共振原理,研究有机化合物中氢原子(或其他原子)的化学环境。

不同类型的氢原子在核磁共振谱中表现出不同的化学位移。

3.质谱(MS):通过离子化样品并测量其质量-电荷比,研究有机化合物的分子量、分子式和分子结构。

在质谱中,不同的分子结构会产生不同的碎片离子,这些离子可用于推断分子结构。

三、实验步骤:1.准备试剂与仪器:准备好待测有机化合物、红外光谱仪、核磁共振谱仪、质谱仪等实验器材和试剂。

2.样品处理:将待测有机化合物进行适当处理,以便进行光谱分析。

例如,对于固体样品,可能需要使用KBr压片或溶解在适当溶剂中。

3.红外光谱分析:将处理后的样品放入红外光谱仪中,采集红外光谱数据。

记录各个吸收峰的位置与强度。

4.核磁共振氢谱分析:将处理后的样品放入核磁共振谱仪中,采集1H-NMR数据。

记录各个峰的化学位移与相对强度。

5.质谱分析:将处理后的样品放入质谱仪中,采集质谱数据。

解析各个碎片离子的质量与电荷比,结合其他光谱数据推断分子结构。

6.数据处理与结构推断:根据采集到的光谱数据,结合已知的化合物信息,推断化合物的可能结构。

对比已知数据,验证推断结构的准确性。

7.撰写实验报告:记录实验过程、数据和结论,撰写实验报告。

有机化合物的波谱分析

有机化合物的波谱分析

第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。

其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。

特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。

缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。

波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。

特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。

光谱法已成为有机结构分析的常规方法。

但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。

(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。

不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。

其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。

有机化合物波谱分析

有机化合物波谱分析

有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。

其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。

本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。

核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。

它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。

核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。

峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。

峰的形状和强度可以提供有关分子结构和相互作用的信息。

核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。

红外光谱(IR)是一种基于分子振动的波谱分析方法。

它通过测量物质吸收红外辐射的能量来获得信息。

由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。

红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。

峰的强度和形状可以提供关于分子的结构和取向的信息。

红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。

在进行有机化合物波谱分析时,需要先对样品进行样品制备。

核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。

红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。

波谱仪器通常会提供相应的样品制备方法和参数设置。

在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。

首先,对于核磁共振波谱,要正确解读峰的化学位移。

化学位移受到许多因素的影响,如官能团、电子效应、取代基等。

因此,需要结合文献和经验来确定不同类型核的化学位移范围。

其次,对于红外光谱,要正确解读峰的波数。

不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。

最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。

有机化学有机化合物的波谱分析PPT课件

有机化学有机化合物的波谱分析PPT课件
红外光谱是以波长λ或波数σ第为5横页/坐共8标0页,表示吸收峰的峰位;以透射比 T(以百分数表示,又称为透光率或透过率)为纵坐标,表示吸收强度。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。

第八章有机化合物的波谱分析

第八章有机化合物的波谱分析

1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:

B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。

有机化学波谱分析

有机化学波谱分析
,形成质谱图。
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。

有机波谱分析总结

有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。

本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。

一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。

通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。

有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。

二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。

通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。

红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。

2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。

质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。

3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。

通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。

核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。

4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。

紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。

三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。

结构鉴定法常用于核磁共振谱和质谱。

2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。

08有机化合物的波谱分析

08有机化合物的波谱分析
用下产生一个感应磁场。
• 一般,感应磁场H感存在使质子实际感受到
的 效磁 应场 叫强做屏度蔽H’0效比应外。加磁场强度H0小,这种
• 所以要发生共振必须:

H0=H’0+ H感
由于不同化学环境的质子受到的屏蔽效应不同, 因此它们发生核磁共振所需的外磁场强度也不同。
质子周围电子云密度 感应磁强 H感 屏蔽效应 发生共振吸收的磁场强度 H0
倍频区
官能团特征区
指纹区
8.3. 有机化合物的红外光谱 烷烃:
~2850
~1370 ~1470
~720
2850~3000 cm-1 1450~1470 -1 1370~1380 –1 720~725 -1
C-H 伸缩振动
-CH3 –CH2-剪式弯曲振动 CH3-平面摇摆弯曲振动 (注意分裂峰) -CH2-平面摇摆弯曲振动(n>=4)
总之:在核磁共振谱中:
吸收峰的个数(组数)——质子的类型
吸收峰的强度(面积)之比— 各类质子的 相对数目
吸收峰的位置(化学位移) 质子所处的
吸收峰的裂分情况
化学环境
【例6-1】 图6-22所 示两个 1HNMR谱 图分别代 表化合物 1-氯丙烷 和2-氯丙 烷。试说 明其归属 。
【例6-2】
每个有机化合物都有它自己的吸收光谱。
(一) 红外光谱 (IR)
• 红外光谱图的表示方法 • 红外光谱与分子结构的关系 • 有机化合物的红外光谱
8.1. 红外光谱的表示方法
红外光谱(infrared,spectroscopy,简记为IR) 是分子吸收红外区光波时,分子中原于的振动能级 和转动能级发生跃迁而产生的吸收光谱。
在核磁共振谱上就出现不同位置的吸收峰。

有机化合物的波谱分析简介

有机化合物的波谱分析简介
1
第十章 有机化合物的波谱分析简介
有机化合物不论是天然产物还是经化学反应 生成的,都需要测定其分子的结构。如果对某一 化合物的结构不了解,则对其性质和作用的研究 是很难深入的。因此,测定有机化合物的结构很 自然地变成了研究有机化学的首要任务。
2
我们在基础有机化学中学习了鉴定有机官能团的化 学方法:
R
H
CC
νC-H 3020, 3090
H
H δC-H 910, 990
R
H
C C δC-H 890
R'
H
R
R'
CC
H
H
δC-H 690
R
H
CC
H
R'
δC-H 970
24
1-辛烯
2,3-二甲基-1,3-丁二烯 2-甲基-2-戊烯
25
R
H
CC
H
R'
(E)-2-己烯
R
R'
CC
H
H
(Z)-2-己烯
δ C-H 970 δ C-H 690
26
炔烃 炔烃的特征吸收峰主要是 C C和 CH的特征吸收峰。
C C H νC-H 3300cm-1 尖峰 νC=C 2100~2300cm-1 弱
RCCR ' νC=C 2190~2260cm-1 弱
27
3,3-二甲基-1-丁炔 2-丁炔
28
1-己炔的红外光谱图
29
芳香烃
C=C-H νC-H 3000~3100cm-1
红外光谱法 Raman光谱法
远红外光谱法
0.03~100cm 1~1000m
分子转动,电子自旋

有机化合物光谱解析

有机化合物光谱解析

(一) 电子跃迁类型对max的影响
*跃迁峰位:150nm左右 n*跃迁峰位: 200nm左右 *跃迁峰位: 200nm(孤立双键), 强度最强(跃迁 时产生的分子极化强度高) n*跃迁峰位: 200~400nm
(二)发色团与助色团对max的影响
紫外吸收光谱主要由 *及n*跃迁贡献的。



在单色光和稀溶液的实验条件下,溶液对光线 的吸收遵循Lambert-Beer定律。即吸光度(A) 与溶液的浓度(C)和吸收池的厚度(l)成正 比。 A=alC 若溶液的浓度用摩尔浓度,吸收池的厚度以厘 米为单位,则Beer定律的吸光系数(a)可表达 为 ,即摩尔吸光系数。 A= lC=-lgI/I0; 即=A/lC I0: 入射光强度;I: 透射光强度
两个化合物相同,则紫外光谱应完全相同;而紫外光谱相同, 结构不一定相同。

确定未知不饱和化合物的结构骨架
(一) 将max的计算值与实测值进行比较
(二) 与同类型的已知化合物UV光谱进行比较
同类化合物在紫外光谱上即有共性,又有个性。其共性可用于化合 物类型的鉴定,个性可用于具体化合物具体结构的判断。 黄酮类化合物:300~400nm(谱带I);220~280nm(谱带II)
芦丁加入诊断试剂后的峰位变化
三 确定异构体或构型
上述化合物的紫外光谱给出max: 206nm(=5350); 250nm(=10500) A计算值: max=249nm
例2 二苯乙烯
max: 280nm (max=10500)
max: 295.5nm(max=29000)
(A): 245nm; (B): 308nm; (C): 323nm
有机化合物光谱解析
是利用光谱学知识解析化合物结

有机化合物的光谱分析

有机化合物的光谱分析

辛烷的红外光谱图
上页 下页 返回 退出
11.2.2.2 不饱和烃的红外光谱特征 C-H伸缩振动吸收大于3000 cm-1 ,
C=C键的伸缩振动在1600~1680 cm-1 。随
着双键碳上烷基的增加,强度减弱。烯烃C -H键的平面外弯曲振动吸收可用于判断双 键碳上的烷基取代类型。
上页 下页 返回 退出
1-戊炔的红外光谱
上页 下页 返回 退出
11.2.2.3 芳烃的红外谱特征 芳环骨架的伸缩振动在 1625~1575cm-1,1525~1475cm-1
C-H伸缩振动在 3100~3010cm-1
上页 下页 返回 退出
苯取代物的C-H面外弯折振动
770~735cm-1 710~685cm-1
760~745cm-1
烯烃C-H键的平面外弯曲振动频率
R C H C H H
R C H C
R H
R C R C
R H
910cm-1, 990 cm-1
R C R C H H
675~725 cm-1
R C H C R H
790~840 cm-1
R C R C R R
890cm-1
970cm-1

上页 下页 返回 退出
末端烯烃
17.3.3 分子的振动方式 17.3.4 分子结构与红外光谱特征的吸收频率 17.3.5 各类化合物的红外光谱图 17.3.6 红外光谱的解析
上页 下页 返回 退出
11.2.1 红外光谱的基本原理
11.2.1.1 红外光和分子的红外吸收
红外光谱是分子吸收红外光引起振动和转动 能级跃迁产生的吸收信号。
有机化学
有机化合物的光谱分析
下页 返回 退出

有机化合物波谱解析

有机化合物波谱解析
物质定量分析的依据。
⑤在λmax处吸光度随浓度变化的幅度最大,所以测定
最灵敏。吸收曲线是定量分析中选择入射光波长的重要 依据。
3.电子跃迁与分子吸收光谱
物质分子内部三种运动形式: (1)电子相对于原子核的运动; (2)原子核在其平衡位置附近的相对振动; (3)分子本身绕其重心的转动。
分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量。 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er
第一节 紫外吸收光谱分析基本原理
(principles of UV)
光是一种电磁波,光同时具有波动性和粒子性,两者 对立统一,可通过下式联系在一起。
根据波长增加的顺序,电磁波分为X-射线、紫外、可 见、红外、微波及无线电波几个区域
一、紫外吸收光谱的产生
1.概述
紫外吸收光谱:又称电子吸收光谱,分子价电子能级跃迁。
子)均呈现n→σ* 跃迁。
化合物 H2O
CH3OH CH3CL
CH3I CH3NH2
max(nm) 167 184 173 258 215
emax 1480 150 200 365 600
3) π→π*跃迁
双键或三键中п轨道的电子吸收紫外线后产生跃迁。 π→π*跃迁的ΔE较σ→σ*的小,孤立双键和三键的吸收一般 在小于200 nm的远紫外区。例如:乙烯在165 nm处有吸收。
紫外可见光谱 (UV-VIS); 红外(拉曼)光谱 (IR,Raman); 质谱 (MS); 核磁共振谱 (NMR); X线衍射; 折射率; 电诱导率; 熔点;
有机波谱学: UV -VIS ; IR(Raman); MS; NMR
三十年代 四十年代
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.价电子类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ键电子(单键)
有机分子 价电子类型
π键电子(不饱和键)
未成键n电子(或称非键电子, 如氧,氮,硫,卤素等)
s
H
C H
O
p
n
2.电子跃迁类型
分子轨道理论:成键轨道—反键轨道。
s*

E
K E,B
R
p*
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量Δ Ε 大小顺序为:
溶剂极性↑ π→π*跃迁的吸 收谱带发生红移
基发态 基态
例如: 环己烷改
乙极性对n→π*跃迁谱带的影响
溶剂极性↑ n→π*跃迁的吸收 谱带发生蓝移 例如: 环己烷改 乙醇: 蓝移7nm, 水: 蓝移8nm
异亚丙基丙酮CH3COCH=C(CH3)2吸收带与溶剂极性的关系
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转 动能级的跃迁;带状光谱。
4. 电磁波与辐射能
光: 是一种电磁波, 具有波动性和粒子性.
波动性 – 传播运动过程中突出, 表现在光的偏振, 干涉, 衍射 粒子性 – 与物质相互作用时突出, 表现在光电效 应, 光的吸收和散射
c ν= λ
ν : Hz c 8 c : 光速 (3×10 m/s) E = hν =h λ λ : m
= hcν
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小 ※ 光量子的能量(E)与波长成反比, 而与频率及波数成正比.
二、电子能级跃迁类型
ultraviolet spectrometry of organic compounds
2、不饱和脂肪族有机化合物
非共轭 p p *跃迁, λmax位于190nm以 下的远紫外区。 例如:乙烯 165nm(ε 15000),乙炔 173nm C=C与杂原子O、N、S、Cl相连,由于杂原子的助色 效应, λmax红移。 小结:C=C,C≡C虽为生色团,但若不与强的 助色团N,S相连, p p *跃迁仍位于远 紫外区。
一、认识紫外吸收光谱 formation of UV 紫外吸收光谱是由于分子中价电子的跃迁而产生的。
分子中价电子经紫外或可见光照射时,电子从低能级跃迁 到高能级,此时电子就吸收了相应波长的光,这样产生的吸收 光谱叫紫外光谱。
1.紫外光谱图表示
e
1
4 2 3 300 λ 350 400nm
250
mber-Beer定律
③ B吸收带(源于德文benzenoid, 苯系)
芳香族化合物的特征吸收谱带, 起因于π→π* 跃迁 与苯环振动的重叠, 其强度很弱,εmax约为200, λmax出现
在230~270nm范围内.
④ E吸收带(源于德文ethylenic, 乙烯型)
芳香族化合物的起因于π→π* 跃迁的较强或强吸收 带 . 又 分 为 E1(εmax≥104, 吸 收 峰 约 180nm), E2(εmax 约 103, 吸收峰约180nm),
σ→σ* 电子跃迁 能级 间隔大
吸收
波长短,能量高的远 紫外光(λmax<150nm)
σ→σ*跃迁的特点:
允许跃迁,吸收强度强, ε≈104 饱和化合物,常用作溶剂
(2)π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,ε max一般在104L·mol-1·cm-1以上,属于强吸收。
p(K带)发生红移。
CH3 5(nm) 5(nm)
取代基
-SR
红移距离 45(nm)
π→π* 电子跃迁
跃迁能小于 σ→σ* 跃迁
吸收
紫外区至 可见光区 (λmax>160nm)
π→π* 跃迁的特点:
1). 允许跃迁, 吸收强度强 2). 孤立双键的π→π* 跃迁大多在约200nm左右有吸收, ε>104 3). 共轭双键的π→π* 跃迁的吸收>200nm, ε>104 ---由共轭体系的π→π* 跃迁所产生的吸收带称为 K(德语共轭的)带
R2C=S 较 R2C=O 同系物中n π *跃迁λmax红移。
(3)n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ * 跃迁。
n→σ*
电子跃迁
吸收
跃迁能较小
紫外区边端 (λmax≈200nm)
末端吸收
n→σ*跃迁的特点:
1). 含有氧, 氮, 硫, 卤素(都具有未成键电子对)等的化 合物都有n→σ*引起的吸收.
(5)端吸收
吸收峰随着波长变短而强度增强,直至仪器测量的 极限 ,而不显示峰型 ( 这主要是因为其最大吸收在短 波长处),这种极限处吸收称为末端吸收.
(6)肩峰
指吸收曲线在下降或上升处有停顿,或吸收稍微增加 或降低的峰,是由于主峰内隐藏有其它峰。
(7)溶剂效应
在不同溶剂中谱带产生的位移
1. 溶剂对吸收波长的影响 1). 溶剂极性对π→π*跃迁谱带的影响
(1) 不饱和烃π →π *跃迁 乙烯π →π *跃迁的λ max为162nm,ε max为: 1×104
L·mol-1·cm-1。 K带——共轭非封闭体系的p p* 跃迁 C=C
H c H
发色基团, 但 p p*200nm。
H c H
max=162nm 助色基团取代 p
-NR2 40(nm) -OR 30(nm) -Cl
§2.1概述
1.紫外吸收光谱:电子跃迁,共轭体系 2.红外吸收光谱:分子振动,官能团及分 子骨架 3.核磁共振波普:自旋能态跃迁,官能团 及分子骨架 4.质谱:质荷比,相对分子质量,分子式
Ch2:有机化合物光谱和波谱分析
§2.2紫外吸收光谱法
ultraviolet spectrometry, UV
基发态
基态
溶剂 介电常数
己烷 2.0
229.5 (12600) 327(97.5)
乙醚 4.3
230 (12600) 326(96)
乙醇 25.8
237 (12600) 315(78)
甲醇 31
238 (10700) 312(74)
水 81
244.5 (10000) 305(60)
λmax/nm (εmax)
1、苯及其衍生物
E1带:184nm——远紫外区
E2带:203nm
B带:256nm
被取代后, E2带和B带吸收峰会
变化。
三、各类化合物的紫外吸收
1、饱和有机化合物
饱和烷烃:σs*,能级差很大,紫外吸收的波 长很短,属远紫外范围。 例如:甲烷 125nm,乙烷135nm 含杂原子的饱和化合物: σs*、 ns*,吸收弱,
讨论:
④不同浓度的同一种物质,在某一定波长下吸光度 A
有差异,在λ max处吸光度A 的差异最大。此特性可作作
为物质定量分析的依据。
⑤在λ max处吸光度随浓度变化的幅度最大,所以测定
最灵敏。吸收曲线是定量分析中选择入射光波长的重要
依据。
3.紫外光谱的波段
紫外吸收光谱的波长范围是100-400nm(纳米), 其中 100-200nm 为远紫外区(这种波长的光能够被空气中的氮、氧、 二氧化碳和水所吸收,因此只能在真空中进行研究,故这个区域 的吸收光谱称真空紫外),200-400nm为近紫外区, 一般的紫 外光谱是指近紫外区。波长在400~800nm范围的称为可见光谱。 常用的分光光度计一般包括紫外及可见两部分,波长在200~ 800nm(或200~1000nm) 波长范围:100-800 nm.
3、 含杂原子的双键化合物
1.含不饱和杂原子基团的紫外吸收 (如下页表所示) σs*、 ns* 、 π π*属于远紫外吸收 n π *跃迁为禁阻跃迁,弱吸收带--R带
2.取代基对羰基化合物的影响
当醛、酮被羟基、胺基等取代变成酸、酯、酰胺 时,由于共轭效应和诱导效应影响羰基,λmax蓝移。 3.硫羰基化合物
② K带:
当分子中两个或两个以上双键共轭时,π→π*
跃迁能量降低, 吸收波长红移,共轭烯烃分子如1,3丁二烯的这类吸收在光谱学 上称为K带(取自德文:共
轭谱带,konjuierte)。K带出现的区域 为210~ 250nm,εmax>104(lgεmax>4),随着共轭链的增长, 吸 收峰红移,并且 吸收强度增加。共轭烯烃的K带不 受溶剂极性的影 响,而不饱和醛酮的K带 吸收随溶剂 极性的增大而红移。
π→π* n→π*
4. 吸收带
(1)R带: 指连有杂原子的不饱和化合物(如羰基、碳 氮双键等)中杂原子上的n电子跃迁到π*轨道,这种跃迁 在光谱学上称为R带(取自德文:基团型, radikalartig),跃迁所需能量比n→σ*的小,一般在近
紫外或可见光区有吸收,其特点是在270~350nm之间, ε值较小,通常在100以内,为弱带,该跃迁为禁阻跃迁。 随着溶剂极性的增加,吸收波长向短波方向移动(蓝 移)。 吸收带
Ch2:有机化合物光谱和波谱分析
学习指南
1.理解“四谱”产生的基本原理及有机分 子在不同谱中表现出的行为特征。 2.掌握紫外光谱中max和核磁共振谱中σ的 计算。 3.熟悉各类化合物中“四谱”中的主要数 据。 4.掌握个谱的解析方法,能熟练解析各谱, 获得准确的有机分子结构。
Ch2:有机化合物光谱和波谱分析
n→π * ≤ π →π * ≤ n→σ

< σ →σ
相关文档
最新文档