分数百分数应用题基础上课讲义

合集下载

分数百分数应用题复习课件

分数百分数应用题复习课件

千克,已知出油率为40%,问共用了多
少花生去榨油?
2四.连续两次判断单位“1”的问题
3 6
7 1、元旦有3600人到动物园游玩,其 中数成的人34 ,占元25 ,旦成到人野人生数动相物当园于游小玩孩的人小 孩人数有多少人?
2、四年级有学生147人,五年级 学级生学的生人的数人是 数四相年当级于的五年23 ,级六的年67 。 六年级有学生多少人?
2、(1)某班50人,今天缺席2 人。 求出勤率。 (2)某班50人,今天出勤48人。 求出勤率。 (3)某班今天出勤48人,缺席2 人。求出勤率。
3、“求一个数比另一个多(少) 几分之几”的问题我们可以把它 转化为
“求相差量是单位“1”的几 分之几”的问题来解答,
相差量÷单位“1”=相差分率
相差量÷单位“1”=相差分率
模板中的图片展示页面,您可以根据需要
方法一:更改图片
† 在图“替换”下拉列表中选择要更改字体。(如下图)
•选中模版中的图片(有些图片与其他对象 ,而不是组合)。
1.单击鼠标右键,选择“更改图片”,选
† 在“替换为”下拉列表中选择替换字体。 † 点击“替换”按钮,完成。
(二)求一个数的几(百)分之几是多少:
2 5
A第:二一周本读书了90全0页书,的第一1周。读了全书的
1 9

10
(1)第一周读了多少页?——对应的分率是第一周读了
()
(2)第二周读了多少页?——对应的分率是第二周读了
()
(3)还剩下多少页?——对应的分率是还剩(

没读
(4)两周一共读多少页?——对应的分率是两周一共读
了( )
(5)第一周比第二周多读多少页?——对应的分率是第

小升初数学总复习分数百分数应用题课件

小升初数学总复习分数百分数应用题课件

7.一种矿泉水,零售每瓶卖2元。生产厂家为感谢广大 顾客对产品的厚爱,特开展“买四赠一”大酬宾活动。 生产厂家的做法优惠了百分之几? 4÷(4+1)=0.8=80% 1-80%=20% 答:生产厂家的做法优惠了20%。 8.一种彩电,如果减少定价的10%出售,可盈利215元, 如果减少定价的20%出售就亏本125元,这种彩电定 价多少元? (215+125)÷(20%-10%)=4300(元) 答:这台彩电定价4300元。
多少钱? 200×80%×90%=144(元) 答:小明买这辆车花了144元。
5. 把12千克糖溶解在18千克水中配成甲溶液,9 千克糖溶解在13.5千克水中配成乙溶液,再将甲、 乙两种溶液混合配成新溶液,则新溶液的浓度是 多少?
(12+9)÷(18+13.5+12+9)×100%=40% 答:新溶液的浓度是40%。
针对性练习 一、师傅计划一天生产40个零件,实际比计划多生产 25%,实际一天生产多少个零件? 40×(1+25%)=50(个) 答:实际一天生产50个零件。
二、某种皮衣定价1150元,以八折售出仍可盈利15%, 某顾客在八折的基础上要求再让利150元,若真这样, 商家是盈利了,还是亏损了?盈利或亏损多少元? 1150×80%÷(1+15%)=800(元) 1150×80%-150=770(元) 800-770=30(元) 答:商家是亏损了,亏损了30元。
A. 大于99%
B. 99%
C. 小于99%
2. 到银行取款时,银行付出的高于存款原数部分的钱
是(B )。
A. 利率
B. 利息
C. 本金
3. 某种糖水,已知糖占糖水质量的5%,糖和水的比

新版六年级上册数学讲义-《分数(百分数)应用题》 北师大版

新版六年级上册数学讲义-《分数(百分数)应用题》 北师大版

成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。

1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。

二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。

一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。

(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。

分数(百分数)应用题的六种类型PPT课件

分数(百分数)应用题的六种类型PPT课件
问题的本质。
列方程
根据题目中的已知条件 ,列出一个包含未知数
的方程。
解方程
通过计算,求出未知数 的值。
检验
将求得的未知数的值代 入原方程进行检验,确
保答案的正确性。
典型例题分析
例题1
已知一个数的3/4是24,求这个数。
分析
根据题目中的已知条件,可以列出一个方程:3/4x=24 ,其中x表示这个数。解这个方程,可以得到x的值。
解方程
通过计算,求出未知数的值。
检验
将求得的未知数的值代入原方 程进行检验,确保答案的正确
性。
典型例题分析
例题1
已知甲数比乙数多25%,且甲数是 120,求乙数。
分析
设乙数为x,根据题意可列出方程: 甲数 = 乙数 + 乙数 × 25%。将甲 数代入方程,可求得乙数的值。
解答
120 = x + x × 25%,解得x = 96。
解答
3/4x=24,解得x=32。
例题2
已知一个数的25%是15,求这个数。
分析
根据题目中的已知条件,可以列出一个方程: 0.25x=15,其中x表示这个数。解这个方程,可以得到 x的值。
解答
0.25x=15,解得x=60。
学生自主练习
01
02
03
练习1
已知一个数的4/5是32, 求这个数。
练习2
THANKS
感谢观看
练习3
已知一个数的75%比它的 50%多6,求这个数。
06
CATALOGUE
类型五:折扣、纳税、利息问题中分数和 百分数应用
折扣问题中分数和百分数应用
折扣的含义及计算方法
01

北师大版六年级上册数学讲义-《分数(百分数)应用题》

北师大版六年级上册数学讲义-《分数(百分数)应用题》

北师大版六年级上册数学讲义-《分数(百分数)应用题》成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。

1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。

二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。

一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。

(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。

(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。

《百分数应用题一》课件

《百分数应用题一》课件

李华的成绩
李华考试得了80分,占全班人数的70%。问班上有多 少人?
商品折扣
原价100元的商品,打8折后的价格是多少?
学生练习题
1 题目1
某班级有30名学生,男生 占总人数的60%,女生占 多少人?
2 题目2
3 题目3
一辆汽车原价20万元,经 过5年后降价50%出售,售 价是多少万元?
小明考试得了75分,占全 班人数的25%,班上有多 少人?
总结与回顾
分数与百分数的关系
分数与百分数用于表示相对于 整体的数值。
百分数的概念和表示 方法
百分数表示相对于整体的百分 比,将数值乘以100加上百分号。
百分数的应用
百分数在日常生活中广泛应用 于各种场景。
关系
分数可以转化为百分数,也可 以从百分数转化为分数。
百分数的概念和表示方法
1 概念
百分数表示相对于整体的 百分比,常用于比较和表 示比率。
2 表示方法
将实际数值乘以100,并 在末尾加上百分号。

3 举例
75%表示相对于整体的75 部分,即75/100。
百分数在日常生活中的应用
1
商场促销
打折活动中常用百分数,如7折、半价等。
成绩评定
2
考试成绩以百分数表示学生的得分。
3
经济指标
通胀率、失业率等经济数据以百分数表 示。
百分数应用题的解题方法
找出关键信息
理解题干中的条件和要求。
计算求解
根据公式或推理,进行计算求解。
转化为数学表达式
根据题目要求,将信息用数学方式表示。
回答问题
根据计算结果,回答题目中的问题。
案例分析:百分数应用题实例

小升初数学讲义之——分数百分数应用题

小升初数学讲义之——分数百分数应用题

小升初——分数百分数应用题分数百分数应用题是研究数量之间关系的典型应用题,一方面它是在整数应用上的延续和深化;另一方面它有其自身的特点和解题规律。

遇到这类问题时,分析数量之间的关系,准确的找出“量“与”率“之间的对应关系是解题的关键。

一、 转化单位一在解答较复杂的分数百分数应用题时,我们往往需要从题目中找出不变的量,把不变的量看作单位一,将已知的条件进行转化,找出所求数量相当于单位一的几分之几,再列式解答。

1. 五年级三个班举行数学竞赛。

一班参加比赛的占全年级参赛总人数的13,二班与三班参加比赛人数的比是11:13,二班比三班少8人。

一班有多少人参加了数学竞赛?2. 今年8月份,甲所得的奖金比乙少200元,甲得的奖金的23 正好是乙得奖金的47,甲、乙两人各得奖金多少元?3. 仓库里的大米和面粉共有2000袋。

大米运走25 ,面粉运作110后,仓库里剩下大米和面粉正好相等。

原来大米和面粉各有多少袋?4. 一批水果四天卖完。

第一天卖出180千克,第二天卖出余下的27,第三、四天共卖出这批水果的一半,这批水果有多少千克?5. 有一块菜地和一块麦地,菜地的一半和麦地的13放在一起是13公顷,麦地的一半和菜地的13放在一起是12公顷,那么,菜地有多少公顷?6. 有5元和2元的人民币若干张,其金额之比为15:4。

如果5元人民币减少6张,则两种人民币的张数相等。

求原来两种人民币的张数各是多少?7. 王师傅生产一批零件,不合格产品是合格产品的191,后来从合格产品中又发现了2个不合格产品,这时算出产品的合格率是94%。

合格产品共有多少个?8. 一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中有奶糖多少千克?9.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?1,新转来2个女生后,女生人数占全班总人10.六(一)班原有女生占全班总人数的51,求:原来有女生多少人?数的411.袋子里红球与白球的数量之比是19:13。

《分数、百分数应用题》认识百分数PPT课件

《分数、百分数应用题》认识百分数PPT课件

3、分数百分数连除法应用题
特征:条件中有两个分率句,分率句中的两个单位“1”不同, 并且都是未知的。
方法:1、方程解法:设所求单位“1”的量为ⅹ 单位“1”的量×(b/a)×(d/c)=已知量 2、算术方法:用已知量连续除以它们所对应的分率。 对应量÷对应分率÷对应分率=单位“1”的量
例1.学校有8个篮球,是排球的75%,排球是足球的1/3,学 校有多少个足球?
分数、百分数应用题
(归类总结)
-.
分百应用题是六年级上册的重点,也是 一个难点,它涉及了第二,第三,第五以及 第六单元的部分内容,所占比例很大。要想 让学生们准确地掌握好各个类型应用题的特 点,以及解答方法,首先,要对应用题进行 分类,让学生掌握应用题的解题策略。其次, 对于一些平时练习出现的易混易错的典型应 用题进行对比,归类,从而掌握其正确的解 答方法。最后还要对学生进行不同类型应用 题的分组练习,从而进一步提高学生分析解 决应用题的能力。
美术2200%%
舞舞蹈蹈101%0%
合合 唱唱 4455%% 科科 技技组组
2255%%
(1)学校课外小组共有200 人,合唱组有多少人?
(2)美术组比舞蹈组多百分 之几?
二、典型问题分析
例1.①小明看一本书,第一天看了全书的1/3,第二 天看了全书的2/5,还剩20页,这本书有多少页? ②小明看一本书,第一天看了全书的1/3,第二天看 了剩下的2/5,两天一共看了72页,这本书有多少 页? 分析:第①题中的两个单位“1”是相同的,1/3和 2/5之间可以做加法。 第②题中的两个单位“1”是不同的,需要把第二个 分率句进行转化,它比较容易做错。 这两道题容易混淆。
分析:这道题比较难,学生在解答时容 易把两个“总人数”看成相同的单位 “1”,应抓住不变量进行解答。

分数百分数应用题-PPT课件

分数百分数应用题-PPT课件

单 1、1某班有 女生20名,男生比女生
位 “
多4
,男生 有多少人?20 20 1 4
20 1 14
1 2、1某班有 男生25名,女生比男生

少 , 女生有多少人? 已

5
25 25 1 5
25
1
1 5
求 单 位
3、1某班有 男生25名,男生比女生
多 , 女生有多少人? 4
25
1
1 4
1 25
20
1
1 4
25 1 15
25
1
1 4
20 1- 15
20 1 25% 25 1 20%
25 1 25% 20 1- 20%
想一想:分数应用题 和百分数应用题数量 关系相同吗?解答方 法呢?
百分数应用题和分数 应用题的表现形式虽 然不同,但数量关系 相同,所以解答方法 也相同。
尝试练习:
1、男生比女生多几分之几?
1 (25-20)÷20=
4 2、女生比男生少几分之几?
1 (25-20)÷25= 5
1、男生比女生多 1
4
单位“1”:女生人
数 2、女生比男生少
1
5
单位“1”:男生人

你能把“某班男生25名,女生20名” 这两个条件 和 “女男生比男女生少多1 ”
编成单位“1”是已知的应用题吗?54
1.仓库里有15吨钢材,第一次用去总数的
20%,第二次用去总数的 1,还剩下多少吨
钢材?
2
15 ×(1-20%-
1 2

2.仓库里有一些钢材,第一次用去总数的20 %,第二次用去总数的 1 ,还剩下15吨,仓 库里有多少吨钢材? 2

《分数百分数应用题》课件

《分数百分数应用题》课件
分数百分数应用题
欢迎来到《分数百分数应用题》PPT课件!在这个课程中,我们将深入探讨分 数和百分数的各种应用,以及相关的概念和转换方法。
分数和百分数的概念
1 分数的定义
分数表示一个整体被平均分成若干等份的情况,由分子和分母组成。
2 百分数的定义
百分数表示某个数与100之间的关系,以百分号表示。
分数和百分数的转换
1 折扣和打折
在商业运算中,使用分数和百分数来计算折扣和打折等优惠。
2 销售增长率
分数和百分数可以用来计算销售增长率,帮助企业了解经营状况。
分数和百分数在生活中的应用
购物
在购物时,使用分数和百分数来 计算折扣价、优惠券抵扣等。
健康
财务管理
在健康管理中,使用分数和百分 数来记录体重、运动时间等指标。
分数转换为百分数
分子除以分母,再乘以100即可得到分数对应的百 分数。
百分数转换为分数
将百分数除以100,再化简即可得到百分数对应的 分数。
分数、百分数与小数的关系
1
分数和小数的关系
分数可以表示为小数,将分子除以分母
百分数和小数的关系
2
即可得到对应的小数。
百分数可以表示为小数,将百分数除以
100即可得到对应的小数。
3
分数和百分数的关系
分数可以表示为百分数,将分子除以分 母,再乘以100即可得到对应的百分数。
分数和百分数的四则运算
加法
分数和分数相加,或百分数和百分数相加,将分 母统一后进行运算。
乘法
分数和分数相乘,或百分数和百分数相乘,将分 子相乘,分母相乘。
减法
分数和分数相减,或百分数和百分数相减,将分 母统一后进行运算。

数学讲义-分数与百分数的应用(二)

数学讲义-分数与百分数的应用(二)

分数与百分数的应用(二)一、本章主要知识点:1、简单分数应用题主要有两种类型:(1)求一个数是另一个数的几(百)分之几,或一个数的几(百)分之几是多少。

计算方法用乘法,计算公式是:单位“1”的量⨯对应分率=对应比较量。

(2)已知一个数的几(百)分之几是多少,求这个数。

计算方法用除法,计算公式为:比较量÷对应分率=单位“1”的量。

(3)较复杂的分数(百分数)应用题,它的 特点是单位“1”不明确或需要转换单位“1”,最基本的解题策略是抓住不变量,统一单位“1”进行解题。

2、利润问题:计算公式:定价=成本+利润=成本×(1+利润率)利润率=利润÷成本×100%利息=本金×时间×利率×(1-利息税税率)3、浓度问题:计算公式:溶液的量×浓度=溶质的量溶液的量×(1-浓度)=溶剂的量二、经典例题。

知识点1:量率对应例一、佳佳喝一瓶矿泉水,第一次喝了整瓶的31,第二次喝了整瓶的52少120毫升,这时还 剩280毫升没有喝完。

求这瓶矿泉水共有多少毫升?学生自测:1、佳佳喝一瓶矿泉水,第一次喝了整瓶的52,第二次喝了整瓶的31多120毫升,这 时还剩280毫升没有喝完。

求这瓶矿泉水共有多少毫升?2、某水果店,原有一批苹果,售出这批苹果的30℅后,又运来160箱,这时苹果比 原有苹果多101,这时有苹果多少箱?知识点2:找不变量为单位“1”例一、有两种糖放在一起,其中软糖占209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块?学生自测:1、小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页?2、兄弟三人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱 是其他两人出钱总数的31,老三比老二多出400元。

问这台彩电多少钱?3、有甲乙两袋水泥,从甲袋中取出它的41,从乙袋中取出它的31,如果从甲袋取出的放入乙袋,从乙袋取出的放入甲袋,则两袋各有45千克,原来两袋各有多少千克?4、某粮库甲仓比乙仓多存粮9.6吨,如果从两仓中各取出粮食4.8吨,甲仓库余粮的285与乙仓库余粮的41相等的,两仓原各存粮多少吨?5、光明小学有学生114人,抽出18名女生和男生人数的32,剩下的男女生人数相等的,这所学校有男女生各多少人?6、男女两人共存款108元,如果甲取出自己存款的52,乙取出12元后,两人所剩的钱数相等,甲乙两人原来各存款多少元?7、一辆汽车从甲地到乙地,已行全程的51,再向前行50千米就比全程的32少6千米,求甲乙两地的距离?8、张师傅加工一批零件,第一天加工全部的31多2个,第二天加工全部的21少10个,最后还剩25个没加工,这批零件有多少个?9、甲乙两仓存粮的比是5:3,如果从甲仓取出1800吨粮放入乙仓,则甲乙两仓存粮的比是2:3,现在甲仓存多少吨?10、甲、乙两人分别从A ,B 两地同时出发,相向而行,出发时两人速度比为3:2,第一次在C 地相遇后,甲速度提高20%,乙速度提高30%,当甲到达B 地时,乙离A 地还有42千米,问A ,B 两地距离是多少千米?知识点3:利润——涨价和降价类例一、一种半导体收音机的售价,今年比去年降低25%,去年比前年降低20%,今年售价比前年降低了百分之几?学生自测:1、某商品价格先提高61,后又降价71,这种商品的现价是原价的百分之几?2、一件商品随季节变化降价出售,如果按现价降10%,仍可盈利180元,如果要降价20%就要亏损240元,这件商品的进价是多少元?知识点4:利润——赚和赔例一、A, B 两种商品售价相同,已知A 商品赚了51,B 商品亏了51,两者合算共亏了2元,求这种商品的成本价?1、甲乙两种商品售价相同,已知甲商品赚了41,乙商品亏了41,两者合算共亏了10元,求每种商品的进价?2、A. B 两种商品售价相同,已知A 商品亏了61,B 商品盈利了61,两者全算盈利了8元,求A. B 商品的进价?3、某商品按原定价出售,每件利润为成本的25%,后来按原定价的90%出售,结果每天售出的件数是降价前的2.5倍,每天经营这种商品的总利润比降价前增加了百分之几?4、某书店出售一种挂历,每售出1本可得18元利润。

讲义小升初_分数百分数应用题(教师版)

讲义小升初_分数百分数应用题(教师版)

第一章 简单分数应用题简单分数应用题主要有两种类型:(1)求一个数是另一个数的几(百)分之几,或一个数的几(百)分之几是多少。

计算方法用乘法,计算公式是:单位“1”的量⨯对应分率=对应比较量。

(2)已知一个数的几(百)分之几是多少,求这个数。

计算方法用除法,计算公式为:比较量÷对应分率=单位“1”的量。

分数应用题在计算的过程中,可以参考和倍,差倍的方法,采用线段图辅助分析。

【典型题解】例1:中华小学男生占全校人数的74,(1)男生是女生的几分之几?(2)女生比男生少百分之几?【分析点拨】本道题目属于典型的第一种类型的题目,本题的关键点和难点就是没有具体的量。

其实我们不妨把全校学生看做单位“1”,那么男生就是74,而女生就是73,然后利用第一种题型计算就可以了。

另外,本题也可以利用我们前面学习过的赋值法,不妨设全校有7人,则男生有4人,女生有3人,问题就简单多了,读者朋友不妨一试。

【解答】(1)347374=÷; (2)0025417473-74==÷)(;答:(1)男生是女生的34,(2)女生比男生少0025。

【模仿提升】(1) 某班女生是男生的53; ① 男生比女生多百分之几? ② 女生占全班的几分之几?①3233-5=÷)(;② 83353=+÷)(。

(2) A 大附中某班,一次数学测试,没有及格的同学是及格同学的91。

求这个班这次数学测试的及格率?00909.0199==+÷)(例2:佳佳喝一瓶矿泉水,第一次喝了整瓶的31,第二次喝了整瓶的52少120毫升,这时还剩280毫升没有喝完。

求这瓶矿泉水共有多少毫升?【分析点拨】本题单位“1”是总量,而总量不知道,属于第二种类型的问题,关键点是找到比较量及它的对应分率,利用除法求得单位“1”。

利用线段图进行分析:第二次喝的不是52,而是少了120毫升,若把第二次假设为52,我们不难发现只需要从剩余的280毫升中去掉120毫升,此时剩余280-120=160毫升而160毫升所对应的分率是52-31-1。

2024版人教版分数百分数应用题ppt教学课件

2024版人教版分数百分数应用题ppt教学课件
路程。因此可列方程: 8/x=6/8,解得x=(64/3)。
2024/1/25
18
CHAPTER 05
学生自主练习与互动环节
2024/1/25
19
学生自主完成练习题并小组讨论
学生独立完成练习题,培养独立思考 和解决问题的能力。
记录小组内无法解决的问题,为后续 的提问环节做准备。
2024/1/25
2024/1/25
5
分数与百分数之间转换
分数转换为百分数
将分数转换为小数后,再乘以100%即可得到对应的百分数。
2024/1/25
百分数转换为分数
将百分数除以100%,得到对应的小数后,再转换为分数形式。
6
CHAPTER 02
分数百分数应用题类型
2024/1/25
7
求一个数是另一个数几分之几或百分之几
人教版分数百分数应 用题ppt教学课件
2024/1/25
1
contents
目录
2024/1/25
• 分数与百分数基本概念 • 分数百分数应用题类型 • 解题策略与技巧 • 典型例题解析 • 学生自主练习与互动环节 • 课程总结与拓展延伸
2
CHAPTER 01
分数与百分数基本概念
2024/1/25
解题步骤包括
确定两个数的值,计算它们的比值,将比值转换为分数或百分数形式。
例如
小明考了80分,小红考了90分,小明得分是小红得分的几分之几或百分之几?
2024/1/25
8
求一个数比另一个数多(或少)几分之几或百分之几
解题步骤包括
确定两个数的值,计算它们的差值,将差值与比较的数相比,得到多(或少)的几 分之几或百分之几。

人教版新课标数学六年级上册分数百分数应用题课件(共13张PPT)

人教版新课标数学六年级上册分数百分数应用题课件(共13张PPT)
分数和百分数解决问题复习
我来寻找单位 1、六年级学生“占1全”校学生的15%。
2、汽车制造厂计划生产小客车4500辆,实际多生产了1 。
5
3、甲车间的人数调出1给乙车间。 3
4、猴子只数的25%相当于松鼠的只数。
方法:抓住含有倍数关系的句子,确定
单位“1”。
1、求一个数是另一个的几分之几或百分之几?
解:设第二单元考了X分。
X+10%X=99
99÷(1+10%)
1.1X=99
X=90
答:李明第二单元考了90分。
小明家去年实际用水100吨, 比计划勤俭了15 ,小明家实际比 计划勤俭用水多少吨?
思考
考考你,你能完整解答下列各题吗?
3、商店运来大米100kg,上午卖出了70%,下午又卖出了
1 5
7 6
,男生有多少人?
24× 7 = 28(人)
6
例2:一本120页的小说,已经看了45%,还剩 多少页?
120×(1-45%)= 55(页)
例3:妈妈每月收入3000元。按国家规定月收入 超过2000元的部分按10%缴纳个人所得税。 妈妈今年该缴多少税?
(3000-2000)×10%×12=1200(元)
解题方法:
一个数÷另一个数=几分之几或百分之几(分率)
例1:某班有男生20人,女生24人,男生人数是 女生的几分之几?
20÷24= 20 = 5
24 6
例2:某校五年级160名学生,已到达国家体锻 标准的有120,达标的占百分之几?
120÷160×100%= 75%
例3:某县种子推广站,用300粒玉米种子作发芽 实验,结果有288粒种子发芽。求发芽率?
一共看了55页。这本书有多少页?

分数和百分数讲义

分数和百分数讲义

龙文教育学科教师辅导讲义课题分数和百分数应用题教学目标会分析题目中条件,会列方程解应用题重点、难点找题目中的等量关系考点及考试要求考查学生的抽象思维能力、分析能力和解决问题能力教学内容1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。

找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。

“一个数”是比较量,“另一个数”是标准量。

求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。

关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

已知一个数的几分之几(或百分之几) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4、出勤率发芽率=发芽种子数/试验种子数×100%小麦的出粉率= 面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%职工的出勤率=实际出勤人数/应出勤人数×100%5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。

它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

第八讲 总复习分数百分数(讲义)人教版六年级上册数学

第八讲  总复习分数百分数(讲义)人教版六年级上册数学

第8讲 小学数学总复习(五)——分数百分数思维启航一、训练目标知识传递:熟练应用解决分数应用题的几种方法。

能力强化:理解能力、分析能力、推算能力、综合能力。

思想方法:抓不变量法,倒推法,单位1转换法,方程思想,假设法,重组法,比例法。

二、知识与方法归纳1.简单分数应用题,必须先找出单位“1”,并且分析这个单位“1”是已知还是未知,初步确定方法.2.较复杂的分数应用题,如有多个“单位”1,第一可以考虑转化成同一个单位“1”,如果不好转化,可以一层一层的倒推。

对于需要某个条件而题目没告诉,且不具体时,还需要假设出某个数量,还可以结合方程,比例等综合使用方法使解题更加简化。

3.经济价格问题:从厂家购进的商品价格称为成本(也叫进价),商家在进价的基础上提高价格出售,称为售价,利润=售价-成本, 售价=成本×(1+利润率), 利润率=成本利润×100% ,售价=原价×折扣4.浓度问题。

我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。

如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。

这个比值就叫糖水的含糖量或糖含量。

类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。

因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即:浓度=溶质质量溶液质量 ×100%=溶质质量溶质质量+溶剂质量×100% 5.工程问题:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).工作效率×工作时间=工作总量,工作总量÷工作时间=工作效率,工作总量÷工作效率=工作时间.思维进阶例1.甲、乙、丙、丁四人共同购买一个价值4200元的商品。

甲支付的现金是其他三人所支付现金总数的41,乙支付的现金比其他三人所支付的现金少50%,丙支付的现金占总支付的现金总数的41,那么丁支付现金多少元?例2.甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,乙书架原有多少本书?思维训练 1.六年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?例3.某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分数、百分数问题》(基础)
【知识要点】
一、“求一个数的几分之几是多少用乘法计算”是分数应用题解题的根本依据,结合分数的定义
来理解,就是把一个数(或是整体)平均分成分母份,取分子份。

二、分数、百分数应用题的主要类型:
(1)求一个数是另一个数的几(百)分之几;
比较量÷标准量(单位“1”)= 比较量所占(百)分率
(2)求一个数的几(百)分之几是多少;
标准量(单位“1”)×比较量所占(百)分率 = 比较量
(3)已知一个数的几(百)分之几是多少,求这个数。

A. 比较量÷比较量所占(百)分率 = 标准量(单位“1”)
B. 设所求的数为未知数X ,然后根据求这个数的几(百)分之几,用乘法列方程解。

三、较复杂的分数(百分数)应用题是基本分数应用题的延续和发展,它的特点是已知条件之
间、已知条件和所求问题之间不再有直接的对应量率关系。

解题时一定要找准标准量(单位“1’),找准“与量对应的率”、“与率对应的量”,并利用线段图来帮助理解题意,分析数量关系。

四、浓度就是溶质和溶液的比值:
浓度 =(溶质重量÷溶液重量)× 100% 溶液 = 溶质+溶剂
溶质 = 溶液×浓度溶剂 = 溶液×(1-浓度)
解答浓度问题时,要掌握溶质不变的规律,根据题意列方程解答比较容易。

在列方程时,要注意寻找题目中数量间的相等关系,根据题中的等量关系来列方程。

五、利润问题:
利润 = 买价-成本利润率 = (卖价-成本)÷成本×100%
卖价 = 成本×(1+利润率)成本 = 卖价÷(1+利润率)
现实生活中还有“及格率”、“出勤率”、“合格率”、“达标率”、“利息”、“成数”、“利润率”、“折扣”等含意相近的词,我们要灵活运用(百)分数知识,解决这些实际问题。

《分数、百分数问题》 【基础题型练习】
1. 红星小学有学生875人 ,其中“三好学生”有175人 ,“三好学生”占全校人数的百分之
几 ?
2. 某县种子推广站用玉米种子作发芽试验 ,结果发芽的种子有245粒 ,没发芽的5粒 。


发芽率 。

3. 服装厂有男职工420人 ,女职工525人 ,男职工比女职工少百分之几 ?
4. 服装厂有男职工420人 ,女职工525人 ,女职工比男职工多百分之几 ?
5. 甲、乙两地相距150千米 ,某人骑自行车从甲地到乙地去 ,行了全程的
6
5 ,这时离乙地还有多少千米 ?
6. 某农机厂原计划五月份生产拖拉机180台 ,实际比原计划增产15% ,实际生产多少台 ?
7. 某工厂十月份烧煤28吨 ,比九月份节约了8
1 ,九月份烧煤多少吨 ?
8. 一桶油 ,倒出总数的40%还少5千克 ,这样还剩下26千克 。

这桶油原来重多少千克 ?
9. 一件工程 ,甲单独做8小时可以完成 ,乙单独做10小时可以完成 。

如果甲、乙合做 ,多少小时可以完成这件工程的
2
1 ?
10. 一项工程由甲、乙两个工程队合做要20天 ,由甲工程队单独做要用30天 ;现在先由两
队和做4天 ,余下的工程由乙队单独做 ,还要多少天才能完成 ?
11. 商店运来苹果1200千克 ,运来的梨比苹果多40% ,商店运来苹果和梨共多少千克 ?
12. 有一批货物 ,第一次运走总数的37.5% ,第二次运走余下的53 ,还剩下200吨货物没有运 ,这批货物原有多少吨 ?
13. 一个商店六月份用电60度 ,比五月份用电量的
3
2还多10度 ,五月份用电多少度 ?
14. 一段电线截去51后 ,再接上6米 ,结果比原来长5
2 ,这段电线原来长多少米 ?
15. 小李骑自行车从甲到乙地 ,行了全程的40%时 ,离两地中点还有36千米 ,这时小李离乙
地还有多少千米 ?
16. 修一条公路 ,甲队单独修要6天完成 ,乙队单独修要8天完成 ,甲乙两队合修3天共修
了7千米 ,这条公路长多少千米 ?
17. 一项工作 ,甲队独做12天完成 ,乙队独做8天完成 ,丙队独做20天完成 。

现在先由
丙队做5天 ,剩下的由甲乙两队合做 ,还要做多少天才能完成 ?
18. 有一项工程 ,甲、乙两队合作15天可以完成 。

如果两队合作6天后 ,余下的由乙队独
做 ,12天可以完成 。

求两队单独做 ,完成这项工程各要多少天 ?
19. 客车从甲地开往乙地 ,货车同时从乙地开往甲地 ,经过5小时两车在途中相遇 。

如果货
车9小时可以行完全程 ,客车每小时行80千米 ,甲乙两地相距多少千米 ?。

相关文档
最新文档