统计学非参数检验演示文稿

合集下载

教育统计学第十章 非参数检验ppt课件

教育统计学第十章   非参数检验ppt课件

普通的秩和检验表,只给出n<=10情况下的实际临界值。当两个样本容量都较大时,T的抽
样分布接近于正态,可以近似地利用正态 T概率n分1 ( 布n 1 做2 秩n 2 和 1检) 验。T在抽样分布中的平均数为
规范误为
T
n1n 2 (n1 n 2 1) 12
Z T T T
例1:在一项关于模拟训练的实验中,以技工学校的学生为 对象,对5名学生用针对某一工种的模拟器进展训练,另外 让6名学生下车间直接在实习中训练,经过同样时间后对两 组人进展该工种的技术操作考核,结果如下:
例3:为了研讨RNA能否可以作为记忆促进剂,以老鼠为对 象分成实验组与控制组,实验组注射RNA,控制组注射生理 盐水,然后,在同样条件下学习走迷津,结果如下〔以所用 时间作为目的〕试检验两组有否显著差别。
实验组: 16.7,16.8,17.0,17.2,17.4,16.8,17.1,17.0,17.2,17.1,17 .2,17.5,17.2,16.8,16.3,16.9
期末课堂练习
第十章 非参数检验方法
一、两独立样本的差别显著性检验 1、秩和检验法 2、中数检验法 二、相关样本的差别显著性检验 1、符号检验法 2、符号秩次检验法 三、等级方差分析 1、克-瓦氏单向方差分析 2、弗里德曼双向等级方差分析
秩和检验
秩和法与参数检验中独立样本的t检验相对应。当“总体正态〞这一前提不成立,不能运用t检 验时以秩和法替代t检验。当两个样本都为顺序变量时,也需用秩和法来进展差别检验。
新法 90 84 87 85 90 94 85 88 92
例4的解
解: 配对 1 2 3 4 5 6 7 8 9
传统 85 88 87 86 82 82 70 72 80

第5讲 非参数检验.ppt

第5讲 非参数检验.ppt
2·Kolmogorov-Smirnov Z双样本检验理论方法 Kolmogorov-Smimov Z双样本检验与Kolmogorov-Smimov单样 本检验相似,这种双样本检验涉及两个累积分布间的一致性。单 样本检验涉及一组样本值分布和某一特定理论分布之间的一致性, 双样本检验则涉及两组样本值之间的一致性。
非参数统计检验是一种这样的检验,其模型对于被抽样总体的 参数不规定条件,即非参数检验是不依棘总体分布的统计检验 方法,是指在总体不服从正态分布且分布情况不明时,用来检 验数据资料是否来自同一个总体假设的一类检验方法。
一、单样本非参数检验
单样本非参数统计检验方法可以检验只需抽取一个样本的假设。 该检验是检验某特定样本是否来自于某指定的总体。
Close
配对资料的符号秩和检验 (Wilcoxon配对法)
Close
例6-1 某医院对12例患者进行“巩 膜瓣下灼烙角膜咬切术”,手术前后的 视力如表6-1,问手术后视力是否有改 善?
Close
病人编号 (1) 1 2 3 4 5 6 7 8 9 10 1 4.1 4.5 4.7 4.0 4.1 5.2 4.1 4.1 4.8
Close
Close
本例是检验均匀分布的。 Close
Close
H 0: 20 2 22 /2(n 1 )或 21 /2 2(n 1 ) 也 就 是 P (22 /2(n 1 )) =/ 2 P (2 C lo1 s e/2 2(n 1 ))= /2
二、二项检验 对于任意的两类总体,如果已知其中一类事件所占的比例为P, 那么另一类所占的比例为1-P,
Close
Close
Close
Close
Close
Close

《非参数检验方法》课件

《非参数检验方法》课件

用于比较两个独立样本的中位数是否相等。
用于比较三个或多个独立样本的中位数是 否相等。
3 Wilcoxon符号秩检验
4 Friedmann检验
用于比较两个相关样本的中位数是否相等。
用于比较三个或多个相关样本的中位数是 否相康型”饮料,是否对销售额产生显著影响?
使用 Mann-Whitney U检验来比较推出“健康型”饮料前后的销售额差异。
案例2:针对不同年龄段顾客的购物偏好是否存在差异?
使用 Kruskal-Wallis H检验来分析不同年龄段顾客的购物偏好是否有显著差异。
总结
非参数检验方法的应用场景和局限性。非参数检验方法的总体流程。非参数 检验方法的意义及应用前景。
《非参数检验方法》PPT 课件
非参数检验方法PPT课件
简介
什么是非参数检验方法?为什么需要非参数检验方法?非参数检验方法的优 势和劣势。
基本原理
什么是假设检验?什么是零假设和备择假设?非参数检验方法与参数检验方 法的区别。
常见的非参数检验方法
1 Mann-Whitney U检验
2 Kruskal-Wallis H检验

非参数检验综合概述PPT(30张)

非参数检验综合概述PPT(30张)


9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。

10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。

11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。

12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。
多个独立样本的非参数检验
例3 14名新生儿出生体重按其母亲的吸烟习惯分组(A组: 每日吸烟多于20支;B组:每日吸烟少于20支;C组:过去 吸烟而现已戒烟;D组:从不吸烟),具体如下。试问四个 吸烟组出生体重分布是否相同?数据见npc.sav:
A组: 2.7 2.4 2.2 3.4 B组: 2.9 3.2 3.2 C组: 3.3 3.6 3.4 3.4 D组: 3.5 3.6 3.7
两独立样本的非参数检验 (2) 检验统计量
分析结果
给 出 Mann-Whitney U 、 Wilcoxon W 统 计 量 和 Z 值 , 近 似 值 概 率 (Asymp.Sig)和精确概率值(Exact.sig)均小于0.05,结论一致,表明 猫、兔在缺氧条件下的生存时间的差异具有统计学意义,由平均秩次猫 (15.7)、兔(7.96)来看,可以认为缺氧条件下猫的生存时间长于兔。

3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力!

4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃!

医学统计学非参数检验秩和检验详解演示文稿

医学统计学非参数检验秩和检验详解演示文稿

• 基本特点:与分布无关
• 基本方法: χ2 检验
基于秩(等级,rank)的方法 基于特定参照点(如中位数)的方法 ……
第四页,共150页。
非参数检验的优点:
①适用范围广
②受限条件少。参数检验对总体分布等有特别限定 ,而非参数检验的假定条件少,也不受总体分布 的限制,更适合一般的情况。 ③具有稳健性。参数检验是建立在严格的假设条件基
Z=3.630,P=0.000
第二十五页,共150页。
【例2】20名正常人和32名铅作业工人尿铅定性检查 结果如表。问铅作业工人尿铅是否高于正常人?
结果
-
+
++ +++ ++++
正常人
18
2
0
0
0
铅作业工人 8
10
7
3
4
第二十六页,共150页。
第二十七页,共150页。
第二十八页,共150页。
U检验:
• 随机区组设计多个样本比较的非参数检 验
诊断试验ROC曲线分析
第六十四页,共150页。
配对设计差值比较的符号秩和检验由
Wilcoxon1945年提出,又称Wilcoxon 符号秩和检验,常用于检验差值的总体
中位数是否等于零。
第六十五页,共150页。
分析步骤:
(1)建立检验假设,确定检验水准
Ho:差值总体中位数Md=0 H1:差值总体中位数Md≠0
若相同秩次较多,应作校正计算
Zc = Z/ c
∑ c = 1-
(t
3 i
-ti
) /(N
3
-
N
);

第七章非参数检验详解演示文稿

第七章非参数检验详解演示文稿
第13页,共78页。
7.1.2二项分布检验
• 1.基本思想
(1)通过样本数据检验样本来自的总体是否服从指定概率p 的二项分布。
(2)小样本-精确检验:计算n次试验中某类出现的次数小 于等于x次的概率:
x
P{X x} Cni piqni i0
大样本-近似检验
Z x 0.5 np np(1 p)
数的个数是否是随机的(零假设为这种个数的出现是随机的)。
第28页,共78页。
• 如关果于把随小机于中性位的数游的程记检为0验,否(则r记un为1t,es上t面)
数据变成下面的0-1序列
•1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0

00000110
这就归为上面的问题。当然这里进行这种变换只
两个值的出现是否是随机的。假定下面是由0和 1组成的一个这种变量的样本:
•0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0
0000
• 其中相同的0(或相同的1)在一起称为一个游程
(单独的0或1也算)。
• 这个数据中有4个0组成的游程和3个1组成的游程
。一共是R=7个游程。其中0的个数为m=15, 而1的个数为n=10。
理方式。
• Exclude case test-by-test 选项,将参与对
比中的缺失值排除。
• Exclude cases listwise 选项,剔除任何变量
中所有含缺失值的样品。
第10页,共78页。
3.应用案例
• 医学研究表明心脏病人猝死人数与日期的关系为:
一周内,星期一猝死者较多,其他日子基本相当, 各天的比例近似为:2.8:1:1:1:1:1:1 根据“心脏病猝死”数据,推断总体分布是否与理 论分布相吻合。 分析: 利用总体分布卡方检验实现。

第十三非参数检验演示文稿

第十三非参数检验演示文稿

T与CR
>T0.05 T0.01<T<T0.05
≤r0.01
p
显著性
>0.05
不显著
0.01<p<0.05 显 著
≤0.01
极显著
第二十八页,共73页。
∵N=9,T0.05=6;
相关样本
T=14>T0.05,p>0.05,差异不显著。
∴接受Ho,拒绝Ha,说明…
第二十九页,共73页。
2、大样本——近似正态法相关样本
︱D︱ -0.3 D等级 1
添号 -1
2.7 0.8 -1.2 -0.6 -1 0 0.7 2 3.7
84
6
2 5- 3 7 9
8 4 -6 2- 5-- 3 7 9
第二十七页,共73页。
⑶ 分别求正负号的等级和(T) 相关样本
T=min (T+,T-)
=min(31,14)=14 ⑷ 求N: N= n++n- =5+4=9 ⑸ 决策:查符号等级表
检验过程 ⑴ 提出假设
Ho:P+=P-,Ha:P+≠P-
⑵ 确定符号(+,-,0)
相关样本
1 2 3 4 5 6 7 8 9 10 11 12 训练前 67 65 48 58 52 65 68 47 40 29 38 28 训练后 74 72 70 65 64 62 60 57 56 53 51 49 符 号++ + ++ - - + + + ++
⑶ 求符号总数N(0不计):N=n++n-
N=2+6=8
⑷ 确定r r=min(2,6)=2
第十三页,共73页。

非参数检验 PPT

非参数检验 PPT
非参数检验
分类
参数检验(parametric tests) - 对总体参数(平均数、成数、方差等) 所作得假设进行检验
非参数检验(自由分布检验) -对总体分布形式得假设进行检验
问题得提出
我们想去检验得论述如下: 1、经过西弗吉尼亚公路150号里程碑得汽车平均时速为68 英里/小时。 2、租用雪佛龙Trail Blazer (一款中型SUV车)三年,平均行驶里 程为32000英里。 3、美国家庭居住在一座独幢住宅得平均时间为11、8年。 4、2005年四年制大学毕业生得平均起薪为37 130美元/年。 5、中西部偏北地区35%得退休人员会在退休后得1年内卖掉 她们得住房,搬到气候温暖得地方居住。 6、80%得经常购买州彩票得彩民,从未在一次下注中赢得超 过100美元得奖金。
原假设
如果公司所在市平均受教育年限为:13
问:就是否有所不同 就是否高于
数据集3
如果公司所在市平均薪水为:35000
问:就是否有所不同 就是否低于
大家学习辛苦了,还是要坚持
继续保持安静
设计检验统计量
所设计得检验统计量与原假设相关, 即 与待检验得参数相关。 我们需要知道当原假设为真时该统计量 得具体分布。
问:就是否有显著不同?
区间估计 x t (n 1) s 499.5 2.797 2.63/ 25 498.03 ~ 500.97
2
n
问:就是否能断定饮料厂商欺骗了消费者?
区间估计
x t (n 1)
s 499.5 2.492 2.63/ n
25 500.81
(,500.81)
假设检验五步法
n1 n2
z X1 X2 s12 s22 n1 n2
t

统计学第十八章非参数统计(共11张PPT)

统计学第十八章非参数统计(共11张PPT)
统计学第十八章非参数 统计
第一页,共11页。
第一节 等级相关
等级相关Rank correlation的应用:
当资料不呈正态分布、 不知是否属正态分布、 等级资料等
(不宜用直线回归与相关—积差相关,分 析法。改用等级相关)。
第二页,共11页。
一、Spearman 等级相关
Spearman’s rank correlation:只适用于分析两个变 量间是否在数量上相关 用于行列分组都有等级意义时的相关分析
Kendall等级相关的无效假设是两变量的等级独立,即在无效假设成立时,S有期望值为0, 为0。
基本思想:用一个统计量来衡量以一个变量的等级为标准时,另一个变量的等级与它不一致的情况。
3、按公式求等级相关系数 1、将x,y分别由小到大列出等级,数字相同取平均等级
四、R C列联表的等级相关
6 d 2
2、把两变量的等级列成表达式19-3的形式。即以x的等 级为顺序排列。加上两行:Ry右边更小的等级个数(包 括相等的),然后合计,之前加负号; Ry右边更大的 等级个数,然后合计,之前加正号。两者代数和称S
3、计算相关系数
n
S (n 1)
2
第六页,共11页。
4、 的统计意义检验
Kendall等级相关的无效假设是两变量的等级独立,即在无效 假设成立时,S有期望值为0, 为0。S的方差为:
没有相同等级时 :
2 s
n(n
1)(2n 18
5)
有相同等级时 :
2 s
1 [n(n 18
1)(2n
5)
t (t
1)(2t
5)
u(u
1)(2u
5)]
9n(n
1 1)(n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或多组如何比较? 如何检验样本数据来自的总体服从正态分布? 总体不是正态分布,小样本情况下,如何检验总体的集中趋势? 有6名歌手参加比赛,4名评委进行评判打分,推断评委的评判
标准是否一致
……
参数检验:
➢ 样本被视为从分布族的某个参数族抽取出来的 总体的代表,而未知的仅仅是总体分布具体的 参数值
➢ 仅仅依赖于数据观测值的相对大小(秩)等,而是 通过检验样本所代表的总体分布形式是否一致 来得出统计结论。
非参数统计的名字中的“非参数 (nonparametric)”意味着其方法不涉及描述总 体分布的有关参数;
它被称为“和分布无关”(distribution—free), 是因为其推断方法和总体分布无关;不应理解 为与所有分布(例如有关秩的分布)无关.
统计学非参数检验演 示文稿
方法的回顾
单个因素(两水平)的作用评价:两组比较
➢ 完全随机设计下的单因素两组比较 ➢ 匹配设计的两组比较
单个因素(多水平)的作用评价:多组比较
➢ 完全随机设计下的单因素多水平比较
两个因素的分析问题
➢ 无交互作用、有交互作用
单因素两组比较:t检验
➢ 完全随机两组均数比较的t检验(独立t检验) ➢ 匹配设计下两组均数比较的t检验(匹配t检验)
非参数检验概述
➢ 非参数检验、特点及应用
单样本的非参数检验
两个样本和多个样本的非参数检验
单样本的非参数检验
c2拟合优度检验 分类数据
K-S拟合优度检验
检验分布
中位数的符号检验 对中位数的推断
c2统计量
➢ 用来测定定类变量之间的相关程度
c2
(f0 fe)2 fe
c 2 0 其中 f0表示观察值 fe表 频示 数期 ,望值频数
➢ c2统计量的分布与自由度有关;
➢ c2统计量描述了观察值与期望值的接近程度
拟合优度检验(goodness of fit test)
➢ 用c2统计量进行统计显著性检验的重要内容之 一;
➢ 依据总体分布状况,计算出分类变量中各类别 的期望频数,与分布的观察频数进行对比,判 断期望频数与观察频数是否有显著差异,从而 达到对分类变量进行分析的目的。
来自正态分布等,判断某样本是否为随机样本。
常用的非参数检验方法
用于单个样本的c2拟合优度检验、K-S拟合优 度检验、中位数的符号检验
用于两个匹配样本的Wilcoxon符号秩检验 用于两个独立样本的Wlicoxon秩和检验 用于多个独立样本的Kruskal-Wallis检验。
第六章 非参数检验
非参数检验的优点
对总体假定较少,有广泛的适用性, 结果稳定性较好。
➢ 假定较少 ➢ 不需要对总体参数的假定 ➢ 与参数结果接近
针对几乎所有类型的数据形态。 容易计算
➢ 在计算机盛行之前就已经发展起来。
非参数检验的弱点
可能会浪费一些信息
➢ 特别当数据可以使用参数模型 的时候
大样本手算相当麻烦 一些表不易得到
➢ 在参数检验和非参数检验都可以使用的情况下, 非参数检验的功效(power)要低于参数检验方 法。
以下情况下应当首选非参数方法
➢ 参数检验中的假设条件不满足,从而无法应用。例 如总体分布为偏态或分布形式未知,且样本为小样 本时。
➢ 检验中涉及的数据为定类或定序数据。 ➢ 所涉及的问题中并不包含参数,如判断某样本是否
➢ H1:观察频数与期望频数不一致
计算期望频数 f e
➢ 男性的期望频数7181738565,女性为153人
2208
计量c2统计量
c2
(f0 fe)2 303 fe
查表 c02.1(1)2.706(自由度为类别数-1)
做出判断:决绝原假设,认为存活状况与性别显著相 关
一种饮料的容器材料可以选择玻璃、塑料或者 金属。
➢ 推断问题就转化为对分布族的若干个未知参数 的估计问题,用样本对这些参数做出估计或者 进行某种形式的假设检验,这类推断方法称为 参数方法。
非参数检验(nonparametric tests)
➢ 又称为任意分布检验(distribution- free test), 它不考虑研究对象总体分布具体形式,也不对 总体参数进行统计推断
1912年4月15日,豪华巨轮泰坦尼克号与冰山 相撞沉没。当时船上共有2208人,其中男性 1738人,女ห้องสมุดไป่ตู้470人。
海难发生后,幸存者共718人,其中男性374人, 女性344人,以显著性水平为0.1检验存活状况 与性别是否有关?c02.1(1)2.706
提出零假设和备择假设
➢ H0:观察频数与期望频数一致
缺点:方法比较粗糙,对于符合参数检验条件者,采用 非参数检验会损失部分信息,其检验效能较低;样本含 量较大时,两者结论常相同
非参数检验的特点
➢ 非参数检验不需要严格假设条件,因而比参数 检验有更广泛的适用面。
➢ 非参数检验几乎可以处理包括定类数据和定序 数据在内的所有类型的数据,而参数检验通常 只能用于定量数据的分析。
为了比较消费者对包装材料的偏好,抽样调查 了120名消费者发现,最喜欢玻璃、塑料和金 属容器的分别有55、25和40人。
根据调查结果,能否认为消费者对3种材料的 偏好程度是无差异的(显著性水平a=0.05)?
分析
如果消费者对3种材料的偏好程度是无差异的,也就 是说消费者对材料的偏好服从均匀分布,则理论上来 说,调查120名消费者,偏好每种材料的人数应该是 相等的,也就是40人。
单因素多组比较:方差分析
➢ 完全随机设计下的多组均数比较
局限性
t检验
➢ 独立t检验要求:正态、方差相等(或不相等)、 个体独立
➢ 匹配t检验要求:差值正态、个体独立
方差分析
➢ 单因素多水平比较方差分析要求:正态、方差 相等、个体独立
未解决问题
两组性别结构是否相同? 疗效用痊愈、显效、有效、无效四级分类法进行评价时,两组
参数检验
(parametric test)
已知总体分布类型,对 未知参数进行统计推断
非参数检验
(nonparametric test)
对总体的分布类型 不作严格要求
依赖于特定分布类 型,比较的是参数
不受分布类型的影响,比 较的是总体分布位置
优点:方法简便、易学易用,易于推广使用、 应用范围广;可用于参数检验难以处理的资料 (如等级资料,或含数值“>50mg”等 )
相关文档
最新文档