带电粒子在复合场中的运动最好总复习
高考物理总复习第八章 第3讲 带电粒子在复合场中的运动
![高考物理总复习第八章 第3讲 带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/f79be91d0b4e767f5acfcee7.png)
2013-11-27
有志者事竟成
12
高考复习· 物理
4.电磁流量计.
图8-3-4
2013-11-27
有志者事竟成
13
高考复习· 物理
工作原理:如图8-3-4所示,圆形导管直径为d,用非 磁性材料制成,导电液体在管中向左流动,导电液体中的自 由电荷(正、负离子)在洛伦兹力的作用下横向偏转,a、b间 出现电势差,形成电场.当自由电荷所受的电场力和洛伦兹 力平衡时,a、b间的电势差就保持稳定,即:qvB=qE= U U πd2 U πdU q d ,所以v=dB,因此液体流量Q=Sv= · = . 4 Bd 4B
有志者事竟成
18
高考复习· 物理
工作原理:如图8-3-6所示,厚度为h、宽度为d的导 体板放在垂直于它的磁感应强度为B的匀强磁场中,当电流 通过导体板时,在导体板的上侧面A和下侧面A′之间会产 生电势差,这种现象称为霍尔效应.实验表明,当磁场不太 IB 强时,电势差U、电流I和B的关系为U=k d ,式中的比例系 数k称为霍尔系数.霍尔效应可解释为:
2013-11-27
ቤተ መጻሕፍቲ ባይዱ
有志者事竟成
9
高考复习· 物理
(2)工作原理. ①电场加速qU=ΔEk. v2 qBr ②磁场约束偏转qBv=m r ,v= m ∝r. ③加速条件:高频电源的周期与带电粒子在D形盒中运 2πm 动的周期相同,即T电场=T回旋= qB .
2013-11-27
有志者事竟成
10
高考复习· 物理
A.如果油滴带正电,它是从M点运动到N点 B.如果油滴带正电,它是从N点运动到M点 C.如果水平电场方向向左,油滴是从M点运动到N点 D.如果水平电场方向向右,油滴是从M点运动到N点
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
![高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/b8eb0226876fb84ae45c3b3567ec102de2bddf81.png)
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
高考物理一轮复习讲义带电粒子在复合场中的运动
![高考物理一轮复习讲义带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/be13d9337ed5360cba1aa8114431b90d6c8589a4.png)
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
专题复习-带电粒子在复合场中的运动
![专题复习-带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/1c06bd3667ec102de2bd895b.png)
四﹑解题规律 带电微粒在组合场、 复合场中的运动问题是电磁 带电微粒在组合场 、 学与力学知识的综合应用, 学与力学知识的综合应用 , 分析方法与力学问题 分析方法基本相同, 分析方法基本相同 , 只是增加了电场力和洛伦兹 力,解决可从三个方面入手: 解决可从三个方面入手: 1. 力学观点:包括牛顿定律和运动学规律 力学观点: 2. 能量观点:包括动能定理和能量守恒定律 能量观点: 3. 动量观点:包括动量定理和动量守恒定律 动量观点:
解: (1)小球受力如图所示 小球受力平衡时速度最大 小球受力如图所示, 小球受力如图所示 小球受力平衡时速度最大, f FB N 1 = FE + FB = Eq + Bqv m N
1
mg = f = µN 1 = µ ( Eq + Bqv m )
FE mg
mg E 0.1 × 10−2 10 vm = − = − = 5(m/s ) −4 0.5 µBq B 0.2 × 0.5 × 4 × 10 f (2)电场反向后 小球受力如图所示 电场反向后, 电场反向后 小球受力如图所示: FE 开始时, 小球向下加速运动, 开始时,FB =0, 小球向下加速运动,
专题复习:带电粒子在复合场中的运动 例 专题复习:带电粒子在复合场中的运动-例4 如图所示, 例4. 如图所示,纸平面内一带电粒子以某一速度做 直线运动, 直线运动 , 一段时间后进入一垂直于纸面向里的圆 形匀强磁场区域(图中未画出磁场区域) 形匀强磁场区域 ( 图中未画出磁场区域 ) , 粒子飞 出磁场后从上板边缘平行于板面进入两面平行的金 属板间,两金属板带等量异种电荷, 属板间 , 两金属板带等量异种电荷 , 粒子在两板间 经偏转后恰从下板右边缘飞出。已知带电粒子的质 经偏转后恰从下板右边缘飞出。 量为m,电量为 电量为q,其重力不计, 量为 电量为 ,其重力不计,粒子进入磁场前的速 度方向与带电板成θ=600角。匀强磁场的磁感应强度 度方向与带电板成 带电板长为l, 板距为d, 为B, 带电板长为 板距为 板间电压为U。试解答: 板间电压为 。试解答: (1)上金属板带什么电 )上金属板带什么电? θ (2)粒子刚进入金属板时速度为多大 ) (3)圆形磁场区域的最小面积为多大 )圆形磁场区域的最小面积为多大?
带电粒子在复合场中的运动整理
![带电粒子在复合场中的运动整理](https://img.taocdn.com/s3/m/08ce95dd846a561252d380eb6294dd88d1d23d4c.png)
专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。
8-3带电粒子在复合场中的运动
![8-3带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/263d49711711cc7931b71636.png)
必考内容
第8章
第3讲
高考物理总复习
人 教 实 验 版
A.如果油滴带正电,它是从 M 点运动到 N 点 B.如果油滴带正电,它是从 N 点运动到 M 点
必考内容
第8章
第3讲
高考物理总复习
C.如果电场方向水平向左,油滴是从 M 点运动到 N 点 D.如果电场方向水平向右,油滴是从 M 点运动到 N 点
人 教 实 验 版
mgcosα [答案] (1) qB
mgsinα+μcosα (2) μqB
必考内容
第8章
第3讲
高考物理总复习
[总结评述] 分析思路
对带电体在洛伦兹力作用下运动问题的
1.确定研究对象,并对其进行受力分析. 2. 根据物体受力情况和运动情况确定每一个运动过程 所适用的规律. (力学规律均适用)总之解决这类问题的方法 与纯力学问题一样,无非多了一个洛伦兹力.要特别注意: (1)洛伦兹力不做功,在应用动能定理、机械能守恒定 律时要特别注意这一点. (2)注意洛伦兹力可能是恒力也可能是变力.
必考内容 第8章 第3讲
人 教 实 验 版
高考物理总复习
将倾角为 θ 的光滑绝缘斜面放到一个足够大的匀强 磁场中,磁场方向垂直纸面向里,磁感应强度为 B,一 个质量为 m、带电荷量为 q 的小物体在斜面上由静止开 始下滑(设斜面足够长),如下图所示.滑到某一位置离开 斜面,则物体带________电荷(填“正”或“负”);物体 离开斜面时的速度为________;物体在斜面上滑行的长 度为________.
人 教 实 验 版
动 或处于 静止状态 ,合外力恒定且与初速度同向时
做匀变速直线运动,常见情况有: ①洛伦兹力为零(即 v 与 B 平行)时, 重力与电场力平 衡,做匀速直线运动;或重力与电场力的合力恒定做匀 变速运动.
带电粒子在复合场中的运动(1)知识讲解
![带电粒子在复合场中的运动(1)知识讲解](https://img.taocdn.com/s3/m/441c6a57cc17552706220830.png)
M
N O
Q
q, m U
R0
O
•
P
r
2r
B
热点1 带电粒子在组合场中的运动问题
【典例1】 (2013届揭阳市一模拟考试理综物理36)
(18分)如图所示,在xOy平面内y≥0的区域存在电场
与磁场,ON为电场与磁场的分界线,ON与y轴的夹角
为45°,电场强度大小为32N/C,磁感应强度为0.1T,
一质量为
注意挖掘带电粒子整个运动 过程中包含的隐含条件.
(1)离子在平行板间运动的速度大小; (2)离子打到荧光屏上的位置C的坐标; (3)现只改变AOy区域内磁场的磁感应强度大小, 使离子都不能打到x轴上,磁感应强度大小B2′应满足什么条件?
确定研 正离子 究对象
审题流程
正离子不受重力作用
受力 分析
在B1、E1区受力平衡
带电粒子在复合场中的运动(1)
解题绝招 带电粒子在有界匀强磁场中运动时的常见情形
1. 单边界(粒子进出磁场具有对称性,有多大角度进就有多大角 度出)
v
B
v
B
B
v
O
O
a
v
bv
不相交,不可以
c
v
O
解题绝招 带电粒子在有界匀强磁场中运动时的常见情形
2.双边界(临界条件突破口: 相切)
3.圆形边界:粒子进出磁场 具有对称性:沿径向射入必 沿径向射出.
为45°,电场强度大小为32N/C,磁感应强度为0.1T,
一质量为
,带电荷量为
的
正粒子从O点沿x轴负方向以速度 磁场,不计粒子重力,求:
射入
(2)粒子在磁场中运动的时间;
热点1 带电粒子在组合场中的运动问题
重难点08 带电粒子在复合场中的运动(解析版)
![重难点08 带电粒子在复合场中的运动(解析版)](https://img.taocdn.com/s3/m/e50f3acccd22bcd126fff705cc17552706225e79.png)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
带电粒子在复合场中的运动压轴难题知识归纳总结附答案解析
![带电粒子在复合场中的运动压轴难题知识归纳总结附答案解析](https://img.taocdn.com/s3/m/7ddf77a8fe4733687f21aaad.png)
带电粒子在复合场中的运动压轴难题知识归纳总结附答案解析一、带电粒子在复合场中的运动压轴题1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q+、重力不计的带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W(2)粒子第n次经过电场时电场强度的大小n E(3)粒子第n次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mvW =(2)21(21)2nn mvEqd+=(3)12(21)ndtn v=+(4)如图;【解析】(1)根据mvrqB=,因为212r r=,所以212v v=,所以221211122W mv mv=-,(2)=,,所以.(3),,所以.(4)2.如图所示,在坐标系xoy中,过原点的直线OC与x轴正向的夹角φ=120°,在OC右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直抵面向里。
一带正电荷q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x轴的夹角θ=30°,大小为v,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。
二轮专题复习_带电粒子在复合场中的运动
![二轮专题复习_带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/5680f91a6edb6f1aff001fbf.png)
二轮专题复习:带电粒子在复合场中的运动例1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小.变式:如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C 孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ;(2)电场强度E 的大小; (3)粒子到达Q 点的动能Ek 。
例2、世纪金榜典型例题2、3练习1、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求: (1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
高中物理复习 带电粒子在复合场中的运动
![高中物理复习 带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/015d5b4853d380eb6294dd88d0d233d4b14e3fc0.png)
角度
带电粒子在叠加场中的运动
例 2 (2023·安徽高三联考)如图 3 所示,第一象限内存在水平向右的匀强电场,电 场强度大小为 E=mqvL20,第二象限内存在垂直纸面向外的匀强磁场,第三象限内
存在垂直纸面向外的匀强磁场及竖直向上的匀强电场,电场强度大小为 2E。
现有一质量为 m、电荷量为-q(q>0)的带负电粒子从 x 轴上的 A 点以初速度 v0
1234
目录
1、链接高考真题
2.(多选)(2023·海南卷,13)如图7所示,质量为m,带电荷量为+q的带电粒子,
从坐标原点O以初速度v0沿x轴方向射入第一象限内的电、磁场区域,在0<y<y0、 0<x<x0(x0、y0为已知量)区域内有竖直向上的匀强电场,在x>x0区域内有垂直纸面 向里、大小为B的匀强磁场,控制电场强度E(E值有多种可能),可让粒子从NP射
粒子射出磁场时与射入磁场时运动方向间的夹角 θ 与粒子在磁场中运动轨迹
所对应的圆心角相等,由几何关系可得
tan
θ2=Rr =
3 3
故 θ=60°。
题 干
目录
(3)根据几何关系,磁场圆绕O′点顺时针旋转,当O点转到M点,粒子在磁场中 的运动轨迹相应的弦为磁场圆的直径时,粒子在磁场中的运动时间最长。作 出粒子在磁场中的运动轨迹及相应的弦,标出改变后的磁场圆的圆心M,如图 乙所示。
垂直于 x 轴射入电场,经 y 轴上的 P 点(图中未画出)进入第二象限。已知第二、
三象限内磁场的磁感应强度大小均为 B=mqvL0,A 点坐标为L2,0,不计粒子重
力。求:
(1)P点的坐标;
(2)粒子第一次进入第三象限的横坐标; (3)粒子第一次在第三象限运动过程中与x轴的最远距离。
高三物理磁场专题复习二带电粒子在复合场中的运动知识点分析.
![高三物理磁场专题复习二带电粒子在复合场中的运动知识点分析.](https://img.taocdn.com/s3/m/99dcd564b307e87100f6961a.png)
高考综合复习——磁场专题复习二带电粒子在复合场中的运动知识要点梳理知识点一——带电粒子在复合场中的运动▲知识梳理一、复合场复合场是指电场、磁场和重力场并存或其中某两种场并存,或分区域存在。
粒子在复合场中运动时,要考虑静电力、洛伦兹力和重力的作用。
二、带电粒子在复合场中运动问题的分析思路1.正确的受力分析除重力、弹力和摩擦力外,要特别注意电场力和磁场力的分析。
2.正确分析物体的运动状态找出物体的速度、位置及其变化特点,分析运动过程。
如果出现临界状态,要分析临界条件。
带电粒子在复合场中做什么运动,取决于带电粒子的受力情况。
(1)当粒子在复合场内所受合力为零时,做匀速直线运动(如速度选择器)。
(2)当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。
(3)当带电粒子所受的合力是变力,且与初速度方向F在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程也可能由几种不同的运动阶段所组成。
3.灵活选用力学规律是解决问题的关键(1)当带电粒子在复合场中做匀速直线运动时,应根据平衡条件列方程求解。
(2)当带电粒子在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程联立求解。
(3)当带电粒子在复合场中做非匀变速曲线运动时,应选用动能定理或能量守恒列方程求解。
注意:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。
4.三种场力的特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
高中物理带电粒子在复合场中的运动易错题知识归纳总结及答案解析
![高中物理带电粒子在复合场中的运动易错题知识归纳总结及答案解析](https://img.taocdn.com/s3/m/7840d97e51e79b8969022618.png)
高中物理带电粒子在复合场中的运动易错题知识归纳总结及答案解析一、带电粒子在复合场中的运动压轴题1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁22(1)=k m t qU-电【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =(2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
高三复习专题——带电粒子在复合场中的运动优秀教案
![高三复习专题——带电粒子在复合场中的运动优秀教案](https://img.taocdn.com/s3/m/0d3173ecce2f0066f5332262.png)
的带负电粒子从静止开始经过场强为 E0 、宽度为 d 的电场加速后,从 O 点( O 点为 AD的中点)垂直入 AD
进入磁场,从 BC 边离开磁场,离开磁场时速度方向与 BC 边成 60o ,不计重力与空气阻力的影响。 (1)粒子经电场加速射入磁场时的速度? (2)长方形 ABCD区域内磁场的磁感应强度为多少?
例题 2: 如图所示,在平面直角坐标系 xoy 内,第Ⅰ象限的等腰直角三角形 MNP 区域内存在垂直于坐标平面 向外的匀强磁场, y O 的区域内存在着沿 y 轴正方向的匀强电场.一质量 m ,带电量 q 的带电粒子从电 场中 Q(2h,h) 点以速度 v 0 水平向右射出,经坐标原点 O 处射入第Ⅰ象限,最后以垂直于 PN 的方向射出 磁场.已知 MN 平行于 x 轴, N 点的坐标为 (2h,2h) ,不计粒子的重力,求: (1)电场强度 E 的大小; (2)磁感应强度 B 的大小;
E0qd
1 2
mv2
0
洛 伦 兹 力 与 速 运动 度垂直
qvB mv 2 r
(3)规范解答过程:必要的文字说明;作出准确受力分析图及运动轨迹图;建立准确物理方程
解:(1)带电粒子在电场中加速运动,
带电粒子运动轨迹如图所示,由几何关系可知
由动能定理得
E0qd
1 2
mv2
0
粒子经电场加速射入磁场时的速度 v
受力特点 只受电场力 电场力与速度垂直
第一阶段 运动特点 类平抛运 动
运动过程分析
第二阶段
物理规律
受力特点
运动特点
牛顿第二定律 只受洛伦兹力
匀速圆周
运动学公式
洛伦兹力与速度垂直 运动
高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)
![高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)](https://img.taocdn.com/s3/m/8f159602fab069dc51220176.png)
微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。
所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。
1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。
初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。
已知OA=OC=d。
则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。
C040.带电粒子在复合场中的运动
![C040.带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/c4890102de80d4d8d15a4fdc.png)
4. 带电粒子在重力场、匀强电场、匀强磁场的复合场 带电粒子在重力场、匀强电场、 中的运动的基本模型有: 中的运动的基本模型有: a. 匀速直线运动。 匀速直线运动。 自由的带点粒子在复合场中作的直线运动通常都是匀 速直线运动, 速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力 作用。因为重力、电场力均为恒力, 作用。因为重力、电场力均为恒力,若两者的合力不 能与洛仑兹力平衡, 能与洛仑兹力平衡,则带点粒子速度的大小和方向将 会改变,不能维持直线运动了。 会改变,不能维持直线运动了。 b. 匀速圆周运动。 匀速圆周运动。 自由的带电粒子在复合场中作匀速圆周运动时, 自由的带电粒子在复合场中作匀速圆周运动时,必定 满足电场力和重力平衡, 满足电场力和重力平衡,则当粒子速度方向与磁场方 向垂直时,洛仑兹力提供向心力, 向垂直时,洛仑兹力提供向心力,使带电粒子作匀速 圆周运动。 圆周运动。
07年1月山东潍坊市期末统考 年 月山东潍坊市期末统考 月山东潍坊市期末统考7 7.空间处有竖直向下的匀强电场,水平向北的匀 .空间处有竖直向下的匀强电场, 强磁场, 若在该空间有一电子沿直线运动。 强磁场 , 若在该空间有一电子沿直线运动 。 不计 电子重力,则该电子的运动方向不可能的是 ( BCD A.水平向东 . C.竖直向上 . ) B.水平向西 . D.竖直向下 .
的大小; (1)求磁感应强度 的大小; )求磁感应强度B的大小 ( 2) 若撤去磁场 , 求电子离开电场时偏离入射方 ) 若撤去磁场, 向的距离y 向的距离 ; (3)若撤去磁场,求电子穿过电场的整个过程中 )若撤去磁场, 动能的增加量△Ek。 。 解: (1)电子进入正交的电、磁场不发生偏转, )电子进入正交的电、磁场不发生偏转, 受力平衡, 受力平衡,即
3.带电粒子在复合场中的运动 3.带电粒子在复合场中的运动 带电微粒在重力、 电场力、 磁场力共同作用下的 带电微粒在重力 、 电场力 、 运动(电场、磁场均为匀强场) 运动(电场、磁场均为匀强场) ⑴带电微粒在三个场共同作用下做匀速圆周运动: 带电微粒在三个场共同作用下做匀速圆周运动 必然是电场力和重力平衡,而洛伦兹力充当向心力. 必然是电场力和重力平衡,而洛伦兹力充当向心力 ⑵带电微粒在三个场共同作用下做直线运动: 带电微粒在三个场共同作用下做直线运动 重力和电场力是恒力,它们的合力也是恒力。 重力和电场力是恒力,它们的合力也是恒力。 当带电微粒的速度平行于磁场时,不受洛伦兹力, 当带电微粒的速度平行于磁场时,不受洛伦兹力,因 此可能做匀速运动也可能做匀变速运动; 此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。 当带电微粒的速度垂直于磁场时,一定做匀速运动。 ⑶与力学紧密结合的综合题,要认真分析受力情况和 与力学紧密结合的综合题, 运动情况(包括速度和加速度)。必要时加以讨论。 )。必要时加以讨论 运动情况(包括速度和加速度)。必要时加以讨论。
一轮复习教案带电粒子在复合场中的运动3
![一轮复习教案带电粒子在复合场中的运动3](https://img.taocdn.com/s3/m/2b83d67df242336c1eb95ebc.png)
3-1:粒子回旋加速器的工作原理如图所示,置于真空中的D形金属盒的半径为R,两金属盒间的狭缝很小,磁感应强度为B的匀强磁场与金属盒盒面垂直,高频交流电的频率为f,加速电压为U,若中心粒子源处产生的质子质量为m,电荷量为+e,在加速器中被加速.不考虑相对论效应,则下列说法正确的是()
A.不改变磁感应强度B和交流电的频率f,该加速器也可加速α粒子
B.加速的粒子获得的最大动能随加速电压U的增大而增大
C.质子被加速后的最大速度不能超过2πRf
D.质子第二次和第一次经过D形盒间狭缝后轨道半径之比为 ∶1
答案:CD
小结
作业:随堂演练
教后
反思
审核人签字:年月日
(1)离子在平行板间运动的速度大小;
(2)离子打到荧光屏上的位置C的坐标;
(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B2′应满足什么条件?
解题指导
答案:(1)5.0×105m/s(2)0.6 m(3)B2′≥0.3T
2-1:如图所示,与水平面成37°的倾斜轨道AC,其延长线在D点与半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为vC= m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点速度为vF=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:
(1)小球带何种电荷?
(2)小球在半圆轨道部分克服摩擦力所做的功。
(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G(G点未标出),求G点到D点的距离。
带电粒子在复合场中的运动
![带电粒子在复合场中的运动](https://img.taocdn.com/s3/m/055f542daf45b307e8719746.png)
1. 速度选择器: ⑴如图所示,平行板中电场强度E和磁感应 强度B互相垂直。这种装置能把具有一定速 度的粒子选择出来,所以叫做速度选择器。
⑵带电粒子能够沿 直线匀速通过速度 选择器的条件是 qE=qvB,即v=E/B
B
考点二:带电粒子在复合场中运动的典型应用
• 3.如图所示的虚线区域内,充满垂直于纸面向里的匀强 磁场和竖直向下的匀强电场。一带电粒子a(不计重力)以 一定的初速度由左边界的O点射入磁场、电场区域,恰好 沿直线由区域右边界的O' 点(图中未标出)穿出。若撤去该 区域内的磁场而保留电场不变,另一个同样的粒子b(不 计重力)仍以相同初速度由O点射入,从区域右边界穿出, 则粒子b( ) • A.穿出位置一定在O' 点下方 • B.穿出位置一定在O' 点上方 • C.运动时,在电场中的电势能一定减小 • D.在电场中运动时,动能一定减小
6
则类平抛运动中垂直于电场方向的位移
L vt1 4 2m
L y 8m 0 cos 45
即电荷到达y轴上的点的坐标为( 0, 8 ).
练6.在如右图所示的直角坐标系中,x轴的上方存在与x轴 正方向成45°角斜向右下方的匀强电场,场强的大小为E = 2×104 V/m。x轴的下方有垂直于xOy面向外的匀强磁 场,磁感应强度的大小为B=2×10-2 T。把一个比荷为 q/m=2×108 C/kg的正点电荷从坐标为(0,1)的A点处由静 止释放。电荷所受的重力忽略不计。 ⑴求电荷从释放到第一次进入磁场时所用的时间; ⑵求电荷在磁场中做圆周运动的半径(保留两位有效数字); ⑶当电荷第二次到达x轴上时, 电场立即反向,而场强大小不 变,试确定电荷到达y轴时的 位置坐标。
2022年高考物理总复习第二部分常考考点培优训练 考点二十九带电粒子在组合场、复合场中的运动
![2022年高考物理总复习第二部分常考考点培优训练 考点二十九带电粒子在组合场、复合场中的运动](https://img.taocdn.com/s3/m/af409d49a88271fe910ef12d2af90242a895ab3d.png)
二十九带电粒子在组合场、复合场中的运动(40分钟100分)一、单项选择题 (共6小题,每小题7分,共42分)1.(2022·长沙模拟)如图所示,一绝缘容器内部为长方体空腔,容器内盛有NaCl的水溶液,容器上下端装有铂电极A和C,置于与容器表面垂直的匀强磁场中,开关K闭合前容器两侧P、Q两管中液面等高,闭合开关后( )A.M处钠离子浓度等于N处钠离子浓度B.M处氯离子浓度小于N处氯离子浓度C.M处电势高于N处电势D.P管中液面高于Q管中液面【解析】选D。
根据左手定则可以知道,钠离子在洛伦兹力作用下,向M处偏转,因此M处钠离子浓度大于N处钠离子浓度,同理M处氯离子浓度大于N处氯离子浓度,A、B错误;根据正离子的定向移动方向与电流方向相同,而负离子移动方向与电流方向相反,根据左手定则可以知道,正负离子均偏向同一方向,可见,M处和N处仍呈电中性,因此电势相等,C错误;当开关闭合时,液体中有从A到C方向的电流,根据左手定则可以知道,液体将受到向M的安培力作用,在液面内部将产生压强,因此P端的液面将比Q端的高,D正确。
2.磁流体发电机的原理如图所示。
将一束等离子体连续以速度v垂直于磁场方向喷入磁感应强度大小为B的匀强磁场中,可在相距为d、面积为S的两平行金属板间产生电压。
现把上、下板和电阻R连接,上、下板等效为直流电源的两极。
等离子体稳定时在两极板间均匀分布,电阻率为ρ。
忽略边缘效应及离子的重力,下列说法正确的是( )A.上板为正极,a、b两端电压U=BdvB.上板为负极,a、b两端电压U=Bd2vρS RS+ρdC.上板为正极,a、b两端电压U=BdvRS RS+ρdD.上板为负极,a、b两端电压U=BdvRS Rd+ρS【解析】选C。
根据左手定则可知,等离子体射入两极板之间时,正离子偏向a板,负离子偏向b板,即上板为正极;稳定时满足U′dq=Bqv,解得U′=Bdv;根据电阻定律可知两极板间的电阻为r=ρdS,根据闭合电路欧姆定律:I=U′R+r,a、b两端电压U=IR,联立解得U=BdvRSRS+ρd,故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电偏转(类平抛运动)
a
Eq m
y
1 2 at 2
v y at
离开电场时速度
2 tan v v12 v y
L v1t
竖直方向: 初速度为零的匀加速直线运动
vy v1
能量观点: 动能定理 Uq
1 2 1 2 mv mv1 2 2
磁偏转模型(匀速圆周运动)
几何处理方法 定圆心画出轨迹,求半径画圆心角 1.定圆心基本方法:在入射点及出射 点分别作出垂直线,两线交点即是 圆心; 2.由轨迹图找出几何关系:常见找出 三角形(特别是直角三角形,包含 轨迹半径及已知边长) 3. 速度偏向角等于轨迹所对的圆心 角
OB
,重力加速度为 g 。求:
带电粒子在复合场中运动的过程分析 第一阶段 受力特点 受重力及电场力 重力与电场力都 做功 受力特点 受重力 电场力 运动特点 匀加速直线 运动 物理规律 动能定理 受力特点 受重 力、电场 力及洛伦兹力 第二阶段 运动特点 匀速圆周 运动 物理规律 牛顿第二定律 圆周运动规律 力的平衡方程
第 6 页 共 6 页
运动过程分析 第一阶段 受力特点 只受电场力 电场力与速度垂直 运动特点 类平抛运 动 物理规律 牛顿第二定律 运动学公式 受力特点 只受洛伦兹力 洛伦兹力与速度垂直 第二阶段 运动特点 匀速圆周 运动 物理规律 牛顿第二定律 圆周运动规律
解:(1)带电粒子在电场中做类平抛运动
x 轴: 2h v0t
mg解得 E 0Fra bibliotekmg q
第 4 页 共 6 页
(汕头市统考)如图所示,在一底边长为2L,θ =45°的等腰三角形区域内(O为底边中点)有垂直纸面向 外的匀强磁场. 现有一质量为m, 电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直 于AB进入磁场,不计重力与空气阻力的影响. (1)粒子经电场加速射入磁场时的速度? (2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板? (3) 增加磁感应强度的大小,可以再延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时 间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹) 参考解答: ⑴依题意,粒子经电场加速射入磁场时的速度为 v 由 得v A θ L O B U
2
带电粒子的场强为 E
m v0 2hq
(2)带电粒子离开电场时速度为 v
v 2v 0
450 带电粒子垂直 MP 进入磁场做匀速圆周运动,
洛仑兹力提供向心力 qvB1 m v 磁感应强度为
B1 (1 2 ) m v0 qh
r
洛仑兹力提供向心力
qvB m v r
2
拓展问题: 三角形 MNP 区域磁感应强度多大时,才能使带电粒子以最大的半径偏转到 MP 边界上来? 拓展小结:带电粒子刚好不从边界出来时,带电粒子运动轨迹刚好与边界相切。
qL
⑶设粒子运动圆周半径为 r, r
mv ,当 r 越小,最后一次打到 AB 板的点越靠近 A 端点,在磁场 qB
中圆周运动累积路程越大,时间越长. 当 r 为无穷小,经过 n 个半圆运动,最后一次打到 A 点. 有:
n
L 2r
2 r v
T 2
⑥(2 分)
圆周运动周期:
T
⑦(2 分)
A θ
Uq 1 2 1 2 mv 2 mv1 2 2
力学分析方法 动力学观点: 牛顿第二定律及运动学方程 v2 v1 at Uq 1 2 a d v1t at dm 2 2 2 v v 2 1 2ad 力学分析方法 受力特点:电场力与速度垂直,竖直 向下 运动特点:类平抛运动 动力学观点:运动的合成与分解 水平方向:匀速直线运动
第二阶段(撤去电场后) 运动特点 类平抛运动 物理规律 牛顿第二定律 圆周运动规律
带电体在电场中考虑重力与否问题: 1.带电体是电子、质子及离子等带电粒子之类的,重力相 对电场力很小,一般不考虑重力;2.带电体是带电小球或 带电油滴之类的,需考虑重力;3.题目有特别说明的,按 题目要求处理。
第 3 页 共 6 页
d Vy t 2 2 3 ……(1 分) ○
到达 A 点的速度为 V V y2 V02 2V0 进入磁场时速度方向与水平方向成 45 (2)在电场中 Vy=at
0
a
Eq m
解得
mV02 E qd
在磁场中粒子做匀速圆周运动,如图所示,由图得圆周运动半径 d R 2d sin 45 0 又 qBV
专题—带电粒子在复合场中的运动
课题名称 带电粒子在复合场中的运动 一.考情分析 学习目标 重点:掌握对带电粒子在电场或磁场中运动进行分析的基本力学方法及解题思路; 难点:学会作出带电粒子在复合场中运动轨迹图象的方法。 二.学习内容
带电粒子在电场或磁场中运动基本知识
电加速(匀加速直线运动) 受力特点: 电场力与速度在同一直线上 运动特点:匀变速直线运动 能量观点:动能定理
1 BO at 2 2
其中 BO=OC= r
v2 r
由以上可解得粒子做圆周运动的
又由牛顿第二定律: 由以上各式可解得:
Eq mg ma
m 2qU 2m gd 半径为 r qB m
(2)从 A 点运动到 B 点的过程是匀速圆周运动, 则有: qE0
E 2B
2qU mgd mg m q
L
O
B
U
最长的极限时间
tm n
⑧ (2 分)
tm
由⑥⑦⑧式得: 课外作业二
L
2v
L
2
m 2qU
(2 分)
C
第 5 页 共 6 页
如图所示,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为 d,电场方向在纸面内竖直向下,而 磁场方向垂直纸面向里。一带正电粒子(重力不计)从 0 点以速度 V0 沿垂直电场方向进入电场,从 A 点射出电 场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,当粒子从磁场右边界上 C 点穿 出磁场时速度方向与进入电场 0 点时的速度方向一致,求: (1)粒子进入磁场时的速度 V 为多少? (2)电场强度 E 和磁感应强度 B 的比值 E/B; (3)粒子在电、磁场中运动的总时间。 解: (1)粒子在电场偏转 垂直电场方向 d V0 t 平行电场方向 解得 Vy=V0
第 2 页 共 6 页
例题 3:如图,在 xoy 直角坐标系中,在第三象限有一平行 x 轴放置的平行板电容器,板间电压 U ,极板 间距离为 d 。现有一质量 m ,带电量 q 带电小球带正电的小球,从下极板处由静止开始经电场加速后通过上 板上的小孔, 垂直 x 轴从 A 点进入第二象限匀强电场 E0 和匀强磁场 B 的复合场中做匀速圆周运动。 磁场方向 垂直纸面向外, 粒子在磁场中转过四分之一圆周后又从 B 点垂直 y 轴进入第一象限, 第一象限中有平行于 y 轴 负方向的匀强电场,粒子随后经过 x 轴上的 C 点,已知 OC (1)粒子在磁场中做匀速圆周运动的半径 r 。 (2)第二象限中匀强电场 E0 和第一象限中匀强电场场强 E 的大小。
mV 2 R
得B
mV mV0 qR qd
所以
E V0 B
d V0
粒子在磁场中做圆周运动的圆心角为
1 式得粒子在电场中运动时间 t 1 (3)由○
4
粒子在磁场运动时间 t 2
/ 4 2 R d 2 V 4V0
运动总时间 t t1 t2
d (4 ) 4V0
Eq a m y 轴: tan vy v0 1 h at 2 2 v y at
运 动 轨 迹 如 图 所 , 由 几 何 关 系 可 知
r 2h cos450
磁感应强度 B m v0
qh
2 2 v v0 vy
拓展问题: 带电粒子运动轨迹如图所示,由几何关系可 知
2h cos 45 0 r r cos 45 0
(1)设粒子飞出极板的速度为 v,由动能定理:
Uq mgd 1 2 mv 2
方向平行于 y 轴正方向 粒子从 B 点运动到 C 点的过程, 沿 x 轴方向有: OC vt 沿 y 轴负方向有 :
2Uq 2m gd v m
粒子在磁场中做匀速圆周运动, 洛伦兹力提供向心 力: qvB m
qU
1 mv 2 2
①
(2 分)
2qU m
② (1 分)
⑵要使圆周半径最大,则粒子的圆周轨迹应与 AC 边相切,设圆 周半径为 R 由图中几何关系:
R R L sin
C
③(3 分)
A
L R
O
B
U
由洛仑兹力提供向心力:
qvB m v2 R
④(2 分) ⑤(2 分) C
联立②③④解得 B (1 2 ) 2Uqm
力学分析 受力特点:洛仑兹力总与速度垂 直,且不做功 运动特点:匀速圆周运动 动力学观点: 牛顿第二定律及圆周运动物理 量关系 2r v2 T t T qvB m v 2 r
例题分析及方法总结
第 1 页 共 6 页
例题 2: 如图所示,在平面直角坐标系 xoy 内,第Ⅰ象限的等腰直角三角形 MNP 区域内存在垂直于坐标平面 向外的匀强磁场, y O 的区域内存在着沿 y 轴正方向的匀强电场.一质量 m ,带电量 q 的带电粒子从电 场中 Q(2h,h) 点以速度 v 0 水平向右射出,经坐标原点 O 处射入第Ⅰ象限,最后以垂直于 PN 的方向射出 磁场.已知 MN 平行于 x 轴, N 点的坐标为 (2h,2h) ,不计粒子的重力,求: (1)电场强度 E 的大小; (2)磁感应强度 B 的大小;