全国通用版2018_2019高中数学第二章平面向量2.3平面向量的数量积2.3.1向量数量积的物理背
高中数学课件 平面向量的数量积(2)
![高中数学课件 平面向量的数量积(2)](https://img.taocdn.com/s3/m/947070e3856a561252d36f67.png)
解: ab = (3, 1) (1, 2)=3+2=5.
|a|= |b|=
a a 32 (1) 2 10
2 2
b b 1 (2) 5 a b 5 2 cos <a, b>= | a ||b | 2 10 5
所以 <a, b>=45°
例2.已知A(1, 2),B(2, 3),C(2, 5), 求证:△ABC是直角三角形
4 x 2 y 0 2 2 x y 1
5 2 5 5 2 5 所求向量为 ( , )或( , ) 5 5 5 5
例6. 已知a=(1, 0),b=(2, 1),当k为何实数时,
向量ka-b与a+3b (1)平行;(2)垂直。 解:ka-b=(k-2, -1), a+3b=(7, 3), (1)由向量平行条件得3(k-2)+7=0, 1 所以k= 3 (2)由向量垂直条件得7(k-2) -3=0,
o
2
2
练习2:已知|a|=1,|b|= 2 ,
(1)若a∥b,求a· b;
2
2
(2)若a、b的夹角为60°,求|a+b|; 3
(3)若a-b与a垂直,求a与b的夹角. 45°
练习2:设i,j为正交单位向量,则 ① i· 1 i=_______ ② j· 1 j=________ ③ i· 0 j=________
所以 | a b | 37
(2) |2a-3b|2=4|a|2-12a· b+9|b|2=108,
所以 | 2a 3b | 6 3
练习1: 已知|a|=3,|b|=4,<a, b>=60° ,求
(1)|a+b|;(2)|2a-3b|.
高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案
![高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案](https://img.taocdn.com/s3/m/99a81cc53968011ca2009195.png)
2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。
高中数学 平面向量的数量积
![高中数学 平面向量的数量积](https://img.taocdn.com/s3/m/6a4b2bbcb84ae45c3a358c35.png)
|a|= 6
Oe
45º A
(1)
|a|= 6
(OA)●e
|a|= 6
(2)
(3) 当q =135º时,
OA= |a|cos135= 6(
2 2
)
= 3 2 .
A (3) Oe
问题2. 非零向量 a 与 b 的数量积 a·b 在什么情
况下为正? 在什么情况下这负? 在什么情况下为零?
6448cosq 27=61,
解得
cosq
=
1 2
,
得 q =120.
8. 已知 |a|=8, |b|=10, |a+b|=16, 求 a 与 b 的夹
角q (精确到1). (可用计算器)
解:
由(|aaa|2a|+2+++b2b2)a2||=a=b1|1+6|6bb得,|2co=s1q6+,
|b
∴又((1a)+式b成)(立a .
b)
= = =
(aaa22++bbb)2,aaa(ab+bb)2b
∴(2)式成立.
例3. 已知 |a|=6, |b|=4, a 与 b 的夹角为 60, 求
(a+2b)·(a3b).
解:
(a
+
2b)(a
3b)
= = =
aa
| |
a a
|2 |2
caccooobsssqqq==|a000|,,,|b|caaaosbbqb
,
0. 0. = 0.
即两向量的夹角为锐角时, 数量积为正, 夹角为钝角时, 数量积为负, 夹角为直角时, 数量积为零.
高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4
![高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4](https://img.taocdn.com/s3/m/21068850bcd126fff7050bfe.png)
答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.
高中数学必修第二章平面向量公式及定义
![高中数学必修第二章平面向量公式及定义](https://img.taocdn.com/s3/m/8f6561cbe109581b6bd97f19227916888486b912.png)
平面向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=x+x',y+y'.a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:a+b+c=a+b+c.2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=x,y b=x',y' 则 a-b=x-x',y-y'.4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:λa•b=λa•b=a•λb.向量对于数的分配律第一分配律:λ+μa=λa+μa.数对于向量的分配律第二分配律:λa+b=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积内积、点积是一个数量,记作a•b.若a、b不共线,则a •b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a交换律;λa•b=λa•b关于数乘法的结合律;a+b•c=a•c+b•c分配律;向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:a•b•c≠a•b•c;例如:a•b^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由 a•b=a•c a≠0,推不出 b=c.3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积外积、叉积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a 和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;λa×b=λa×b=a×λb;a+b×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式向量P1P=λ•向量PP2设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1x1,y1,P2x2,y2,Px,y,则有OP=OP1+λOP21+λ;定比分点向量公式x=x1+λx2/1+λ,y=y1+λy2/1+λ.定比分点坐标公式我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.向量垂直的充要条件a⊥b的充要条件是 a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.1、线性运算①a+b=b+a ②a+b+c=a+b+c ③λμa=λμa. ④λ+μa=λa+μa. ⑤λa±b=λa±λb ⑥a,b共线→b=λa2、坐标运算,其中ax1,y1, bx2,y2①a+b= x1+x2,y1+y2 ②a-b= x1-x2,y1-y2 ③λa=λx1,λy1 ④点Aa,b,点Bc,d,则向量AB=c-a,b-d ⑤点Aa,b,点Bc,d,则向量BA=a-c,b-d3、数量积运算①ab=∣a∣∣b∣cosθ②ab=ba 交换律③λab=λab =a λb结合律,注意向量间无结合律④a±bc=ac±bc分配律⑤若ab-c=0,则b=c或a垂直于b-c ⑥a±b2=a2±2ab+b2 ⑦a+ba-b=a2-b2⑧ax1,y1, bx2,y2,则ab=x1x2+y1y2,∣a∣2 =x2+y2,∣a∣=√x2+y2 a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:cosθ=ab/∣a∣∣b∣=x1x2+y1y2/√x12+y12√x22+y22。
高中三年数学掌握平面向量的数量积与向量积计算方法
![高中三年数学掌握平面向量的数量积与向量积计算方法](https://img.taocdn.com/s3/m/3dc0e520cbaedd3383c4bb4cf7ec4afe04a1b1d8.png)
高中三年数学掌握平面向量的数量积与向量积计算方法在高中数学课程中,学生需要学习并掌握平面向量的数量积与向量积的计算方法。
这两个概念是向量分析中非常重要的一部分,对于解决几何和代数问题都具有广泛的应用。
本文将介绍平面向量的数量积与向量积的定义及其计算方法,并结合具体例子进行说明。
一、平面向量的数量积平面向量的数量积,又称为点积或内积,表示两个向量之间的乘积。
设有平面向量a和b,它们的数量积用记号a·b表示。
计算方法如下:\[a \cdot b = |a| \cdot |b| \cdot \cosθ\]其中,|a|和|b|分别表示向量a和b的模长,θ表示向量a与b之间的夹角。
数量积的计算结果是一个标量,即一个实数。
它可以用于判断两个向量之间的夹角关系以及计算向量在某个方向上的投影长度等。
例如,给定两个向量a=(2,3)和b=(4,1),求它们的数量积。
首先计算向量a和b的模长:\[|a| = \sqrt{2^2+3^2} = \sqrt{13}\]\[|b| = \sqrt{4^2+1^2} = \sqrt{17}\]然后计算向量a和b夹角的余弦值:\[\cosθ = \frac{a \cdot b}{|a| \cdot |b|} = \frac{2 \cdot 4 + 3 \cdot1}{\sqrt{13} \cdot \sqrt{17}} = \frac{11}{\sqrt{221}}\]所以,向量a和b的数量积为:\[a \cdot b = |a| \cdot |b| \cdot \cosθ = \sqrt{13} \cdot \sqrt{17} \cdot\frac{11}{\sqrt{221}} = \frac{11\sqrt{221}}{\sqrt{221}} = 11\]二、平面向量的向量积平面向量的向量积,又称为叉积或外积,表示两个向量之间的叉乘。
设有平面向量a和b,它们的向量积用记号a×b表示。
高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4
![高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4](https://img.taocdn.com/s3/m/bd5131bdb307e87100f6966c.png)
(2) 若 点
A(x1
,
y1)
,
B(x2
,
y2)
,
则
→ AB
=
(x2
-
x1
,
y2
-
y1)
,
所
以
|
→ AB
|
=
(x2-x1)2+(y2-y1)2,即|A→B|的实质是 A,B 两点间的距离或线段 AB 的长
(2)坐标表示下的运算,若 a=(x,y),则|a|= x2+y2.
第二十一页,共37页。
2.(1)已知向量 a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________;
(2)设平面向量 a=(1,2),b=(-2,y),若 a∥b,则|2a-b|等于( )
A.4
第二十六页,共37页。
[归纳升华] 用坐标求两个向量夹角与垂直问题的步骤
(1)用坐标求两个向量夹角的四个步骤: ①求 a·b 的值; ②求|a||b|的值; ③根据向量夹角的余弦公式求出两向量夹角的余弦; ④由向量夹角的范围及两向量夹角的余弦值求出夹角.
第二十七页,共37页。
(2)利用向量解决垂直问题的四个步骤: ①建立平面直角坐标系,将相关的向量用坐标表示出来; ②找到解决问题所需的垂直关系的向量; ③利用向量垂直的相关公式列出参数满足的等式,解出参数值; ④还原到所要解决的几何问题中.
答案:
(1)-15
3 (2)2
第三十页,共37页。
[变式练]☆ 2.已知平面向量 a=(3,4),b=(9,x),c=(4,y),且 a∥b,a⊥c. (1)求 b 与 c; (2)若 m=2a-b,n=a+c,求向量 m,n 的夹角的大小.
《平面向量数量积》教案
![《平面向量数量积》教案](https://img.taocdn.com/s3/m/a42e309227fff705cc1755270722192e4536581e.png)
《平面向量数量积》教案教案:平面向量数量积一、教学目标:1.理解平面向量的数量积的概念和性质。
2.掌握平面向量的数量积的运算法则。
3.能够利用平面向量的数量积解决实际问题。
二、教学内容:1.平面向量的数量积的概念和性质。
2.平面向量的数量积的运算法则。
3.平面向量数量积的应用。
三、教学步骤:1.引入平面向量的数量积的概念。
首先通过提问和示例,引导学生思考两个平面向量的乘积是否有意义,以及该乘积有什么特殊的性质。
然后给出平面向量的数量积的定义:设有两个非零向量a和b,数量积定义为,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2.平面向量的数量积的性质。
通过具体的例子,讲解平面向量数量积的性质:(1)数量积的结果是一个数。
(2)数量积满足交换律、分配律。
(3)数量积的结果为0时,表示两个向量垂直,即cosθ=0。
(4)数量积的结果为正数时,表示两个向量同向,即θ为锐角。
(5)数量积的结果为负数时,表示两个向量反向,即θ为钝角。
3.平面向量的数量积的运算法则。
通过示例演算,教导学生具体的运算法则:(1)计算向量的模长:,a,=√(a1²+a2²)。
(2)计算向量的数量积:a·b = ,a,·,b,·cosθ。
(3)计算两个向量的夹角:cosθ = (a·b) / (,a,·,b,)。
(4)根据数量积的定义,解方程组:a·b=0,求出向量a与向量b 互相垂直的条件。
4.平面向量数量积的应用。
通过实际问题解决的例子,帮助学生将平面向量数量积的概念和运算法则应用到实际问题的解决中。
例如:已知有三个向量a、b和c,其中a·b=30,a·c=40,求b与c的夹角。
五、教学反思:在教学过程中,可以通过举一些具体的实际问题,提高学生的兴趣和参与度。
平面向量的数量积和向量积
![平面向量的数量积和向量积](https://img.taocdn.com/s3/m/fec0402d876fb84ae45c3b3567ec102de2bddfa1.png)
平面向量的数量积和向量积在数学中,向量是一种具有大小和方向的量。
平面向量是指在平面内表示的向量。
平面向量具有一些重要的运算,其中包括数量积和向量积。
一、数量积数量积又称为点积或内积,表示为A·B,其中A和B为平面向量。
数量积的定义如下:A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角。
数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:A·(B+C) = A·B + A·C3. 结合律:k(A·B) = (kA)·B = A·(kB),其中k为常数4. 垂直性质:向量A和向量B垂直,当且仅当A·B = 05. 平行性质:向量A和向量B平行,当且仅当A·B = |A||B|数量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A·B = Ax·Bx + Ay·By。
二、向量积向量积又称为外积或叉积,表示为A×B,其中A和B为平面向量。
向量积的定义如下:A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角,n为垂直于平面的单位向量。
向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:A×(B+C) = A×B + A×C3. 结合律:k(A×B) = (kA)×B = A×(kB),其中k为常数4. 零向量性质:向量A和向量B平行,当且仅当A×B = 05. 平面性质:向量A和向量B所确定的平面与向量A×B垂直向量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A×B = (0, 0, Ax·By - Ay·Bx)。
高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4
![高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4](https://img.taocdn.com/s3/m/9c64e149e55c3b3567ec102de2bd960590c6d95f.png)
(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.
第二章 平面向量(第1课时)
![第二章 平面向量(第1课时)](https://img.taocdn.com/s3/m/dbd9cb46c850ad02de804180.png)
从位移、速度、力到向量
• 我们在物理学中已经学过“位移”、“速度”和 “力”相关的概念,知道他们不仅有大小而且还 有方向。因此,我们在解决实际问题时,不仅仅 只考虑他们的大小问题,而且要考虑方方向问题。 ————那么在数学中,如何解决类似于“位 移”、“速度”、“力”这样的问题呢?
例如: AB
CD
DE
(起点) A
a
②可以用黑体小写的字母
例如:a,b,c,d…… 书写用a, b, c, d
新余市第六中学 高中数学 必修④
向量的长度(模)
AB (或 a )表示向量 AB(或a)的大小,即长度(也称模)
特殊向量
①长度为零的向量称为零向量,其方向为任意方向, 记作0或0
②长度为单位1 的向量叫做单位向量, 记作:a0
新余市第六中学 高中数学 必修④
从位移、速度、力到向量
• 像“位移”、“速度”,“力”这样既有大小又 有方向的量叫做向量
思考题 请问“加速度”、“时间”,“密度”、“功”、“重 力”、“质量”、“角速度”、哪些是向量?为什么?
加速度,重力,角速度是向量,因为他们既有大小又有方向 时间,密度,功,质量不是向量,因为他们只有大小没有方 向
目录
§3 从速度的倍数到数乘向量
3.1 数乘向量
3.2 平面向量基本定理
第二章 平面向量
§4 平面向量的坐标
4.1 平面向量的坐标表示 4.2 平面向量线性运算的坐标表示 4.3 向量平行的坐标表示
新余市第六中学 高中数学 必修④
目录
第二章 平面向量
§5 从力的做功到向量的数量积 §6 平面向量数量积的坐标表示 §7 向量应用举例
新余市第六中学 高中数学 必修④
平面向量的数量积和向量积
![平面向量的数量积和向量积](https://img.taocdn.com/s3/m/111944d5dbef5ef7ba0d4a7302768e9950e76e61.png)
平面向量的数量积和向量积平面向量是高中数学中的一个重要概念,它具有方向和大小,并且是可以进行运算的。
在平面向量的运算中,数量积和向量积是两个常见且重要的运算。
一、数量积1. 定义数量积又称为点积、内积或标量积,用符号"·"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的数量积为:A·B = x₁x₂ + y₁y₂其中,x₁、x₂为A和B的横坐标,y₁、y₂为A和B的纵坐标。
2. 计算方法根据数量积的定义,计算方法简单直接。
对于任意两个向量A和B,只需将它们的横纵坐标带入公式即可。
例如,对于向量A(3,2)和向量B(4,-1),它们的数量积为:A·B = 3*4 + 2*(-1) = 12 - 2 = 103. 特性数量积具有以下几个重要的特性:- 结果为标量:数量积的结果是一个数,即标量,没有方向。
- 交换律:A·B = B·A,即数量积满足交换律。
若夹角为θ,则A·B = |A||B|cosθ,其中|A|和|B|为向量的长度。
二、向量积1. 定义向量积又称为叉积、外积或矢量积,用符号"×"表示。
对于平面内两个向量A(x₁, y₁)和B(x₂, y₂),它们的向量积为:A×B = (0, 0, x₁y₂ - x₂y₁)其中,向量积是一个垂直于平面的向量,其大小为由A和B所张成的平行四边形的面积。
2. 计算方法根据向量积的定义,计算方法稍微复杂一些。
对于任意两个向量A 和B,只需将它们的横纵坐标带入公式,得到一个新的向量。
例如,对于向量A(3,2)和向量B(4,-1),它们的向量积为:A×B = (0, 0, 3*(-1) - 4*2) = (0, 0, -11)3. 特性向量积具有以下几个重要的特性:- 结果为向量:向量积的结果是一个向量,具有方向和大小。
2018年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理!
![2018年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理!](https://img.taocdn.com/s3/m/60e29734b4daa58da0114ad8.png)
专题26 平面向量的数量积及平面向量的应用1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b 的数量积(或内积),记作a²b,即a²b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0²a=0.(2)几何意义:数量积a²b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a²b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a²a=x21+y21.(3)夹角:cos θ=a²b|a||b|=x1x2+y1y2x21+y21²x22+y22.(4)两非零向量a⊥b的充要条件:a²b=0⇔x1x2+y1y2=0.(5)|a²b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤x21+y21²x22+y22.3.平面向量数量积的运算律(1)a²b=b²a(交换律).(2)λa²b=λ(a²b)=a²(λb)(结合律).(3)(a+b)²c=a²c+b²c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ²b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ²b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →²NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →²CB →的值为________;DE →²DC →的最大值为________.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →²CB →=(t ,-1)²(0,-1)=1. 因为DC →=(1,0),所以DE →²DC →=(t ,-1)²(1,0)=t ≤1, 故DE →²DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →²CB →=|CB →|²1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →²DC →)max =|DC →|²1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →²BP →=2,则AB →²AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →²BD →=________. 答案 (1)22 (2)2高频考点二 用数量积求向量的模、夹角例2、(1)(2016²全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )²b =0, 即4³3+(-2)³(m -2)=0,解之得m =8,故选D. (2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )²c <0,即(2k -3,-6)²(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3.答案 (1)D (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ²b|a ||b |(夹角公式),a ⊥b ⇔a ²b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016²全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016²全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)²BC →|BA →|²|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ³1+1³2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →²AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223 (2)C解析 (1)∵|a |= 3e 1-2e 2 2=9+4-12³1³1³13=3,|b |= 3e 1-e 2 2=9+1-6³1³1³13=22,∴a ²b =(3e 1-2e 2)²(3e 1-e 2)=9e 21-9e 1²e 2+2e 22=9-9³1³1³13+2=8, ∴cos β=83³22=223.(2)∵AB →²AC →=-1,∴|AB →|²|AC →|²cos120°=-1, 即|AB →|²|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →²AC →+AB →2 ≥2|AB →|²|AC →|-2AB →²AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ²n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ²n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4, 所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A .-43 B .-45 C.45 D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →²BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)²AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形 答案 (1)12 (2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →²BE →=(AD →+AB →)²(AD →-12AB →) =AD →2-12AD →²AB →+AD →²AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos60°-12|AB →|2 =1+12³12|AB →|-12|AB →|2=1.∴()avs4alco1(f(1,2)-|AB →|)|AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)²AC →=DB →²AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形.高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →²CM →=0,则yx =______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6³7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →²CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ²b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →²PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →²PF →最小值是HE →²HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos2∠CHE =1-2sin 2∠CHE =12,HE →²HF →=|HE →|²|HF →|cos ∠EHF =23³23³12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →²OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →²ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →²ON →=⎝⎛⎭⎫12,1²(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2³⎝⎛⎭⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →²OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( )A .2 2B .2 3C .4 2D .4 3答案 D解析 由|OA →|=|OB →|=OA →²OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4³12³2³2sin π3=4 3.1.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅= ,1BF CF ⋅=- ,则BE CE ⋅的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( )(A )232a -(B )234a - (C ) 234a (D ) 232a【答案】D 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅ ()22223cos 602BA BC BA a a a +⋅=+=故选D.【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅=(D )()4C a b +⊥B【答案】D 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=,则||2b = ,故A 错误;|2|2||2a a == ,所以||1a = ,又22(2)4||222cos602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥,而22(2)4AD a a b a b =++=+ ,所以()4C a b +⊥B,故选D. 【2015高考福建,理9】已知1,,AB AC AB AC t t⊥==,若P 点是ABC ∆ 所在平面内一点,且4AB ACAP AB AC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP = (,0)+4(0,1)=(1,4),即1P (,4),所以11PB t- =(,-4),1PC - =(,t-4),因此PB PC ⋅11416t t =--+117(4)t t =-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ== 则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9DF DC λ= 12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-== ,AE AB BE AB BC λ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅ 的最小值为2918. BA1.(2014²北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.【答案】5【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5. 2.(2014²湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.【答案】±3【解析】因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )²(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.3.(2014²江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【答案】2 234.(2014²全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22 【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014²新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ²b =4,所以a ²b =1. 6.(2014²山东卷)在△ABC 中,已知AB →²AC →=tan A ,当A =π6时,△ABC 的面积为______. 【答案】16【解析】因为AB ²AC =|AB →|²|AC →|cos A =tan A ,且A =π6,所以|AB →|²|AC →|=23,所以△ABC 的面积S =12|AB →|²|AC →|sin A =12³23³sin π6=16 .7.(2014²天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →²AF →=1,CE →²CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】C【解析】建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ²AF =(λ+1,3(λ-1))²(μ+1,3(1-μ))=1,① CE →²CF →=(λ-1,3(λ-1))²(μ-1,3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322 D .-31529.(2013年高考湖南卷)已知a ,b 是单位向量,a ²b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1] B.[]2-1,2+2 C .[1,2+1] D .[1,2+2]解析:由a ,b 为单位向量且a ²b =0,可设a =(1,0),b =(0,1),又设c =(x ,y ),代入|c -a -b |=1得(x -1)2+(y -1)2=1,又|c |= x 2+y 2,故由几何性质得12+12-1≤|c |≤12+12+1,即2-1≤|c |≤ 2+1.答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ²b ,求f (x )的最大值. 解析:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ²b =3sin x ²cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈[0,π2]时,sin ⎝⎛⎭⎫2x -π6取最大值1.所以f (x )的最大值为32.11.(2013年高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ²b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值.解析:f (x )=⎝⎛⎭⎫cos x ,-12²(3sin x ,cos 2x )=3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12. 因此,f (x )在[0,π2]上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2³2³2³12=12,|a +b |=2 3. 2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( ) A .2 3 B. 3 C .0 D .- 3 答案 B解析 ∵a ²b =(1,3)²(3,m )=3+3m ,a ²b =12+ 3 2³32+m 2³cos π6, ∴3+3m =12+ 3 2³32+m 2³cos π6, ∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( )A.32B.22C.52D.72 答案 A4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)²(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C解析 因为(OB →-OC →)²(OB →+OC →-2OA →)=0, 即CB →²(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)²(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →²AF →等于( )A.89B.109C.259D.269答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →²AC →=AB →2+AC →2-2AB →²AC →,即有AB →²AC →=0.E ,F 为BC 边的三等分点,则AE →²AF →=(AC →+CE →)²(AB →+BF →)=⎝⎛⎭⎫avs4alco1(o(AC ,sup6(→))+13CB →)²⎝⎛⎭⎫avs4alco1(o(AB ,sup6(→))+13BC→)=⎝⎛⎭⎫avs4alco1(f(2,3)AC →+13AB →)²⎝⎛⎭⎫avs4alco1(f(1,3)AC →+23AB →)=29AC →2+29AB →2+59AB →²AC →=29³(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →²(PB →+PC →)的值为________.答案 -4解析 由题意得,AP =2,PM =1, 所以PA →²(PB →+PC →)=PA →²2PM → =2³2³1³cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →²AC →=|AB →|²|AC →|cos60°=1³3³12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →²AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132.8.在△ABC 中,若OA →²OB →=OB →²OC →=OC →²OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).答案 垂心解析 ∵OA →²OB →=OB →²OC →, ∴OB →²(OA →-OC →)=0,∴OB →²CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →²BC →=0,OC →²AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )²(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )²(2a +b )=61,∴4|a |2-4a ²b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ²b -27=61,∴a ²b =-6.∴cos θ=a ²b |a ||b |=-64³3=-12, 又∵0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ²b +|b |2=42+2³(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12³4³3³32=3 3.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ²n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ²n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →²AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →²AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32 y -b , ∴⎩⎨⎧ x -a =32x ,y =32y -32b ,∴⎩⎨⎧ a =-x 2,b =y 3.∴b >0,y >0,把a =-x 2代入①,得-x 2⎝⎛⎭⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).12.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )²b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )²b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22,所以A =π4,或A =3π4.因为b >a ,所以A =π4.f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12, 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. ∴所求范围是⎣⎢⎡⎦⎥⎤32-1,2-12. 13.已知|a |=4,|b |=3,(2a -3b )²(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )²(2a +b )=61,∴4|a |2-4a ²b -3|b |2=61.又|a |=4,|b |=3,∴64-4a ²b -27=61,∴a ²b =-6.∴cos θ=a ²b |a ||b |=-64³3=-12. 又0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ²b +|b |2=42+2³(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12³4³3³32=3 3.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ²n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ²n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5³4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2³5c ³⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1³22=22.15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.。
高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4
![高中数学第二章平面向量2.4.1平面向量数量积的物理背景及其含义课件新人教A版必修4](https://img.taocdn.com/s3/m/207a8e1d10661ed9ad51f385.png)
向量的数量积
定义
已知两个非零向量 a 与 b,我们把数量_|a_||_b_|c_o_s__θ叫作 a 与 b 的 数量积,记作_a_·_b_,即 a·b=_|a_||_b_|c_o_s__θ,其中 θ 是 a 与 b 的夹角.零 向量与任一向量的数量积为__0__.
几何意义
|a|cos θ(|b|cos θ)叫做向量 a 在 b 方向上(b 在 a 方向上)的 __投__影__.a·b 的几何意义:数量积 a·b 等于 a 的长度|a|与 b 在 a 的方 向上的投影|b|cos θ 的_乘__积___
为________,b 在 a 方向上的投影为________.
【解析】 (1)设B→A=a,B→C=b,则 a·b=12,|a|=|b|=1.D→E=12 A→C=12(b-a),D→F=32D→E=34(b-a),A→F=A→D+D→F=-12a+34(b-a) =-54a+34b,A→F·B→C=-54a·b+34b2=-58+34=18.答Leabharlann :(1)π3 (2)见解析性质
(1)a⊥b⇔___a_·_b___=0; (2)当 a 与 b 同向时,a·b=_|a_|_|b_|;当 a 与 b 反向时,a·b=__-__|a_||_b_|_; (3)a·a=|a|2 或|a|= a·a= a2;
a·b (4)cos θ=__|_a_|·_|b_|__; (5)|a·b|≤|a||b|
考试标准
课标要点
学考要求 高考要求
平面向量数量积的概念及其物理意义
b
b
平面向量投影的概念
a
a
平面向量数量积的性质及运算律
b
b
知识导图
学法指导 1.本节的重点是平面向量数量积的概念、向量的模及夹角的表 示,难点是平面向量数量积运算律的理解及平面向量数量积的应 用. 2.向量的数量积与数的乘法既有区别又有联系,学习时注意 对比,明确数的乘法中成立的结论在向量的数量积中是否成立.
【高中数学】平面向量 平面向量的数量积
![【高中数学】平面向量 平面向量的数量积](https://img.taocdn.com/s3/m/2c3c90e4bb0d4a7302768e9951e79b89680268b6.png)
【高中数学】平面向量平面向量的数量积【高中数学】平面向量平面向量的数量积一、教学内容:平面向量的量积二.本周教学目标:要求:掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件三、本周重点:1.两个向量的数量积:如果已知两个非零向量,那么?单击v:Shape>?产品和产品的定量乘积(或内积)。
规定。
2.向量的投影:?蚣v:shape>?蜚os∈r,称为向量在投影的绝对值称为射影。
3.数量积的几何意义:数量积的长度与数量积的长度相同。
5.乘法公式成立:;6.平面向量数量积的运算律:① 外汇法确立:③分配律成立:特别注意:(1)结社法不适用;(2)消去律不成立不能得到(3)无法获取或=7两个向量的数量乘积的坐标运算:已知两个向量,则与,作==,则∠aob=)叫做向量==。
当且仅当两个非零向量和相反方向θ=180°,夹角为90°。
10.两个非零向量垂直的充要条件:= 0【典型例题例1判断下列命题是否正确:(1);(2);(3)如果是,那就是真的;(5)向量都成立;(6)对于任何向量。
解:⑴错;⑵对;⑶错;⑷错;⑸错;⑹对。
例2给出,,,根据以下条件求实数的值。
(1);解决方案:∴(1);(2);。
<3),那么,-1包含的角度是多少?与<9">的夹角,需先求|?||,再结合夹角θ的范围确定其值。
解决方案:(通过),=(-1)有+1+-1)=4,|与的夹角为θ,则cosθ=∵ 0≤ θ≤π,∴ θ=评述:已知三角形函数值求角时,应注重角的范围的确定。
例4如图所示,以原点和a(5,2)为顶点,使等腰坐标成直角△ 也解:设点坐标(y),则x,=(y-2)∵ X-5)+Y-2)=0,即y2-5x-2y=0又∵∴y2=(x-5)2+(x+4点坐标;例5.在△abc中,=(1,k值。
=90°,=0,——2×1+3×k=0∴当=90°时,=0,-k-3)=(-1,k-3)=0∴×k(k-3)=0∴例6已知+y)⊥ + y=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1向量数量积的物理背景与定义
课时过关·能力提升
1.已知a·b=-12 2,|a|=4,a和b的夹角为135°,则|b|=()
A.12
B.3
C.6
D.3 3
解析:由已知得-12 2=4×|b|×cos 135°,
因此|b|=6.
答案:C
2.等边三角形ABC的边长为1,设퐴퐵=c,퐵퐶=a,퐶퐴=b,则a·b+b·c+c·a的值是()
A. B. C.- D.-
解析:由已知可得a·b=b·c=c·a=1×1×cos 120°=-,所以a·b+b·c+c·a=-.
答案:C
3.对任意向量a和b,|a||b|与a·b的大小关系是()
A.|a||b|≤a·b
B.|a||b|>a·b
C.|a||b|≥a·b
D.|a||b|<a·b
解析:由于a·b=|a||b|cos<a,b>,而cos<a,b>≤1,所以|a||b|≥a·b.
答案:C
4.已知|a|=6,|b|=3,a·b=-12,则a在b方向上的投影是()
A.-4
B.4
C.-2
D.2
푎·푏-12
解析:a在b方向上的投影是|a|cos θ==-4.
|푏|=
3
答案:A
5.已知下列结论:①a·0=0;②0a=0;③0-퐴퐵=퐵퐴;④|a·b|=|a||b|;⑤若a≠0,则对任一非零
向量b有a·b≠0;⑥若a·b=0,则a与b中至少有一个为0;⑦若a与b是两个单位向量,则
a2=b2.
则以上结论正确的是()
A.①②③⑥⑦
B.③④⑦
C.②③④⑤
D.③⑦
答案:D
6.已知<a,b>=90°,c=3a,则b·c=.
解析:由于a与b垂直,而c与a共线,所以c与b垂直,从而b·c=0.
答案:0
1
1
7.在等腰直角三角形ABC中,AC是斜边,且퐴퐵·퐴퐶=,则该三角形的面积等于.
2
22解析:设Rt△ABC的直角边长为a,则斜边长为2a,于是퐴퐵·퐴퐶=a·2a·=a2=,从而a= ,
22
1221
于是S △ABC=2×2×2=.
4
答案:
8.若四边形ABCD满足퐴퐵+퐶퐷=0,且퐴퐵·퐵퐶=0,试判断四边形ABCD的形状.
解:∵퐴퐵+퐶퐷=0,∴퐴퐵=퐷퐶,即AB∥DC,且AB=DC,∴四边形ABCD为平行四边形.
又퐴퐵·퐵퐶=0,∴퐴퐵⊥퐵퐶,即AB⊥BC.
∴四边形ABCD为矩形.
★9.已知在△ABC中,퐴퐵=c,퐵퐶=a,퐴퐶=b,若|c|=m,|b|=n,<b,c>=θ.
(1)试用m,n,θ表示S△ABC;
15
(2)若c·b<0,且S△ABC= ,|c|=3,|b|=5,则<c,b>为多少?
4
解:(1)S△ABC=AB·h=AB·AC·sin∠CAB=mn sin θ.
151
(2)∵S△ABC= |b||c|sin θ,
4=
2
1511
∴×5×3sin θ.∴sin θ=.
4=
22
∵c·b<0,∴θ为钝角.
∴θ=150°,即<c,b>=150°.
2。