晶体学基础
材第二章_晶体学基础
25
12 简单立方点阵
a=b=c,α=β=γ =90°
26
13 体心立方点阵
a=b=c,α=β=γ =90°
27
14 面心立方点阵
a=b=c,α=β=γ =90°
28
2.3、晶向指数和晶面指数
晶向——通过晶体中任意两个原子中心连成直 线 来表示晶体结构的空间的各个方向。 晶面——晶体结构一系列原子所构成的平面。
8
2.2 布拉菲点阵
点阵(晶格)模型
晶胞
代表性的基本单元(最小平行六面体)
9
c
b
a
空间点阵及晶胞的不同取法
10
选取晶胞的原则: 1.要能充分反映整个空间点成的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。
1
2
6
3
4 5
晶体学选取晶胞的原则
47
描述晶胞从以下几个方面: 晶胞中原子的排列方式 (原子所处的位置) 点阵参数 (晶格常数和晶轴间夹角) 晶胞中原子数 原子半径 R(原子的半径和点阵常数关系) 配位数和致密度 密排方向和密排面 晶体结构中间隙 (大小和数量) 原子的堆垛方式
48
三种典型金属晶体结构刚球模型
间隙有两种:四面体间隙和八面体间隙 八面体间隙: 位于晶胞体中心和每个棱边的中点, 由 6 个面心原子所围成,大小rB=0.414R,rB为间隙半径, R为原子半径,间隙数量为4个。
面心立方八面体间隙
55
面心立方四面体间隙
四面体间隙:由一个顶点原子和三个面心原子围成,其大 小:rB=0.225R,间隙数量为8个。
42
晶带定理的应用
2-1-晶体学基础
原始晶胞)、 素晶胞 (原始晶胞 、复晶胞 原始晶胞
晶胞参数: 晶胞参数:大小和形状 a, b, c, αβγ 分数坐标
7
Na+ 与 Cl- 之间的距离: ½ a. 之间的距离:
Cs+ 与 Cl- 之间的距离: a . 之间的距离:
3 2
结构基元数目: 结构基元数目:
4
1
2
8
晶体结构: 晶体结构:空间点阵 + 结构基元
31
32
7 个晶系和 32 个点群
33
空间群
空间群:晶体的全部对称性群。 空间群:晶体的全部对称性群。 全部对称性群 空间群的元素是点群操作和平移操作的组合, 空间群的元素是点群操作和平移操作的组合, 点群操作和平移操作的组合 共有230个晶体空间群。 个晶体空间群。 共有
34
石英晶体:m 与 m 面 (法线 夹角为 法线) 石英晶体: 法线 60°0',m 与 r 面 (法线 夹角为 38°13' 法线) ° , 法线 °
理想石英晶体: 六个m面原组成六方柱 理想石英晶体 六个 面原组成六方柱 歪晶: 外界环境的影响,形态畸变。 歪晶 外界环境的影响,形态畸变。 通过对晶面间角度的测量,可以揭示晶体固有的对称性, 通过对晶面间角度的测量,可以揭示晶体固有的对称性,绘制出理想的晶 体形态图,为几何结晶学研究打下基础, 体形态图,为几何结晶学研究打下基础,并为晶体内部结构的探索给予了 有益的启发; 有益的启发; 通过晶体测量,即可鉴定晶体的种类。 通过晶体测量,即可鉴定晶体的种类。
13
Fe,Ni: 混合价态,存在不同价态之间的电荷转移跃迁, , 混合价态,存在不同价态之间的电荷转移跃迁, 吸收可见光,使其具备很深的颜色。 吸收可见光,使其具备很深的颜色。
材料科学基础-第1章
晶面指数及晶面间距
现在广泛使用的用来表示晶面指数的密勒指数是由 英国晶体学家ler于1939年提出的。
z
确定晶面指数的具体步骤如下: 1.以各晶轴点阵常数为度量单位,求 出晶面与三晶轴的截距m,n,p; 2.取上述截距的倒数1/m,1/n,1/p; 3. 将以上三数值简为比值相同的三 个最小简单整数,即 1 1 1 h k l (553) : : : : h:k :l x m n p e e e 其中e为m,n,p三数的最小公倍数,h,k,l为简单整数; 4.将所得指数括以圆括号, (hkl)即为密勒指数。
13 体心立方点阵
a=b=c,α=β=γ =90°
14 面心立方点阵
a=b=c,α=β=γ =90°
§ 1.5 晶体结构的对称性
一、对称:对称是指物体相同部分作有规律的 重复。对称操作所依据的几何元素,亦即在对 称操作中保持不动的点、线、面等几何元素称 为对称元素。 二、对称性
1.晶体的宏观对称性 2. 晶体的32种点群 3. 晶体的微观对称性 4.230种空间群
晶体结构=空间点阵+基元
注意:上式并不是一个数学关系式,而只是用来表示这三者之间的 关系。
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表 , 称为点阵点,整个晶体就被抽象成一组 点,称为点阵。 1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境; 3 点阵在平移方向的周期必须相同。
c
b
a
空间点阵及晶胞的不同取法
选取晶胞的原则: 1.要能充分反映整个空间点阵的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。
晶体学基础
abc
abc
90
90
三斜
abc
3. 点阵类型
7大晶系 包含14 种空间 点阵— —布拉 菲 (A.Brav ais)点阵
§1-2晶面指数、晶向指数——Miller指数
晶面——穿过晶体的原子平面。 晶向——晶体中任意原子列的直线方向。 不同的晶面和晶向具有不同的原子排列和取向。这就是 晶体具有各向异性的原因。
( 1 00), (0 1 0), (00 1 )
思考: {111}包含多少个等价面?
三、 晶向指数与晶面指数的关系
在立方晶系中(包括密排六方):
[u v w] // (h k l) 时,一定满足:hu+kv+lw = 0 [u v w] (h k l) 时,一定满足:h=u, k=v, l=w
同一直线上,方向相反的晶向其指数加负号;
原子排列相同但空间位向不同的所有晶向称为晶向族, 用< >括号表示。 例如<100>包含:[100],[010],[001 ],[1 00],[0 1 0],[001] z [011] 不通过原点的晶向: (x2-x1):(y2-y1):(z2-z1) =u:v:w
一、晶向指数
确定晶向指数的步骤: 建立坐标系:oxyz, 晶格长度作为单位长度,原点o在待定晶向上;
找出该晶向上除原点外的任意一点的坐标:x,y,z; 将x,y,z 按比例划成互质(最小)整数u,v,w;
将u,v,w 三个数放在方括号内,就得到晶向指数[uvw]。
[说明]: 晶向指数表示的是一族平行的晶向,即相互平行的晶向 具有相同的晶向指数;
[0 1 0]
o x
[1 0 1] [010] y
晶体学基础
2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl
r rhkl
r .rhkl
h
k
av*
l
r bcv**
av*
r b*
h
cv*
k
l
h
h
k
l
G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;
材料科学基础 第1章 晶体学基础
金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同
第一章 晶体学基础
例:
X 轴坐标 —— 1 Y 轴坐标 —— 1 Z 轴坐标 —— ∞
11∞ ( 1 1 0)
绘出( 3 3 4 ) 和 ( 1 1 2 ) 晶面
取倒数
111
化简
3
( 334 )
(-
)
( -1 1 )
334
4
(11 2)
( 1 -1 1 ) 2
请绘出下列晶向: [001] [010] [100]
[110] [1 1 0] [10 1] [112] 请绘出下列晶面: (001) (010) (100) (110) (1 1 0) (10 1) (112)
单胞
晶体结构与点阵的关系
-Fe
CsCl bcc
a a
a
a
simple cubic
a a
-Fe
Cu3Au
CuAu
fcc
a
a
c
a
a simple cubic
a a Simple tetragonal
aa
-Fe
NaCl
a a
a fcc
CaF2
ZnS
a a
a fcc
晶体结构是晶体的直接表达; 点阵是对晶体结构的数学抽象。
数学抽象
晶体法则结:构的周期性和对称性,
1. 一个或几个小球合并成一个数学点
由于2. 高各度阵对称点的的几何周关围系 环境相同, 它只结原果子能:或有原子1群4中具有类相型同的环境
得到
数学点的集合
得到
空间点阵
原子的具体排列方式
直接表达
数学抽象
晶体结构
空间点阵
提取
有代表性的、基本的单元
提取
+晶体学基础
与具有相同化学成分的非晶体、气体和液体相比,晶体的内 能最小,最稳定。
晶体的特性是由晶体内部原子或分子排列的周期性所
决定的,是各种晶体所共有的,是晶体的基本特性。
1.2 晶体结构与空间点阵
理想晶体看成是由一个基本单位在空间按一定的规则周期性无 限重复构成的。
•结构基本单位称为基元(motif) 。如:Na + Cl
2 晶体的均匀性
一切晶体内部各个部分的宏观性质是相同的。 如化学组成、密度、热容量等晶体的标量性质。
3. 晶体的各向性
--不同的方向上具有不同的物理性质(矢量)。如电导率、热导 率、磁导率、光折射率、扩散系数和机械强度等。 晶体的这种特性,是由于在晶体内部原子的周期性排列结构中, 不同方向上原子或分子的排列情况不同,而反映出物理性质具有 异向性。
图1.2 三种不同的二维周期重复图形及其平面点阵
§1.3 点阵的描述
•点阵可用平移矢量r描述。 •任选一阵点为原点,选非共面、非共线的三个方向上的最 近邻点的平移基矢a,b,c,则:
r= ua + vb + wc
u, v, w 为任意整数。
§1.3点阵的描述
• 空间点阵按照平行六面体划分为许多形状和大小相同的网格, 此平行六面体成为点阵晶胞(Unit cells)。
3)六方晶系
4)斜方晶系 a b c 90
•晶胞选取既反映点阵周期性 又反映对称性,面心或体心 也可有阵点。 •晶胞的体积不一定最小,如 六方系。
•初基晶胞加心得到底心、 面心和体心。
5)菱方晶系
a b c 90
6)单斜晶系
7)三斜晶系 a b c 90 a b c 90
第三章_晶体学基础
十四种空间格子(布拉菲格子)
综合考虑单位平行六面体的划分和附加结点的类型,七个晶系空间格 子的基本类型共有十四种。
三斜晶系:三斜简单格子; 单斜晶系:单斜简单格子,单斜底心格子; 斜方晶系:斜方简单格子,斜方底心格子, (正交) 斜方体心格子,斜方面心格子; 四方晶系:四方简单格子,四方体心格子; 三方晶系:三方简单格子(三方菱面体格子); 六方晶系:六方简单格子; 立方晶系:立方简单格子,立方体心格子, 立方面心格子。
简单P
立方I
立方F
立方晶系:a = b=c
α=β=γ=90°
四方P 四方晶系: a = b≠c
四方I α=β=γ=90°
正交P
正交C 正交晶系:a≠b ≠ c
正交I α=β=γ=90°
正交F
单斜P 单斜晶系:a≠b ≠ c
单斜C α=γ=90° β> 90°
六方H
三方R
三斜P
六方晶系: a = b≠c 三方晶系: a = b=c 三斜晶系:a≠b≠c
故确定的步骤为:
● 选定晶轴X、Y、Z和a、b、c为轴单位;
● 平移晶向(棱)直线过原点;
● 在该直线上任取一结点M,将其投影至X、
。
Y、Z轴得截距OX、OY、OZ;
● 作OX/a:OY/b:OZ/c = u:v:w(最小
整数比);
● 去掉比号,加中括号,[u v w]即为晶
向符号。
某一晶向指数代表一组在
结构基元:组成晶体的离 子、原子或分子。基元内 的原子数等于晶体中原子 的种类数。
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
第2章 晶体学基础2.1
晶体与非晶体的区别:
1. 原子规排:晶体中原子(分子或离子)在三维空间呈周 期性重复排列,而非晶体的原子无规则排列的。 2. 固定熔点:晶体具有固定的熔点,非晶体无固定的熔点, 液固转变是在一定温度范围内进行。 3. 各向异性:晶体具有各向异性(anisotropy),非晶体为 各向同性。
二、空间点阵和晶胞
晶 格 常 数 示 意 图
3. 空间点阵类型(晶系)
根据6个参数间相关系可将全部空间点阵归为七大类,十四种(称为 布拉菲点阵)。
1)七大晶系
① ② ③ ④ ⑤ ⑥ ⑦
三斜晶系(Triclinic System) 单斜晶系(Monoclinic System) 正交晶系(斜方晶系,Orthogonal System) 四方晶系(正方晶系,Tetragonal System) 立方晶系(Cubic System) 六方晶系(Hexagonal System) 菱形晶系(Rhombohedral System)
晶体结构的微观特征 晶体可看作某种结构单元(基元)在三维空间作周期 性规则排列 质点或基元(basis):原子、分子、离子或原子团 (组 成、位形、取向均同)
抽象为 质点 抽象为
阵点
质点的三维空间周期排列
空间点阵
1. 空间点阵
空间格子:把晶体中质点的中心用直线联起来构成的空 间格架即空间格子(Lattice)。 晶体点阵:由这些结点构成的空间总体称为晶体点阵。 晶体结点为物质质点的中心位置。 空间点阵中结点仅有几何意义,并不真正代表任何质点。
⑦菱形晶系(RHOMBOHEDRAL SYSTEM) 特点:对称轴和单胞的一个轴 (设a轴)夹角为某一角度α, 另外两个轴和对称轴夹角亦为 α并且长度相等。这三个轴构 成的六面体就是一个菱形单胞。 菱形晶系点阵常数间的关系为:
晶体学基础
晶体学基础一、晶体学的定义和基本概念1.1 晶体学的定义晶体学是研究晶体结构、晶体形态和晶体性质的学科,是物理学、化学和材料科学的重要分支。
它研究的对象是晶体,即具有规则、周期性排列的原子、分子或离子结构的固体物质。
1.2 晶体学的基本概念晶体学有一些基本概念,包括晶体的晶系、晶胞、晶面和晶点等。
1.2.1 晶体的晶系晶体的晶系是指晶体中晶胞的对称性,常见的晶系有立方晶系、四方晶系、正交晶系、单斜晶系、斜方晶系、三斜晶系和三角晶系。
不同的晶系具有不同的对称性和晶胞形状。
1.2.2 晶体的晶胞晶体的晶胞是晶体中具有一定对称性的最小重复单元,它由一组原子、分子或离子构成。
晶胞的形状和大小决定了晶体的外形和晶系。
1.2.3 晶体的晶面晶体的晶面是晶胞的界面,它可以由晶胞的截面所确定。
晶体的晶面具有一定的对称性和形状,不同的晶面反映了晶体内部的原子、分子或离子的排列方式。
1.2.4 晶体的晶点晶体的晶点是晶体中原子、分子或离子的位置,它们通过相对位置的排列而形成晶体的结构。
晶点的排列方式决定了晶体的周期性。
二、晶体学的研究方法2.1 X射线衍射方法X射线衍射是研究晶体结构的重要方法之一。
通过将X射线照射到晶体上,通过对衍射光的观察和分析,可以确定晶体的晶胞参数、原子位置和晶体结构。
2.2 电子显微镜方法电子显微镜是一种利用电子束来观察物体的显微镜。
通过电子显微镜,可以对晶体进行高分辨率的成像,揭示晶体的微观结构和原子排列方式。
2.3 光学显微镜方法光学显微镜是利用光学原理观察物体的显微镜。
通过光学显微镜,可以对晶体的形态、结构和颜色进行观察和分析,从而了解晶体的基本特征。
2.4 计算方法晶体学还利用计算方法对晶体结构进行模拟和计算。
通过计算方法,可以预测晶体的结构、性质和响应等,对晶体学研究起到重要的辅助作用。
三、晶体学的应用领域3.1 材料科学晶体学在材料科学领域有着广泛的应用。
通过研究晶体的结构和性质,可以设计和合成新材料,提高材料的性能和功能。
(完整版)第1章 晶体学基础
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
01晶体学基础
上一内容 下一内容 回主目录
返回
续二
(1)电子和空穴:有效电荷与实际电荷相等。 (2)原子晶体:带电的取代杂质缺陷的有效电荷就
等于该杂质离子的实际电荷。 (3)化合物晶体:缺陷的有效电荷一般不等于实际
电荷。
上一内容 下一内容 回主目录
返回
缺陷的表示
• 无缺陷状态:0 • 晶格结点空位:VM, VX • 填隙原子:Ai, Xi • 错位原子:在AB中,AB, BA • 取代原子:在MX中NM • 电子缺陷:e’, h• • 带电缺陷: VM’, VX •, Ai •, Xi’, AB, BA , NM(n-m)
• 箭头表示反应方向
V V 0 NaCl(s) ' •
Na
Cl
• 箭头上表示基质的化学
式
•
生成物主要由缺陷组成
AgCl
AgCl(s )
Agi•
VA' g
Cl
Cl
上一内容 下一内容 回主目录
返回
基本的缺陷反应方程式
1.具有夫伦克耳缺陷(具有等浓度的晶格空位和填隙原子的 缺陷)的整比化合物M2+X2-:
位错模型
如图所示,晶体中多余的半原子面好象一片刀刃切入晶体中, 沿着半原子面的“刃边”,形成一条间隙较大的“管道”,该 “管道”周围附近的原子偏离平衡位置,造成晶格畸变。刃型 位错包括“管道”及其周围晶格发生畸变的范围,通常只有3到 5个原子间距宽,而位错的长度却有几百至几万个原子间距。刃 位错用符号 “┻”表示。
内容回顾
1.晶体结构的周期性; 2.点阵结构与点阵; 3. 点阵与平移群及与点阵结构的关系; 4. 晶体结构参数; 5. 晶面指数的确定;
上一内容 下一内容 回主目录
晶体学基础
0.25A-1 020 120 220
b (110)
010 110 210
(100) b* H110
H 210
(210)
100
c
a
c* 000
a*
200
晶体点阵
倒易点阵
立方晶系晶体及其倒易点阵
第三章 X射线衍射方向
自伦琴发出X射线后,许多物理学家都在积极地研究和探索,1905年 和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一 种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了 X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结 构的周期性,发表了《X射线的干涉现象》一文。
cosa0 H cos0 K
衍射线
1' X
1
显然,当X射线照射二 维原子网时,X、Y晶轴 方向上的那些同轴的圆 锥面上的衍射线要能够 加强,只有同时满足劳 厄第一和第二方程,才 能发生衍射。
衍射线只能出现在沿X晶轴方向及Y晶轴方向的两系列 圆锥簇的交线上。如果照相的底片平行于原子网,圆 锥在底片上的迹线为双曲线。每对双曲线的交点即为 衍射斑点,也相当于圆锥的交线在底片上的投影。不 同的H,K值,可得到不同的斑点。
劳厄的文章发表不久,就引起英国布拉格父子的关注,他们都是X射 线微粒论者,年轻的小布拉格经过反复研究,成功地解释了劳厄的实 验事实。他以更简结的方式,清楚地解释了X射线晶体衍射的形成, 并提出著名的布拉格公式:nX=2dsino这一结果不仅证明了小布拉格的 解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构 的信息。老布拉格则于1913年元月设计出第一台X射线分光计,并利 用这台仪器,发现了特征X射线。小布拉格在用特征X射线与其父亲合 作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金 刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键 按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来 说用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接 受。
晶体学基础
晶体学基础1. 晶体的基本性质2. 晶体结构与空间点阵3. 晶向、晶面及指标4. 晶带和晶带轴1. 晶体非晶体42. 空间点阵和晶胞¾空间点阵的概念¾点阵和点阵格子¾空间点阵与晶体结构空间点阵的概念¾晶体是由原子或原子团在三维空间中规则重复排列组成的固体。
作为基本单元的原子或原子团叫结构基元,简称基元。
¾为反映晶体中原子排列的周期性,以一个点代表一个基元,这个点就叫阵点,阵点在三维空间的周期性分布形成无限的阵列,就叫空间点阵,简称点阵。
5点阵和结构¾把空间点阵想象为晶体的结构框架,点阵中每一阵点所代表的周期重复的内容(原子、分子或离子),即结构基元,所以晶体结构可表述为:晶体结构=点阵+结构基元2. 空间点阵和晶胞晶胞= 点阵格子+ 结构基元10阵点数、阵点坐标2. 空间点阵和晶胞¾在晶胞不同位置的原子由不同数目的晶胞分享:顶角原子:1/8棱上原子:1/4面上原子:1/2晶胞内部:1阵点坐标的表示方法:¾以晶胞的任意顶点为坐标原点,以与原点相交的三个棱边为坐标轴,分别用点阵周期(a, b, c )为度量单位。
11晶向指数的确定1.建立坐标系,结点为原点,三棱为方向,点阵常数为单位;2.在晶向上任两点的坐标(x 1,y 1,z 1) (x 2,y 2,z 2)。
(若平移晶向或坐标,让在第一点在原点则下一步更简单);3.计算x 2-x 1:y 2-y 1:z 2-z 1;4.化成最小、整数比u :v :w ;3.晶向指数和晶面指数5.放在方括号[uvw]中,不加逗号,负号记在上方。
红线由两个结点的坐标之差确定点阵中由结点构成的直线称为晶向晶向指数的确定1002晶向指数的意义¾晶向指数表示着所有相互平行、方向一致的晶向;¾所指方向相反,则晶向指数的数字相同,但符号相反;¾晶体中因对称关系而等同的各组晶向可归并为一个晶向族,用<u v w>表示。
晶体学基础专题知识
2.3 极射赤平投影和乌尔夫网
直立小园旳投影为一段圆弧。其位置和大小取决 于小园旳位置和大小。
2.3 极射赤平投影和乌尔夫网 水平小园投影仍为一种园,并以基园旳圆心为圆心。
2.3 极射赤平投影和乌尔夫网 倾斜小园旳投影为一小圆。其位置决定于小园旳位置。
2.3 极射赤平投影和乌尔夫网 ②和投影面垂直旳大圆旳极射投影是过基圆圆心旳直线。
2.1 面角守恒定律
晶面角守恒定律告诉我们:将一种物质旳一种晶体旳m1面 与另一晶体旳相应面m1´平行放置,则这两个晶体其他旳相 应晶面m2与m2´,…………,mn与mn´也相互平行,即同一种
物质旳相应晶面间夹角不变。
2.1 面角守恒定律
成份和构造相同旳晶体,经常因生长环境条件变化旳 影响,而形成不同旳外形,或者偏离理想旳形态而形 成所谓旳“歪晶”。
2.3 极射赤平投影和乌尔夫网 将基园拿出来,根据倾斜大园和直立小园投影旳成果, 并标示出合适旳角度间隔,就是著名旳乌尔夫网(吴 氏网)。
乌尔夫网是极射投影旳量度工具。
2.3 极射赤平投影和乌尔夫网
基园旳刻度可用来度量方位角 ,旋转 一周为360; 直径上旳刻度能够用来度量极距角, 从圆心为=0,到圆周为=90;
在球面坐标网中,与纬度相当旳是极距角,与经 度相当旳是方位角。如图所示。
2.2 晶体旳球面投影及其坐标
① 极距角():投影轴与晶面法线或直线间旳夹角,也 就是北极N与球面上投影点之间旳弧度,故称极距角。 极距角都是从北极N点开始度量,从投影球N极到S极, 共分180°。
② 方位角():是包括晶面法线或直线要素旳子午面与 投影球零子午面之间旳夹角。也就是球面上投影点所在 旳子午线与零子午线之间旳水平弧度,故称方位角。方 位角都是从零度子午线(=0,一般在投影球最右侧) 开始顺时针方向计角旳,投影球一周旳方位角共分为 360°。 有了球面坐标网后来,只要懂得投影点旳球面坐标值, 即能够拟定投影点在球面上旳位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 六方晶系的一些晶向指数与晶面指数
4.晶带
相交于某一晶向直线或平行于此直线的晶面构成一个晶带, 此直线称为晶带轴 设晶带轴的指数为[uvw],则晶带中任何一个晶面的指数 (hkl)都必须满足:hu+kv+lw=0,满足此关系的晶面都属 于以[uvw]为晶带轴的晶带。→晶带定律 (a) 由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:
简单晶胞计算公式
正交晶系
dhkl
1 h k l a b c
2 2 2
立方晶系
d hkl
d hkl
a h k l
2 2 2
六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
的一组晶向,用<uvw>表示。数字相同,但排列顺序不
同或正负号不同的晶向属于同一晶向族。
eg: 立方晶系中
[111 ], [1 11], [1 1 1], [11 1][11 1], [1 11][1 1 1], [111 ] 八个晶向是立方体中
四个体对角线的方向,其原子排列完全相同,属同一晶向族,故用<111>表示。
六方晶系的晶向指数和晶面指
数同样可以应用上述方法标定,
这时取a1,a2,c为晶轴,而 a1轴与a2轴的夹角为120度,c 轴与a1,a2轴相垂直。但这种 方法标定的晶面指数和晶向指 数,不能显示六方晶系的对称 性,同类型 晶面和晶向,其指 数却不相雷同,往往看不出他 们的等同关系。
根据六方晶系的对称特点,对六 方晶系采用a1,a2,a3及c四个
§2.2.2 晶系和布拉菲点阵
1.七个晶系
2. 十四种布拉菲点阵 按照“每个阵点的周围环境相同”的要求,最先是布拉菲 (A. Bravais)用数学方法证明了只能有14种空间点阵。通 常人们所说的点阵就是指布拉菲点阵。
图 布拉菲点阵
思考题
体心单斜点阵是不是一个新的点阵?
体心单斜点阵晶胞为ABCD-EFHG。 可以连成底心单斜点阵,其晶胞为JABD-KEFG
晶面间距愈大,该晶面上的原子排列愈密集; 晶面间距愈小,该晶面上的原子排列愈稀疏。
晶面间距公式的推导
d hkl a b c cos cos cos h k l
d
2 hkl
h 2 k 2 l 2 2 2 2 cos cos cos a b c
极射投影原理(principle) 参考球,极点、极射面、大图、基图 Wulff网(wullf net)经线、 纬线、2º 等分
沿赤道线
沿基圆读数
只有两极点位于吴氏经线或赤道上才能正确度 量晶面、晶向间夹角 标准投影:以某个晶面//投影面作出极射投影图。 (001)
• 五、倒易点阵(Reciprocal lattice)
国际上通用米勒指数标定晶向和晶面。
William H. Miller 矿物学家 (1801-1880,英国)
1.晶向指数的标定
晶体中点阵方向的指数,由晶向上 阵点的坐标值决定。
(1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐 标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向 上;
(2)确定该晶向上距原点最近的一个阵点P的三个坐标值
思考题
常见的金属基本上都是晶 体,但为什么不显示各向同 性? 多晶中各个晶粒往往取向 不同,所以多个晶粒集合 在一起在任一方向上都显 示不出某一个晶向的特性 来。
§2.2 晶体学基础
§2.2.1 空间点阵和晶胞
1.基本概念 (1)阵点、空间点阵 阵点:为了便于研究晶体中原子(分子或离子)的排列情况, 将晶体看成是无错排的理想晶体,忽略其物质性,抽象为规 则排列于空间的无数几何点。这些点代表原子(分子或离子) 的中心,也可是彼此等同的原子群或分子群的中心,各点的 周围环境相同。 可能在每个结点处恰好有一个原子,也可能围绕每个结点 有一群原子(原子集团)。 空间点阵:阵点的空间排列称为空间点阵。
度、光学性质 )。
4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复 排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存 在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各 向同性,称“伪各向同性”)
5.晶体与非晶体的相互转化 玻璃经高温长时间加热后能形成晶态玻璃 通常呈晶体的物质如果将它从液态快速冷却下来也可能得 到非晶态 获得非晶态的金属和合金(采用特殊的制备方法 )
晶轴,a1,a2,a3之间的夹角均
为120度,这样,其晶面指数就 以(h k i l)四个指数来表示。 根据几何学可知,三维空间独 立的坐标轴最多不超过三个。
前三个指数中只有两个是独立
的,它们之间存在以下关系:i =- ( h + k ) 。因此,可以由前两
个指数求得第三个指数 。
六方晶系晶向指数的标定: 采用四轴坐标,六方晶系晶向指数的标定方法如下:当 晶向通过原点时,把晶向沿四个轴分解成四个分量,晶向 OP可表示为:OP=ua1+va2+ta3+wC,晶向指数用[uvtw]表
第二章 材料中的晶体结构
主要内容:
一、晶体学基础
二、典型晶体结构及其几何特征
§2.1 晶体与非晶体
1.晶体的定义 物质的质点(分子、原子或离子)在三维空间作有规律的周 期性重复排列所形成的物质叫晶体。
2. 非晶体
非晶体在整体上是无序的 ;近程有序 。
图 材料中原子的排列
3. 晶体的特征 (1)周期性(不论沿晶体的哪个方向看去,总是相隔一 定的距离就出现相同的原子或原子集团。这个距离称为周 期 )液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常 是不同的 :晶体的导电性、导热性、热膨胀性、弹性、强
• 布拉格方程: nλ = 2dsinθ • 寻求一种新的点阵(抽象),使其每一阵点对应着实际点阵中的 一定晶面,而且既能反映该晶面的取向,又能反映其晶面间距。 • 晶体点阵(正点阵)三个基矢a、b、c与其相应的倒易点阵的基 矢a*、b*、c*之间的关系如下:
u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。
(b) 由两晶向[u1v1w1][u2v2w2]求其决定的晶面(hkl)。 h=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。
5.晶面间距 一组平行晶面中,相邻两个平行晶面之间的距离。 由晶面指数求面间距dhkl 通常,低指数的面间距较大, 而高指数的晶面间距则较小
c.平行晶面:指数相同,或数字相同但正负号相反; d.晶面族:晶体中具有相同条件(原子排列和晶面间距
完全相同),空间位向不同的各组晶面,用{hkl}表示。
e.若晶面与晶向同面,则hu+kv+lw=0; f.若晶面与晶向垂直,则u=h, k=v, w=l。
{110} 晶面族
3.六方系晶面和晶向指数标定
d hkl= 1 2 1 4 h +hk+k l 2 ( )+( ) 2 3 a c
2 2
,如{0 如{0 00 0}面 0 1}面
通常低指数的晶面间距较大,而高指数的晶面间距则较小
三、晶体的对称性 crystalline symmetry symmetrization of crystals
图 几种晶体结构的点阵分析 (a) γ-Fe (b) NaCl (c) CaF2 (d) ZnS
§2.2.3 晶面指数和晶向指数
在材料科学中,讨论晶体的生长、变形和
固态相变等问题时,常要涉及到晶体的某些 方向(晶向)和某些平面(晶面)。
晶向:空间点阵中各阵点列的方向。
晶面:通过空间点阵中任意一组阵点的平 面。
对称性元素 (symmetry elements)
点群(point group)—晶体中所有点对称元素的集合 根据晶体外形对称性,共有32种点群 空间群(space group)—晶体中原子组合所有可能方式 根据宏观、微观对称元素在三维空间的组合,可能存在 230种空间群(分属于32种点群)
四、极射投影 Stereographic projection
(5)如有某一数为负值,则将负号标注在该数字的上方,
将h,k,l置于圆括号内,写成(hkl),则(hkl)就是待标晶面 的晶面指数。
图 晶面指数的标定
图 晶面指数的标定
晶面指数的说明: 晶面指数所代表的不仅是某一晶面,而是代表着一组相 互平行的晶面 a.指数意义:代表一组平行的晶面;
b.0的意义:面与对应的轴平行;
。
晶体结构和空间点阵的区别
空间点阵是晶体中质 点排列的几何学抽象, 用以描述和分析晶体 晶体结构则是晶体中 实际质点(原子、离 子或分子)的具体排
结构的周期性和对称
性,由于各阵点的周 围环境相同,它只能 有14中类型
列情况,它们能组成
各种类型的排列,因 此,实际存在的晶体 结构是无限的。
图 结构相似的不同点阵
图 晶胞的选取
3. 描述晶胞的六参数 晶胞的尺寸和形状可用点阵参数来描述,它包括晶胞的各 边长度和各边之间的夹角。
图 晶胞、晶轴和点阵参数
§2.2.2 晶系和布拉菲点阵
1.晶系
奥古斯特· 布拉菲(Auguste Bravais,又译布拉伐、布喇菲,1811年 -1863年),法国物理学家,于1845年得出了三维晶体原子排列的所 有14种布拉菲点阵结构,首次将群的概念应用到物理学,为固体物理 学做出了奠基性的贡献。除此之外,布拉菲还对磁性、极光、气象、 植物地理学、天文学和水文学等方面进行过研究。
2.晶面指数的标定
晶体中点阵平面的指数,由晶面与三个坐 标的截距值所决定。