煤矿安全外文翻译文献

合集下载

矿山安全管理英文作文

矿山安全管理英文作文

矿山安全管理英文作文Mining safety management is crucial for the well-being of all workers. It involves the implementation of safety protocols, regular inspections, and the provision of proper safety equipment.Safety protocols should be strictly adhered to at all times, including the use of personal protective equipment such as helmets, gloves, and safety goggles. These measures are essential for preventing accidents and injuries in the workplace.Regular inspections of mining equipment and machinery are necessary to identify any potential hazards or malfunctions. This helps to ensure that all equipment is in good working condition and reduces the risk of accidents caused by faulty machinery.The provision of proper safety equipment, such as fire extinguishers, first aid kits, and emergency exits, isessential for the quick and effective response to any accidents or emergencies that may occur in the mining environment.Training and education on safety procedures and protocols should be provided to all workers to ensure that they are aware of the potential hazards and know how to respond in case of an emergency.Effective communication among workers and management is crucial for maintaining a safe working environment. This includes the reporting of any safety concerns or hazards, as well as the dissemination of important safety information to all workers.Regular safety meetings and discussions should be held to address any safety issues and to keep all workers informed about the latest safety protocols and procedures.In conclusion, mining safety management is a complex and essential aspect of the mining industry. By implementing safety protocols, conducting regularinspections, providing proper safety equipment, and ensuring that workers are well-trained and informed, the risks of accidents and injuries in the mining environment can be significantly reduced.。

关于采煤煤炭方面的外文翻译、中英文翻译、外文文献翻译

关于采煤煤炭方面的外文翻译、中英文翻译、外文文献翻译

关于采煤煤炭方面的外文翻译、中英文翻译、外文文献翻译附录AProfile : Coal is China's main energy in the country's total primary energy accounted for 76% and above. Most coal strata formed and restore the environment, coal mining in the oxidizing environment, Flow iron ore mine with water and exposed to the air, after a series of oxidation and hydrolysis, so that water acidic. formation of acidic mine water. On groundwater and other environmental facilities, and so on have a certain impact on the environment and destruction. In this paper, the acidic mine water hazards, and the formation of acid mine water in the prevention and treatment of simple exposition. Keywords : mining activities acidic mine water prevention and correction of the environmental impact of coal a foreword is China's main energy, China accounted for one-time energy above 76%, will conduct extensive mining. Mining process undermined the seam office environment, the reduction of its original environment into oxidizing environment. Coal generally contain about 0.3% ~ 5% of sulfur, mainly in the form of pyrite, sulfur coal accounts for about 2 / 3. Coal mining in the oxidizing environment, flow and iron ore mine water and exposed to the air, after a series of oxidation, hydrolysis reaction to produce sulfuric acid and iron hydroxide, acidic water showed that the production of acid mine water. PH value lower than the six said acidic mine water mine water. Acid mine water in parts of the country in the South in particular coal mine were more widely. South China coal mine water in general pH 2.5 ~ 5.8, sometimes 2.0. Low pH causes and coal of high sulfur closely related. Acid mine water to the formation of ground water have caused serious pollution, whilealso corrosion pipes, pumps, Underground rail, and other equipment and the concrete wall, but also serious pollution of surface water and soil, river shrimp pictures, soil compaction, crops wither and affect human health. An acidic mine water hazards mine water pH is below 6 is acidic, metal equipment for a certain corrosive; pH is less than 4 has strong corrosive influence on the safety in production and the ecological environment in mining areas serious harm. Specifically, there are the following : a "corrosive underground rail, rope and other coal transport equipment. If rail, rope by the pH value "4 acidic mine water erosion, 10 days to Jishitian its intensity will be greatly reduced, Transport can cause accidents; 2 "prospecting low pH goaf water, Quality Control iron pipes and the gate under the flow erosion corrosion soon.3 "acidic mine water SO42-content high, and cement production of certain components interact water sulfate crystallization. These salts are generated when the expansion. After determination of when SO42-generation CaSO4 ? 2H2O, the volume increased by 100%; Formation MgSO4.7H2O, v olume increased 430%; Volume increases, the structure of concrete structures.4 "acidic mine water or environmental pollution. Acid mine water is discharged into rivers, the quality of pH less than 4:00, would fish died; Acidic mine water into the soil, damage granular soil structure, soil compaction, arid crop yields fall, affecting workers and peasants; Acid mine water humans can not drink that long-term exposure, people will limbs broken, eyes suffering, enter the body through the food chain. affect human health. 2 acidic mine water and the reasons are mostly coal strata formed in the reduction environment, containing pyrite (FeS2) formed inthe seam-reduction environment. Coal generally contain about 0.3% ~ 5% of sulfur, mainly in the form of pyrite, sulfur coal accounts for about 2 / 3. Coal mining in the oxidizing environment, flow and iron ore mine water and exposed to the air, after a series of oxidation, hydrolysis reaction to produce sulfuric acid and iron hydroxide, acidic water showed that the production of acid mine water. Acidic mine water that is the main reason for forming the main chemical reaction as follows : a "pyrite oxidation and free sulfate ferrous sulfate : 2FeS2 O2 +7 +2 +2 H2O 2H2SO4 FeSO4 2 "ferrous sulfate in the role of oxygen free Under into sulfate : 4FeSO4 +2 Cp'2Fe2 H2SO4 + O2 (SO4) 3 +2 H2O 3 "in the mine water The oxidation of ferrous sulfate, sometimes not necessarily need to sulfate : 12FeS2 O2 +6 +3 H2O 4Fe2 (SO4) 3 +4 Fe (OH) 3 4 "mine water Sulfate is further dissolved sulfide minerals in various roles : Fe2 (SO4) 3 + MS + H2O + / 2 + O2 M SO4 H2SO FeSO4 +5 " ferric sulfate in the water occurred weak acid hydrolysis sulfate produced free : Fe2 (SO4) 3 +6 H2O two Fe (OH) 3 +3 H2SO4 6 "deep in the mine containing H2S high, the reduction of conditions, the ferrous sulfate-rich mine water can produce sulfuric acid free : 2FeSO4 +5 FeS2 H2S 2 +3 +4 S + H2O H2SO4 acidic mine water in addition to the nature and sulfur coal on the other, with the mine water discharge, confined state, ventilation conditions, seam inclination, mining depth and size, water flow channels and other geological conditions and mining methods. Mine Inflow stability, stability of acidic water; Confined poor, good air circulation, the more acidic the water, Fe3 + ion content more; Instead, the acid is weak, the more Fe2 + ion; more deep mining of coal with a sulfur content higher; The larger the area of mining, water flowsthrough the channel longer, oxidation, hydrolysis reactions from the more full, the water more acidic strong, If not weak. 3 acidic mine water prevention and control ? a three acidic mine water under the Prevention of acidic mine water formation conditions and causes from source reduction, reductions, reduced when three aspects to prevent or mitigate damage. 1 "by the source : the seizure election made use of mineral acid, being the case. The main coal-bed mineral create acid when in a mixture of coal pyrite nodules and coal with a sulfur content itself. Coal mining rate is low and residual coal pillars or floating coal lost, abandoned pyrite nodules underground goaf, in which long-term water immersion, Acidic water produced is a major source. Face to reduce the loss of float coal, theuse of positive seized election pyrite nodules, can reduce the production of acidic water substances. Intercept surface water, reduce infiltration. For example, the filling of waste, control of roof to prevent collapse fissures along the surface water immersion goaf. In Underground, particularly old or abandoned wells closed shaft, the mine water discharge appropriate antibacterial agent, kill or inhibit microbial activity, or reduce the microbial mine water quantity. By reducing microbial sulfide on the effective role and to control the generation of acid mine drainage purposes. 2 "reduced discharge : the establishment of specialized drainage system, centralized emission acidic water, and storing up on the surface, it evaporated, condensed, then to be addressed to remove pollution. 3 "to reduce emissions of acid water in time : to reduce the underground mine water in the length of stay, in a certain extent, to reduce the microbial coal oxidation of sulphides, thus helping to reduce acid mine water. Containing pyrite, sulfur, surface water leakage conditions for agood shallow seam, or have formed strong acidic water stagnant water in the old cellar, the pioneering layout to weigh the pros and arrangements, not early in the mine prospecting or mining, leaving the end of mine water treatment avoid long-term emissions acidic water. ? 2 3 acidic mine water treatment in certain geological conditions, Acidic water with calcium sulfate rock or other basic mineral occurrence and the reaction decreases acidity. Neutralizer with caustic soda used for less, less sludge is generated, but the total water hardness is often high, while reducing the acidity of the water. However, an increase in the hardness, and the high cost is no longer. Currently, treatment for a neutralizer to the milk of lime, limestone for the neutralizer and limestone -- lime, microbiological method and wetlands treatment. Neutralizer milk of lime treatment method applicable to the handling of a strong acid, Inflow smaller mine water; Limestone -- lime applied to various acidic mine water. especially when acidic mine water Fe2 + ions more applicable, but also can reduce the amount of lime; microbiological method applied when the basic tenets of iron oxide bacterial oxidation than iron, bacteria from the aquatic environment intake of iron, then to form ferric hydroxide precipitation-iron in their mucus secretions, Acidic water at the low iron into high-iron precipitates out and then reuse limestone and free sulfuric acid, can reduce investment, reduce sediment. Wetlands Act also known as shallow marshes, this method is low cost and easy operation, high efficiency, specific methods not go into details here. Conclusions Most coal strata formed and restore the environment, coal mining in the oxidizing environment, Flow iron ore mine with water and exposed to the air, after a series of oxidation and hydrolysis, so that water acidic. formation of acidicmine water. On groundwater and other environmental facilities, and so on have a certain impact on the environment and destruction, Meanwhile harmful to human health caused some influence. Based on the acidic mine water cause analysis, and to take certain preventive and treatment measures, reduce acid mine water pollution in the groundwater, environmental and other facilities and the damage caused to human health effects. References : [1] Wang Chun compiled, "hydrogeology basis," Geological Press, Beijing. [2] Yuan Ming-shun, the environment and groundwater hydraulics research papers on the topic, the Yangtze River Academy of Sciences reported that 1994,3.[3], Lin Feng, Li Changhui, Tian Chunsheng, "environmental hydrogeology," Beijing, geological Press, 1990,21.附录B简介:煤炭是我国的主要能源,在我国一次性能源中占76%以上。

MineSafety煤矿安全大学毕业论文英文文献翻译及原文

MineSafety煤矿安全大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:煤矿安全文献、资料英文题目:Mine safety文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14附录:外文资料与中文翻译外文资料:Mine safetyCoal mining historically has been a hazardous occupation but, in recent years, tremendous progress has been made in reducing accidental coal mine deaths and injuries.the main aspect is as following:⑴ Safety of mine ventilation•Purposes of Mine Ventilation•Properly engineered control of the mine atmosphere is required to: •provide fresh air (oxygen) for men to breathe•provide a source of oxygen for internal combustion engines in machinery •dilute atmospheric contaminants to acceptable levels•maintain temperature and humidity within acceptable limits•remove atmospheric contaminants from the mine.Mine ventilation is twofold in purpose: first, it maintains life, and secondly it carries off dangerous gases. The historic role of ventilation was to provide a flow of fresh air sufficient to replace the oxygen consumed by the miners working underground. Today's mine ventilation primarily deals with noxious gases (mainly generated by trackless equipment underground).Canaries are said to have been used to detect gas in coal mines in the earlystages of coal mining. This sensitive bird would be taken into the workings and, if it perished, the colliers would immediately leave the mine.In the 1920s the hand-turned fans were replaced with air-powered small turbine fans. Large fans of the suction type were placed on the surface and gradually increased in size. Air from surface compressors was piped into the mine to power machinery and to assist in ventilation.Unless the air is properly distributed to the face, the mine ventilation system is not performing its primary function [1]. While it has always been recognized that this last part of ventilation is the most import, it is also the most difficult to achieve.The primary means of producing and controlling the airflow are also illustrated on Figure 1. Main fans, either singly or in combination, handle all of the air that passesthrough the entire system.These are usually, but notnecessarily, located onsurface, either exhaustingair through the system asshown on Figure 1 or,alternatively, connected todowncast shafts or mainintakes and forcing air into and through the system. Because of the additional hazards of gases and dust that may both be explosive, legislation governing the ventilation of coal mines is stricter than for most other underground facilities. In many countries, the main ventilation fans for coal minesare Figure 1. Typical elements of a main ventilation systemrequired, by law, to be placed on surface and may also be subject to other restrictions such as being located out of line with the connected shaft or drift and equipped with "blow-out" panels to help protect the fan in case of a mine explosion.Stoppings and Seals:In developing a mine, connections are necessarily made between intakes and returns. When these are no longer required for access or ventilation, they should be blocked by stoppings in order to prevent short-circuiting of the airflow. Stoppings can be constructed from masonry, concrete blocks or fireproofed timber blocks. Prefabricated steel stoppings may also be employed. Stoppings should be well keyed into the roof, floor and sides, particularly if the strata are weak or in coal mines liable to spontaneous combustion. Leakage can be reduced by coating the high pressure face of the stopping with a sealant material and particular attention paid to the perimeter. Here again, in weak or chemically active strata, such coatings may be extended to the rock surfaces for a few metres back from the stopping. In cases where the airways are liable to convergence, precautions should be taken to protect stoppings against premature failure or cracking. These measures can vary from "crush pads" located at the top of the stopping to sliding or deformable panels on prefabricated stoppings. In all cases, components of stoppings should be fireproof and should not produce toxic fumes when heated.As a short term measure, fire-resistant brattice curtains may be tacked to roof, sides and floor to provide temporary stoppings where pressure differentials are low such as in locations close to the working areas.Where abandoned areas of a mine are to be isolated from the currentventilation infrastructure, seals should be constructed at the entrances of the connecting airways. If required to be explosion-proof, these consist of two or more stoppings, 5 to 10 metres apart, with the intervening space occupied by sand, stone dust, compacted non-flammable rock waste, cement-based fill or other manufactured material. Steel girders, laced between roof and floor add structural strength. Grouting the surrounding strata adds to the integrity of the seal in weak ground. In coal mines, mining law or prudent regard for safety may require seals to be explosion-proof.Doors and airlocks:Where access must remain available between an intake and a return airway, a stopping may be fitted with a ventilation door. In its simplest form, this is merely a wooden or steel door hinged such that it opens towards the higher air pressure. This self-closing feature is supplemented by angling the hinges so that the door lifts slightly when opened and closes under its own weight. It is also advisable to fit doors with latches to prevent their opening in cases of emergency when the direction of pressure differentials may be reversed. Contoured flexible strips attached along the bottom of the door assist in reducing leakage, particularly when the airway is fitted with rail track.Ventilation doors located between main intakes and returns are usually built as a set of two or more to form an airlock. This prevents short-circuiting when one door is opened for passage of vehicles or personnel. The distance between doors should be capable of accommodating the longest train of vehicles required to pass through the airlock. For higher pressure differentials, multiple doors also allow the pressure break to be shared between doors. Mechanized doors, opened by pneumatic or electrical means are particularlyconvenient for the passage of vehicular traffic or where the size of the door or air pressure would make manual operation difficult. Mechanically operated doors may, again, be side-hinged or take the form of rollup or concertina devices. They may be activated manually by a pull-rope or automatic sensing of an approaching vehicle or person. Large doors may be fitted with smaller hinged openings for access by personnel. Man-doors exposed to the higher pressure differentials may be difficult to open manually. In such cases, a sliding panel may be fitted in order to reduce that pressure differential temporarily while the door is opened. Interlock devices can also be employed on an airlock to prevent all doors from being opened simultaneously.Cfd applied to ventilation sys tems:Due to recent advances in computer processing power CFD has been used to solve a wide range of large and complex flow problems across many branches of engineering (Moloney et. al. 1997/98/99). The increase in processor speed has also enabled the development of improved post processing and graphical techniques with which to visualize the results produced by these models. Recent research work has employed CFD models, validated by scale and full-scale experiments, to represent the ventilation flows and pollutant dispersion patterns within underground mine networks. In particular, studies by Moloney (1997) demonstrated that validated CFD models were able to successfully replicate the ventilation flows and gaseous pollutant dispersion patterns observed within auxiliary ventilated rapid development drivages. CFD has proven a capable method by which to identify detailed characteristics of the flow within critical areas such as the cutting face. The results produced by the CFD models were able to demonstrate the relativeefficiency of the different auxiliary ventilation configurations in the dilution, dispersion and transport of the methane and dust from the development face. Further recent studies by Moloney et. al. (1999) have demonstrated that such validated CFD models may be used to simulate the airflow and pollutant dispersion data for a wide range of mining and ventilation configurations. Each simulation exercise produces large sets of velocity, pressure and pollutant concentration data.⑵ Fires Methods of ControlFires that occur in mine airways usually commence from a single point of ignition. The initial fire is often quite small and, indeed, most fires are extinguished rapidly by prompt local action. Speed is of the essence. An energetic ignition that remains undetected, even for only a few minutes, can develop into a conflagration that becomes difficult or impossible to deal with. Sealing off the district or mine may then become inevitable.The majority of fires can be extinguished quickly if prompt action is taken. This underlines the importance of fire detection systems, training, a well-designed firefighting system and the ready availability of fully operational firefighting equipment. Fire extinguishers of an appropriate type should be available on vehicles and on the upstream side of all zones of increased fire hazard. These include storage areas and fixed locations of equipment such as electrical or compressor stations and conveyor gearheads. Neither water nor foam should be used where electricity is involved until it is certain that the power has been switched off. Fire extinguishers that employ carbon dioxide or dry powders are suitable for electrical fires or those involving flammable liquids.Deluge and sprinkler systems can be very effective in areas of fixed equipment, stores and over conveyors. These should be activated by thermal sensors rather than smoke or gas detectors in order to ensure that they are operated only when open combustion occurs in the near vicinity.Except where electricity or flammable liquids are involved, water is the most common medium of firefighting. When applied to a burning surface, water helps to remove two sides of the fire triangle. The latent heat of the water as it vapourises and the subsequent thermal capacity of the water vapour assist in removing heat from the burning material. Furthermore, the displacement of air by water vapour and the liquid coating on cooler surfaces help to isolate oxygen from the fire.⑶ Methods of Dust ControlThe three major control methods used to reduce airborne dust in tunnels and underground mines: ventilation, water, and dust collectors.Ventilation air reduces dust through both dilution and displacement. The dilution mechanism operates when workers are surrounded by a dust cloud and additional air serves to reduce the dust concentration by diluting the cloud. The displacement mechanism operates when workers are upwind of dust sources and the air velocity is high enough to reliably keep the dust downwind.① Dilution Ventilation. The basic principle behind dilution ventilation is to provide more air and dilute the dust. Most of the time the dust is reduced roughly in proportion to the increase in airflow, but not always. The cost of and technical barriers to increased airflow can be substantial, particularly where air already moves through ventilation ductwork or shafts at velocitiesof 3,000 ft/min or more.②Displacement Ventilation. The basic principle behind displacement ventilation is to use the airflow in a way that confines the dust source and keeps it away from workers by putting dust downwind of the workers. Every tunnel or mine passage with an airflow direction that puts dust downwind of workers uses displacement ventilation. In mines, continuous miner faces or tunnel boring machines on exhaust ventilation use displacement ventilation. Enclosure of a dust source, such as a conveyor belt transfer point, along with extraction of dusty air from the enclosure, is another example of displacement ventilation. Displacement ventilation can be hard to implement. However, if done well, it is the most effective dust control technique available, and it is worth considerable effort to get it right. The difficulty is that when workers are near a dust source, say, 10 to 20 ft from the source, keeping them upwind requires a substantial air velocity, typically between 60 and 150 ft/min. There is not always enough air available to achieve these velocities.③ Water sprays. The role of water sprays in mining is a dual one: wetting of the broken material being transported and,airborne capture. Of the two, wetting of the broken material is far more effective.Adequate wetting is extremely important for dust control. The vast majority of dust particles created during breakage are not released into the air, but stay attached to the surface of the broken material. Wetting this broken material ensures that the dust particles stay attached. As a result, adding more water can usually (but not always) be counted on to reduce dust. For example, coal mine operators have been able to reduce the dust from higher longwallproduction levels by raising the shearer water flow rate to an average of 100gpm. Compared to the amount of coal mined, on a weight basis, this 100gpm is equivalent to 1.9% added moisture from the shearer alone. Unfortunately, excessive moisture levels can also result in a host of materials handling problems, operational headaches, and product quality issues, so an upper limit on water use is sometimes reached rather quickly. As a result, an alternative to simply adding more water is to ensure that the broken material is being wetted uniformly.⑷ Mine DrainageWater invades almost every mine in the form of :direct precipitation (rain and snow), surface runoff, underground percolation. Flows of water have an important effect on the cost and progress of many mining operations and present life and property hazards in some cases.Means of Mine-water Control(Mine Drainage):As shafts and other mine openings extend below the water table, water is likely to be encountered and to seep into the openings to an extent depending upon the area of rock surface exposed, the hydrostatic pressure, and other factors. In order to continue mining operations, it is therefore necessary to lower the ground water level in the vicinity of the mine by artificial means to keep the workings free of water as well as preventing the flow of surface water into the (surface or underground) mine. This operation is known as mine drainage.Means of mine drainage are limited by circumstances and objectives. The following types of mine-water control can be used singly or more effectively in combination:① Locate shafts or excavations in best ground and protect from direct water inflow from surfaces.② Divert or drain water at or near surface.③Reduce permeability of rock mass by grouting with special types of cement, bentonite and liquid chemical grouts (water sealing).④ Case or cement exploration drill holes.⑤Drill pilot holes in advance of work wherever there may be sudden influents at rates potentially inconvenient.⑥Dewater bedrock at depth by pumping through dewatering wells or from an accessible place in the mine.。

煤矿井下瓦斯涌出控制外文文献翻译、中英文翻译

煤矿井下瓦斯涌出控制外文文献翻译、中英文翻译

Control of gas emissions in underground coal minesKlaus Noack*DMT-Gesellschaft für Forschung und Prüfung mbH, Institut für Bewetterung, Klimatisierung und Staubbekämpfung, Franz-Fischer-Weg 61, Essen, Germany Received 2 August 1996; accepted 24 February 1997. Available online 24 November 1998.AbstractA high level of knowledge is now available in the extremely relevant field of underground gas emissions from coal mines. However, there are still tasks seeking improved solutions, such as prediction of gas emissions, choice of the most suitable panel design, extension of predrainage systems, further optimization of postdrainage systems, options for the control of gas emissions during retreat mining operations, and prevention of gas outbursts. Research results on these most important topics are presented and critically evaluated. Methods to predict gas emissions for disturbed and undisturbed longwall faces are presented. Prediction of the worked seam gas emission and the gas emission from headings are also mentioned but not examined in detail. The ventilation requirements are derived from the prediction results and in combination with gas drainage the best distribution of available air currents is planned. The drainage of the gas from the worked coal seam, also referred to as predrainage, can be performed without application of suction only by over or underworking the seam. But in cases where this simple method is not applicable or not effective enough, inseam-boreholes are needed to which suction is applied for a relatively long time. The reason for this is the low permeability of deep coal seams in Europe. The main influences on the efficiency of the different degasing methods are explained. Conventional gas drainage employing cross measure boreholes is still capable of improvement, in terms of drilling and equipment as well as the geometrical borehole parameters and the operation of the overall system. Improved control of gas emissionsat the return end of retreating faces can be achieved by installation of gas drainage systems based on drainage roadways or with long and large diameter boreholes. The back-return method can be operated safely only with great difficulty, if at all. Another method is lean-gas drainage from the goaf. The gas outburst situation in Germany is characterized by events predominantly in the form of ‘non-classical' outbursts categorized as ‘sudden liberation of significant quantities of gas'. Recent research results in this field led to a classification of these phenomena into five categories, for which suitable early detection and prevention measures are mentioned.Author Keywords: gas emission; prediction; pre-degassing; gas drainage; gas outbursts1. IntroductionCoal deposits contain mine gas (mostly methane) in quantities which are functions of the degree of coalification and permeability of the overburden rocks. This is the reason why the gas content of coal seams (and rock layers) varies from 0 m3/t in the flame coal and gas-flame coal of the northwestern Ruhr Basin to >25 m3/t in the anthracite of Ibbenbüren in Germany.When influenced by mining activities this gas is emitted into the coal mine. For better understanding of this process a distinction has been established between basic and additional gas emissions. Basic gas emission is the gas influx from the worked coal seam, which is the equivalent of a partial influx in a multi-seam deposit and of the total gas influx in a single-seam deposit. Additional gas emission represents gas influx coming from neighbouring coal seams (in the case of a multi-seam deposit) and from associated rock layers. The additional gas emission may be in excess of ten times the basic gas emission. So it is mostly the additional gas emission which determines the measures to control the gas emission.In Germany the gas emission is considered to be under control if the gas concentration of the mine air can be kept permanently at all relevant places under 1% CH4. This value is at an adequate distance to the lower explosion limit of methane-air mixtures, which under normal conditions is 4.4% CH4. In exceptional cases, thepermissible limit value can be raised to 1.5% CH4. For historical reasons, different permissible limits sometimes apply in other countries, for example 1.25% CH4 in the United Kingdom and up to 2% CH4 in France.Basically, the options for control of gas emission are as follows:(1) Total avoidance of gas release from the deposit. This is only possible with regard to the additional gas emission and only for mining procedures which do not affect stability; hence permeability of the overlying and underlying strata (e.g., room-and-pillar mining where the pillars are left standing during the development phase).(2) Removal of the gas from the deposit before working. For this purpose, all procedures for pre-degassing, either by vertical or by deflected cross measure boreholes drilled from the surface, or by inseam-holes drilled below ground, are technically suitable provided the natural or induced gas permeability permitspre-degassing.(3) Capture and drainage of the gas during mining operations before it mixes with the air flow. This is a classic procedure developed for capturing the additional gas using drainage boreholes, drainage roadways or drainage chambers.(4) Homogenize and evacuate the gas influx after diluting it with sufficient amount of air. This involves panel design, air supply, air distribution, and the prevention of gas outbursts.The following discussions concentrate on problems which are currently given priority in the European Union (EU) funded research. They also cover a significant portion of the gas emission problems worldwide. Problems from non-EU states (e.g., Australia, the Community of Independent States (CIS), South Africa and the United Stated of America (USA)) are also taken into consideration, as far as the author's knowledge permits it. This subject matter is presented in a condensed form under the following headings: prediction of gas emissions; measures taken to control gas emissions; pre-degassing of coal seams; optimization of conventional gas drainage; control of gas emissions for retreating faces; and prevention of gas outbursts.2. Prediction of gas emissionsPrediction of firedamp emission has been practized for many years in the German hardcoal industry (Winter, 1958; Schulz, 1959; Noack, 1970 and Noack, 1971; Flügge, 1971; Koppe, 1975) so that several prediction methods are now available. Among these, the following methods are mentioned:(1) the calculation of the amount of gas emission (Koppe, 1976; Noack, 1985), as used to deal with emission from both the worked coal seam and adjacent seams, which are disturbed by earlier mining activities;(2) the calculation of the reduction of gas pressure (Noack and Janas, 1984; Janas, 1985a and Janas, 1985b), as used in undisturbed parts of the deposit; and(3) prediction methods for the worked coal seam gas emission from longwall faces, for the gas emission from headings and for the gas emission from coal seams cut through during drifting.The first two methods provide a prediction of the specific gas emission from a mine working, expressed in cubic metres of gas per ton of saleable coal production. The gas influx to the mine working in cubic metres of gas per unit time, which is a relevant factor for mine planning, can be derived from multiplying the predicted result by the scheduled production volume.Both methods determine the mean gas emission from a coal face area for a nearly constant face advance rate during a sufficiently long period of time (several months). The prediction assumes that the zone from which the gas is emitted is fully developed, in other words the coal face starting phase has been passed. Furthermore, the coal face has to be above a critical length (i.e., longer than 180–190 m at 600 m working depth and longer than 220–240 m at 1000 m depth).The influx of gas to a coal face area (both into the mine air current and into the gas drainage system) is defined by the following factors: (1) the geometry and size of the zone from which gas is emitted, both in the roof and the floor of the face area, including the number and thickness of gas-bearing strata in that zone; (2) the gas content of the strata; (3) the degree of gas emission, as a function of time- andspace-related influences; and (4) the intensity of mining activities. The geometry and size of the zone from which additional gas is emitted are simplified forming a parallelepiped above and below the worked area; its extension normal to the stratification depends on the prediction method.The number and location, type, and thickness of the strata in the zone from which additional gas is emitted can be derived from existing boreholes, staple-shafts, and roadways inclined to the stratification. The gas content of the strata (Paul, 1971; Janas, 1976; Janas and Opahle, 1986) is difficult to determine. There are two alternatives for direct gas content determination available for coal seams (VerlagGlückauf GmbH, 1987). One alternative uses samples of drillings frominseam-boreholes (for developed seams) and the other alternative uses core samples from boreholes inclined to the stratification (for undeveloped seams). Since a suitable method of determining the gas content of rock is not yet available, a double prediction is made with the first prediction neglecting the rock altogether and the second prediction using the assumption of an estimated gas content of the rock strata.The methods for predicting the proportion of gas content emitted are basically divergent. On the one hand the prediction, which is based on the degree of gas emission, assumes that the emitted gas proportion is not a function of the initial gas content but rather of the geometric location of the relevant strata towards the coal face area. The other method, which relies on gas pressure, commences with a fixed residual gas pressure, hence residual gas content. Its value depends on the geometric location of the strata. This means that the emitted proportion of the gas content, representing the balance against the initial gas content, depends on the latter.2.1. Prediction for previously disturbed conditionsThe method to predict the total gas make from longwalling in a previously disturbed zone in shallow to moderately inclined deposits (dip between 0 and 40 gon) is based on the degree of gas emission (Fig. 1). It uses the degree of gas emission curve designated as PFG for the roof (considering an attenuation factor of 0.016) and the curve designated as FGK for the floor.Fig. 1. PFG/FGK method.For practical reasons the upper boundary of the zone from which gas is emitted is assumed to be at h=+165 m, whereas, the lower boundary is at h=−59 m. In the absence of empirical data a mean degree of gas emission of 75% in the worked coal seam is assumed. Above the seam, from the h=+0 m level to the h=+20 m level, and below the seam from the h=−0 m level to the h=−11 m level, the degree of gas emission is assumed to be 100%.For the purpose of prediction, the surrounding rock strata are considered as fictitious coal seams for which reduced gas contents are assumed. The reduction factors are 0.019 (for mudstone), 0.058 (for sandy shale) or 0.096 (for sandstone).2.2. Prediction for previously undisturbed conditionsThe method to predict the total gas make from longwalling in a previously undisturbed zone is based on the residual gas pressure profiles shown in Fig. 2. There are three zones visible in the roof and two in the floor, which are characterized by varying residual gas pressure gradients. The upper and lower boundaries of the zone from which gas is emitted (hlim and llim, respectively) are defined by the intersection of the residual gas pressure lines and the level of initial gas pressure pu, thus aredependent on the latter.Fig. 2. Gas pressure method: residual gas pressure lines dependent on thicknessof the worked coal seam.The breaking points of the residual gas pressure profile for 1 m of worked coal seam thickness (continuous line) are defined by the coordinates in Table 1, whereas the lines are characterized by the residual gas pressure gradients also in Table 1.Table 1. Parameters for the gas pressure methodFull-size table (<1K)View Within ArticleThe dotted line on Fig. 2 applies to 1.5 m of worked coal seam thickness and shows that the h1 and h2 ordinate levels relating to the roof increase in linear proportion to the thickness of the worked coal seam, with gradients declining correspondingly. There is no dependence on coal seam thickness in the floor, where the value of l1 remains constant at −33 m.Based on the illustrated residual gas pressure profile, the residual gas pressures are first determined layer by layer in accordance with the mean normal distance of a layer from the worked coal seam and afterwards they are converted to residual gas contents using Langmuir's sorption isotherm. The difference between the initial and residual gas contents finally represents the emitted proportion of the adsorbed gas which is the required value. To this value will then be added the free gas, the proportion of which is found by multiplying the effective porosity of the strata under review by its thickness and gas pressure difference. Empirical values have to be used for the effective porosity of coal and rock for methane. Typical values for the coal are between 1 and 10%, and for the rock they are between 0.3 and 1.3%. The values vary in a wide range and depend on chronostratigraphy. In the absence of empirical values for the proportion of gas emission from the worked coal seam a value of 40% would be assumed.2.3. Comparison of the two methodsThe gas pressure method may claim the following advantages over the prediction based on the degree of gas emission: There are no rigid delimitations of the upper and lower zones from which gas is emitted. They rather depend on the value of the initial gas pressure and on the type of strata. In the roof the effect of the thickness of the worked coal seam is considered in the profile of residual gas pressure. The prediction takes into account not only the adsorbed gas but also the free gas; this is for both, the coal seams and the surrounding strata. The total gas content rather than the desorbable proportion is used for the prediction.2.4. Other methodsThe prediction methods for the worked coal seam gas emission in longwalls and for inseam-headings as well as for coal seam cut through operations during drifting with tunneling machines cannot be explained in detail. For further information refer to the following papers: Noack, 1977; Janas and Stamer, 1987; Noack and Janas, 1988; Noack and Opahle, 1992.It should be mentioned that DMT is testing the prediction of gas emission in machine-driven headings on the base of the INERIS method. Fig. 3 shows an excellent conformity between calculated and measured values (Tauziède et al., 1992).Fig. 3. Comparison between calculated and measured values of gasemission.煤矿井下瓦斯涌出控制摘要:一种先进的方法已在与煤矿井下瓦斯涌出极其相关的领域获得。

矿业 矿井 外文翻译 外文文献 英文文献 基于PCA技术核心的打包和变换的矿井提升机失误的发现

矿业 矿井 外文翻译 外文文献 英文文献 基于PCA技术核心的打包和变换的矿井提升机失误的发现

外文翻译部分:英文原文Mine-hoist fault-condition detection based onthe wavelet packet transform and kernel PCAAbstract: A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Principal Component Analysis, KPCA). For non-linear monitoring systems the key to fault detection is the extracting of main features. The wavelet packet transform is a novel technique of signal processing that possesses excellent characteristics of time-frequency localization. It is suitable for analysing time-varying or transient signals. KPCA maps the original input features into a higher dimension feature space through a non-linear mapping. The principal components are then found in the higher dimension feature space. The KPCA transformation was applied to extracting the main nonlinear features from experimental fault feature data after wavelet packet transformation. The results show that the proposed method affords credible fault detection and identification.Key words: kernel method; PCA; KPCA; fault condition detection1 IntroductionBecause a mine hoist is a very complicated andvariable system, the hoist will inevitably generate some faults during long-terms of running and heavy loading. This can lead to equipment being damaged,to work stoppage, to reduced operating efficiency andmay even pose a threat to the security of mine personnel. Therefore, the identification of running fault shas become an important component of the safety system. The key technique for hoist condition monitoring and fault identification is extracting information from features of the monitoring signals and then offering a judgmental result. However, there are many variables to monitor in a mine hoist and, also , there are many complex correlations between thevariables and the working equipment. This introduce suncertain factors and information as manifested by complex forms such as multiple faults or associated faults, which introduce considerable difficulty to fault diagnosis and identification[1]. There are currently many conventional methods for extracting mine hoist fault features, such as Principal Component Analysis(PCA) and Partial Least Squares (PLS)[2]. These methods have been applied to the actual process. However, these methods are essentially a linear transformation approach. But the actual monitoring process includes nonlinearity in different degrees. Thus, researchers have proposed a series of nonlinearmethods involving complex nonlinear transformations. Furthermore, these non-linear methods are confined to fault detection: Fault variable separation and fault identification are still difficult problems.This paper describes a hoist fault diagnosis featureexactionmethod based on the Wavelet Packet Transform(WPT) and kernel principal component analysis(KPCA). We extract the features by WPT and thenextract the main features using a KPCA transform,which projects low-dimensional monitoring datasamples into a high-dimensional space. Then we do adimension reduction and reconstruction back to thesingular kernel matrix. After that, the target feature isextracted from the reconstructed nonsingular matrix.In this way the exact target feature is distinct and stable.By comparing the analyzed data we show that themethod proposed in this paper is effective.2 Feature extraction based on WPT andKPCA2.1 Wavelet packet transformThe wavelet packet transform (WPT) method[3],which is a generalization of wavelet decomposition, offers a rich range of possibilities for signal analysis. The frequency bands of a hoist-motor signal as collected by the sensor system are wide. The useful information hides within the large amount of data. In general, some frequencies of the signal are amplified and some are depressed by the information. That is tosay, these broadband signals contain a large amountof useful information: But the information can not bedirectly obtained from the data. The WPT is a finesignal analysis method that decomposes the signalinto many layers and gives a etter resolution in thetime-frequency domain. The useful informationwithin the different requency ands will be expressed by different wavelet coefficients after thedecomposition of the signal. The oncept of “ener gy information” is presented to identify new information hidden the data. An energy igenvector is then used to quickly mine information hiding within the large amount of data.The algorithm is:Step 1: Perform a 3-layer wavelet packet decomposition of the echo signals andextract the signal characteristics of the eight frequency components ,from low to high, in the 3rd layer.Step 2: Reconstruct the coefficients of the waveletpacket decomposition. Use 3 j S (j =0, 1, …, 7) to denote the reconstructed signals of each frequencyband range in the 3rd layer. The total signal can thenbe denoted as:730j j s S ==∑ (1)Step 3: Construct the feature vectors of the echosignals of the GPR. When the coupling electromagneticwaves are transmitted underground they meetvariousinhomogeneous media. The energy distributing of the echo signals in each frequency band willthen be different. Assume that the corresponding energyof 3 j S (j =0, 1, …, 7) can be represented as3 j E (j =0, 1, …, 7). The magnitude of the dispersedpoints of the reconstructed signal 3 j S is: jk x (j =0,1, …, 7; k =1, 2, …, n ), where n is the length of thesignal. Then we can get:22331()n j j jk k E S t dt x ===∑⎰ (2)Consider that we have made only a 3-layer waveletpackage decomposition of the echo signals. To makethe change of each frequency component more detailedthe 2-rank statistical characteristics of the reconstructedsignal is also regarded as a feature vector:2311()njk j jk k D x x n ==-∑ (3) Step 4: The 3 j Eare often large so we normalize them. Assume that E =thus the derived feature vectors are, at last:T=[30313637/1,/1,.......,/1,/1E E E E ] (4) The signal is decomposed by a wavelet packageand then the useful characteristic information featurevectors are extracted through the process given pared to other traditional methods, like the Hilberttransform, approaches based on the WPT analysisare more welcome due to the agility of the processand its scientific decomposition.2.2 Kernel principal component analysisThe method of kernel principal component analysisapplies kernel methods to principal component analysis[4–5].1,1,2,...,,0.MNk k k Letx R k M x =∈==∑The principalcomponent is the element at the diagonal afterthe covariance matrix ,11MT i j j C x x M ==∑has beendiagonalized. Generallyspeaking, the first N valuesalong the diagonal, corresponding to the largeeigenvalues,are the useful information in the analysis.PCA solves the eigenvalues and eigenvectors of thecovariance matrix. Solving the characteristic equation[6]:11()M j j j c xx M λννν===∙∑ (5)where the eigenvalues 0λ≠,and the eigenvectors,{}\0N R ν∈ is essence of PCA. Let the nonlinear transformations, ⎫ : RN → F ,x → X , project the original space into feature space,F . Then the covariance matrix, C , of the original space has the following form in the feature space:11()()M T i jJ C x x M φφ==∑ (6)Nonlinear principal component analysis can beconsidered to be principal component analysis of C in the feature space, F . Obviously, all the igenvaluesof C (0)λ≠ and eigenvectors, V ∈F \ {0} satisfy λV = C V . All of the solutions are in the subspacethat transforms from (),1,2,...,j x i M φ= (())(),1,2,...,k k x V x C V k M λφφ== (7)There is a coefficient i α Let1()Mi i i V x αφ==∑ (8) From Eqs.(6), (7) and (8) we can obtain:111(()())1(()())(()())Mi k j i M M i k j k ji j a x x a x x x x M λφφφφφφ====∑∑∑ (9)where k =1, 2, ….., M . Define A as an M ×M rankmatrix. Its elements are:()()ij i j A x x φφ=From Eqs.(9) and (10), we can obtainM λ A a = A 2a . This is equivalent to:M λ A a = A a .Make 12....M λλλ≤≤≤ as A ’s eigenvalues, and 12,,...,M ααα, as the corresponding eigenvector.We only need to calculate the test points’ projectionson the eigenvectors k V that correspond tononzero eigenvalues in F to do the principal componentextraction. Defining this as k βit is given by:1(())(()())Mkk i i k i V x x x φαφφβ===∑ (12) principalcomponent we need to know the exact form of the non-linear image. Also as the dimension of the feature space increases the amount of computation goes up exponentially. Because Eq.(12) involves an inner-product computation,()()i x x φφaccording to the principles of Hilbert-Schmidt we can find a kernel function that satisfies the Mercer conditions and makes (,)()()i i K x x x x φφ=Then Eq.(12) can be written:1(())((,))Mkk i i k i V x K x x φαβ===∑ Here α is the eigenvector of K . In this way the dot product must be done in the original space but the specific form of φ (x ) need not be known. The mapping, φ (x ) , and the feature space, F , are all completely determined by the choice of kernel function[ 7–8].2.3 Description of the algorithmThe algorithm for extracting target features in recognition of fault diagnosis is: Step 1: Extract the features by WPT;Step 2: Calculate the nuclear matrix, K , for each sample,(1,2,...,)N i x R i N ∈= in the original input space, and (()())ij i K x x φφ=Step 3: Calculate the nuclear matrix after zero-mean processing of the mapping data in feature space;Step 4: Solve the characteristic equation M λ a = A a ;Step 5: Extract the k major components using Eq.(13) to derive a new vector. Because the kernel function used in KPCA met the Mercer conditions it can be used instead of the inner product in feature space. It is not necessary to consider the precise form of the nonlinear transformation. The mapping function can be non-linear and the dimensions of the feature space can be very high but it is possible to get the main feature components effectively by choosing a suitable kernel function and kernel parameters[9].3 Results and discussionThe character of the most common fault of a mine hoist was in the frequency of the equipment vibration signals. The experiment used the vibration signals ofa mine hoist as test data. The collected vibration signals were first processed by wavelet packet. Then through the observation of different time-frequencyenergy distributions in a level of the wavelet packet we obtained the original data sheet shown in Table 1 by extracting the features of the running motor. The fault diagnosis model is used for fault identification or classification.Experimental testing was conducted in two parts: The first part was comparing the performance of KPCA and PCA for feature extraction from the originaldata, namely: The distribution of the projection of the main components of the tested fault samples. The second part was comparing the performance of the classifiers, which were constructed after extracting features by KPCA or PCA. The minimum distance and nearest-neighbor criteria were used for classification comparison, which can also test the KPCA and PCA performance. In the first part of the experiment, 300 fault samples were used for comparing between KPCA and PCA for feature extraction. To simplify the calculations a Gaussian kernel function was used:22(,)(),()exp()2x y K x y x y φφσ-≤≥- 10 The value of the kernel parameter, σ , is between 0.8 and 3, and the interval is 0.4 when the number of reduced dimensions is ascertained. So the best correctclassification rate at this dimension is the accuracy of the classifier having the best classification results. In the second part of the experiment, the classifiers’ recognition rate after feature extraction was examined. Comparisons were done two ways: the minimum distance or the nearest-neighbor. 80% of the data were selected for training and the other 20% were used for testing. The results are shown in Tables 2 and 3.From Tables 2 and 3, it can be concluded from Tables 2 and 3 that KPCA takes less time and has relatively higher recognition accuracy than PCA.4 ConclusionsA principal component analysis using the kernel fault extraction method was described. The problem is first transformed from a nonlinear space into a linearlinear higher dimension space. Then the higher dimension feature space is operated on by taking the inner product with a kernel function. This thereby cleverly solves complex computing problems and overcomes the difficulties of high dimensions and local minimization. As can be seen from the experimental data, compared to the traditional PCA the KPCA analysis has greatly improved feature extraction and efficiency in recognition fault states.References[1] Ribeiro R L. Fault detection of open-switch damage involtage-fed PWM motor drive systems. IEEE TransPower Electron, 2003, 18(2): 587–593.[2] Sottile J. An overview of fault monitoring and diagnosisin mining equipment. IEEE Trans Ind Appl, 1994, 30(5):1326–1332.[3] Peng Z K, Chu F L. Application of wavelet transform inmachine condition monitoring and fault diagnostics: areview with bibliography. Mechanical Systems and SignalProcessing, 2003(17): 199–221.[4] Roth V, Steinhage V. Nonlinear discriminant analysisusing kernel function. In: Advances in Neural InformationProceeding Systems. MA: MIT Press, 2000: 568–574.[5] Twining C, Taylor C. The use of kernel principal componentanalysis to model data distributions. PatternRecognition, 2003, 36(1): 217–227.[6] Muller K R, Mika S, Ratsch S, et al. An introduction to kernel-based learning algorithms. IEEE Trans on Neural Network, 2001, 12(2): 181.[7] Xiao J H, Fan K Q, Wu J P. A study on SVM for fault diagnosis. Journal of Vibration, Measurement & Diagnosis, 2001, 21(4): 258–262.[8] Zhao L J, Wang G, Li Y. Study of a nonlinear PCA fault detection and diagnosis method. Information and Control, 2001, 30(4): 359–364.[9] Xiao J H, Wu J P. Theory and application study of feature extraction based on kernel. Computer Engineering,2002, 28(10): 36–38.中文译文基于PCA技术核心的打包和变换的矿井提升机失误的发现摘要:一个新的运算法则被正确的运用于证明和监视矿井提升机的过失情况。

煤矿瓦斯预防治理中英文对照外文翻译文献

煤矿瓦斯预防治理中英文对照外文翻译文献

煤矿瓦斯预防治理中英文对照外文翻译文献(文档含英文原文和中文翻译)翻译:西班牙Riosa–Olloniego煤矿瓦斯预防和治理摘要矿井中一直控制存在不同的气体在采矿环境。

这些气体中,甲烷是最重要的,他伴随着煤的产生而存在。

尽管在技术在近几十年来的发展,瓦斯灾害尚未完全避免。

瓦斯气体随着开采深度的增加而增多,甲烷排放量高的地方,也适用于其他采矿有关的情况,如生产的增长率及其后果:难以控制的甲烷浓度增加,机械化程度提高,使用炸药和不重视气控制系统。

本文的主要目的是建立实地测量,使用一些不标准的采矿控制风险评估方法的一部分,并分析了深部煤层瓦斯矿井直立的行为,以及防止发生瓦斯事故的关键参数。

最终目标是在开采条件的改善,提高矿井的安全性。

为此,设置了两个不同的地雷仪表进行矿井控制和监测。

这两个煤矿属于Riosa-Olloniego煤田,在西班牙阿斯图里亚斯中央盆地。

仪器是通过subhorizontal能级开采的,一个约1000米的山Lusorio根据实际深度覆盖的地区。

在本研究中,一个是有利于瓦斯突出的易发煤(第八层),测定其气体压力及其变化,这将有助于提供以前的特征以完成数据,并评估第一次测量的网站潜在的爆发多发地区提供一些指导。

本文运用一个气体测量管设计了一套用于测量一段时间由于附近的运作的结果,计算低渗气压力以及其变化。

本文建立了作品的重叠效应,但它也表明了两个预防措施和适用功效,即高压注水和一个保护煤层(第七层)的开采,必须优先开采保护层以防止瓦斯气体的涌出。

这两项措施构成的开采顺序,提高矿井安全性。

因此,应该完成系统的测量控制风险:在8煤层瓦斯压力影响的其他地区,要建立最合适的时刻进行开采作业。

进一步的研究可以把重点放在确定的渗透,不仅在瓦斯爆炸危险区,而且在那些还没有受到采矿的工作和更精细的调整过载时间的影响范围和矿井第7煤层和第8煤层之间的瓦斯气体。

关键词:煤矿,煤层气,气体压力渗透率瓦斯突出1 简介近年来,煤层气体和煤矿瓦斯研究蓬勃发展。

煤矿开采与安全外文翻译

煤矿开采与安全外文翻译

附录2Coal mining and security,Keyword : "three soft" coal bed; Mine pressure show features one .The "three soft" coal bed on top of coal mine located pressure of study 1, located about 12,090, located in the Great West Yugou mining bureau hoisted two wells below a District East, West 2 West transport belts down, 2 mining areas in east-west border to stop a thread. located 420 m towards the average length, 100 m long trend. The second one, located stoping coal bed, Fucun Group in Shanxi Erdiexi bottom. Because coal bed sediment environment and the impact of later tectonic movements, uneven thickness, larger changes, stoping coal in the context of a thin belt presence (vice alley in de 40~180 m above, the thickness of a coal bed 0~1. 6 m), to bring a certain degree of difficulty stoping work. coal bed inclination to 7~14 meridian east, the average thickness of 4 coal bed. 62 m, the coal is of relatively for anthracite, coal is of relatively soft, low intensity and easy to run down. Direct roof for the stones, mudstone and sandy mudstone; direct-bed for the stones, axes; In direct top,- bed between local presence and pseudo - pseudo-top end, the variable quality mudstone or mudstone mostly carbon, thickness generally less than 0. 5 m. 2 mine pressurised observation content and layout mine detection point pressure is the main purpose of observing large Yugou Mining Bureau "three soft" coal bed guns a coal located on top of the pressure distribution pattern and advance to pressure step from the initial roof, pressure to step away from the cycle and intensity. major observational content pit props pressure, located cradles pressure. At the same time, you should also pay attention to the observation of a face, supporting macroeconomic situation changes; Watch top coal broken off after the roof and the top of the coal shed Yunyi 3 located advance pressure distribution characteristics 3. 1 observation data collation, located back alley advance wind pressure observation period, Underground daily sent people to the station pressure gauge readings recorded, measuring station located to the distance, macro-observation plane lane, alley and surrounding rock changes in the wind conditions and intense deformation measurements relating to the district, located in the distance. After calculation handling objects charts. 3. 2 advance distribution of pressure from the wind power plant Lane can finally curve, caused by coal mining is much pressure to advance work before side 34 m, 34 m at work beforethe side street will be located within the stope advance pressure. advance pressure peaks in the work zone before side 9~12 m, a significant increase in the volume of pit deformation, top Jing fence fractures increase, and sometimes a coal business, a broken cinder ended. 34 m away from the side before the work stoppage that could advance pressure from the impact of a stress stability zone. The two coal bed belonging to one of "three soft" instability thick coal bed, the old top to pressure evident, leading to work on stress distribution side before extended stress peaks, located far away from the district, stress concentration factor is, However, the relative proximity of the larger pit surrounding rock, to reduce the excessive stope pillars surrounding rock deformation and destruction, and give full play to the role of supporting the surrounding rock deformation control, work before the two parties within 21 m alley to advance support for. 4 coal mining located roof to pressure of 4. 1 mine coal mining is much pressure observation data collection and processing for about guns taken on the top and roof load coal mine, located cradles pressure distribution patterns, 12,090 wells located in the red flag for the use of pressure-Yaliji located cradles a half load for the site observations that after calculating the results processed figure 3-Figure 5 below. Figure 3 is the backbone of the chassis is much data to load for X-coordinateobservation cycle, weighted average time to load a vertical structure coordinates. can be seen from Figure 3, located along the direction of a cyclical movement roof phenomenon cycle to pressure to step away from 19 m. Figure 4 is located opposite to the X-coordinate long to normal when the three pillars of load testing station for the average vertical coordinates. by Figure 4 shows that Coal is much more along the direction of the top (board) campaign has begun mine pressure area characteristics, the greatest pressure on the middle and upper occasions, the smallest part. 4. 2 stope mine pressure manifested by the basic law of observational data analysis stope mine pressure show the following obvious features : (1) Overall, supports early resistance do not hold power and work great. As this is much direct contact with the sphere payments Liang was named top soft coal, coupled with the roof is also very soft, in the time frames established in the early extension to be able to improve. Average power for itself in early 226. 38~227. 36 kN/ to shed for resistance work rated 15. 4 %~16. 8% Working resistance averaged 252. 84~272. 44 kN/ to shed for resistance work rated 17.2 %~18. 5% to pressure, the maximum resistance for 372. 4 kN/ to shed, 23% rated the work of resistance. 3% The average intensity of support for the 102. 3~144. 5 kN/ map. problems are caused mainly coal-bed and the top is too soft and monomer pillar inserted at theend of serious (some pillars inserted to the end of 700 mm or more), sometimes steel girder also drilled top. lower support body rigidity, limiting the ability to play a supporting. (2) In the course of supporting a payload located in the non-violent change, the pressure to show moderate and mine, to suppress evidence cycle (compared with the stratification changes evident exploitation), show a ground movement of rocks not violent. (3) to the old top of the initial pressure to step away from about 19 m, pressure to the end of the period cradles inserted a general increase in the volume, the deepest reached 95 cm; coal Pik films to serious, the deepest reach 0. 5 m; Guarding includes fractures increasing pressure to show quick to shed mine obvious. (4) roof cycle to pressure to step away from the general 6~12 m, with an average of 9 m. to pressure, National average load rate and peak load generally 1. 1~1. 3 (5) work surface, China, and three offices, located under the same basic structure resistance. This was mainly due to top coal pine broken, the roof vulnerable to collapse down, the two lane or coal, do not appear on basic export Kok Department triangular arc -- top. stope roof collapse or even the whole, extraction region filled with better results. (6) roof pressure on the former than coal or coal, small, or an average of 237 coal ago. 16 kN/ to shed, or an average of 268 after coal. 52 kN/ to shed. This is mainly because on the formercoal extraction region of the roof was broken up and top coal is filled with more in a market created a-bed, cradles, broken down objects, top coal composition balance system, in this system, supporting the main support coming from the top of the coal and the roof spaces. or coal, broken down by helicopter after the original space was filled with top coal deplete, and the roof to collapse down to completely backward, the original balance system is damaged, and that the plant should not only support higher top coal Additional support also in the roof above the pressure and therefore the power plant have increased. However, the side roof over a soft, with a Sui collapse, not a large overhang top, the structure will not collapse down the impact hazard. 5 knot on top of 12,090 guns a low load coal plant, located, mine pressure appeared evident. this is because the coal bed "three soft" coal beds, pillars inserted at the pressure seriously, cradles effectiveness has not been fully exploited; On the other hand, because the roof is much thicker, with a then - and extraction region filled with better results. In view of this, we should increase the coverage of a support cut and raise the pillars of power in the early intention to increase plant stability. Second, Coal Mine gas explosion accident electrical current incentives and measures, most of our coal upward inclination to move boring, coal makes such a partial or total removal of thedumping of the top, the reason is to use gravity to pass out of coal mining. Because of spillover coal mine gas air mass lighter than air, so gas gas in the air by buoyancy role will be along the street, dumping flows to the top, gather the top of the highest point in the pit (coal mining side) near a 5%~15% size than for the gas-air mixture can be explosive gas. Therefore, coal, gas gas combined with the dumping pit top "since deteriorated role." At present, China's coal mine ventilation methods used may not be the complete elimination of this form of burglary mixed gas, which is one of the main reasons for such coal mine gas explosion. It should be said that after the coal mine gas explosion in the relevant departments and personnel operations of a number of painful lessons learned, which has also taken some measures, but the explosion is still unabated, and this shows that in the previous incidents summed up the reasons, there are major underlying factors induced. In recent years many cases of the author on coal gas explosion accident and the cause of the accident was announced incomplete statistics, the analysis found that the coal mine gas explosion accident subjective and objective factors are manifold, but the most fundamental factor than direct two main aspects : First, the partial loss of gas concentration reached explosive limits; in the presence of one to two basis of many types of electrical equipment error or mineoperation against induced electrical spark or explosion due. To the elimination of one of the parties concerned have made fruitful discussions on the following two key to the author as a result of statistics, analysis, and make the corresponding contain electrical incentives exist. 1 coal mine gas explosion accidents in coal mine explosion electrical incentives type material foundation -- China coal mine gas is a gas or other carbon material, the main component of methane, lighter than air, combustion Yi, Yi explosions. Gathered in a gas concentrations in the air shaft internal combustion-supporting, electrical sparks and other fire sources in the event will be an explosion. According to the Chinese Academy of Engineering and a joint coal Information General Hospital "My mine production safety situation, gaps and response" issue, the Chinese original mine safety facilities serious ageing, many power equipment. Mine can not vote in safety, not only to add new equipment, the maintenance of existing equipment have also been omitted. In recent years, the author of the wrong types of electrical equipment such as incentives to the coal mine gas explosion summarized as follows : 1.1 errors mine shaft electricity power supply, power supply reliability is poor, - owned power (generators) or small models, configuration unreasonable, poor operating performance caused by the interruption of electricity, coal, gas gas utilization.1:2004 example, a coal mine explosion in March Shanxi Province, 28 miners were killed. According to the local production safety supervision and management department said that at 18:48 on March 1, the coal city electrical grid electricity blackouts limit will be just purchased 400kW generators, the generators fully automatic rubber, but after the voltage reach 280V, 380V no longer or less than the rated voltage. Taiwan into a coal mine and the old 90kW generator power, as the small electrical capacity only to the ventilator, and other non-production of electricity supply, ventilation are sluggish, causing local gas concentrations. 23:00 more city electrical grid calls, working on a gas explosion had occurred near the accident. 1.2 shaft, electrical equipment deficiencies (1) Because electricity network power cable insulation affected with damp usually wrong, damaged, single-jointed or alternate with short-circuit occurred, a spark or electrical cables exploded, causing the gas explosion accident. 2:2000 example, in November 1997, a coal mine gas explosion occurred at the Hubei Province. Investigation team of experts that the high gas for coal mine, when the cause of the accident : mine roof collapsed, broken cable insulation layer, to trigger the electrical wiring sparks, leading to the burning of gas caused an explosion. August 28, 2004, the Guangdong cable explosion of a coal mine accidents occurred,a working fire. (2) Because of the change in the general area of distribution equipment error or distribution transformers distribution devices, do not have the blast performance of operational conditions, resulting in a relatively lower insulation or alternate with insulation, damage, resulting in electrical spark detonated gas. 3:2004 example, the Hunan "3.29" direct cause of the gas explosion accident identified. Experts said : electrical spark in the coal pit of distribution transformer room exit lanes margin wiring. Underground paths lead to the loss of environmental change, and no replacement for mine blast Zhongyuan some electrical appliances, humid to three-phase electrical wiring boxes between insulation to reduce, and ultimately led to the destruction of an electric spark insulation between the lines, detonated gas. (3) Because electricity lighting equipment deficiencies more lamps for lighting fireworks, detonating gas 4:2000 examples of Guangdong a coal gas explosion occurred, because miners operating illegally crossed died people have finished high gas concentrations, the light bulb explosion sparks, causing gas explosion. N August 2004, a coal mine gas explosion in Jiangxi. Identify the cause of the accident : the exploitation of operating wells without a ventilation system, causing massive underground gas explosion gather reach concentrations encountered lights exploded electrical fire sources,a gas explosion accident major responsibility o (4) loss for electrical equipment used to dig the wrong number of coal used without explosions performance electric motors, mechanical ventilator, diving pump, gas leakage caused the explosion. Examples 5:2004, March 17, a major gas explosion accident occurred in Yunnan, identifying pit mining as merely led to gas utilization, the introduction of the leakage is not available explosions performance diving pumps and drainage caused by gas explosion. In addition, non-compliance with the operating loss of electrical safety operation procedures, such as coal mine safety measures in the absence of a relevant circumstances, without stopping, power transmission, or that the electricity goes down the mine, electrician charged install electrical equipment, or unauthorized workers Underground Work opened see louvre, unsafe use of lighting lamps. will produce electrical spark triggered gas explosion accident o 2 inspiration from the many terrible incidents of incomplete statistics, and analysis of the organization's headquarters in 1980 -2002, this province over the past 23 years coal mine three or more major casualties. 3 more gas accident killed 2,563 people, representing more than three people since the founding of the PRC gas accident deaths 81.8%. In these gas explosion accident, resulting in gas gas combined 10 of the main reasons. Including :coal for electricity, accounting for 49.6% of accidents caused by the wind stopped. Therefore, the eradication of coal gas explosion accident, the first task is to ensure that coal city-owned electric power or reliable power supply to solve the main ventilator blackouts, stop the wind, in order to remove mines, gas gas accumulation, where. Furthermore, from the frequent disasters, we can see that in the current coal production is still more common safety issues : In addition to coal management system is not perfect, safety supervision, weak sense of security, inadequate security inputs indirect factors, particularly serious : Because of electrical equipment models, configuration unreasonable, without explosions performance, or own errors, poor operating performance, or electrical explosion caused by electrical sparks coal gas explosion accident. Thus, the coal mine gas explosion is very serious electrical incentives, achieving stable coal mine production safety, the key lies in ensuring reliable electricity supply, gas utilization and the elimination of mine blast performance of the pit reliable electrical products. 3 significantly reduced coal mine gas explosion electrical incentive measures against mines, electric power 3.1, - owned power sources (generators) of electricity can be unreliable error-circuit the electricity supply network, electricity supply network to doublecircuit city, reliable performance of the mine-owned power and the corresponding automatic standby power input devices (BZT) before that the whole area of reliable electricity. 3.2 against pit electricity network, change distribution equipment, electrical equipment for lighting lamps and wrong in the light of the importance of safety and mine explosions blast explosive gas and electrical products in a hazardous environment applications dust penetration, should focus on strengthening the environment for use in the blast mandatory supervision and inspection of electrical products, The blast to use alternative to ordinary electrical products are products. Meanwhile users should strengthen the supervision and inspection of electrical products explosions to avoid cases of extended Unit 310-311 provides superior service or the occurrence of such phenomena. In addition, the strengthening of explosions electrical product standardization work, continuously improve its product standardization, mass production, the level of generic, user-friendly models, use. Furthermore, should strengthen blast electrical products production, circulation and use of the link quality control, with a view to ultimately achieve pit mining operations, must be of quality and access to the mine in product safety signs explosions electrical products to a perfect pit blast electrical system, and ensure that products explosions structure,processes, materials, testing standards are in line with the blast, If Gebao face with the extra width or with gap should not, do Gebao side wall thickness consistency; Add an arbitrary face between Gebao sealed pad. To form, especially cast iron shell materials to be tested; Do Gebao external pressure testing; Gebao area of trachoma, the eye should not receive gas; Gebao the fastenings secure external sound; Establishment, within proximity to external hard disks; Redundant Kong into line with steel block panels. Electrical blast should be consistent with the manufacture and assembly of quality products acceptance norms. Electrical models with the mine, the circuit wiring boxes climb distance and electrical power generated, structural materials, sealed materials should be in accordance with explosions standards, wiring boxes should Tu Li arc section; Avoid winding short circuit, open circuit phenomenon stator winding assembly former internal clean up, after winding Jinqi avoid painting neoplasms; Gebao type structure and the electrical transmission bearings bearings Gebao structure should avoid "an axis" quality accidents. Gebao face roughness should meet standards for ultra-poor attention to the oval to ensure that their Care degrees; Processes transmission process protection Gebao face. Blast in the process of applying electrical products, product models with installation standards, such as blast-type and Gebao level,group selection and use of premises shall be consistent with the corresponding conditions; Inspection work should be in place to safeguard products; Eliminate fake and shoddy, with the use of safety dangers products in the field, such as wiring boxes of machine screws, cable soliciting without top device or devices Mifengjuan Mifengjuan lost, electric motors wind cover fixed bolts incomplete, corrupted or lost data plate serious. Blast should ensure outdoor electrical wiring boxes waterproofing product performance; Maintenance products should meet after the original blast. Users should understand product maintenance, overhaul spent standards must apply to dangerous places blast electrical products. Of course, the blast of electrical products to be imported by passing my test explosions quality inspection agencies in product safety and access to the mine signs before entering our field of mobile marketing. Against mine operators where electricity, electrical explosions should strengthen awareness, training, education, so that mine operators consciously strict compliance with the Mine Safety operation procedures, a blast of electrical standards implemented.4 concluding remarks after the coal mine gas explosion accident and electrical incentives are closely related, as long as our own departments and the establishment of coal mine production safety mechanisms mechanism, strengthen the Coal Mine Safety Supervision,and ensure reliable electricity supply, mine blast in the distribution of quality electrical products, coal operators to strictly comply with the safety operation procedures, I believe coal mine gas explosion accidents rate markedly.............................................................................................................................................................此处忽略!!!!!!!!。

煤矿安全因素探讨外文及翻译修正版

煤矿安全因素探讨外文及翻译修正版

煤矿安全管理要素探讨LI Jun( ShanxiCokingCoalCo., Ltd., Taiyuan030024, China)摘要:通过对煤矿安全管理要素的分析强调了以人为本的安全管理思路,针对目前煤矿安全管理中存在的一些误区,结合企业实际和其它煤炭企业管理经验, 以及安全管理要素相互作用的理论,提出了以“人”为本、以“物”保“人”、以“环境”影响“人”的管理方法和工作措施。

关键词:煤矿安全管理; 要素分析;以人为本0.引言安全是煤炭企业永恒的主题。

煤矿安全生产关系职工生命安全, 关系煤炭工业健康发展, 关系社会稳定大局。

实现煤矿安全生产是落实科学发展观的必须要求, 是构建社会主义和谐社会的重要内容。

但近些年全国发生的几起大的煤矿安全事故说明了煤矿安全生产的形势依然严峻, 安全管理中存在的问题仍十分尖锐。

因此, 有必要也必须寻求一种更科学更有效的安全管理方法来解决安全生产中的突出问题, 确保职工的生命安全和企业的健康稳定发展。

1.煤矿安全管理概念简述煤矿安全管理就是对煤矿安全生产相关要素和过程进行计划、组织、协调和控制的一系列活动, 以保障职工在生产过程中的生命安全, 保证生产工作的顺利开展, 保护国家和集体的财产不受损失。

由于煤矿生产、管理工作中时时处处都与安全相联系,因此安全管理应该是全面的、全员的和全过程的, 是煤矿所有管理工作的核心。

2.煤矿安全管理要素分析管理要素是指管理活动和过程必不可少的组成部分。

从煤矿安全管理的活动和过程看, 煤矿安全管理的要素主要包括人、物、环境三大要素。

人是指员工的本体、意识和行为;物包括工程、设备、材料等硬件和技术、工艺、流程等软件两个方面;环境也包括硬件环境和软件环境两个方面, 硬件环境指由装备、技术等构成的生产、工作环境, 软件环境指由安全文化、宣传教育等构成的思想文化氛围。

在人、物、环境诸因素中,人是最积极的因素,人既是安全管理的主体,也是安全管理的客体, 同时也是安全管理的直接目的-人的安全。

安全专业本科毕业论文外文文献(煤矿安全方向)中英文对照PDF

安全专业本科毕业论文外文文献(煤矿安全方向)中英文对照PDF

附录A非线性矿井通风网络的控制Yunan Hu a,1 , Olga I. Koroleva b,*, Miroslav Krstic ba深空探测研究中心,哈尔滨工业大学,哈尔滨100051 ,中华人民共和国b机械航空工程系,加州大学,圣地亚哥,9500 Gilman Dr. MC0411, La Jolla, CA 92093-0411, 美国摘要:煤矿通风网络的重要作用是使爆炸性或有毒气体(如甲烷)维持在低浓度。

由于其目的是控制流体的流动,所以矿井通风网络是高阶非线性系统。

过去在这一方面的研究是基于多变量线性模型。

本文提出的是一个非线性模型。

开发两个控制算法。

一个人操纵所有的网络分支机构就可实现全球性调控的结果。

其他人只操纵网络中不属于树图的分行,实现监管(非无穷小)工作点的附近区域。

这种针对矿井通风网络提出的方法,也适用于其他类型的流体网络,如燃气或水的分销网络,灌溉网络,并有可能建立起通风系统。

关键词:非线性控制;矿井通风网络;流量控制;暖通空调1.简介石油储备枯竭后,煤作为矿物燃料能源还会保持一段相当长的时间。

煤矿开采的一个主要困难是因为地下的煤矿存在有毒且易爆的气体甲烷。

煤矿事故血的教训从古至今未曾间断。

现代煤矿有的许多调节甲烷浓度的通风设施。

在这种通风系统中通常不是直接控制空气流动,而是通过通风网络的个别部分来控制。

可以在通风网络的重要位置(往往直接连接到外部环境)安置几台风机/压缩机来驱动空气,也可以在网络的分支上用“风门” 来控制。

控制矿井通风的问题在20世纪70年代和80年代才受到相当的重视。

无疑,矿井通风网络是一个分支能影响其他分支的流程的一个多变量控制问题。

为此,作为一个流体网络(这与模拟一个电路非常相像)和一个多变量控制的问题,矿井通风需要接近基于模型的方式。

早期在这个题目上做研究的是Kocic。

他认为矿井通风网络是一个线性化的,各参量混在一起的动态模型并且发现了用线性反馈的规则来研究。

煤矿开采煤矿安全中英文对照外文翻译文献

煤矿开采煤矿安全中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)外文:Mine safetyCoal mining historically has been a hazardous occupation but, in recent years, tremendous progress has been made in reducing accidental coal mine deaths and injuries.the main aspect is as following:⑴ Safety of mine ventilation•Purposes of Mine Ventilation•Properly engineered control of the mine atmosphere is required to: •provide fresh air (oxygen) for men to breathe•provide a source of oxygen for internal combustion engines in machinery •dilute atmospheric contaminants to acceptable levels•maintain temperature and humidity within acceptable limits•remove atmospheric contaminants from the mine.Mine ventilation is twofold in purpose: first, it maintains life, and secondly it carries off dangerous gases. The historic role of ventilation was to provide a flow of fresh air sufficient to replace the oxygen consumed by the miners working underground. Today's mine ventilation primarily deals with noxious gases (mainly generated by trackless equipment underground).Canaries are said to have been used to detect gas in coal mines in the early stages of coal mining. This sensitive bird would be taken into the workings and, if it perished, the colliers would immediately leave the mine.In the 1920s the hand-turned fans were replaced with air-powered small turbine fans. Large fans of the suction type were placed on the surface and gradually increased in size. Air from surface compressors was piped into the mine to power machinery and to assist in ventilation.Unless the air is properly distributed to the face, the mine ventilation system is not performing its primary function [1]. While it has always been recognized that this last part of ventilation is the most import, it is also the most difficult to achieve.The primary means of producing and controlling the airflow are also illustrated on Figure 1. Main fans, either singly or in combination, handle all of the air that passesthrough the entire system.These are usually, but notnecessarily, located onsurface, either exhaustingair through the system asshown on Figure 1 or, alternatively, connected to downcast shafts or main intakes and forcing air into and through the system. Because of the additional hazards of gases and dust that may both be explosive, legislation governing the ventilation of coal mines is stricter than for most other underground facilities. In many countries, the main ventilation fans for coal mines are required, by law, to be placed on surface and may also be subject to other restrictions such as being located out of line with the connected shaft or drift and equipped with "blow-out" panels to help protect the fan in case of a mine explosion.Stoppings and Seals:In developing a mine, connections are necessarily made between intakes and returns. When these are no longer required for access or ventilation, they should be blocked by stoppings in order to prevent short-circuiting of the airflow. Stoppings can be constructed from masonry, concrete blocks or fireproofed timber blocks. Prefabricated steel stoppings may also be employed. Stoppings should be well keyed into the roof, floor and sides, particularly if the strata are weak or in coal mines liable to spontaneous combustion. Leakage can be reduced by coating the high pressure face of the stopping with a sealant material and particular attention paid to the perimeter. Here again, in weak or chemically active strata, such coatings may be extended to the rock surfaces for a few metres back from the stopping. In cases where the airways are liable to convergence, precautions should be taken to protect stoppings against premature failure or cracking. These measures can vary from "crush pads" located at the top of the stopping to sliding or deformable panels on prefabricated stoppings. In all cases, components of stoppings should be fireproof and should not produce toxicfumes when heated.As a short term measure, fire-resistant brattice curtains may be tacked to roof, sides and floor to provide temporary stoppings where pressure differentials are low such as in locations close to the working areas.Where abandoned areas of a mine are to be isolated from the current ventilation infrastructure, seals should be constructed at the entrances of the connecting airways. If required to be explosion-proof, these consist of two or more stoppings, 5 to 10 metres apart, with the intervening space occupied by sand, stone dust, compacted non-flammable rock waste, cement-based fill or other manufactured material. Steel girders, laced between roof and floor add structural strength. Grouting the surrounding strata adds to the integrity of the seal in weak ground. In coal mines, mining law or prudent regard for safety may require seals to be explosion-proof.Doors and airlocks:Where access must remain available between an intake and a return airway, a stopping may be fitted with a ventilation door. In its simplest form, this is merely a wooden or steel door hinged such that it opens towards the higher air pressure. This self-closing feature is supplemented by angling the hinges so that the door lifts slightly when opened and closes under its own weight. It is also advisable to fit doors with latches to prevent their opening in cases of emergency when the direction of pressure differentials may be reversed. Contoured flexible strips attached along the bottom of the door assist in reducing leakage, particularly when the airway is fitted with rail track.Ventilation doors located between main intakes and returns are usually built as a set of two or more to form an airlock. This prevents short-circuitingwhen one door is opened for passage of vehicles or personnel. The distance between doors should be capable of accommodating the longest train of vehicles required to pass through the airlock. For higher pressure differentials, multiple doors also allow the pressure break to be shared between doors. Mechanized doors, opened by pneumatic or electrical means are particularly convenient for the passage of vehicular traffic or where the size of the door or air pressure would make manual operation difficult. Mechanically operated doors may, again, be side-hinged or take the form of rollup or concertina devices. They may be activated manually by a pull-rope or automatic sensing of an approaching vehicle or person. Large doors may be fitted with smaller hinged openings for access by personnel. Man-doors exposed to the higher pressure differentials may be difficult to open manually. In such cases, a sliding panel may be fitted in order to reduce that pressure differential temporarily while the door is opened. Interlock devices can also be employed on an airlock to prevent all doors from being opened simultaneously.Cfd applied to ventilation sys tems:Due to recent advances in computer processing power CFD has been used to solve a wide range of large and complex flow problems across many branches of engineering (Moloney et. al. 1997/98/99). The increase in processor speed has also enabled the development of improved post processing and graphical techniques with which to visualize the results produced by these models. Recent research work has employed CFD models, validated by scale and full-scale experiments, to represent the ventilation flows and pollutant dispersion patterns within underground mine networks. In particular, studies by Moloney (1997) demonstrated that validated CFD models were able tosuccessfully replicate the ventilation flows and gaseous pollutant dispersion patterns observed within auxiliary ventilated rapid development drivages. CFD has proven a capable method by which to identify detailed characteristics of the flow within critical areas such as the cutting face. The results produced by the CFD models were able to demonstrate the relative efficiency of the different auxiliary ventilation configurations in the dilution, dispersion and transport of the methane and dust from the development face. Further recent studies by Moloney et. al. (1999) have demonstrated that such validated CFD models may be used to simulate the airflow and pollutant dispersion data for a wide range of mining and ventilation configurations. Each simulation exercise produces large sets of velocity, pressure and pollutant concentration data.⑵ Fires Methods of ControlFires that occur in mine airways usually commence from a single point of ignition. The initial fire is often quite small and, indeed, most fires are extinguished rapidly by prompt local action. Speed is of the essence. An energetic ignition that remains undetected, even for only a few minutes, can develop into a conflagration that becomes difficult or impossible to deal with. Sealing off the district or mine may then become inevitable.The majority of fires can be extinguished quickly if prompt action is taken. This underlines the importance of fire detection systems, training, a well-designed firefighting system and the ready availability of fully operational firefighting equipment. Fire extinguishers of an appropriate type should be available on vehicles and on the upstream side of all zones of increased fire hazard. These include storage areas and fixed locations ofequipment such as electrical or compressor stations and conveyor gearheads. Neither water nor foam should be used where electricity is involved until it is certain that the power has been switched off. Fire extinguishers that employ carbon dioxide or dry powders are suitable for electrical fires or those involving flammable liquids.Deluge and sprinkler systems can be very effective in areas of fixed equipment, stores and over conveyors. These should be activated by thermal sensors rather than smoke or gas detectors in order to ensure that they are operated only when open combustion occurs in the near vicinity.Except where electricity or flammable liquids are involved, water is the most common medium of firefighting. When applied to a burning surface, water helps to remove two sides of the fire triangle. The latent heat of the water as it vapourises and the subsequent thermal capacity of the water vapour assist in removing heat from the burning material. Furthermore, the displacement of air by water vapour and the liquid coating on cooler surfaces help to isolate oxygen from the fire.⑶ Methods of Dust ControlThe three major control methods used to reduce airborne dust in tunnels and underground mines: ventilation, water, and dust collectors.Ventilation air reduces dust through both dilution and displacement. The dilution mechanism operates when workers are surrounded by a dust cloud and additional air serves to reduce the dust concentration by diluting the cloud. The displacement mechanism operates when workers are upwind of dust sources and the air velocity is high enough to reliably keep the dust downwind.① Dilution Ventilation. The basic principle behind dilution ventilation is to provide more air and dilute the dust. Most of the time the dust is reduced roughly in proportion to the increase in airflow, but not always. The cost of and technical barriers to increased airflow can be substantial, particularly where air already moves through ventilation ductwork or shafts at velocities of 3,000 ft/min or more.②Displacement Ventilation. The basic principle behind displacement ventilation is to use the airflow in a way that confines the dust source and keeps it away from workers by putting dust downwind of the workers. Every tunnel or mine passage with an airflow direction that puts dust downwind of workers uses displacement ventilation. In mines, continuous miner faces or tunnel boring machines on exhaust ventilation use displacement ventilation. Enclosure of a dust source, such as a conveyor belt transfer point, along with extraction of dusty air from the enclosure, is another example of displacement ventilation. Displacement ventilation can be hard to implement. However, if done well, it is the most effective dust control technique available, and it is worth considerable effort to get it right. The difficulty is that when workers are near a dust source, say, 10 to 20 ft from the source, keeping them upwind requires a substantial air velocity, typically between 60 and 150 ft/min. There is not always enough air available to achieve these velocities.③ Water sprays. The role of water sprays in mining is a dual one: wetting of the broken material being transported and,airborne capture. Of the two, wetting of the broken material is far more effective.Adequate wetting is extremely important for dust control. The vast majorityof dust particles created during breakage are not released into the air, but stay attached to the surface of the broken material. Wetting this broken material ensures that the dust particles stay attached. As a result, adding more water can usually (but not always) be counted on to reduce dust. For example, coal mine operators have been able to reduce the dust from higher longwall production levels by raising the shearer water flow rate to an average of 100gpm. Compared to the amount of coal mined, on a weight basis, this 100gpm is equivalent to 1.9% added moisture from the shearer alone. Unfortunately, excessive moisture levels can also result in a host of materials handling problems, operational headaches, and product quality issues, so an upper limit on water use is sometimes reached rather quickly. As a result, an alternative to simply adding more water is to ensure that the broken material is being wetted uniformly.⑷ Mine DrainageWater invades almost every mine in the form of :direct precipitation (rain and snow), surface runoff, underground percolation. Flows of water have an important effect on the cost and progress of many mining operations and present life and property hazards in some cases.Means of Mine-water Control(Mine Drainage):As shafts and other mine openings extend below the water table, water is likely to be encountered and to seep into the openings to an extent depending upon the area of rock surface exposed, the hydrostatic pressure, and other factors. In order to continue mining operations, it is therefore necessary to lower the ground water level in the vicinity of the mine by artificial means to keep the workings free of water as well as preventing the flow of surfacewater into the (surface or underground) mine. This operation is known as mine drainage.Means of mine drainage are limited by circumstances and objectives. The following types of mine-water control can be used singly or more effectively in combination:① Locate shafts or excavations in best ground and protect from direct water inflow from surfaces.② Divert or drain water at or near surface.③Reduce permeability of rock mass by grouting with special types of cement, bentonite and liquid chemical grouts (water sealing).④ Case or cement exploration drill holes.⑤Drill pilot holes in advance of work wherever there may be sudden influents at rates potentially inconvenient.⑥Dewater bedrock at depth by pumping through dewatering wells or from an accessible place in the mine.。

采矿专业外文文献翻译----煤矿瓦斯预防和治理

采矿专业外文文献翻译----煤矿瓦斯预防和治理

原文Control and prevention of gas outbursts in coal mines,Riosa–Olloniego coalfield, SpainMaría B. Díaz Aguado C. González Nicieza AbstractUnderground coal mines have always had to control the presence of different gases in the mining environment. Among these gases, methane is the most important one, since it is inherent to coal. Despite of the technical developments in recent decades, methane hazards have not yet been fully avoided. This is partly due to the increasing depths of modern mines, where methane emissions are higher, and also to other mining-related circumstances, such as the increase in production rates and its consequences: difficulties in controlling the increasing methane levels, increasing mechanization, the use of explosives and not paying close attention to methane control systems.The main purposes of this paper are to establish site measurements using some critical parameters that are not part of the standard mining-control methods for risk assessment and to analyze the gas behavior of subvertical coal seams in deep mines in order to prevent gas incidents from occurring. The ultimate goal is the improvement in mining conditions and therefore in safety conditions.For this purpose, two different mines were instrumented for mine control and monitoring. Both mines belong to the Riosa–Olloniego coalfield, in the Asturias Central Basin, Spain and the areas instrumented are mined via subhorizontal sublevels at an actual depth of around 1000 m under the overburden of Mount Lusorio.During this research, a property favoring gas outbursts was site measured for the first time in an outburst-prone coal (8th Coalbed), gas pressure and its variations, which contributed to complete the data available from previous characterizations and to set some guidelines for assessing the potential outburst-prone areas. A gas-measurement-tube set has been designed for measuring gas pressure as well as its variation over time as a result of nearby workings and to calculate permeability.The paper establishes the effect of overlapping of works, but it also shows the efficacy of two preventive measures to be applied: high pressure water infusion and the exploitation of a protective coal seam (7th Coalbed), that must be mined preferably two complete sublevels before commencing the advance in the outburst-prone coalbed. Both measures constitute an improvement in the mining sequence and therefore in safety, and should be completed with a systematic measurement to control the risk: gas pressure in the 8th Coalbed in the area of influence of other workings, to establish the most suitable moment to renew the advance. Further researches could focus on ascertaining thepermeability, not only in mined areas but also in areas of the mine that are still not affected by mining work and on tuning more finely the ranges of influence of overstress time and overlap distance of the workings of the 7th Coalbed in the 8th Coalbed.1. IntroductionCoalbed and coal mine methane research is thriving due to the fact that power generation from coal mine methane will continue to be a growing industry over the coming years in certaincountries. For instance, China, where 790 Mm3 of CH4 were drained off in 1999 (Huang, 2000), has 30 Tm3 of estimated CBM potential in the developed mining areas (Zhu, 2000). The estimate by Tyler et al. (1992) of the in-place gas in the United States is about 19 Tm3, while Germany's total estimated coalbed methane resources are 3 Tm3, very similar to Polish or English resources (World Coal Institute, 1998).This increase in the CBM commerce has opened up new lines of research and has allowed the scientific community to increase its knowledge of some of the propertiesof coal and of methane gas, above all with respect to the properties that determine gas flow, which until now had not been sufficiently analyzed. Some of these parameters are the same ones that affect the occurrence of coal mining hazards, as methane has the potential to become a source of different fatal or non-fatal disastrous events.2. Description of the Asturian Central basin and of the 8th CoalbedThe 8th Coalbed of the Riosa–Olloniego unit, located in the Southwest of the Asturian Central Coal Basin (the largest coal basin in the Cantabrian Mountains, IGME, 1985), has CBM potential of about 4.81 Gm3. This is around 19.8% of the estimated resources of the Asturian Central Basin and 12.8 % of the total assessed CBM resources in Spain (Zapatero et al., 2004). 3.84 Gm3 of the CBM potential of the 8th Coalbed belongs to San Nicolás and Montsacro: 1.08 Gm3 to San Nicolás area and 2.76Gm3 to Riosa, down to the −800m level (IGME, 2002).The minable coalbeds of this unit are concentrated in Westphalian continental sediments (Suárez-Ruiz and Jiménez, 2004). The Riosa–Olloniego geological unit consists of three seams series: Esperanza, with a total thickness of 350 m, contains 3–6 coalbeds with a cumulative coal thickness of 3.5 to 6.5 m; Pudingas, which is 700 m thick, has 3–5 coalbeds with a thickness of 5–7m; whereas the Canales series, the most important one, I 800 m thick, with 8–12 coalbeds that sum up to 12–15 m thick. This series, which contains the 8th Coalbed, the coalbed of interest in this study, has a total thickness of 10.26mat SanNicolás and 15.13matMontsacro (Pendás et al., 2004). Fig. 1 shows the geological map of the two coal mines, whereas Fig. 2represents a front view of both mines and the location of the instrumented areas. In this particular study, the 8th Coalbed is situated at a depth of between 993 and 1017 m, in an area of low seismi intensity.Instantaneous outbursts pose a hazard to safe, productive extraction of coal in both mines. The mechanisms of gas outbursts are still unresolved but include the effect of stress, gas content and properties of the coal. Other factors such as geological features, mining methods, bord and pillarworkings or increase in rate of advance may combine to exacerbate the problem (Beamish and Crosdale, 1998). Some of the main properties of the 8th Coalbed favoring gas outbursts (Creedy and Garner, 2001; Díaz Aguado, 2004) had been previously studied by the mining company, in their internal reportsM.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266255Fig. 1. Geological map.as well as in the different research studies cited in Section1: the geological structure of the basin, the stress state of the coalbed and its surrounding wall rock and some properties of both coal-bearing strata and the coalbed itself. The next paragraphs summarize the state of the research when this project started.Many researchers have studied relationships between coal outbursts and geological factors. Cao et al. (2001), found that, in the four mining districts analyzed, outbursts occurred within tectonically altered zones surrounding reverse faults; this could help to delimit outburst-prone zones. In the 8th Coalbed, some minor outbursts in the past could be related to faults or changes in coal seam thickness. Hence, general geological inspections are carried out systematically, as well as daily monitoring of any possible anomalies. But, in any case, some other outbursts could be related neither to local nor general faults.Fig. 2. General location of the study area.M.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266 For some years now, the technical experts in charge of the mine have been studying the stress state of the coalbed by means of theoretical calculations of face end or residual rock mass projections that indicated potential risk areas, based on Russian standards (Safety Regulations for Coal and Oil Shale Miners, 1973).Assuming that there was an initial approach to the stress state, this parameter was therefore not included in the research study presented in this paper. In the Central Asturian Coal Basin, both the porosity and permeability of the coal-bearing strata are very low,the cleat structure is poorly developed and cleats are usually water-filled or even mineralized. Consequently, of 5.10 m3/t. In some countries, such as Australia (Beamish and Crosdale, 1998) or Germany, a gas outburst risk value has been established when methane concentration exceeds 9 m3/t (although close to areas of over-pressure, this risk value descends to 5.5 m3/t). As the average gas contents in the coalbed are comparable with those of the Ruhr Basin (which according to Freudenberg et al., 1996, vary from 0 to 15 m3/t), the values in the 8th Coalbed would be close to the risk values.Desorption rate was considered the most important parameter by Williams and Weissmann (1995), in conjunction with the gas pressure gradient ahead of the face. Gas desorption rate (V1) has been defined as the volume of methane, expressed in cm3, that is desorbed from a 10 g coal sample, with a grain size between 0.5 and 0.8 mm, during a period of time of 35 s (fromsecond 35 to 70 of the test). Desorption rates have been calculated from samples taken at 2 m, 3 m and 7 m, following the proceedings of the Technical Specification 0307-2-92 of the Spanish Ministry of Industry. The average values obtained during the research are: 0.3 cm3 / (10 g·35 s) at 2 m depth, 0.5 cm3 / (10 g·35 s) at 3 m and 1.6 cm3 / (10 g·35 s) at the only paths for methane flow are open fractures. Coal gas content is one of the main parameters that had been previously analyzed. The methane concentration in the Central Asturian Basin varies between 4 and 14 m3/t of coal (Suárez Fernández,1998). Particularly, in the Riosa–Olloniego unit, the gas content varies from 3.79 to 9.89 m3/t of coal (Pendás et al., 2004). During the research, the measured values in the area of study have varied between 4.95 and 8.10 m3/t, with an average value7m.Maximumvalues were of 1.7 cm3 / (10 g·35 s) at 2m depth, 3.3 at 3 m and up to 4.3 cm3 / (10 g·35 s) at 7 m.The initial critical safety value to avoid gas outbursts in the 8th Coalbed was 2 cm3 / (10 g·35 s). Due to incidents detected during this research study, the limit value was reduced to 1.5 cm3 / (10 g·35 s).But other properties, such as coal gas pressure, the structure of the coal itself and permeability, had beeninsufficiently characterized in the Riosa Olloniego unit before this research study.Two methods had been previously employed to determine the gas pressure in the mine: the Russian theoretical calculations for the analysis of the stress state and the indirect measurements of the gas pressure obtained by applying criteria developed for the coalbeds of the Ruhr Basin (Germany), Poland and the former Soviet Union. These indirect measurements were the Jahns or borehole fines test (Braüner, 1994), which establishes a potential hazard when the fines exceed a limiting value. Although there are tabulated values for the coalbeds of the Ruhr Basin, it is not the case for the coals of the Riosa–Olloniego unit. Therefore, in this paper an improvement to the gas pressure measurement technique is proposed by developing a method and a device capable of directly measuring in situ pressures.The 8th Coalbed is a friable bituminous coal, high in vitrinite content, locally transformed into foliated fabrics which, when subjected to abutment pressure, block methane migration intoworking faces (Alpern, 1970). With low-volatile content, it was formed during the later stages of coalification and, as stated by Flores (1998) this corresponds to a large amount of methane generated. Moreover, the coal is subject to sudden variations in thickness (that result in unpredictable mining conditions) and to bed-parallel shearing within the coalbed, that has been considered an influence on gas outbursts (Li, 2001). Its permeability had never been quantified before in this mining area. Thus, during research in the 8th Coalbed it was decided to perform in situ tests to measure pressure transients, to obtain site values that will allow future calculations of site permeability, in order to verify if it is less than 5 mD, limit value which, after Lama and Bodziony (1998), makes a coalbed liable to outbursts.Therefore, in this study we attempted to characterize gas pressure and pressure transients, for their importance in the occurrence of gas outbursts or events in which a violent coal outburst occurs due to the sudden release of energy, accompanied by the release of significant amount of gas (González Nicieza et al.,2001), either in breaking or in development of the coalbed (Hardgraves, 1983).3. ConclusionsCoalbed is still a major hazard affecting safety andproductivity in some underground coal mines. This paper highlights the propensity of the 8th Coalbed to give rise to gas outbursts, due to fulfilling a series of risk factors, that have been quantified for 8th Coalbed for the first time and that are very related to mining hazards: gas pressure and its variation, with high valuesmeasured in the coalbed,obtaining lower registers at Montsacro than at San Nicolás (where 480 kPa were reached in the gas pressure measurements at the greatest depth). These parameters, together with the systematic measurement of concentration and desorption rate that were already being carried out by the mine staff, require monitoring and control. A gas-measurement-tube set was designed, for measuring gas pressure and its variations as well as the influence of nearby workings to determine outburstprone areas. The efficacy of injection as a preventative measure was shown by means of these measurement tubes. Injection decreases the gas pressure in the coalbed, althoughthe test must be conducted maximizing all the precautionary measures, because gas outbursts may occur during the process itself.The instrumentation results indicated the convenienceof mining the 7th Coalbed at least one sublevel ahead of the 8th Coalbed. This means having completed longwall caving of the corresponding sublevel both eastward and westward, and having allowed the necessary time to elapse for distention to take effect. This distention time was estimated between two and three months.The constructed instrumentation likewise allowed the effect of overlapping of workings to be measured: as the longwall caving of the coalbed situated to the roof of the instrumented coalbed approaches the area of advance of the 8th Coalbed, an increase in the pressure of the gas is produced in the 8th Coalbed. This may even triplicate the pressure of the gas and is more pronounced as the longwall caving approaches the position of the measuring equipment. A spatial range of the influence of longwall caving of some 55–60 m was estimated and a time duration of 2–3 months. The main contribution of this article resides in theproposal of measures of control and risk of gas outbursts that complement the systematic measurements in the mine itself, with the aim of improving safety in mining work. This proposal, apart from certain practical improvements in mining work, above all regarding the exploitation sequence, would involve the installation of gas measurement tubes before initiating the advance or at the overlap of workings. It would consist intemporarily detaining the advance in the 8th Coalbed when an overlap of workings may occur or prior to the commencement of an advance in the 8th Coalbed, installing measurement tubes in the face. The values and the trend of the measured gas pressures, together with the values obtained from gas concentration tests, would enable control of the conditions of the coalbed and the establishing of what moment would be appropriate to renew the advance. The gas measurement tubes would hence be a reliable, economic control and evaluation measure of the risk of gas outbursts. Furthermore, this equipment would enable the openingof other lines of research, both for calibrating the time and range of influence of mining work in each advance, as well as for calculating the permeability of the coal. By means of the designed test (gas flow between two gasmeasurement-tube sets), permeability could be estimated by numerical models calibrated with site data, both in areas of the mine that have still to be affected by mining work and in those already subject to mining works. These calibrations would also allow the variation in permeability with the depth of the coalbed itself to be analyzed.References[1] Alexeev, A.D., Revva, V.N., Alyshev, N.A., Zhitlyonok, D.M., 2004.[2] True triaxial loading apparatus and its application to coal outburst prediction. Int. J. Coal Geol. 58, 245–250.[3] Alpern, B., 1970. Tectonics and gas deposit in coalfields: a bibliographical study and examples of application. Int. J. Rock Mech. Min. Sci. 7, 67–76.[4] Beamish, B.B., Crosdale, J.P., 1998. Instantaneous outbursts in underground coal mines: an overview and association with coal type. Int. J. Coal Geol. 35, 27–55.[5] Braüner, G., 1994. Rockbursts in Coal Mines and Their Prevention. Balkema, Rotterdam, Netherlands. 137 pp.[6] Cao, Y., He, D., Glick, D.C., 2001. Coal and gas outbursts in footwalls of reverse faults. Int. J. Coal Geol. 48, 47–63.[7] Creedy, D., Garner, K., 2001. UK-China Coalbed Technology Transfer. Report N° Coal R207 DTI/Pub URN 01/584, 24 pp.[8] Díaz Aguado, M.B., 2004. Análisis, Control y Evaluación de Riesgo de Fenómenos Gaseodinámicos en Minas de Carbón, PhD Thesis, University of Oviedo (Spain) Publishing Service,I.S.B.N.: 84-8317-434-0, 301 pp. (in Spanish, with English Abstract).[9] Durucan, S., Edwards, J.S., 1986. The effects of stress and fracturing on permeability of coal Min. Sci. Technol. 3, 205–216.[10] Flores, R.M., 1998. Coalbed methane: from hazard to resource. Int. J.Coal Geol. 35, 3–26西班牙Riosa–Olloniego煤矿瓦斯预防和治理María B. Díaz Aguado C. González NiciezaAbstract Department of Mining Exploitation, University of Oviedo, School of Mines,Independencia, 13, 33004 Oviedo, Spain摘要在煤矿井下开采环境中必须控制着不同气体的存在。

矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述

矿井通风煤矿瓦斯利用论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述附录A:Status of worldwide coal mine methaneemissions and useUnderground coal mines worldwide liberate an estimated 29–41×109 m3 of methane annually, of which less than 2.3×109 m3 are used as fuel. The remaining methane is emitted to the atmosphere, representing the loss of a valuable energy resource. Methane is also a major greenhouse gas and is thus detrimental to the environment when vented to the atmosphere. Coal mine methane recovery and use represents a cost-effective means of significantly reducing methane emissions from coal mining, while increasing mine safety and improving mine economics.The world’s ten largest coal producers are responsible for 90% of global methane emissions associated with the coal fuel cycle. China is the largest emitter of coal mine methane, followed by the Commonwealth of Independent States, or CIS particularly Russia, Ukraine and Kazakhstan, the United States, Poland, Germany, South Africa, the United Kingdom, Australia, India and the Czech Republic. Most of these countries use a portion of the methane that is liberated from their coal mines, but the utilization rate tends to be low and some countries use none at all. Coal mine methane is currently used for a variety of purposes. Methane is used for heating and cooking at many mine facilities and nearby residences. It is also used to fuel boilers, to generate electricity, directly heat air for mine ventilation systems andfor coal drying. Several mines in the United States sell high-quality mine gas to natural gas distributors. There are several barriers to decreasing methane emissions by increasing coal mine methane use. Many of the same barriers are common to a number of the subject countries. Technical barriers include low-permeability coals; variable or low gas quality, variations in gas supply an demand and lack of infrastructure.Economic and institutional barriers include lack of information pertinent to development of the resource, lack of capital and low natural gas prices. A possible option for encouraging coal mine methane recovery and use would be international adoption of a traceable permit system for methane emissions.1 IntroductionIn recent years, coalbed methane has gained attention as a saleable natural gas resource. Methane can be extracted either from coal seams which will never undergo mining, or it can be produced as a part of the coal mining process. This paper focuses on methane which is produced in conjunction with coal mining operations(coal mine methane). According to the United States Environmental Protection Agency (USEPA, 1994a), underground coal mines liberate an estimated 29 to 41×109 m 3of methane annually, of which less than 2.3×109 m3 are used as fuel. The remaining methane is vented to the atmosphere, representing the loss of a valuable energy resource. This paper examines the potential for recovering and using the methane which is currently being emitted from coal mines.There are three primary reasons for recovering coal mine methane. The first reason is to increase mine safety. Worldwide, there have beenthousands of recorded fatalities from underground mine explosions in which methane was a contributing factor. Using methane drainage systems, mines can reduce the methane concentration in their ventilation air, ultimately reducing ventilation requirements.The second reason is to improve mine economics. By reducing emissions and preventing explosions and outbursts, methane drainage systems can cost effectively reduce the amount of time that the coal mine must curtail production. Moreover, recovered methane can be used either as fuel at the mine site or sold to other users.The third reason for coalbed methane recovery and use is that it benefits the global and local environment. Methane is a major greenhouse gas and is second in global impact only to carbon dioxide; methane thus is detrimental to the environment if vented to the atmosphere. Although the amount of carbon dioxide accumulating in the atmosphere each year is orders of magnitude larger than that of methane, each additional gram of methane released to the atmosphere is as much as 22 times more effective in potentially warming the Earth’s surface over a 100-year period than each additional gram of carbon dioxide (USEPA, 1994a) . Compared with other greenhouse gases, methane has a relatively short atmospheric lifetime. The lifetime of methane (defined as its atmospheric content divided by its rate of removal) is approximately 10 years. Due to its short lifetime, stabilizing methane emissions can have a dramatic impact on decreasing the buildup of greenhouse gases in the atmosphere.Coal mine methane recovery and use represent a cost-effectivemeans of significantly reducing methane emissions from coal mines. Methane, moreover, is a remarkably clean fuel. Methane combustion produces no sulfur dioxide or particulates and only half the amount of carbon dioxide that is associated with coal combustion on an energy equivalent basis.Because of the environmental impact of coal mine methane emissions, the USEPA, the Int ernational Energy Agency’s Coal Advisory Board (CIAB), and others have investigated methane emissions from coal mining worldwide. The USEPA (1994a) estimates that the coal fuel cycle (which includes coal mining, post-mining coal transportation and handling, and coal combustion) emits 35 to 59×109 m3 of methane to the atmosphere annually. Table 1 shows methane emissions from the world’s ten largest coal producers, which are responsible for 90% of global methane emissions associated with the coal fuel cycle. Underground coal mining is the primary source of these emissions, accounting for 70 to 95% of total emissions.There are many opportunities for decreasing coal mine methane emissions by increasing recovery of this abundant fuel. Section 2 examines the status of methane recovery and use in key countries worldwide.2 Coal mine methane recovery and use in selected countries2.1 ChinaThe Peoples Republic of China (China) produces about 1.2×109 raw tons of hard coal annually (EIA, 1996). In 1990, coal mining activities in China emitted an estimated 14 to 24×109 m3 (10 to 16×106 ton) ofmethane to the atmosphere, contributing one-third of the world’s total from this source. Not only is China the largest coal producer in the world; it is unique in that underground mines produce over 95% of the nation’s coal. Because of the great depth and high rank of China’s coals, underground coal mines have higher methane emissions than surface mines.There are currently 108 Coal Mining Administrations (CMAs) in China, which manage more than 650 mines. These state-owned mines are responsible for most of China’s methane emissions, but there are numerous gassy local, township, and private mines that cumulatively produce over one-half of China’s coal. However, these non-states owned mines are not gassy (International Energy Agency or IEA, 1994).2.1.1 Methane recovery and use in ChinaChina has a long history of coal mine methane drainage, and the volume of methane drained has increased markedly during the past decade. Nationwide, coal mine methane drainage at state-run mines nearly doubled in 14 years, increasing from 294×106 m3 in 1980 to more than 561×106 m3 in 1994 .However, this is still less than 11% of the total methane liberated annually. Approximately 131 state-owned mines currently have methane drainage systems. Less than one-half of these mines are set up to distribute and use recovered methane. China’s state-run coal mining administrations use about 70% of the methane they drain (USEPA, 1996a).Most of the methane recovered from Chinese mines is used forheating and cooking at mine facilities and nearby residences. Methane is also used for industrial purposes, in the glass and plastics industries, and as a feedstock for the production of carbon black (an amorphous form of ca rbon used in pigments and printer’s ink). Methane is also being used, to a lesser extent, for power generation. In 1990, the Laohutai Mine at the Fushun Coal Mining Administration built a 1200 kW methane-fired power station, the first in China.Several barriers currently prevent China from developing economic methane recovery from coal mining to its full potential. Critical barriers include the lack of an appropriate policy framework, limited capital for project investments and equipment, the need for additional information and experience with technologies and the lack of a widespread pipeline network. Artificially regulated low gas prices and difficulty with repatriation of profits, create barriers to foreign investment in joint ventures for production of domestic energy resources (USEPA, 1993).2.1.2 The future of methane development in China Recognizing the need for a unified effort in advancing coalbed methane development, China’s highest governing body, the State Council, established the China United Coalbed Methane Company (China CBM) in May 1996. As a single, trans-sectoral agency, China CBM is responsible for developing the coalbed methane industry by commercializing the exploration, development, marketing, transportation and utilization of coalbed methane. The State Council has also granted China CBM exclusive rights to undertake theexploration, development and production of coalbed methane in coopera- tion with foreign partners (China Energy Report, 1996). More than 20 coalbed methane projects are underway or planned in China, and at least half of them are taking place at active mining areas. Some of the projects are state-sponsored, while others involve joint ventures with foreign companies. The future of the coalbed methane industry in China appears bright. The government recognizes coalbed methane’s potential for meeting the nation’s burgeoning energy needs and is generally supportive of efforts to develop this resource. With deregulation of energy prices, increased capital investment in pipeline infrastructure, and ongoing research efforts, China can likely overcome its remaining barriers to widespread coalbed methane use. 2.2 Russia, Ukraine and KazakhstanIn 1994, Russia produced more than 169×106 ton of hard coal; Kazakhstan produced nearly 104×106 ton and Ukraine more than 90×106 ton. The coal mining regions of these republics liberate approximately 5.3×109 m3 of methane annually, of which less than 3% is utilized. This amount represents about 20% of world methane emissions from underground coal mining.The energy sectors of these Republics are at a turning point. The coal mining industry, in particular, is undergoing restructuring, a process which includes decreasing or eliminating subsidies, and closing many of the most unprofitable mines. The industry is being compelled to become more efficient in order to increase profitability. Mining regions are also seeking to mitigate environmental problemsresulting from producing and using coal. Thus, there is an impetus to utilize more natural gas and decrease dependency on low grade coal. Increasing recovery and use of coalbed methane is a potential means of improving mine safety and profitability while meeting the regions’ energy and environmental goals.There are five coal basins in the Commonwealth of Independent States where hard coal is mined and which have the potential for coalbed methane development.They are: (1) the Donetsk Basin (Donbass) , located in southeastern Ukraine and western Russia, (2) the Kuznetsk Basin Kuzbass , located in western Siberia (south-central Russia) , (3)the L’vov-Volyn Basin, located in western Ukraine, which is the southeastern extension of Poland’s Lublin Basin, (4)the Pechora Basin, located in northern Russia and (5) the Karaganda Coal Basin, located in Kazakhstan.Of the five basins, the Donetsk and Kuznetsk Basins appear to have the largest near-term potential for coalbed methane development (USEPA, 1994b). Both of these regions are heavily industrialized and present many opportunities for coalbed methane use.2.2.1 Options for methane use in the CIS2.2.1.1 Heating mine facilities. Currently, most mines use coal-fired boilers to produce steam heat for drying coal, heating mine facilities and heating ventilation air. In some cases, mine boilers also supply thermal energy to the surrounding communities. Boilers can be retrofitted to co-fire methane with coal, a relatively simple and low-cost procedure. More than 20 mines in the Donetsk and PechoraBasins use methane to fuel boilers and several mines also use it for directly heating air for the mines’ ventilation systems and for coal drying (Serov, 1995; Saprykin et al., 1995).2.2.1.2. Use in furnaces in the metallurgical industry. Another viable market for methane use is the metallurgical industry. For example, the city of Novokuznetsk, in the southern portion of the Kuznetsk Basin, contains numerous gassy mines and is one of the biggest centers of metallurgy in Russia. The region’s metallurgical industry consumes about 54 PJ of natural gas annually, which is equivalent to about1.4×109 m3 of methane (USEPA, 1996b) .2.2.1.3. Power generation at mine facilities. Most mines purchase electricity from the power grid. Co-firing coalbed methane with coal to generate electricity on-site may be a more economical option for these mines. Coalbed methane can be used, independently of or in conjunction with coal, to generate electricity using boilers, gas turbines and thermal combustion engines (USEPA, 1994b).2.2.1.4. Use as a motor vehicle fuel. The Donetskugol Coal Production Association in Ukraine is draining methane in advance of mining using surface boreholes. The recovered methane is compressed on-site and used as fuel for the Association’s vehicle fleet. The refueling station, which has been operating for more than three years, produces about 1,000 m3 of compressed gas per day. Based on estimated gas reserves it is expected to operate for a total of eight years ( Pudak, 1995 ).While many mines in the CIS are utilizing their methane resources,the majority are not. Certain barriers must be overcome before recovery and use of coal mine methane becomes widespread. These barriers and their potential solutions are discussed in greater detail in Section 3 of this paper.2.3 The United StatesThere are five major coal producing regions in the United States from which hard coal is mined and which have the potential for coalbed methane development. They are: (1)the Appalachian Basin, located in Pennsylvania, Ohio, West Virginia, eastern Kentucky and Tennessee, (2)the Warrior Basin, located in Alabama, (3)the Illinois Basin, located in Illinois, Indiana and western Kentucky, (4)the Southwestern region, including the Uinta, Piceance, Green River and San Juan Basins located in Colorado, Utah and New Mexico and (5)the Western Interior region, including the Arkoma Basin of Oklahoma and Arkansas.In 1994, an estimated 4.2×109 m3 of methane were liberated by underground mining in these regions, of which less than 0.7×109 m3 were used(USEPA, unpublished data).Currently in the United States, at least 17 mines in six states (Alabama, Colorado,Ohio, Pennsylvania, Virginia and West Virginia)recover methane for profit, primarily through sale to gas distributors. In 1995, the total methane recovered from these mines, including vertical wells draining methane in advance of mining, exceeded 1×109 m3.By maximizing the amount of gas recovered via drainage systems, these mines have greatly reduced their ventilationcosts, improved safety conditions for miners and have collected and sold large quantities of high-quality gas. Following is a brief description of selected coal mine methane recovery activities in the United States.2.3.1 Warrior basin: AlabamaSix of the seventeen US mines with commercial methane recovery systems are located in the Warrior Basin of Alabama. Today, energy companies recover methane from the Warrior Basin by horizontal wells, gob wells(in areas being mined )and vertical wells(in both mined and unmined areas). Most of this gas is sold to regional natural gas distributors, although there is some on-site mine use. In 1995, four mines operated by Jim Walter Resources produced more than 380×106 m3 of methane for pipeline sale and USX’s Oak Grove Mine recovered an estimated 117×106 m3 of methane for use.2.3.2 Appalachian regionEight mines in Virginia and West Virginia have developed successful methane recovery and use projects. The Consol mines in Virginia are the most well-documented examples. Consol produces gas from a combination of vertical wells that are hydraulically stimulated, horizontal boreholes and gob wells drilled over longwall panels. In 1995, Consol produced approximately 688×106 m3 of saleable methane from three mines. Methane recovery efficiency at these mines is higher than 60%.2.3.3 Southwestern regionThe Soldier Canyon Mine in Utah recovered about 10.9×106 m3 ofmethane for sale annually until early 1994, when production was curtailed and gas sales ended due to low market prices.2.3.4 SummaryWhile methane recovery has been economically implemented at the above-described mines, safety and high coal productivity remain the impetus for their degasification efforts. Methane drainage at many gassy mines in the United States is limited or nonexistent. Section 3 of this paper discusses potential avenues for increasing methane recovery and use in the United States and other countries.2.4 GermanyGermany produced nearly 54 million tons of hard coal in 1995, all from underground mines (Schiffer, 1995). Of this total, 43 million tons were mined from the Ruhr Basin in northwestern Germany (Von Sperber et al., 1996)and most of the remainder was mined from the Saar Basin in southwestern Germany. Until recently, hard coal mining was heavily subsidized in Germany, and the industry’s future is in question (Schiffer, 1995). Even mines that are closed, however, can continue to liberate methane for long periods of time. An estimated 1.8×109 m3 of methane are liberated annually from underground mining activities in Germany, of which 520×106 m3, or 30%, are drained(63 IEA, 1994). About 371×106 m, or 71% of all drained methane is used, primarily for heating or power generation. Government officials suggest that as much as 45% of the methane emitted from coal mining activities could be drained and used in a variety of applications. The primary barrier to increased methanerecovery is low methane concentrations in the gas mixture.Safety regulations in Germany prohibit any utilization if the methane content is less than 25%. If the average recovery efficiency at German mines is to be increased, it will be necessary to adopt practices that will recover methane in a more concentrated form.3 Barriers to decreasing coal mine methane emissionsThere are several barriers to decreasing methane emissions by increasing coal mine methane use. Some are technical, such as low coal permeability, while others are Institutional, such as low gas prices. In a few cases, certain barriers are country orregion specific, but most cases, many of the same barriers exist in a number of countries. This section discusses obstacles to increased coal mine methane use, and potential ways to overcome these obstacles.3.1 Technical issues3.1.1 Low-permeability coalsCoal seams that exhibit low permeability pose special problems for developingsuccessful methane drainage and recovery systems. Methane desorbs and flows through natural pores and fractures until the gas reaches the mine face or borehole. Stimulation technology that enhances the flow of gases from the seam into a recovery system has been successfully used in the past several years. Early efforts to modify fracturing techniques for application in coal seams were largely unsuccessful (IEA, 1994). The current practice of hydraulic stimulation in coals, however, minimizes roof damage while achievingextensive fracturing. Under ideal conditions, 60 to 70% of the methane contained in the coal seam can be removed using vertical degasification wells drilled more than 10 years in advance of mining. These efforts have been successful in the United States and other industrialized countries. Transfer of this technology to other countries can help increase coal mine methane recovery.3.2 Economic and institutional issuesIn addition to the technical obstacles described above, there are a variety of other issues that have prevented coal mine methane recovery from becoming more widespread.These issues include lack of information, lack of capital, low natural gas prices and risks associated with foreign investment. Some issues are explored below.The key strategy for overcoming informational barriers in the United States has been to develop outreach programs. Outreach programs work well when companies are shown that they can profit while at the same time reducing emissions or improving mine safety. Examples of outreach prog rams include the USEPA’s Coalbed Methane Outreach Program, which is conducted in the United States, and the Coalbed Methane Clearinghouses in Poland, China and Russia. These institutions distribute information and link together interested parties, provide technical training, and in some cases perform pre-feasibility assessments for specific projects.3.2.1 Lack of informationIn the United States and other countries, one of the problems thathas slowed coal mine methane project development is that some coal mine operators do not have adequate information regarding coal mine methane projects. While much has been published on the subject, methane recovery is still seen as a relatively new concept to many coal operators. A related constraint is that some coal operators simply do not have the time or resources to investigate the potential to develop a profitable project at their own coal mine.3.2.2 Lack of capitalEven when a pre-feasibility assessment has demonstrated that the economics of a coal mine methane project are attractive, a lack of financing may prevent projects from taking place. Coal companies often do not have surplus capital available to invest in coalbed methane recovery and use projects because available capital must be invested in their primary business of coal production. Additionally, some lending organizations may be unfamiliar with the relatively new concept of coal mine methane recovery and use, and project developers may thus be unable to secure the necessary up-front financing needed to cover the large capital investments required for such projects.3.2.3 Low natural gas pricesIn some countries natural gas prices are held at artificially low rates. Even in countries whose gas prices are at market levels, prices may be low due to low demand. In such cases, special types of incentives to encourage coal mine methane recovery could be implemented. For example, legislation could be enacted requiring local distributioncompanies to purchase recovered coal mine methane if it is sold at a competitive price. China has recently established preferential policies for projects which involve gas recovery and use from coal mines. The government has also passed a law exempting coalbed methane producers from royalties and land occupation fees for production of up to 2×109 m3 of methane per year.4 ConclusionsAs discussed above, coal mines worldwide emit large volumes of methane, much of which could be recovered and used as fuel. In many instances, countries whose mines emit large quantities of methane are in critical need of a domestic energy source, particularly one which is clean-burning. In countries whose economies are in transition, such as China, the former Soviet Union and the Eastern European nations, coal mine methane recovery offers economic benefits as a new industry that can help provide jobs for displaced coal miners or other workers. In countries whose economies are established, such as the United States, the United Kingdom and Australia, coal mine methane recovery may help increase the profit margin of mining enterprises.The reduction of methane emissions can have a significant global impact, but incentives are needed to encourage more widespread recovery of coal mine methane. An incentive program offered on an international level would probably be the most effective means of stimulating development of the coal mine methane industry. Of the various options for international-level incentives, a system of tradeable permits for methane emissions would likely be the most cost effective.Due to various technical, economic and institutional barriers, it will never be possible to completely eliminate emissions of methane from coal mines. However, a worldwide coal mine methane utilization rate of 25% may be realizable, particularly if an international incentive program is implemented. This would reduce the estimated emissions of coal mine methane to the atmosphere by 7 to 10×109 m3 annually, substantially reducing greenhouse gas emissions and curtailing the waste of a valuable energy source.附录B全球煤矿瓦斯涌出及利用现状全球煤矿每年释放瓦斯29~41×109m3,其中少于2.3×109m3的瓦斯用作燃料,其余的被直接排放到大气中,这是能源的一种浪费。

煤矿方面外文翻译资料

煤矿方面外文翻译资料

Conveyor belt entry fire hazards and controlH. Verakis & M. HockenberryU.S. Department of Labor, Mine Safety and Health Administration, Triadelphia, West Virginia, USA ABSTRACT: A fire in a coal mine conveyor belt entry represent a major safety and health risk to miners. Fighting belt entry fires can be a commanding effort. If there is a failure of one aspect in the fire fighting needs such as a dissimilar hose-valve connection, then it can result in the inability to extinguish a fire. Fire incident data compiled over nearly 30 years for underground coal mines shows that fires in belt entries account for 15-20 percent of the total number of fires. Fires in the belt entries of coal mines have resulted in injuries and fatalities. New regulations have been promulgated that require an unplanned fire not extinguished within 10 minutes of discovery to be reported to the Mine Safety and Health Administration (MSHA). A fire that is not extinguished within several minutes may take hours or days to extinguish or may require sealing a section or the mine in some cases. The current fire protection regulations in the U.S. Code of Federal Regulations (CFR), Title 30, Part 75 are designed to prevent or control the fire hazards present in a belt entry. These requirements and other factors affecting belt entry fires are discussed, including fire detection and warning, fire suppression devices, type and location of fire fighting equipment, waterlines, and cleanup and removal of combustible materials. The fire suppression systems used to extinguish/control a belt fire and the effect of ventilation on the propagation of conveyor belt fires are also discussed.1IntroductionA fire occurring in an underground coal mine conveyor belt entry represents a major safety and health risk to miners. If the fire is small when discovered, it most likely will be extinguished before becoming a major conflagration. Fighting a conveyor belt entry fire can be a commanding effort and failure of one aspect can result in losing control of extinguishing the fire.Fire incident data compiled over nearly 30 years for underground coal mines show that fires in belt entries account for 15-20 percent of the total number of fires. Fires in the belt entries of coal mines have resulted in injuries and fatalities. Most of the fire incident data compiled was obtained from mine operator reports of underground coal mine fires lasting 30 minutes or longer. Prior to December 8, 2006, an unplanned underground mine fire not extinguished within 30 minutes of discovery was to be reported by the mine operator to MSHA. However, beginning December 8, 2006, new MSHA regulations (1) require a mine operator to report an unplanned underground mine fire that is not extinguished within 10 minutes of discovery. A fire that is not extinguished within several minutes may take hours or days to extinguish or may require sealing a section or the mine in some cases. The current fire protection regulations in 30 CFR Part 75 are designed to prevent or control the fire hazards present in a belt entry. These requirements and other factors affecting belt entry fires are discussed which include fire detection and warning, fire suppression devices, type and location of fire fighting equipment, waterlines, and cleanup of combustibles. The fire suppression systems used to extinguish/control a belt fire and the effect of ventilation on the propagation of conveyor belt fires are also discussed. 2Conveyor Belt Fire Incident DataA large amount of data has been collected and analyzed on underground coal mine fires (2), (3), (4). The data shows over the past 30 years that fires in conveyor belt entries continue to represent about 15 to 20 percent of all underground coal mine fires. More recent fire incident data for conveyor belt entries in U.S. underground coal mines has been summarized by year, 1980-2005 (4). As indicated in Figure 1, which is prepared from the 1980-2005 data on ignition sources indicated in Francart’s paper (4) and the MSHA presentation on “Reducing Belt Entry Fires in Underground Coal Mines” (5), there were 63 conveyor belt entry fires. Of the 63 fires, friction at the belt drive and along the belt served as the ignition source for 36 percent. Frictional heating continues to be a most common ignitionsource in underground coal mine conveyor belt entry fires.drive18%cutting & welding8%18%3%not determinedFigure 1 – Ignition Sources for U.S. Underground Coal Mine Belt Entry Fires, 1980-2005The data published in Francart’s paper (4) preceded the more recent underground coal mine conveyor belt fire that12th U.S./North American Mine Ventilation Symposium 2008 – Wallace (ed)ISBN 978-0-615-20009-5occurred in the Aracoma Alma Mine No. 1 on January 19, 2006. According to the MSHA Investigation Report (6), the fire occurred as a result of frictional heating when the longwall belt became misaligned in the 9 Headgate longwall belt takeup storage units. This frictional heating ignited accumulated combustible materials. Twenty-nine miners were working underground in the Aracoma Alma Mine No. 1 at the time. During the evacuation process, two of the twelve miners from 2 Section became separated from the remainder of the crew when they encountered dense smoke. Initial attempts to locate the two missing miners and extinguish the fire were unsuccessful. The two miners died as a result of the fire. The remaining twenty-seven miners working underground escaped safely. The fire was eventually brought under control by mine rescue teams and the two deceased miners were found two days later on January 21, 2006. In addition to the MSHA report, an overview of the Aracoma Alma Mine No. 1 fire was presented by Francart (7) to the federal Technical Study Panel on the Utilization of Belt Air and the Composition and Fire Retardant Properties of Belt Materials in Underground Coal Mining ().Subsequent to the conveyor belt fire data presented in Francart’s paper (4), an analysis was made of the MSHA database information reported for underground coal mine fires for 2006 through July 2007 (8). There were two reported underground coal mine belt entry fires in 2006, one of which was the Aracoma Alma Mine No.1 fire. There were two reported underground coal belt entry fires that occurred in the period January to June 2007 and each one lasted less than 30 minutes.3Belt and Other Combustible Fire HazardsThe potential risk of fire in a conveyor belt entry of an underground coal mine is high. No coal mine using conveyor belt haulage is immune from a fire involving the conveyor belt. In a conveyor belt entry there is an abundant supply of combustible materials including the conveyor belt itself, coal and coal fines, grease and oil and possibly wooden supports. Belt entry fires have occurred from various sources of ignition as shown in Figure 1. It doesn’t take much time for a conveyor belt fire to build in intensity and create a potentially lethal atmosphere. Conveyor belt fires have burned as much as 610 meters (2000 feet) of belting. A conveyor belt that has poor resistance to fire will spread flames along the exposed surfaces of the belt and eventually ignite other combustibles such as the coal. As the belt fire progresses and extends to other combustibles, the concentrations of toxic gases increase to potentially lethal levels. The mine ventilation can be disrupted from a propagating conveyor belt fire. The disruption of the ventilation can introduce a threat of explosion from the accumulation of methane and the release of flammable gases. As an example, mine rescue teams fighting a conveyor belt fire at the Marianna Mine were withdrawn because high levels of methane accumulated, posing the threat of explosion (9). Large-scale conveyor belt tests have shown the magnitude of the fire hazard, including the various flammability characteristics of conveyor belting as affected by the ventilating airflow and the potential of the fire to spread to other combustibles (10), (11), (12), and (13). These large-scale conveyor belt fire tests have shown that a ventilating airflow of about 92 meters per minute (300 feet per minute) is optimum for flame propagation. Figure 2 shows the propagation of a conveyor belt fire during a large-scale test at the National Institute for Occupational Safety & Health (NIOSH) Lake Lynn Laboratory.Increasing the fire resistance of the conveyor belting and limiting the amount of combustibles in the belt entry are among the measures that will reduce the potential for a disastrous fire. As a matter of fact, the accumulation of combustible materials was the most frequently cited underground coal mine safety standard (30 CFR 75.400) by MSHA enforcement personnel in 2006(). Cleanup of combustible materials, particularly the extraneous coal is one of the most important fire safety measures in a belt entry.The federal Technical Study Panel on the Utilization of Belt Air and the Composition and Fire Retardant Properties of Belt Materials in Underground Coal Mining has made recommendations that encompass conveyor belt entry and conveyor maintenance and improved fire resistant standards for conveyor belting. Information on the Panel’s recommendations and final report may be found on MSHA’s website at/BeltAir/BeltAir.aspFigure 2 – Propagation of a Conveyor Belt Fire during a Large-scale Test at the NIOSH Lake Lynn Lab4Fire Protection RequirementsThere are extensive MSHA regulations addressing belt conveyor fire protection and control in 30 CFR, Part 75, Subpart L, Fire Protection (14). The regulations address slippage and sequence switches, fire resistant conveyor belting, fire detection and warning systems, fire hose and waterlines including suitable fittings, and automatic firesuppression equipment. For underground coal mines thatuse belt air to ventilate working sections there are fire protection requirements specified in the MSHA regulations under Part 75, Subpart D Ventilation (15). Another source is the U.S. Department of Labor eLaws® which include an MSHA Fire Suppression and Fire Protection Advisor. This Advisor provides minimum fire protection requirements for underground coal mine electrical equipment which includes conveyor belts(/elaws/msha/fire/fire_3.asp).The MSHA regulations pertaining to conveyor belt fire protection and control are minimum requirements intended to reduce the incident of fire in a belt entry and to control a fire should one develop. Of primary importance are properly designed and maintained fire detection and fire suppression systems. The requirements for the use and installation of fire suppression systems, including water deluge, water sprinklers, foam generator, and dry powder chemical systems are specified in 30 CFR, Part 75, SubpartD (14). The importance of properly designed fire suppression systems, particularly as the use of wider belts increases, is one of the outcomes from on-going large-scale research being conducted by NIOSH in partnership with MSHA on the suppression of conveyor belt fires. The design of a fire suppression system must include measures to appropriately cover wider belts with the fire suppressing agent and to address the effect of higher rates of airflow where employed in belt entries. Also, early fire detection through the use of carbon monoxide (CO) and smoke detectors, is critical to alerting miners and attending to a fire incident and can mean the difference between extinguishing a fire and having to contend with a fire that has grown out of control. Another key component is waterlines used with a fire hose for fighting a fire in a belt entry. Waterlines shall be capable of delivering 189 liters (50 gallons) of water a minute at a nozzle pressure of 3.5 kilograms per square centimeter (50 pounds per square inch). This is a minimum performance standard specified in 30 CFR, Part 75.1100-1(a) and is commonly referred to as the “50/50” rule. The length, size and type of hose affect compliance with this performance standard because water flowing through a hose will create pressure loss along the hose due to friction. The magnitude of this friction pressure loss will depend upon the water flow rate and the length, size and type of hose (16).Undoubtedly, those measures needed to reduce the hazards of conveyor belt entry fires are prevention, early detection, improved belt fire resistance, proper response and communication, extinguishment, and proper maintenance and examinations. Another source of detailed information for fire prevention and control in underground coal mine belt entries is the National Fire Protection Association Standard 120 (17). Other key factors are preparedness and proficient response to a fire in a belt entry. An excellent source for fire preparedness is the report “Fire Response Preparedness for Underground Mines” prepared by Ron Conti, et. al. (18). 5Cost of Belt Entry FiresThere are inherent costs associated with a conveyor belt entry fire, especially if the fire is not quickly extinguished. These costs can encompass lost production days, costs for extended work hours, extinguishment costs for chemical agents and equipment, costs of sealing a section of the mine or the mine itself, and costs for rehabilitation of the affected area(s).The effect and impact of the Marianna Mine fire is an example of the expenses that are incurred in fighting a belt-entry fire. Personnel and equipment from nearby mines were brought to the mine to fight the fire. Food, lodging, and wages were provided for these personnel by the mine operator. When the rescue teams were withdrawn, all equipment was left in the mine, and mines that loaned the equipment were reimbursed. More than 30 boreholes were drilled in an attempt to form underground seals for controlling the fire by using materials pumped from the surface. Access rights were purchased from landowners, and roadways were cleared and built so that drilling equipment could be installed. Material was pumped into the mine through the boreholes in an attempt to create underground seals. When this attempt to extinguish the fire failed, the entire mine was sealed. During the 30 days between the discovery of the fire and sealing of the mine, the direct cost of the fire fighting efforts was reported to have been between $5 and $6 million. Costs other than the fire fighting efforts not included in this $5 to $6 million amount would significantly increase the total cost of the Marianna Mine fire. The annual lost revenue at the time of the fire in 1988 would have been about $24 million. Miner benefits were maintained for a time following the mine shutdown. Underground mining supplies, equipment, and firefighting equipment owned by the mine operator were left underground when personnel were withdrawn. The cost of this abandoned mining equipment alone was in the millions of dollars. Of the 327 employees employed at the Marianna mine site, only a few remained employed in mining. In the case of the Marianna underground coal mine conveyor belt entry fire that occurred in 1988, the significant cost impact was the permanent sealing and closing of the mine and the loss of resources.6SummaryA primary fire hazard in a conveyor belt entry is the belt itself. The fire resistant level of a conveyor belt will have a significant impact on the occurrence and extent of a belt entry fire, should one develop. The first line of defense in strictly limiting the propagation of fire involving a conveyor belt is to use a conveyor belt of high fire resistance. The safety measures discussed for conveyor belt fire protection and control are systems that encompass redundancy. Early detection of a fire is paramount to determining the nature of a fire incident and subsequent warning of miners. Nonetheless important are all the other requirements and measures that address slippage and sequence switches, fire hose and waterlines, automatic firesuppression equipment, cleanup of combustibles, proper maintenance, communications, and fire response and preparedness. The combination of all the safety elements discussed is intended to reduce the hazard of conveyor belt entry fires. The success in this endeavor will not only result from the regulations, policies and technologies employed, but also from the dedication of the mine operator and miners to belt entry fire safety.ReferencesConti, Ronald, S., Chasko, Linda, L., Wiehagen, William, J., and Lazzara, Charles, P., “Fire Response Preparedness for Underground Mines,” National Institute for Occupational Safety and Health, Information Circular 9481, 2005.DeRosa, Maria, I., “Analysis of Mine Fires for All U.S.Underground and Surface Coal Mining Categories: 1990-1999, U.S. Bureau of Mines Information Circular 9470, 2004.Fires,” U.S. Bureau of Mines Report of Investigations 9570, 1995.Francart, W.J., “Reducing belt entry fires in underground coal mines,” 11th U.S./North American Mine Ventilation Symposium, Mutmansky & Ramani (eds),2006.Francart, W.J., Overview of a Fatal Mine Fire, Aracoma Alma Mine #1, occurred on January 19, 2006, presentation at the Technical Study Panel on the Utilization of Belt Air and the Composition and Fire Retardant Properties of Belt Materials in UndergroundCoal Mining, May 16, 2007, Salt Lake City, Utah. Lazzara, Charles, P., and Perzak, Frank, J., “Conveyor Belt Flammability Studies,” Proceedings of the Twenty-first Annual Institute on Coal Mining Health, Safety and Research, August 1990.Marianna Mine No. 58 (ID No. 36-00957), Beth Energy Mines, Inc., Mine Safety and Health Administration Report of Investigation, Mine Fire, Marianna Borough, Washington County, Pennsylvania, March 7,1988.MSHA Program Policy Letter No. P06-V-2, “Interpretation of 30 CFR 75.1100-1 and 2 Regarding Water DeliveryCapability of Coal Mine Waterlines When Fighting aFire with a Fire Hose and Nozzle,” 2006.MSHA, “Reducing belt entry fires in underground coal mines,” presentation made to the Technical Study Panel on the Utilization of Belt Air and the Composition and Fire Retardant Properties of Belt Materials in Underground Coal Mining, March 29, 2007, Pittsburgh, PA.MSHA database for reported underground coal mine fires from 2006 through July 2007.National Fire Protection Association, Standard 120, “Standard for Fire Protection and Control in Coal Mines,” Quincy, MA, 2004 Edition.Perzak, Frank, J., Litton, Charles, D., Mura, Kenneth, E., and Lazzara, Charles, P., “Hazards of Conveyor Belt Pomroy, William, H. and Carigiet, Annie, M.,“Analysis of Underground Coal Mine Fire Incidents inthe United States From 1978 Through 1992,” U.S,Bureau of Mines Information Circular 9426, 1995. Report of Investigation, Fatal Underground Coal Mine Fire, Aracoma Alma Mine #1, Aracoma Coal Company, Inc. Stollings, Logan County, West Virginia, I.D. N0. 46-08801, occurred January 19,2006, U.S. Department of Labor, Mine Safety & Health Administration, 2007.U.S. Code of Federal Regulations, Title 30, Part 75, Subpart L, Fire Protection, July 1, 2007.U.S. Code of Federal Regulations, Title 30, Part 75, Subpart D, Ventilation, Section 75.350, 75.351, and75.352, July 1, 2007.U.S. Code of Federal Regulations, Title 30, Part 50, Section 50.2 Definitions, 50.2h(6), July 1, 2007. Verakis, Harry, C., “Reducing the Fire Hazard of Mine Conveyor Belts,” Proceedings of the Fifth U.S. MineVentilation Symposium, Society for Mining, Metallurgy and Exploration (SME), 1991.Verakis, Harry C and Dazell, Robert, W., “Impact of Entry Air Velocity on the Fire Hazard of Conveyor Belts,”Proceedings of the Fourth International Mine Ventilation Congress, July 1988.。

煤矿安全专业外文文献(中英文对照)

煤矿安全专业外文文献(中英文对照)

附录 A关于煤矿安全监控系统技术的研究Zhi Chang, Zhangeng Sun & Junbao GuSchool of Mechanical and Electronic Engineering, Tianjin Polytechnic UniversityTianjin 300160, China前言:无线射频的新的发展和运用使得RFID(射频识别)技术的应用越来越广泛。

同时结合矿山与RFID技术的特点,我们建立了一个地下的安全完整的、实时灵活的监测系统。

这套系统能在发生危险时自动报警并且提高搜索和救援的效率。

该系统可以管理危害气体的浓度、规划工人的安排、进出巷道通过工作的访问控制、巷道人员的分布和工人的资料,实现地下管理的信息化和可视化,提高矿业生产管理水平和矿井安全生产水平。

关键词:射频识别,安全监控系统,电子标签,读写器煤矿事故往往发生在中国近几年,除了矿业主的安全和法律意识薄弱,滞后的安全机构和采矿的人员和设备的不完善管理人员是重要原因。

通过分析近期内一些十分严重的事故,一般存在以下常见问题:(1)地面人员和地下人员之间的信息沟通不及时;(2)地面人员不能动态地掌握井下人员的分布和操作情况,并且不能掌握地下人员的确切位置;(3)一旦煤矿事故发生,救援效率低,效果较差。

因此,准确、迅速实施煤矿安全监控职能非常重要和紧迫,有效管理矿工,并确保救援高效率的运作。

文章中提出的煤炭采矿人员和车辆安全监测系统可以跟踪、监视和定位在矿井实时的有害气体,人员和车辆以及提供有关网络的矿井巷道,个人的定位,车辆的位置,危险区域的动态信息和地面人员相应线索。

如果发生意外,该系统还可以查询有关人员的分配,人员数量,人员撤离路线,以提供从事故救援监视计算机科学依据。

同时,管理人员可以利用系统的日常考勤功能实施矿工考勤管理。

一、RFID技术简介射频识别是一种非接触式自动识别技术进行排序,可以自动识别的无线电频率信号的目标,迅速跟踪货物和交换数据。

煤炭英文文献

煤炭英文文献

煤炭英文文献Coal is a fossil fuel that has played a significant role in the development of human civilization. It is a combustible sedimentary rock composed primarily of carbon, hydrogen, and oxygen, as well as small amounts of other elements such as sulfur and nitrogen. Coal has been a crucial energy source for centuries, powering industries, generating electricity, and heating homes.The history of coal dates back thousands of years, with evidence of its use by ancient civilizations such as the Chinese, Romans, and Greeks. In the 18th century, the Industrial Revolution in Europe marked a significant turning point in the widespread adoption of coal as a primary energy source. The invention of the steam engine, which was fueled by coal, revolutionized transportation and manufacturing, leading to rapid industrialization and economic growth.Today, coal remains one of the most abundant and widely used fossil fuels globally. According to the International Energy Agency, coal accounts for approximately 27% of the world's primary energy supply and 38% of global electricity generation. The largest coal-producing countries include China, India, the United States, Australia,and Indonesia, with these nations collectively accounting for over 80% of the world's total coal production.The use of coal, however, is not without its challenges and controversies. Coal combustion is a significant contributor to air pollution, releasing various harmful pollutants such as sulfur dioxide, nitrogen oxides, particulate matter, and carbon dioxide. These emissions have been linked to respiratory health issues, acid rain,and climate change. Concerns over the environmental impact of coal have led to the development of cleaner coal technologies, including carbon capture and storage, as well as the exploration of alternative energy sources, such as renewable energy.Despite these concerns, coal continues to play a crucial role in the global energy mix, particularly in developing countries where it remains a relatively affordable and accessible energy source. Governments and industries are grappling with the need to balance the demand for energy with the imperative to reduce the environmental impact of coal usage.In recent years, there has been a growing focus on the research and development of clean coal technologies. These technologies aim to mitigate the environmental impact of coal by reducing emissions, improving efficiency, and exploring ways to capture and store the carbon dioxide produced during coal combustion. Examples of cleancoal technologies include:1. Flue Gas Desulfurization (FGD): This technology removes sulfur dioxide from the exhaust gases of coal-fired power plants, reducing the release of this harmful pollutant into the atmosphere.2. Selective Catalytic Reduction (SCR): SCR systems use catalysts to convert nitrogen oxides (NOx) into nitrogen and water, reducing the emission of this pollutant.3. Integrated Gasification Combined Cycle (IGCC): IGCC technology converts coal into synthesis gas, which is then used to generate electricity through a combined-cycle power plant, resulting in higher efficiency and lower emissions compared to traditional coal-fired power plants.4. Carbon Capture and Storage (CCS): CCS technologies capture the carbon dioxide produced during coal combustion and store it underground or utilize it for other industrial processes, preventing its release into the atmosphere.5. Advanced Combustion Technologies: Innovations in coal combustion, such as supercritical and ultra-supercritical boilers, have improved the thermal efficiency of coal-fired power plants, leading to reduced emissions and fuel consumption.In addition to technological advancements, the coal industry is also exploring ways to diversify its product portfolio and find new applications for coal-derived materials. This includes the development of coal-to-chemicals and coal-to-liquids technologies, which can convert coal into valuable chemicals and liquid fuels, respectively.Furthermore, the coal industry is investing in research and development to improve the environmental performance of coal mining and processing. This includes efforts to reduce water usage, minimize land disturbance, and reclaim mined areas to restore the natural ecosystem.Despite the challenges and controversies surrounding coal, it remains an important energy source for many countries around the world. As the global community continues to address the pressing issue of climate change, the coal industry is working to develop and implement cleaner and more sustainable technologies to reduce the environmental impact of coal utilization. The future of coal will likely involve a delicate balance between meeting energy demands and minimizing the environmental footprint, as the world strives to achieve a more sustainable energy future.。

矿山安全管理英文作文

矿山安全管理英文作文

矿山安全管理英文作文英文:Mining safety management is a crucial aspect of the mining industry. As someone who has worked in the industry for many years, I can attest to the importance of implementing effective safety measures to protect workers and prevent accidents.One of the most important aspects of mining safety management is proper training. All workers should receive comprehensive training on safety procedures and protocols before they begin working in the mine. This includes training on how to use safety equipment, how to identify potential hazards, and how to respond in the event of an emergency.Another key component of mining safety management is regular inspections and maintenance of equipment and facilities. This helps to ensure that everything is in goodworking order and reduces the risk of accidents caused by equipment malfunctions or structural issues.It's also important to have clear communication channels in place to ensure that everyone is aware of safety procedures and any potential hazards. This includes regular safety meetings and the use of signage and other visual aids to remind workers of safety protocols.Ultimately, effective mining safety management requires a commitment from everyone involved in the industry, from management to workers on the ground. By prioritizing safety and taking proactive measures to prevent accidents, we can ensure that everyone goes home safely at the end of each shift.中文:矿山安全管理是矿业行业中至关重要的方面。

怎么保护煤矿资源英语作文

怎么保护煤矿资源英语作文

怎么保护煤矿资源英语作文英文:As a responsible citizen, it is crucial for us to protect coal mine resources. There are several ways to achieve this goal. Firstly, we should promote the use of clean and renewable energy sources, such as solar and wind power, to reduce our reliance on coal. This not only helps to protect coal mine resources, but also contributes to a cleaner environment.Secondly, we need to invest in advanced technology for coal mining to minimize the environmental impact. For example, using modern equipment and techniques can help to reduce the amount of land disturbance and water pollution caused by coal mining. Additionally, implementing strict regulations and enforcement measures can ensure that coal mining companies are held accountable for their actions and are required to adopt environmentally-friendly practices.Furthermore, raising public awareness about the importance of protecting coal mine resources is essential. By educating people about the negative consequences ofover-exploitation and the benefits of sustainable use of coal, we can encourage individuals and businesses to make more environmentally-conscious choices.In conclusion, protecting coal mine resources is a collective responsibility that requires the cooperation of governments, businesses, and individuals. By promoting clean energy, investing in advanced technology, and raising public awareness, we can ensure the sustainable use of coal mine resources for future generations.中文:作为一个负责任的公民,保护煤矿资源对我们来说至关重要。

采矿专业外文文献翻译----煤矿瓦斯预防和治理

采矿专业外文文献翻译----煤矿瓦斯预防和治理

西班牙Riosa–Olloniego煤矿瓦斯预防和治理María B. Díaz Aguado C. González NiciezaAbstractDepartment of Mining Exploitation, University of Oviedo, School of Mines, Independencia,13, 33004 Oviedo, Spain摘要矿井中有很多气体影响着煤矿工作环境,在这些气体中,甲烷是重要的,他伴随着煤的产生而存在。

尽管随着科技的发展,但我们始终无法完全消除。

瓦斯气体随着开采深度的增加而增多。

甲烷排放量高的地方,也适用于其他采矿有关的情况,如在生产率和它的产生的后果,增加深度:在控制日益增加的甲烷量的方面有很多困难,主要是提高机械化,使用爆炸品,而不是密切关注瓦斯控制系统。

本文的主要目的是建立实地测量,使用一些不标准的采矿控制风险评估方法的一部分,并分析了深部煤层瓦斯矿井直立的行为,以及防止发生瓦斯事故的关键参数。

最终目标是在开采条件的改善,提高矿井的安全性。

为此,设置了两个不同的地雷仪表进行矿井控制和监测。

这两个煤矿属于Riosa- Olloniego 煤田,在西班牙阿斯图里亚斯中央盆地。

仪器是通过subhorizontal 能级开采的,一个约1000 米的山Lusorio 根据实际深度覆盖的地区。

在本研究中,一个是有利于瓦斯突出的易发煤(第八层),测定其气体压力及其变化,这将有助于提供以前的特征以完成数据,并评估第一次测量的网站潜在的爆发多发地区提供一些指导。

本文运用一个气体测量管设计了一套用于测量一段时间由于附近的运作的结果,计算低渗气压力以及其变化..本文建立了作品的重叠效应,但它也表明了两个预防措施和适用功效,即高压注水和一个保护煤层(第七层)的开采,必须优先开采保护层以防止瓦斯气体的涌出。

这两项措施构成的开采顺序,提高矿井安全性。

安全工程专业中英文文献翻译-煤炭自燃

安全工程专业中英文文献翻译-煤炭自燃

Spontaneous combustion of coalCoal undergoes slow oxidation on exposure to air at ambient temperatures, with the evolution of heat, gases and moisture, the heat generated, if not dissipated, gives rise to an increase in the temperature of the coal. As the temperature of the coal rises, the rate of oxidation increases. If this is allowed to proceed unchecked it can eventually result in the ignition of the coal. This oxidation process is known as spontaneous combustion or spontaneous heating or self-heating. Self-heating, therefore, occurs when the rate of heat generation exceeds the rate of oxidation.During recent years there has been a renewed interest in the spontaneous combustion of coal in all coal mining countries particularly because of the use of caving methods and the thicker seams being mined. Large-scale bulk storage and bulk transport of coal have also become more important with the increase in coal trade.Evaluation of the potential of coal for spontaneous combustionSeveral methods have been used to evaluate the potential of coal for spontaneous combustion but none is clearly superior. The most common methods used are described blow.Oxygen absorptionIn this method, a coal sample is placed in a container and oxygen or air is added to it. The amount of oxygen absorbed by the coal is estimated from the analysis of the gaseous reaction products. The temperature increase per unit of oxygen consumed indicates potential of coal for spontaneous combustion.Heating rate/crossing-point temperatureIn this method, a coal sample is placed in a bath and heated at a constant rate. Initially, the temperature of the coal lags behind the temperature of the bath but as coal begins to self-heat, the temperature of the coal first coincides with and then exceeds the temperature of the bath. The crossing-point temperature is known as the ‘relative ignition temperature’. Usually, the crossing –point temperature is used as a measure of the potential of coal for spontaneous combustion although the index based on the ratio of heating rate to crossing-point temperature is more suitable because the spontaneous combustion potential of coal not only depends on the ignitiontemperature but also on the rate of heat generation.Adiabatic calorimetryIn this method, a coal sample is placed in an insulated bath, and the whole system is heated to a pre-selected temperature. Oxygen or air is then added to it and oxidation of the coal raises its temperature. Since no heat is lost to the surroundings, the change in the temperature of the coal in a given time, the time needed to reach a pre-selected temperature, or the amount of heat generated per unit time indicates the potential of coal for spontaneous combustion.Isothermal calorimetryIn this method, a coal sample is placed in a large bath held at a constant temperature. Heat generated in the coal sample due to spontaneous combustion is measured by thermocouples and dissipated in the relatively large heat sink. The amount of heat generated per unit time gives an indication of the potential of coal for spontaneous combustion.Factors contributing to spontaneous combustionCoal characteristicsSome coals are more prone to spontaneous combustion than others. The rate of oxidation of coal depends upon many factors, including rank, presence of pyrite, particle size, moisture content, temperature, extent of previous oxidation of coal and the composition of the ambient air.It is generally accepted that as the rank of coal decreases, the risk of spontaneous combustion increases.The presence of pyrite increases the potential of coal for spontaneous combustion, particularly when the pyrite concentration exceeds 2 % and when it is very finely distributed. Pyrite accelerates spontaneous combustion by swelling and causing disintegration of the coal mass, thereby increasing the surface area available for oxidation.The smaller the coal particle, the greater the exposed surface area and the greater the tendency toward spontaneous combustion. Friable coals which produce a considerable amount of fines when mined are more vulnerable to spontaneouscombustion.The changes in moisture content of the coal affect the potential of coal for spontaneous combustion. It has been found that the rate of oxidation increases with an increase in moisture content. Also, wetting is an exothermic process and drying is an endothermic process.Airflow rateFor spontaneous combustion to develop, the rate of heat generation should be more than the rate of heat dissipation. At very high airflow rates almost unlimited oxygen for the oxidation of coal is available but dissipation of the heat generated by oxidation is very efficient. A low flow rate restricts the amount of oxygen available , but does not allow the heat generated to be dissipated. A critical flow rate is one that provides sufficient oxygen for widespread oxidation but does not dissipate the heat generated.Geological factorsThe presence of faults in coal seams often contributes to the development of heating in coal mines by allowing air and water to migrate into the coal seams. Zones of weakness which usually develop in the area around the faults also aid in the development of heating.The temperatures of the strata increase with depth. Therefore, the oxidation rate will increase with depth, making deeper seams more vulnerable to spontaneous combustion. On the other hand, the higher rank of coal found in these seams decreases the chances of heating.Thick coal seams are often considered to have more potential for spontaneous combustion because the working of these seams is invariably accompanied by high losses of coal in the goaf areas. The low thermal conductivity of coal compared with that of shale or sandstone is also a contributory factor.When a coal seam under a shallow overburden is mined, the goaf areas become connected to the surface by cracks and fissures. Air and water from the surface can gain access to the coal and increase the potential for spontaneous combustion. Similarly, when multi-seams in close proximity are worked, the cracks and fissuresdeveloped in the intervening strata increase the potential for spontaneous combustion of the surrounding unmined seams, particularly the undermined seams.Mining practiceSome of the most common places where spontaneous heatings occur are goaf areas and unconsolidated wastes, pack wall a high proportion of coal, the edges of goaves where high strata pressure causes crushing, roof falls and floor heaves, crushed pillars, regulators doors and air crossings and constrictions in the roadways.Coal left in goaf areas is very liable to spontaneous combustion as the air movement there is very sluggish, and any heat generated as g result of oxidation will not be removed.In coal mines, coal is left in the roof and/or floor to support the weak adjoining strata or bands of inferior quality coal which are left unmined. However on long standing, roof falls and floor heaves occur causing large-scale crushing of the left coal and creating conditions susceptible for heating.Pillars that have been standing for a long time are prone to heating, particularly when they are liable to crushing.Regulators, doors and air crossings are points of high air leakage, the air moving through the fractures in the solid coal around them. The greater the pressure difference across them, the greater the leakage. Constrictions of mine roadways also cause leakage of air. Changes in ventilation, either intentional or accidental, may cause excessive air leakages or may suddenly bring moist air into contact with dry coal.Goaf areas, where a large amount of coal is left and particularly where a bleeder ventilation system is used to clear gas from the gofa, present optimal conditions for spontaneous heating.Incubation periodThe term ‘incubation period’generally implies the time required for the oxidation of coal, in suitable circumstances, to cause a rise in temperature to its ignition point. It depends on the characteristics of the coal, the air leakage and the heat accumulation in the environment. For low-rank coals, the time period generallyvaries between 3 and 6 months, but with high-rank coals the period varies between 9 and 18 months. The incubation period can be extended by reducing fissuration and/or air leakage. Under adverse conditions, the period can be less than 2 weeks, especially with low-rank coals.Prevention of spontaneous combustionPrevention of spontaneous combustion is based on two factors: (1) elimination of coal from the area and (2) control of ventilation so as to exclude oxygen entirely from the area, or to supply a sufficient flow of air to dissipate the heat efficiently as it is generated and before a critical temperature is reached. The methods adopted depend upon the local situation.Mining layoutWhen designing mining layouts for seams liable to spontaneous heating it is essential that the general layout of the mine is simple and that each area can be quickly and effectively sealed off. The relative positions of the various districts in the seam and surrounding seams must also be taken into account. It is essential to follow descending order of extraction when mining multiple seams.The panel system is an appropriate one for mining seams liable to spontaneous combustion. This system facilitates effective sealing with a few stopping. The size and configuration of the panels depend upon the method of mining, the seam contours and other geological considerations. If necessary, the panels must be of a size which would permit complete extraction within the incubation period. The size of panel barriers needs to be sufficient for stability.When working seams by the bord and pillar method, the size of the pillars must be sufficient to avoid excessive crushing. This also applies to coal pillars left at the start of longwall faces.When working a seam by a longwall, the retreating method is preferable as it eliminates leakage currents through the goaf area.On completion of production from a panel, reclamation of material should be completed without delay and the panel adequately sealed as quickly as possible.Air leakageAs far as is practicable, the formation of leakage paths should be minimised by providing adequate support, e.g. adequately sized pillars and good gateside packs. If this is not sufficient to prevent air leakage, leakage paths should be sealed off by sealant coating or injection.Fractures extending to the surface offer a source of air leakage into sealed areas. Artificial sealing from the surface, usually by sand, can prevent such leakage.Doors, regulators and stoppings should be properly sited. Unnecessary stopping and starting of main and booster fans should be avoided. When a panel has ceased production and is to be stopped off, the ventilation pressure difference should be balanced across the old panel. Balancing the ventilation pressure is not a substitute but a complementary requirement for effective stoppings.InhibitorsIn storage areas and surface stock piles, certain chemical agents can be applied to the coal surface which can hinder the penetration of oxygen into the coal by sealing the surface pores and thereby stopping initiation of auto-oxidation of coal at ambient temperatures. Surface stock piles can also be sealed off by consolidation and bitumen. Stock piles can be so designed as to reduce air movement through them.Detection of spontaneous combustionThe development of heating underground is accompanied by the progressive appearance of:(1) haze formed when air heated by an incipient fire meets colder air;(2) sweating or condensation on the roof and exposed surfaces due to the moisture formed by combustion;(3) goaf stink or fire stink with a characteristic smell, variously described as musty, oily, petrolic, aromatic or tarry;(4) smoke in airways; and(5) fire.In the past, reliance has been placed on these indications for the detection of spontaneous combustion, although it has never been satisfactory for the reason that the spontaneous combustion must have reached an advanced stage, thus seriouslylimiting the time available for control, reclamation of equipment and sealing off.Modern methods of early detection of spontaneous combustion are based on changes in air composition. The oxidation leading to the spontaneous combustion of coal consumes oxygen from the air and produces carbon dioxide and carbon monoxide. Carbon dioxide is produced in much greater quantities than carbon monoxide but its presence cannot be used as an indication of the onset of spontaneous combustion because of the high base levels in fresh air (3000ppm) which make small changes undetectable. On the other hand, there is no carbon monoxide in fresh air and virtually none in a panel intake so that a change in level of a few parts per million can mean a severalfold increase.Exhausts from diesel engines and blasting fumes are two common sources of carbon monoxide underground but their effects can be distinguished from a gradual increase or trend due to spontaneous combustion because they are basically intermittent in nature.In panels where ventilation conditions are steady, even a small change in the concentration of carbon monoxide in the return airway may be sufficient to detect a spontaneous heating condition. Fluctuations in ventilation affect the concentration of carbon monoxide by dilution but an allowance for this can be made by calculating either the carbon monoxide/oxygen deficiency ratio or the actual production of carbon monoxide.Carbon monoxide/oxygen deficiency ratio(Graham ’s ratio)The calculation of this ratio depends on the constant ratio of oxygen to nitrogen in fresh air. The formula for the calculation is:22222265.010004.7993.20100.O N CO O N CO ratio def O CO -=-= where CO ,2N and 2O are the percentages of the gases present at any given time in a sample of air coming from the suspected area in a mine.Every mine and every panel has its own typical value or ‘norm’ for the make of carbon monoxide and for the carbon monoxide/oxygen deficiency ratio depending on the oxidation of the coal and the conditions in which it is mined. Any analysis showing a higher value than the norm determined should be followed by resampling. Confirmation of continuous increase warrants immediate investigation underground.Typical values of the carbon monoxide/oxygen deficiency ratio for underground coal mines are given below:0.4 or less – normal value0.5 – necessity for a thorough check-up1.0 –heating is almost certain2.0 – heating is serious, with or without the presence of active fire3.0 – active fire surely existsContinuous monitoring of carbon monoxide in mine airAutomatic monitoring for carbon monoxide is done in mines susceptible to heating. Automatic monitoring also permits the determination of carbon monoxide trends and absolute values using microprocessors without the need to relate them to oxygen deficiency.Continuous monitoring of carbon monoxide at a number of strategic points in the mine can give timely warning of the onset of spontaneous combustion and permit delineation of areas in a mine. Computerised data collection systems with graphic displays and a continuous graphical record permit easy recognition of the changes in background levels and enable exhausts from diesel equipment or other sources to be distinguished.Two types of analysers are available available for continuous monitoring of carbon monoxide in the air: (1) the infra-red analyzer and (2) the electrochemical analyzer. Only the infra-red analyzer is available in a form approved for use in underground coal mines.There are two systems used in monitoring. In one system, the analysers are installed at various points underground and they either record the percentage of carbon monoxide on site or telemeter the results to some convenient pointunderground or on the surface. In the other system, lengths of tube are installed from the sampling points to the surface and the samples drawn through these tubes are analysed sequentially. This system is known as the tube bundle system.The main advantage of installing on-site analysers underground lies in the immediate availability of results. But analysers are dedicated instruments and can monitor only carbon monoxide. The advantage of the tube bundle system is that is provides a sample for analysis on the surface which can be analysed for all gases. The limitation of this system is the delay between the air entering the tube at the sampling point and its subsequent analysis on the surface. For detecting spontaneous combustion, a delay of one or possibly two hours in getting the results of the samples is not a serious matter because spontaneous combustion has a relatively long incubation period.Generally, for large installations involving many sampling points, the tube bundle system is much less expensive than a system in which each point has a separate analyzer. The costs of pneumatic tubing are normally comparable with the wiring costs for analysers installed underground; however, the tube bundle system requires only one analyzer, whereas the other system requires an analyzer at each point underground. This reduces the cost of the tube bundle system substantially. Moreover, maintenance costs for a single analyzer and pumping station are lower than for a system containing many individual analysers, each of which must be periodically checked, cleaned, or adjusted for sensitivity. (However, when the system is to be used for monitoring ventilation during a sealing-off operation, on-site analysters are far superior due to the instant availability of results.)Control of spontaneous combustionThe method adopted for dealing with spontaneous combustion once it has occurred must depend upon the position and intensity of the heating, the likelihood of accumulation of inflammable gas and the accessibility of the heating from the point of view of ventilation and treatment. The three basic methods of control are:(1) the extraction of the hot coal;(2) the use of extinguishing agents; and(3) the exclusion of oxygen from the affected area.When the seat of heating is accessible to the existing transport system, the heated coal may be dug out and removed from the time. Under such circumstances care is usually taken to prevent the coal from catching fire while in transport by covering it with stone dust liberally as it is loaded. The disturbance of heated coal, which has been near its ignition temperature, often results in its inflammation. Steps must be taken to protect workers loading burning coal.Water under pressure as a means of controlling underground heatings must be used with caution particularly when there is no through ventilation because this would generally only aggravate the fire and introduce the risk of ignition due to a semi-water gas/producer gas reaction. Bentonite slurry, if available, may be used instead of water.The final expedient in dealing with the control of heatings underground is the sealing off of an area, thus isolating it from the rest of the mine. The object of sealing-off is to prevent further access of oxygen to the site and if done effectively there will be a gradual diminution of the amount of oxygen available until the stage is reached where the atmosphere within the sealed area will no longer support combustion.煤炭自燃煤通过于空气接触发生了缓慢的氧化作用,产生大量的水蒸气,释放出热量,当热量没有消散时,引起煤温的继续升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤矿安全外文翻译文献(文档含英文原文和中文翻译)基于WSN的煤矿安全监控系统的研究摘要在本文中,我们使用无线传感器网络监控煤矿的经验进行了阐述。

在一个节点上的多传感器可以捕获各种各样的环境数据,包括矿山的振动,矿井温度,湿度和气体浓度,和环境参数、控制风扇运转。

网络由许多无线传感器节点组成。

煤矿安全监控方案发展从可以保存汇聚节点接收到的数据,并实时显示和分析各种的信息来供决策。

1 背景与介绍煤炭安全生产关系到国民经济的发展,如今,中国的煤矿安全信息系统是基于有线网络,随着煤炭开采的加速,有线网络在扩展,灵活性,覆盖率等方面具有严重不足。

为了解决这些问题,无线网络是最好的选择。

ZigBee是一种先进的数据通信技术,具有低速率,低功耗,协议简单,成本低,良好的扩展性,容易形成无线网络等特点。

相比现有煤矿监测设备,节点构成的无线传感器网络的更小,更轻,更易于大规模部署。

由于数据采集和传输方式是通过无线电台,节点挂钩传感器,可以打破电线电缆的约束,并可以使部署更加方便,灵活。

此外,大规模的和灵活的部署节点对于矿工来说使得更好的本地化工作。

因此,它具有重要的现实意义,将这一新技术和新方法,应用在煤矿安全信息系统的设计中。

2 系统的结构本文设计了一个煤矿安全监控系统,它是基于ZigBee2007无线通信协议,采用TI 公司生产的CC2530芯片做无线数据传输。

煤矿安全监控系统由三部分组成:控制中心,协调和终端节点。

终端节点有两种类型:全功能设备(FFD ),部分功能的移动设备( RFD )。

监督控制中心软件是以TI的Z -位置引擎,它显示了各监测点的位置和状态信息,它是一个在整个潜在风险区域的地理信息的图形化描述。

协调也是一个网关,它获得FFD和RFD的所有信息,然后发送到控制中心的节点上然后通过监控软件来更新状态消息。

此外,他还要广播控制中心的指示。

FFD是路由器,它SA节点组链接在一起,并提供多希望消息,它与其他路由器和终端设备相关联,而RFD仅仅是一个终端设备。

我们知道,整个监控系统可以分离的两个子系统,煤矿井下环境调查和数据收集子系统和矿山集中智能信息管理子系统。

本文将主要介绍煤矿井下环境调查和数据采集子系统。

考虑矿山井下的环境的实际情况,RFD主要负责用于收集矿工的生理功能,然后通过无线通讯方式将其发送到FDD,FDD由具有路由功能,可以收集环境参数的节点,然后将数据上传到管理中心。

矿山井下系统主要通过无线网络设备的链接,可靠的通信应用来保证它的正常工作。

地面矿山系统包括各类综合服务体系,服务平台体系,监测分析系统和紧急行动中心等等,这些通过TCP/ IP网络连接设备连接。

3 系统设计3.1硬件设计。

在系统中的每个终端节点组成的CC2530,振动传感器,气体传感器,温度和湿度传感器,射频模块,电源模块,无线收发信机的天线和复位电路模块。

基于CC2530的传感器节点的硬件结构示于图1。

这个节点是仅作为终端节点,预留外接电源接口和UART端口外部LPC1756板是为了满足不同的应用需求; ZigBee协议;移植后的TinyOS操作系统做准备。

图1基于CC2530的传感器节点硬件结构图无线电射频模块之间的数据传输是基于IEEE802.15.4。

为了降低系统的成本,缩短产品开发周期和降低的难度,功耗,提高发射功率,考虑接收灵敏度,芯片的成本,协议堆栈的成本因素以及芯片和外围元件的数量需等,这些选择一个芯片要主要考虑的因素。

最后,TI的免费协议栈的ZigBee芯片CC2530的ZigBee-2007被挑选出来。

行业标准的增强型8051 MCU与RF收发器,其发射功率为1mW,接收灵敏度为-94dBm,当符号错误率是1%,电流损耗小于0.6μA当系统处于待机模式,当RF为2.4GHz,其数据传输速率是240KB/ s的所有参数满足系统设计的需求。

3.6V的锂电池,电压转换电路是由电源管理模块,它有两个输出通道提供不同的电压和电流供给无线射频模块和传感器检测模块。

作为一个网关,需要协调与控制中心的沟通,这是与终端节点所不同的,所以我们需要在硬件设计上添加另一个通信端口,此端口可以广泛使用,因为这个系统并不是专为一些计算机、单片机或PLC设计的。

因此,RS-232和USB接口都适用于这个它。

汇聚节点的硬件结构如图2所示。

图2汇聚节点硬件结构此模块是汇聚节点的主板的一部分,特殊应用程序也可以使用它作为一个普通节点; UART接口的RF模块的一部分,则可以保留通过电源接口,此模块的CC2530射频模块作为一个群集节点模块时,上述结构未配备传感器;主板上的设计的网络接口连接到以太网,GSM模块主要使用GPRS或3G数据通信功能,通过终端传感器网络和公共网络(3G),进行远程控制或远程扩展监测。

3.2软件设计ZigBee无线传感器网络的有三种类型的节点:协调器,路由器(或FFD)和终端设备(或RFD)是在图3中所示的无线传感器网络节点的工作状态图。

这种设计采用了由TI公司,这是免费的和半开放源码的ZigBee协议栈Z-stack2007提供。

Z-stack2007是由MAC层,物理层和应用层,网络层之间的通信的设备和活动,消息路由网络发现的网络设备在初始化的Z-stack2007是负责的。

ZigBee标准定义了三种类型的设备,每个设备都有自己的功能要求,ZigBee协调器启动和配置网络。

同时,它是负责正常工作并保持在与其它网络设备通信。

一个ZigBee网络只允许一个ZigBee协调。

ZigBee路由器负责重发的消息发送到其他设备。

电网的ZigBee和树型网络可以有多个ZigBee路由器。

ZigBee终端节点通过ZigBee网络可以执行它自己的相关的功能和与其它网络设备进行通信。

图3 WSN节点的工作状态图图4 无线传感器网络节点软件的的工作流程图由于ZigBee的WSN网关,协调器会自动启动网络的形成。

在那之后,它会等待,直到所有的节点附近完成加盟网。

然后,协调器会发送指令收集信息,如连接状态,传感器数据和位置数据,然后发送到控制中心,最后监控软件更新各种状态值。

所有这些过程都在一个定时执行周期内完成的。

WSN中节点的软件工作流程图如图四所示。

4 结论一种新的煤矿安全监控系统的开发,它包括智能,低成本,低功耗和低维护敏感的传感器和ZigBee无线传感器网络。

该系统可以监视该气体的浓度,温度和湿度和敏感振动,对潜在的危险进行早期警告;减少生命和财产损失。

基于无线传感器网络,这个系统是容易被部署,同时它克服了现有系统的缺点。

因此,可以说它弥补现有系统的弱点。

整个系统以无线传感器网络技术为核心,增强了系统的灵活性,可维护性和可扩展性,同时系统的调制和开放式结构,使系统能有一个良好的可能性。

我们评估这个设计,并获得了一些有益的经验,将有利于我们的后续工作。

Research on Mine Safety Monitoring System Based On WSNAbstractIn this paper our experiences using a wireless sensor network to monitor the coal mines are described. The multi -sensor in one node can capture a variety of environmental data, including the vibration of the mine, the mine temperature, humidity and gas concentration, and environmental parameters control operation of the fan. Network consists of many wireless sensor nodes. Mine safety monitoring program has been developed to save the received data from sink nodes and show it on real time and analyze all kinds of information for decision function.© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of China Academy of Safety Science and Technology, China University of Mining and Technology(Beijing), McGill University and University of Wollongong.Keywords: CC2530; ZigBee; wireless sensor network;Mine-monitoring system;sensor node1. BACKGROUND AND INTRODUCTIONCoal production safety is related to the development of the national economy, nowadays, the coal mine safety information system of China is based on cable network, with the acceleration of coal mining, the wired network has the serious insufficiency in aspects and so on extension, flexibility, coverage fraction all. In order to solve these questions, the wireless network is the best choice. ZigBee is an up-to-data communication technology, with the low gear rate, low power loss, simple agreement, low cost, good extension, easy forming wireless networks. In contrast with existing coal mine monitoring equipment, the nodes that constitute the wireless sensor network are smaller, lighter and easier for large-scale deployment.As data acquisition and transmission approach is through wireless radios, the nodes linked sensors can break the constraint of wire and cable and make the deployment more convenient and flexible. Moreover, the large-scale and flexible deployment of nodes makes for better localization of miners. Therefore, it has momentous practical significance to apply this new technology and new method in the design of coal mine Safety Information System[1].2. STRUCTURE OF THE SYSTEMThis paper designed a mine safety monitoring system, It is based onZigBee2007 wireless communication protocol, adopts the CC2530 chip produced by TI company to doing wireless data transmission. The mine safety monitoring system consists of three parts: control center, coordinator and terminal nodes. There are two kinds of terminal nodes: full-function device (FFD) and reduced-function device (RFD). The supervising software on the control center is based on TI’s Z-Location Engine, it shows the location and the status messages of all the monitoring sites[2], and it is a graphical description of the geographical information of the entire potential risk area. The coordinator is also a gateway; it acquires all the information from FFD and RFD, and then transmits to the control center to update the status messages of nodes on the supervising software. Besides, it broadcasts instructions from control center. FFD is a router, it s a node that links groups together and provides multi-hoping for messages[2]. It associates with other routers and end-devices, while a RFD is just an end device.As we can see, the whole monitoring system can be separated in two subsystems, investigating environment and collecting data subsystem down the mine and centralized intellectualinformation managing subsystem up the mine. This article will mainly introduce environment investigating and data collecting subsystem down the mine[2].Considering the practical situation of the environment under the mine, RFD are mainly responsible for collecting physiological features of the miners, and then send them to FDD via wireless communication way. FDD consists of nodespossessing routing functions which can collect environmental parameters in time, and then upload the data to administration center. The down mine systems mainly link by wireless network equipments to apply reliable communication. The upper mine system includes various kinds of integrated service system, service platform system, monitoring analytical system and emergency operations center, etc. These equipments connect through TCP/IP internet connection.[2][3].3. SYSTEM DESIGN3.1. Hardware designEach terminal node in the system is composed of CC2530, vibration sensor, gas sensor, temperature and humidity sensor, radio frequency module, power supply module, wireless transceiver antenna and reset circuit module. The CC2530-based sensor node hardware structure is shown in Fig. 2. This node is only as terminal nodes; Reserved external power supply interface and UART port is intended to external LPC1756 board to meet different application needs; The ZigBee agreement; post-transplant TinyOS to prepare the operating system。

相关文档
最新文档