数学北师大版九年级下册圆内接正四边形
北师大版九年级数学下册《圆——圆内接正多边形》教学PPT课件(2篇)

⊙O的六等分点,顺次连接AB,BC,CD,DE,EF,FA,便得到正六边
形ABCDEF.
E
D
O
F
A
C
B
典例精析
例、 用尺规作圆的内接正方形.
已知:如图,⊙O.
求作:正方形ABCD 内接于⊙O.
O
练一练
作法:
你能简单说明下如
何用尺规做出两条
为切点的⊙O的切线,
∴∠OAP=∠OBP=∠OBQ=∠OCQ.
∴∠PAB=∠PBA=∠QBC=∠QCB.
A
T
E
B
O
Q
S
C
D
R
新知探究
⌒ ⌒
又∵AB=BC,
∴AB=BC,
P
A
T
∴△PAB与△QBC是全等的等腰三角形.
∴∠P=∠Q,PQ=2PA.
同理∠Q=∠R=∠S=∠T,
QR=RS=ST=TP=2PA,
最小要___ _cm.
课堂练习
5.如图,已知正三角形ABC的边长为6,求它的中心角、半径和边心距.
解:设这个正三角形的中心为点O,
A
连接OB,OC,作OH⊥BC于点H,
则∠BOC=360°÷3=120°,
O
∴∠BOH=60°.
在Rt△BOH中,
BH=BC=3,∠OBH=30°,
OH= , =
顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫
做该正多边形的外接圆.
新知讲解
怎样由圆得到多边形呢?
定义:把一个圆 n 等分(n ≥ 3),依次连结各分
点,所得的多边形是这个圆的内接正多边形.
北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。
通过学习,学生能够理解圆的内接四边形的性质,并能够运用这些性质解决相关问题。
本节课的内容是九年级数学的重要知识点,也是高考的考点之一。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、圆的性质等基础知识。
但圆的内接四边形的性质较为复杂,需要学生通过实例探究、推理归纳等方法来理解和掌握。
同时,学生需要具备一定的空间想象能力和逻辑思维能力。
三. 教学目标1.理解圆的内接四边形的性质。
2.能够运用圆的内接四边形的性质解决相关问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的内接四边形的性质。
2.如何运用圆的内接四边形的性质解决实际问题。
五. 教学方法1.实例探究:通过具体的图形,引导学生探究圆的内接四边形的性质。
2.推理归纳:引导学生运用已知的数学知识,推理归纳出圆的内接四边形的性质。
3.小组讨论:学生在小组内讨论如何运用圆的内接四边形的性质解决实际问题。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解圆的内接四边形的性质。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察圆的内接四边形,引发学生的思考。
2.呈现(10分钟)利用教学课件,呈现圆的内接四边形的性质,引导学生直观地理解。
3.操练(10分钟)让学生通过观察、思考、推理等方法,归纳出圆的内接四边形的性质。
4.巩固(10分钟)通过一些相关的练习题,巩固学生对圆的内接四边形性质的理解。
5.拓展(10分钟)引导学生运用圆的内接四边形的性质解决实际问题,培养学生的运用能力。
6.小结(5分钟)对本节课的内容进行总结,强调圆的内接四边形的性质及其运用。
7.家庭作业(5分钟)布置一些相关的作业,让学生进一步巩固所学知识。
九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件

Image
12/10/2021
第四十五页,共四十五页。
第四十页,共四十五页。
当圆周角的顶点(dǐngdiǎn)在优A B弧 18°.
上时,AB所对的圆周角为
当圆周角的顶点在劣弧 A B上时,AB所对的圆周角为 180°-18°=162°,
∴综上所述答案为:18°或162°.
答案:18°或162°
第四十一页,共四十五页。
【一题多变】
已已知知圆圆内内接接正正三三角角形形(zhè(nzɡhèsnāɡn sjāinǎojixǎíonɡx)í的n3ɡ)面的积面为积为,则,该则圆的该内圆接的正内 边边形形的的边边心心距距是是 (( B ))
径,外接圆半径和高的比是(
)D
A.1∶2∶ B.2∶3∶4 3
C.1∶ ∶2 D.1∶2∶3
3
第四十四页,共四十五页。
内容(nèiróng)总结
8 圆内接正多边形。正多边形:_______________,_______________的多边。这个圆叫做这
No 个正多边形的___________.这个多边形叫。2.尺规作图:(1)因为与半径相等的弦长所对的圆心角。
第三页,共四十五页。
第四页,共四十五页。
这个(zhè ge)圆叫做这个(zhè ge)正多边外形接的圆___________.这个多边形
做圆内接正多边形.
第五页,共四十五页。
【探究二】应用(yìngyòng)等分圆周的方法作正多边形: 1.应用量角器,根据相等的圆心角所对的弧____相__等__(_xi,āngděng) 把360°的圆心角n等分,依次连接各个分点,得到圆内 接正n边形.
北师大版初三数学下册《圆的内接四边形》教学设计

所以 α+β+γ+δ=180°
而 β+γ=∠A,α+δ=∠C,
∴∠A+∠C=180°,可得,圆内接四边形的对角互补.
(四)性质及应用
定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.
(对A层学生应知,逆定理成立, 4点共圆)
例 已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
巩固练习:教材P98中1、2.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
求证:CE∥DF.
(分析与证明学生自主完成)
说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标:
(一)知识目标
【精品教案】北师大版 九年级下册数学 圆周角和圆心角的关系 -教师版(基础)

圆周角和圆心角的关系【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)ODCBA要点二、圆内接四边形 1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补. 【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ »»»»90AB BC CD DA ====°, ∴ ∠BEC =45°. 类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角.【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B. 4 C.4D.8【答案】C.提示:∵∠A=22.5°,DABCO∴∠BOC=2∠A=45°, ∵⊙O 的直径AB 垂直于弦CD , ∴CE=DE,△OCE 为等腰直角三角形, ∴CE=OC=2, ∴CD=2CE=4.故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补,∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.BACDO举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.【巩固练习】一、选择题1.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°(第1题图)(第2题图)2.如图所示,∠1,∠2,∠3的大小关系是().A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠1 3.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°(第3题图)(第4题图)(第5题图)5.如图,四边形ABCD 内接于⊙O ,若∠BOD=138°,则它的一个外角∠DCE 等于( ).A .69°B .42°C .48°D .38°6.(2015•酒泉)△ABC 为⊙O 的内接三角形,若∠AOC=160°,则∠ABC 的度数是( ) A .80° B . 160° C . 100° D . 80°或100°二、填空题7.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _________.8.(2015•镇江一模)在圆内接四边形ABCD 中,∠A,∠B,∠C 的度数之比为3:5:6,则∠D= .9.如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,BD∥OC,则∠B 的度数是 .10.如图,△ABC 内接于⊙O ,AB =BC ,∠BAC =30°,AD 为⊙O 的直径,AD =2,则BD = .11.如图,已知⊙O 的直径MN =10,正方形ABCD 四个顶点分别在半径OM 、OP 和⊙O 上, 且∠POM =45°,则AB = .(第11题图) (第12题图)12.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,则∠A+∠B+∠C=________度.ODABC(第10题图)三、解答题13. 如图所示,AB,AC是⊙O的弦,AD⊥BC于D,交⊙O于F,AE为⊙O的直径,试问两弦BE与CF的大小有何关系,说明理由.14.(2015•嵊州市一模)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠D=70°,求∠CAD的度数;(2)若AC=8,DE=2,求AB的长.15.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D 与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.【答案与解析】一、选择题1.【答案】C;【解析】因为∠A=50°,∠ABC=60°,BD是⊙O的直径,所以∠D=∠A=50°,∠DBC=40°,∠ABD=60°-40°=20°,∠ACD=∠ABD=20°,∠AED=∠ACD+∠D=20°+50°=70°,∠AEB=180°-70°=110°.2.【答案】D;【解析】圆内角大于圆周角大于圆外角.3.【答案】A;【解析】∵弦AB∥CD,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.4.【答案】B;【解析】∠ACD=64°-27°=37°,∠AOD=2∠ACD=74°.5.【答案】A;【解析】∠BAD=12∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.6.【答案】D;【解析】如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.二、填空题7.【答案】它们所对应的其余各组量也分别相等;8.【答案】80°;【解析】设每一份是x.则∠A=3x,∠B=5x,∠C=6x.根据圆内接四边形的对角互补,得∠A+∠C=180°,∠B+∠D=180°,则3x+6x=180°,- 11 -解得x=20°.所以∠D=9x﹣5x=4x=80°.9.【答案】60°;10.【答案】3;11.【答案】;【解析】如图,设AB =x ,在Rt ⊿AOD 中: x²+(2x )²=5², x =, 即 AB 的长=.第11题 第12题12.【答案】90° ; 【解析】如图,连结AB 、BC ,则∠CAD + ∠EBD +•∠ACE=∠CBD +∠EBD +•∠ABE=∠ABC=90°.三、解答题13.【答案与解析】BE=CF .理由:∵AE 为⊙O 的直径,AD ⊥BC ,∴∠ABE=90°=∠ADC ,又∠AEB=∠ACB ,∴∠BAE=∠CAF ,∴»»BECF . ∴BE=CF .14.【答案与解析】解:(1)∵OA=OD,∠D=70°,∴∠OAD=∠D=70°,∴∠AOD=180°﹣∠OAD﹣∠D=40°,∵AB是半圆O的直径,∴∠C=90°,∵OD∥BC,∴∠AEO=∠C=90°,即OD⊥AC,∴=,∴∠CAD=∠AOD=20°;(2)∵AC=8,OE⊥AC,∴AE=AC=4,设OA=x,则OE=OD﹣DE=x﹣2,∵在Rt△OAE中,OE2+AE2=OA2,∴(x﹣2)2+42=x2,解得:x=5,∴OA=5,∴AB=2OA=10.15.【答案与解析】(1)如图,作OH⊥CD于H,利用梯形中位线易证OF=OE,OA=OB,所以AF=BE,AF+EF=BE+EF,即AE=BF.- 12 -- 13 -(2)四边形CDEF 的面积是定值.连结OC,则, 11()2O 6922S CF DE CD H CD =+⋅=⋅⋅⋅=⨯=54(cm 2).。
北师大版数学九年级下册《圆的内接四边形》教学设计1

北师大版数学九年级下册《圆的内接四边形》教学设计1一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。
通过学习,学生能够了解圆的内接四边形的性质,并能够运用这些性质解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本性质和四边形的性质。
但对于圆的内接四边形的性质,可能较为陌生。
因此,在教学过程中,需要引导学生通过观察、思考、探究,从而发现和证明圆的内接四边形的性质。
三. 教学目标1.理解圆的内接四边形的性质。
2.能够运用圆的内接四边形的性质解决实际问题。
3.培养学生的观察能力、思考能力和探究能力。
四. 教学重难点1.圆的内接四边形的性质。
2.如何运用圆的内接四边形的性质解决实际问题。
五. 教学方法采用问题驱动法、探究法、小组合作法等教学方法,引导学生通过观察、思考、探究,发现和证明圆的内接四边形的性质。
六. 教学准备1.准备相关的教学PPT、图片、例题和练习题。
2.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些关于圆的内接四边形的图片,引导学生关注圆的内接四边形,激发学生的学习兴趣。
2.呈现(10分钟)呈现圆的内接四边形的性质,引导学生观察、思考,发现其中的规律。
在此过程中,教师引导学生进行探究,培养学生自主学习的能力。
3.操练(10分钟)通过一些例题,让学生运用圆的内接四边形的性质解决问题。
教师引导学生进行讨论,解答疑问。
4.巩固(10分钟)学生独立完成一些练习题,巩固所学知识。
教师进行个别辅导,帮助学生解决问题。
5.拓展(10分钟)引导学生思考:圆的内接四边形的性质是否只适用于圆的内接四边形?能否推广到其他类型的四边形?从而激发学生的探究欲望。
6.小结(5分钟)对本节课的主要内容进行总结,强调圆的内接四边形的性质及其运用。
7.家庭作业(5分钟)布置一些相关的练习题,让学生回家后巩固所学知识。
北师大版数学九年级下册《圆的内接四边形》说课稿

北师大版数学九年级下册《圆的内接四边形》说课稿一. 教材分析北师大版数学九年级下册《圆的内接四边形》这一节的内容是在学生学习了圆的性质,圆的基本公式,以及四边形的性质的基础上进行的。
本节课的主要内容是研究圆的内接四边形的性质,包括它的对角和以及它的对称性。
这部分内容在数学中占有重要的地位,因为它不仅涉及到圆的性质,也涉及到四边形的性质。
同时,这部分内容也是学生进一步学习圆的方程和圆的切线等知识的基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,他们对圆的性质和四边形的性质有一定的了解。
但是,他们对圆的内接四边形的性质可能还比较陌生,需要通过实例和证明来理解和掌握。
此外,学生的证明能力和逻辑思维能力还在发展中,需要通过教师的引导和启发来提高。
三. 说教学目标1.知识与技能目标:使学生理解圆的内接四边形的性质,能够运用这些性质解决相关的问题。
2.过程与方法目标:通过观察,操作,证明等过程,培养学生的观察能力,操作能力,证明能力和逻辑思维能力。
3.情感态度与价值观目标:使学生体验到数学的优美和严谨,培养他们对数学的兴趣和爱好。
四. 说教学重难点1.教学重点:圆的内接四边形的性质。
2.教学难点:圆的内接四边形的对称性和对角和的证明。
五. 说教学方法与手段在这一节课中,我将采用问题驱动法,引导法,讲解法,讨论法等多种教学方法。
同时,我还将利用多媒体课件和几何画板等教学手段,帮助学生直观地理解和掌握圆的内接四边形的性质。
六. 说教学过程1.导入:通过提问,引导学生回顾圆的性质和四边形的性质,为新课的学习做好铺垫。
2.探究:让学生通过观察,操作,证明等过程,探索圆的内接四边形的性质。
3.讲解:讲解圆的内接四边形的性质,并通过举例和练习来巩固学生的理解。
4.讨论:让学生分组讨论,运用圆的内接四边形的性质解决实际问题。
5.总结:对本节课的内容进行总结,强调圆的内接四边形的性质和应用。
6.作业:布置相关的练习题,让学生巩固所学的内容。
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆心角与圆周角的关系(解析版)

圆心角与圆周角的关系课前测试【题目】课前测试如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2).【答案】(1)M为BD的中点;(2).【解析】证明:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA.又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM.∴△BAM∽△CBM,∴,即BM2=AM•CM.①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则,即DM2=AM•CM.②由式①、②得BM=DM,即M为BD的中点.(2)如图,延长AM交圆于点P,连接CP.∴∠BCP=∠PAB=∠DAC=∠DBC.∵PC∥BD,∴.③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP.而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM.④由式③、④得.总结:本题考查了相似三角形的性质,圆周角的性质,是一道较难的题目.【难度】4【题目】课前测试如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【答案】等边三角形;CP=BP+AP;当点P为的中点时,四边形APBC的面积最大,S四边形APBC=.【解析】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.总结:本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB ≌△ADC 是关键.【难度】4知识定位适用范围:北师大版 ,初三年级,成绩中等以及中等以下知识点概述:圆心角与圆周角的关系是九年级下册第三章的内容,主要讲解了圆周角定理及其三条推论,它是引入圆心角之后又学习的另一个与圆有关的重要的角,该部分内容学习的重点是掌握同弧所对的圆周角与圆心角的关系,难点是应用圆周角定理解决简单问题。
北师大版数学九年级下册《圆的内接四边形》说课稿1

北师大版数学九年级下册《圆的内接四边形》说课稿1一. 教材分析北师大版数学九年级下册《圆的内接四边形》这一节的内容,是在学生已经掌握了圆的基本性质,以及四边形的性质的基础上进行讲解的。
本节内容主要介绍了圆的内接四边形的性质,包括圆的内接四边形的对角互补,以及圆的内接四边形的不稳定性。
这部分内容在高考中经常出现,对于学生来说,既是重点,也是难点。
二. 学情分析九年级的学生,已经具备了一定的数学基础,对于圆的性质和四边形的性质都有了一定的了解。
但是,由于圆的内接四边形的性质比较抽象,学生理解和接受的难度较大。
因此,在教学过程中,需要教师耐心引导,逐步让学生理解和掌握。
三. 说教学目标1.让学生理解圆的内接四边形的性质,能够熟练运用圆的内接四边形的性质解决相关问题。
2.培养学生的逻辑思维能力,提高学生解决问题的能力。
3.通过对圆的内接四边形的性质的学习,激发学生对数学的兴趣,提高学生的学习积极性。
四. 说教学重难点1.教学重点:圆的内接四边形的性质,以及如何运用圆的内接四边形的性质解决实际问题。
2.教学难点:圆的内接四边形的性质的理解和运用。
五. 说教学方法与手段在教学过程中,我会采用讲授法、问答法、小组合作探究法等多种教学方法。
同时,利用多媒体课件,直观展示圆的内接四边形的性质,帮助学生理解和掌握。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考圆的内接四边形的性质。
2.讲解:详细讲解圆的内接四边形的性质,引导学生进行思考和讨论。
3.练习:让学生通过练习,巩固对圆的内接四边形的性质的理解。
4.拓展:引导学生思考圆的内接四边形的性质在其他领域的应用。
七. 说板书设计板书设计简洁明了,主要包括圆的内接四边形的性质,以及如何运用圆的内接四边形的性质解决实际问题。
八. 说教学评价教学评价主要通过学生的课堂表现,练习题的完成情况,以及学生的学习反馈来进行。
对于掌握较好的学生,可以适当给予表扬和鼓励,提高学生的学习积极性。
九下第3章圆4圆周角和圆心角的关系3圆内接四边形作业新版北师大版

(1)试说明:DB平分∠ADC,并求∠BAD的大小; 【解】∵∠BAC=∠ADB,∠BAC=∠CDB, ∴∠ADB=∠CDB.∴DB平分∠ADC. ∵BD平分∠ABC,∴∠ABD=∠CBD. ∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC= 180°.∴∠ABD+∠CBD+∠ADB+∠CDB=180°. ∴2(∠ABD+∠ADB)=180°. ∴∠ABD+∠ADB=90°.∴∠BAD=180°-90°=90°.
证法二:如图,连接BC. ∵AB是⊙O的直径,∴∠ACB=90°. ∵∠PBC=∠BAC+∠ACB,∴∠PBC-∠BAC= 90°. ∵四边形ABCD为⊙O的内接四边形, ∴∠ADC+∠ABC=180°. ∵∠PBC+∠ABC=180°, ∴∠ADC=∠PBC.∴∠ADC-∠BAC=90°.
(2)若∠ACP=∠ADC,⊙O的半径为3,CP=4,求AP的长. 【解】由证法二得∠ADC=∠PBC. ∵∠ACP=∠ADC,∴∠PBC=∠PCA. ∵∠BPC=∠CPA,∴△PBC∽△PCA.∴PPBC=PPAC. ∴PC2=PA·PB. ∵⊙O 的半径为 3,∴AB=6. ∴PA=PB+6.∵CP=4,∴42=(PB+6)·PB, 解得 PB=2 或 PB=-8(舍去).∴AP=2+6=8.
∵∠AOD=120°,∴∠BOC=360°-90°-90°-120°=60°.
∵OB=OC,∴△OBC 是等边三角形.∴BC=OB.
过点 O 作 OE⊥AD 于点 E,
∵OA=OD,∠AOD=120°,AD= 3,
∴∠OAD=∠ODA=30°,AE=DE=12AD=
3 2.
∴∠CAO=∠CAD-∠OAD=45°-30°=15°,OE=12OA.
【答案】C
3 [2022·长春]如图,四边形ABCD是⊙O的内接四边形, 若∠BCD=121°,则∠BOD的度数为( ) A.138° B.121° C.118° D.112°
3.4第2课时圆周角定理的推论2及圆内接四边形(教案)2023春九年级下册数学(北师大版)安徽

实践活动环节,分小组讨论和实验操作让学生们动手动脑,积极参与。但我发现,在小组活动中,个别学生参与度不高,可能是因为他们对问题不够理解或者缺乏自信。在未来的教学中,我需要更多地关注这些学生,鼓励他们积极参与,提供更多的支持和指导。
3.证明圆内接四边形的对角互补。
4.运用圆内接四边形的性质解决实际问题。
本节课将结合教材内容,通过实例分析和几何证明,让学生深入理解圆周角定理推论2及圆内接四边形的性质,提高学生的几何逻辑思维能力和解决问题的能力。
二、核心素养目标
1.让学生通过探究圆周角定理推论2及圆内接四边形的性质,培养几何直观和空间想象能力。
-掌握圆内接四边形的性质:对角线互相垂直且平分。
-学会运用以上知识解决实际问题。
举例解释:
-通过直观的图形展示,强调圆内接四边形对角互补这一核心性质,使学生能够直观感受到这一几何关系。
-通过具体例题,讲解如何应用圆内接四边形的性质来求解四边形的相关问题,如求对角线长度、角度等。
2.教学难点
-理解并证明圆内接四边形对角互补的几何逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆内接四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
专题 圆内接正多边形-九年级数学下册教学课件(北师大版)

(2)
在(1)的基础上,连接BO并延长与DE相交,连
接AG交BO延长线于N,连接CN,如图2所示;
课堂小结
正多边形和
圆 的 关 系
正n边形各顶点等分其外
接圆.
中心
圆内接正
多边形
正多边形的
有 关 概 念
半径
边心距
中心角
正多边形的
有关计算
添加辅助线的方法:
连半径,作边心距
过边心距、边长的一半和内接圆半径构造直角三角
形,通过解直角三角形求解即可.
【详解】解:如图所示,
此正六边形中AB=4,则∠AOB=60° .
∵OA=OB,
∴△OAB是等边三角形,
∵ OG⊥AB,
∴∠AOG=30°,
∴ OG=4×
故选:D.
= .
2.如图,正六边形ABCDEF内接于○O,半径为6,
北师大版九年级下册
第三章 圆
3.8 圆内接正多边形
新课导入
讲授新课
当堂检测
课堂小结
学习目标
1、掌握正多边形与圆的相互关系,理解正多边形与圆的相关
概念;
2、理解并掌握正多边形半径、中心角、边心距、边长的概念
及其相互之间的关系;
3、学会运用正多边形与圆的关系解决与圆相关的几何问题,
注意正多边形与圆的相互联系;
落在阴影区域的概率为 _____.
【答案】
【分析】如图,将阴影部分分割成图形中的小三角
形,令小三角形的面积为a,分别表示出阴影部分的
面积和正六边形的面积,根据概率公式求解即可.
【详解】解:如图,
根据题意得:图中每个小三角形的面积都相等,
北师大版九年级数学下册课件:3.8圆内接正多边形

2
2
22
(2)顺次连接 AB,BC,CD,DA.
知识点一:圆内接正多边形的相关概念
∴正六边形的中心角为60°,边长为4,边心距为 2 3 .
获取新知 知识点二:正多边形的作图 已知⊙O的半径为R,求作⊙O的内接正六边形.
分析:因为正六边形每条边所对的圆心角为 60º, 所以正六边形的边长与圆的半径 相等. 因此,在半径为R的圆上依次截取等于 R 的弦, 即可将圆六等分.
正 多 边 形 的 所以∠ABC = ∠BCD= ∠CDA= ∠DAB=90°. 圆内接正 例2 用尺规作圆的内接正方形. 有 关 概 念 所以正六边形的边长与圆的半径 . 多边形 各边都相等的多边形是正多边形
解:(1)如图①,点O即为所求.
C.2∶3
D.2∶π
一个圆的内接正四边形和外切正四边形的面积的比是( )
所以∠ABC = ∠BCD= ∠CDA= ∠DAB=90°.
即四边形ABCD为⊙O的内接正方形.
随堂演练 1.下列说法正确的是( D ) A.各边都相等的多边形是正多边形 B.一个圆有且只有一个内接正多边形 C.圆内接正四边形的边长等于半径
D.圆内接正n边形的中心角度数为 360o
n
2. 一个圆的内接正四边形和外切正四边形
例2 用尺规作圆的内接正方形. 已知:如图,⊙O. 求作:正方形ABCD内接于⊙O.
作法:
(1)如图,作两条互相垂直的直径AC,BD.
(2)顺次连接 AB,BC,CD,DA.
由作图过程可知,四个中心角都是90°,
所以AB=BC= CD=DA. 因为AC,BD都是直径,
你能简单说明下如 何用尺规做出两条 垂直的直径吗?
F
类比学习
初中数学北师大版九年级下册《第三章 圆 8 圆内接正多边形》教材教案

3.8圆内接正多边形教案课题:3.8圆内接正多边形课型:新授课年级:九年级教学目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念.学习重点:正多边形的概念及正多边形与圆的关系.学习难点:利用直尺与圆规作特殊的正多边形.教法与学学指导:本节课主要采用“学研一体的教学模式”.坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用讲练结合法、引导学生自主学习、合作学习和探究学习.鼓励学生多思、多说、多练.课前准备:教师:多媒体课件、三角板.学生:圆规,铅笔、直尺、练习本.教学过程:一、创设情境,导入新课观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?【处理方式】学生根据教师提出的问题进行思考,回忆学过的有关知识,进而回答教师提出的问题.【设计意图】培养学生的思维品质,将正多边形与圆联系起来.并由此引出今天的课题.二、探究新知,尝试发现活动一:观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形.(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二:分析、发现:问题:正多边形与圆有什么关系呢?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?师生共同归纳:顶点都在同一个圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆.把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内接正n边形.活动三:探究等分圆周问题:为什么等分圆周就能得到正多边形呢?教师在学生思考、交流的基础上板书证明正五边形的过程:如图,∵AB BC CD DE EA====∴AB BC CD DE EA====3BAD CAE AB==∴C D∠=∠同理可证:A B C D E∠=∠=∠=∠=∠∴五边形ABCDE是正五边形.∵A、B、C、D、E在⊙O上,∴五边形ABCDE是圆内接正五边形.教师提出问题后,学生思考、交流自己的见解,教师组织学生进行证明,方法不限.说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:依次连结圆的n(n≥3)等分点,所得的多边形是正多边形;(2)要注意定理中的“依次”、“相邻”等条件.(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.在师生共同作图的基础上,归纳出:正多边形与圆有着密切的联系.圆既是轴对称图形,又是中心对称图形,且它的每一条直径所在的直线都是它的对称轴具有旋转不变性.正多边形也是轴对称图形,正n边形有n条对称轴,当n为偶数时,它也是中心对称图形,且绕中心旋转360n︒,都能和原来的图形重合.结合图4,给出正多边形的中心、半径、中心角、边心距等概念.同样说明正多边形与圆有着很多内在的联系.A【处理方式】学生先试着独立完成,如有疑难可在学习小组内交流,师进行点拨.【设计意图】学生经过思考、讨论、交流,进一步熟悉正多边形的本质特征,掌握运用正多边形的性质、相关概念.活动四:例题探究例.如图:在圆内接正六边形ABCDEF中,半径是OA=4,OM⊥AB垂于M,求这个正六边形的中心角,边长和边心距.分析:要求正六边形的边长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长.解:连接OA,由于ABCDEF是正六边形,所以它的中心角等于3606︒=60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的边长为4.在Rt△OAM中,OA=4,AM=12AB=2利用勾股定理,可得边心距OM=22AMOA-=2224-=32【处理方式】学生先试着独立完成,如有疑难可在学习小组内交流,师进行点拨.【设计意图】学生经过思考、讨论、交流,进一步熟悉正多边形的本质特征,掌握运用正多边形德性质、解决问题,进一步体会图形的特点及在生活中的应用.活动五:做一做利用尺规作一个已知圆的内接正六边形.分析:要画正六边形,首先要画一个圆,然后对圆六等分.在学生作图的基础上,教师组织学生,分析作图.师生归纳出等分圆周的方法:1.用量角器等分圆:依据:同圆或等圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.2.用尺规等分圆.思考:如何作正八边形正三角形、正十二边形?【处理方式】提供充分的时间,鼓励学生用自己的语言表述,教师巡回引导,并集思广益.从而提高学生观察归纳、语言表达、合作交流等能力.【设计意图】鼓励学生用自己的语言表述,在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而使所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力.活动六:方案设计某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉.为了美观,种植要求如下:(1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃.(注意:面积相等必须由数学知识作保证)(2)花卉总面积等于广场面积(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边.请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)要求①尺规作图;②说明画法;③指出作图依据;④学生独立完成.教师巡视,对画的好的学生给予表扬,对有问题的学生给予指导.教师要关注学生对问题的理解,对等分圆周方法的掌握程度.教师提出问题后,让学生认真思考后,设计出最美的图案,并用实物投影展示自己的作品.【处理方式】学生以小组为单位,进行组内交流、讨论、设计自己的作品.教师指导小组讨论,适时进行点拨.【设计意图】解决操作层面问题.可提议用不同方法,以体现学生的创造性.此阶段通过“观察-联想-质疑-归纳-表达”展现知识的形成过程和学生的思考过程,发展学生的智力品质,让学生在获取知识的同时领会一定的数学思想和思维方法,实现学法指导的目的.四、课堂小结:谈一谈,通过本节课的学习,你有哪些收获?【处理方式】学生小组内畅所欲言,互讲本节课的内容,总结本节课所学习的知识和应注意的问题,教师对小组总结情况进行评价.【设计意图】在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而使所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力.五、达标检测,反馈提高1.如图1所示,正六边形ABCDEF 内接于⊙O ,则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°2、半径相等的圆内接正三角形、正方形、正六边形的边长之比为( )A B ,3:2:1C ,1:2:3D3.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36° B .60° C .72° D .108°4.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,•则这段弧所对的圆心角为( ) A .18° B .36° C .72° D .144°(1) (2)5.若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.6.有一个边长为3cm 的正六边形,若要剪一张圆形纸片完全盖住这个正六边形,则这个圆形纸片的最小半径为 .7.在△ABC 中,∠ACB=90°,∠B=15°,以C 为圆心,CA 长为半径的圆交AB 于D ,如图2所示,若AC=6,则AD 的长为________.8.如图所示,已知⊙O 的周长等于6 cm ,求以它的半径为边长的正六边形ABCDEF 的面积.【设计意图】设计此组题旨在从正反两方面灵活掌握圆内接正多边形的相关知识,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.目的是加强学生对圆内接正多边形的 理解,同时也锻炼学生的发散思维.六.分层作业,自由拓展(1)必做题:课本99页 习题3.10 第1题、2题、3题.. (2)选做题:试一试如图⑴⑵⑶⑷,M ,N 分别为⊙O 的内接正三角形ABC ,正四边形ABCD ,正五边形ABCDE ,…正n 边形ABCDE …的边 AB ,BC 上的点,且BM=CN ,连结OM ,ON , ⑴ 求图⑴中∠MON 的度数 ⑵ 图⑵中∠MON 的度数是 .⑶ 请探究∠MON 的度数与正n 边形边数n 的关系为 .⑴ ⑵ ⑶ ⑷【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.板书设计:。
北师大版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练(含答案)

北师版九年级数学下册《圆周角定理的推论和圆的内接四边形》培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格,如图所示的四种情况中合格的是()2. 如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A.110°B.120°C.135°D.140°3. 如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )A.58°B.60°C.64°D.68°4. 如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°5.如图,经过原点O的⊙P与x,y轴分别交于A,B两点,点C是劣弧OB上一点,则∠ACB的度数是( )A.80°B.100°C.90°D.无法确定6.如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°7.如图,⊙C 过原点,且与两坐标轴分别交于点A ,B ,点A 的坐标为(0,3),M 是第三象限内OB ︵上一点,∠BMO =120°,则⊙C 的半径长为( )A .6B .5C .3D .3 28. 如图,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°9. 如图,已知⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD =120°,AB =AD =2,则⊙O 的半径长为( )A .322B .62C .32D .23310.如图,点P 是等边三角形ABC 外接圆⊙O 上的点.在下列判断中,不正确的是( )A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二.填空题(共8小题,3*8=24)11. 如图,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC=____________.12.如图所示,四边形ABCD为⊙O内接四边形,若∠BOD=100°,∠BAD=___________,∠BCD =___________.13.如图,在⊙O中,弦CD垂直直径AB于点E,若∠BAD=30°,且BE=2,则CD=__________.14.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是____________.15. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为________.16. 如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.17. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.若∠D=80°,则∠EAC的度数为________.18. 如图,四边形ABCD 是⊙O 的内接四边形,AD 与BC 的延长线交于点E ,BA 与CD 的延长线交于点F ,∠DCE =80°,∠F =25°,则∠E 的度数为________.三.解答题(共7小题,46分)19.(6分)如图,已知∠EAD 是圆内接四边形ABCD 的一个外角,并且BD ︵=DC ︵.20.(6分) 如图,四边形ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于P .求证:AD·DC =PA·BC.21.(6分) 如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,求AE 得值.22.(6分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB.延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.23.(6分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB 于点D,若△OBD是直角三角形,求弦BC的长.24.(8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.25.(8分) 如图,四边形APBC 是⊙O 的内接四边形,AB =AC ,点P 是AB ︵的中点,连接PA ,PB ,PC.(1)如图①,若∠BPC =60°,求证:AC =3AP ;(2)如图②,若sin ∠BPC =2425,求tan ∠PAB 的值.参考答案:1-5CDABC 6-10 BCBDC11. 70°12. 50°,130° 13. 4 314. 平行15. 52°16. n17.30°18.45°19. 解:∵四边形ABCD 是圆内接四边形,∴∠EAD =∠DCB.又∵BD ︵=DC ︵,∴∠DAC =∠DCB.∴∠EAD =∠DAC ,∴AD 平分∠EAC20. 证明:连接BD.∵DP ∥AC ,∴∠PDA =∠DAC.∵∠DAC =∠DBC ,∴∠PDA =∠DBC.∵四边形ABCD 是⊙O 的内接四边形,∴∠DAP =∠DCB.∴△PAD ∽△DCB.∴PA ∶DC =AD ∶BC ,即AD·DC =PA·BC21. 解:如图,连接AC.∵BA 平分∠DBE ,∴∠1=∠2.∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA. ∴AC =AD =5.∵AE ⊥CB ,∴∠AEC =90°.∴AE =AC 2-CE 2=52-(13)2=2 3.22. 解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∴AC ⊥BC.∵CD =CB ,∴AD =AB ,∴∠B =∠D(2)设BC =x ,则AC =x -2.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得x 1=1+7,x 2=1-7(舍去).∵∠B =∠E ,∴∠D =∠E ,∴CD =CE.∵CD =CB ,∴CE =CB =1+723. 解:如图①,当∠ODB =90°,即CD ⊥AB 时,可得AD =BD ,∴AC =BC.又∵AB =AC ,∴△ABC 是等边三角形.∴∠DBO =30°.∵OB =5,∴BD =32OB =532. ∴BC =AB =2BD =5 3. 如图②,当∠DOB =90°时,可得∠BOC =90°,∴△BOC 是等腰直角三角形.∴BC =2OB =5 2.综上所述,弦BC 的长为53或5224. (1)证明:∵AB 是直径,∴∠AEB =90°,∴AE ⊥BC ,∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形,∵AC =AB ,∴四边形ABFC 是菱形(2)解:设CD =x.连接BD.∵AB 是直径,∴∠ADB =∠BDC =90°,∴AB 2-AD 2=CB 2-CD 2,∴(7+x)2-72=42-x 2,解得x =1或x =-8(舍弃),∴AC =8,BD =82-72=15,∴S 菱形ABFC =815,S 半圆=12·π·42=8π 25. 解:(1)∵BC ︵=BC ︵,∴∠BAC =∠BPC =60°,又∵AB =AC ,∴△ABC 为等边三角形,∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴∠PAC =90°,在Rt △PAC 中,∠ACP =30°,∴AC =3AP(2)如图,连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC. ∵AB =AC ,∴AF ⊥BC ,BF =CF.∵点P 是AB ︵的中点,∴∠ACP =∠PCB ,∴EG =EF.∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC =2425. 设FC =24a ,则OC =OA =25a.∴OF =7a ,AF =32a ,在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a ,在Rt △AGE 和Rt △AFC 中,sin ∠FAC =EG AE =FC AC, ∴EG 32a -EG =24a 40a,∴EG =12a. ∴tan ∠PAB =tan ∠PCB =EF CF =12a 24a =12。
数学北师大版九年级下册以圆为背景的特殊四边形的动态探究专题

特殊四边形的动态探究题(一)———以圆为背景学习目标:1、掌握圆的相关知识2、掌握特殊四边形的性质定理和判定定理3、能够解决以圆为背景的特殊四边形的动态探究题学习重难点:能够解决以圆为背景的特殊四边形的动态探究题背景:近五年,河南中招数学第17或18 题主要考察特殊四边形的动态探究问题。
出题框架:第一问以证明为主,如证明线段相等,角相等,三角形全等,切线,平行四边形;第二问以填空为主,如探索AB= 时,四边形ABMN为菱形,探索动点P运动时间为秒时,四边形CDPQ为正方形等。
新课:第一环节经典展示1、(2016•河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.学生先独立思考完成此题,10分钟后选取不同的学生,说说自己是如何解决的。
学生一:连接BD,AE,通过证明△BOM≌△AEM,得到DM=EM。
学生二:还可以证明△ABD≌△EBA,则AD=BE,AM-AD=BM-BE, 得到DM=EM学生三:还可以证明△AOD≌△BOD,则AD=BE,AM-AD=BM-BE, 得到DM=EM,师:学生的思路都困在全等当中,有没有哪位同学不通过全等来解决的?学生四:充分利用圆的内接四边形的对角互补来解决的。
∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.学生五:利用同圆中弧相等,弧所对的弦相等∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∴弧AE=弧BD,∴弧AD=弧BE ∴AD=BE∴AM-AD=BM-BE, ∴DM=EM思路巧妙充分运用了圆的知识,学生爆发了雷鸣的掌声。
九下第三章圆重点强化专题巧构圆内接四边形作业新版北师大版

3.如图,⊙O 的半径为 4,弦 AB=4 3 ,点 C 为⊙O 上异于 A,B 的一动点,则 ∠ACB 的度数为_________6_0_°__或__1_2_0_°_________.
4.如图,AB,AC,AD 为⊙O 的弦,∠BAC=60°,∠DAC=30°,AB=2,AD= 13
3,则 CD 的长为________2___________.
重点强化专题 巧构圆内接四边形
【方法技巧】通过构造圆内接四边形转化与圆有关的角. 1.如图,在⊙O 中,∠OAB=25°,则∠C 的度数为_____1_1_5_°________.
2.如图,AB 为⊙O 的直径,C,E 在⊙O 上,∠BOE=24°,则∠ACE 的度数为 ______1_0_2_°___________.
解:连接 AC,∵BC=CD,∴∠DAC=∠BAC=15°,∵∠ACD=90°,∴∠D=75°, ∴∠ABC=105°
7.如图,AB 为⊙O 的直径,弦 CD⊥AB,F 为 BC 上的一点,DC,BF 的延长线 交于点 E.求证:∠EFC=∠BFD.
证明:连接 BD,证∠EFC=∠BDC,∵BC=BD,∴∠BFD=∠BDC,∴∠EFC =∠的⊙O 交 AE 于点 B,连接 B D,OD,求证:∠B DE =∠A DO.
证明:延长 DO 交⊙O 于点 F,连接 AF,则∠DAF=90°,∠ADO+∠F=90°, ∵∠A E D=90°,∴∠B DE +∠DB E =90°.又∵∠DB E =∠F ,∴∠B DE =∠A DO
5.如图,点 A,B,C,D,E 在⊙O 上,∠CAD=30°,求∠B+∠E 的度数.
解:连接 CD,∵∠CAD=30°,∴∠ADC+∠ACD=150°,∵∠E+∠ACD=180°, ∠B +∠A DC=180°,∴∠B +∠E +∠A DC+∠A CD=360°,∴∠B +∠E =210°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章圆
《圆内接正多边形》教学设计说明
北镇一中王艳
一、学生起点分析
学生的知识技能基础:学生在小学已经学习过圆和正多边形,对圆和正多边形的特点有所了解,在本章前面几节课中,又学习了圆的性质和与圆有关的三种位置关系的基本技能.
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索圆的性质,解决了一些简单的现实问题,感受到了圆的性质,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
根据学生已有的认识基础和本课的教材地位、作用,依据教学大纲,确定本课的教学目标为:
知识目标:
(1)掌握正多边形和圆的关系;
(2)理解正多边形的中心、半径、中心角、边心距等概念;
(3)能运用正多边形的知识解决圆的有关计算问题;
(4)会运用多边形知和圆的有关知识画多边形.
能力目标:学生在探讨正多边形和圆的关系学习中,体会到要善于发现问题、解决问题,培养学生的概括能力和实践能力.
情感目标:通过学习,体验数学与生活的紧密相连;通过合作交流,探索实践培养学生的主体意识.
教学重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关
计算.
教学难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.
三、教学设计分析
本节课设计了八个教学环节:课前准备——社会调查、情境引入、圆内接正多边形的概念、例题学习、尺规作图、练习与提高、课堂小结、布置作业.
第一环节课前准备
活动内容:社会调查(提前一周布置)
以4人合作小组为单位,开展调查活动:
(1)各尽所能收集生活中各行各业、各学科中应用的各种正多边形形状的物体或照片.
(2)对收集的其中最感兴趣的一件正多边形形状的物体进行研究.
活动目的:通过第1个活动,希望学生能从生活中的正多边形形状的物体中获取尽可能多的知识,体会在社会生活中正多边形的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;而在第2个活动中,学生通过对他们感兴趣的问题展开研究或查阅资料,经历探索的过程,并在此过程中培养学生勇于探索、团结协作的精神.同时这两个活动所收集的物体为后面分析正多边形提供了极好的素材,在课堂中用源于学生真实调查展开教学,必将极大地激发了学生学习的积极性与主动性.
第二环节情境引入
活动内容:各小组派代表展示自己课前所调查得到的正多边形形状的物体(可以是照片、资料、也可以是亲自仿制),并解说从中获取的知识(选3—4个小组代表讲解)
活动目的:激起学生对探索正多边形与圆的兴趣,让学生学会用数学语言表述问题,培养学生从物体中获取知识的能力,并从中归纳总结正多边形的特点,体会数学来源于生活,并服务于生活,增强学生的应用意识,而且由此引出我们本节课要来研究的问题(自然引出课题)
第三环节 圆内接正多边形的概念
活动内容:学习圆内接正多边形及有关概念
顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.
把一个圆n 等分(3≥n ),依次连接各分点,我们就可以作出一个圆内接正多边形.
如图3-33,五边形ABCDE 是圆O 的内接正五边形,圆心O 叫做这个正五边形的中心;OA 是这个正五边形的半径;AOB ∠是这个正五边形的中心角;BC OM ⊥,垂足为M ,OM 是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.
图3-33 活动目的:让学生了解有关正多边形的概念,引导学生逐步深入的学习. 第四环节 例题学习
活动内容:例:如图3-34,在圆内接正六边形ABCDEF 中,半径4=OC ,BC OG ⊥,垂足为G ,求这个正六边形的中心角、边长和边心距. 解:连接OD
∵六边形ABCDEF 为正六边形
∴︒=︒=∠606360COD ∴COD ∆为等边三角形. ∴4==OC CD
在COG Rt ∆中,4=OC ,2=CG
∴32=OG
∴正六边形ABCDEF 中心角为︒60,边长为4,边心距为32. 图3-34
活动目的:题目是有关正多边形的计算的具体应用,通过例题的学习,巩固有关正多边形的概念,能运用正多边形的知识解决圆的有关计算问题.
第五环节尺规作图
活动内容:1、用尺规作一个已知圆的内接正六边形.
2、用尺规作一个已知圆的内接正四边形.
3、思考:作正多边形有哪些方法?
活动目的:用所学到的知识解决问题,使学生学会发现问题、分析问题、解决问题,培养学生正确运用所学知识的运用能力,巩固所学的知识.使学生理解并掌握可用等分圆心角的方法等分圆周,也可以用直尺和圆规作出一些特殊的正多边形.
第六环节练习与提高
活动内容:1、分别求出半径为6cm的圆内接正三角形的边长和边心距.
活动目的:对本节知识进行巩固练习.
第七环节课堂小结
活动内容:师生互相交流总结正多边形和圆的关系、正多边形的对称性和边数相同的正多边形相似的性质、正多边形的中心、半径、中心角、边心距等概念、如何计算正多边形的半径、边心距及边长,社会调查时学到的课外知识及切身感受等.
活动目的:鼓励学生回顾梳理本节知识,巩固、提高、发展,并结合本节课的学习及课前的社会调查,谈自己的收获与感想(学生畅所欲言,教师给予鼓励),社会调查时学到的课外知识及切身感受.
第八环节布置作业
课本习题3.10
四、教学设计反思
1.要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况
进行适当调整.
2.相信学生并为学生提供充分展示自己的机会
通过课前小组合作社会调查、课堂展示正多边形的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.
3.在教学中注意的方面
本节新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.通过形象生动的直观图形,给学生营造一个问题情景,通过问题的探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力.
4.注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.。