江苏省2010年专转本高等数学试卷真题.

合集下载

2010年江苏“专转本”高等数学试题及参考答案

2010年江苏“专转本”高等数学试题及参考答案

12010年江苏省普通高校“专转本”统一考试高等数学注意事项:1、考生务必将密封线内的各项目及第2页右下角的座位号填写清楚。

2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效。

3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟。

一、选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为()A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==2.曲线223456x x y x x -+=-+的渐近线共有()A.1条B.2条C.3条D.4条3.设函数22()cos tx x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于()A.222cos x xe xB.222cos x xe x -C.2cos x xe x -D.22cos x e x -4.下列级数收敛的是()A.11n n n ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑5.二次积分1101(,)y dy f x y dx +⎰⎰交换积分次序后得()A.1101(,)x dx f x y dy +⎰⎰B.2110(,)x dx f x y dy-⎰⎰C.2111(,)x dx f x y dy -⎰⎰ D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x =-,则在区间(0,1)内()A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7.1lim()1x x x x →∞+=-8.若(0)1f '=,则0()()lim x f x f x x →--=9.定积分312111x dx x -++⎰的值为10.设(1,2,3),(2,5,)a b k == ,若a 与b 垂直,则常数k =11.设函数2ln 4z x y =+,则10x y dz ===12.幂级数0(1)n n n x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限2011lim()tan x x x x→-14、设函数()y y x =由方程2x y y e x ++=所确定,求22,dy d y dx dx15、求不定积分arctan x xdx ⎰16、计算定积分40321x dx x ++⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线方程。

2010年江苏省专转本真题解析1-50

2010年江苏省专转本真题解析1-50

ns
Year
25
83.解决方案——高速缓存(cache)
cache直接制作在CPU芯片内,速度
CPU芯片
几乎与CPU一样快
CPU
cache
一般Cache容量越大越
8 4
9
14 10
3
好,CPU访问Cache的 命中率就越高。但出于 成本考虑,一般容量不 大,一级缓存几kB~(几 十)kB,二级缓存128 kB~1 MB。
使用比特来表示
1
比特在计算机中如何表示?
在计算机中表示与存储二进位的方法:
电路的高电平状态或低电平状态(CPU) 电容的充电状态或放电状态(RAM) 两种不同的磁化状态(磁盘) 光盘面上的凹凸状态(光盘)
···
2
例:硬盘中比特的表示与存储
磁盘表面微小区域中,磁性材料粒子的两种不同的
磁化状态分别表示0和1
磁头,用 于写入和 读出信息 磁性材 料粒子 磁 盘 片
“0” “1”
旋转方向
3
光盘的信息记录原理
光盘上的 螺旋形光道
凹坑的边缘 用来表示 “1”,而 凹坑内外的 平坦部分表 示“0”
4
黑白图像的表示
5
灰度图像的表示
6
彩色图像的表示
155 150 147 168 225 225 240 233
例1
A: 0110 B: ∨ 1010 F: 1110
例2
A: 0110 B: ∧ 1010 F: 0010
01001101 ∨ 00101011 01101111
(157)8
13
2009年第4题
7*64+4*8+4 =(1+2+4)*26+22*23+22 =(20+21+22)* 26+25+22

2010“专升本”《高数》试题及答案

2010“专升本”《高数》试题及答案

《高等数学》试卷一、单项选择题(每题2分,共计60分,在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。

不选、错选或多选者,该题无分)1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.)1lg()(2x x x f -+=在),(+∞-∞是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01lg )1lg()1lg()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x s i n 2-是x的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim20-=-→x x x x , C ⇒. 4.=+∞→nn n n sin 32lim ( )A. ∞B. 2C. 3D. 5 解:B n n n n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim . 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax 在0=x 处连续,则 =a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a ae x e x f ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在1=x 可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:x x f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→ C f x f x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,5422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.已知x x x f n ln )()2(=-,则=)()(x f n ( )A.211x+ B. x 1C. x lnD. x x ln 解:B x x f x x f x x x f n n n ⇒=⇒+=⇒=--1)(ln 1)(ln )()()1()2(.10.233222++--=x x x x y 有 ( )A. 一条垂直渐近线,一条水平渐近线B. 两条垂直渐近线,一条水平渐近线C. 一条垂直渐近线,两条水平渐近线D. 两条垂直渐近线,两条水平渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→∞→2122lim ,4lim ,2lim )2)(1()3)(1(2332 . 11.在下列给定的区间满足罗尔中值定理的是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解: 由罗尔中值定理 条件:连续、可导及端点的函数值相等C ⇒12. 函数x e y -=在区间),(+∞-∞为 ( )A. 单增且凹B. 单增且凸C. 单减且凹D. 单减且凸解: C e y e y x x ⇒>=''<-='--0,0.13.⎰+=C x F dx x f )()(曲线 ,则⎰=--dx e f e xx )( ( ) A.C e F e x x ++--)( B. C e F e x x +---)(C. C e F x +-)(D. C e F x +--)(解:D C e F e d e f dx e f e xx x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设函数x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x +-)1(212 C. C e x ++1221 D. C e x ++)1(212解:D C e x f e x f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. =⎰b axdx dx darctan ( )A.x arctanB. 0C. a b arctan arctan -D. a b arctan arctan + 解:⎰b a xdx arctan 是常数,所以 B xdx dx d ba ⇒=⎰0arctan .16.下列广义积分收敛的为 ( ) A. ⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx x D. ⎰+∞1cos xdx 解:C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为() A. ⎰-b a dx x g x f )]()([ B. ⎰-b a dx x g x f )]()([ C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设y xy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 方程02=-xyz e z 确定函数),(y x f z = ,则x z ∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令⇒-='-='⇒-=xy e F yz F xyz e z y x F z z x z 222,),,( A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222x ydx xdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zy z 是极大值A ⇒. 23由012222=+--+y x y x 围成的闭区域D ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24累次积分⎰⎰>axa dy y x f dx 0)0(),(交换后为( )A. ⎰⎰a x dx y x f dy 0),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.二重积分⎰⎰20sin 20)sin ,cos (πθθθθrdr r r f d 在直角坐标系下积分区域可表示为( )A. ,222y y x ≤+B. ,222≤+y xC. ,222x y x ≤+D. 220y y x -≤≤ 解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 坐标从点)0,1(A 到)1,0(B 的有向线段,则⎰-+L dy dx y x )( ( ) A. 2 B.1 C. -1 D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0 ,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L . 27.下列级数绝对收敛的是 ( )A .∑∞=1sin n n πB .∑∞=-1sin )1(n n n π C . ∑∞=-12sin )1(n n n π D . ∑∞=0cos n n π解: ⇒<22sin n n ππC n n ⇒∑∞=12sin π. 28. 设幂级数n n n n a x a (0∑∞=为常数 ,2,1,0=n ),在 2-=x 处收敛,则∑∞=-0)1(n n na ( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A.C y x =sin cos B. C y x =cos sin C. C y x =sin sin D. C y x =cos cos 解:dx x x dy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C x y x x d y y d ⇒=+⇒-=⇒ln sin ln sin ln sin sin sin sin . 30.微分方程x xe y y y -=-'+''2,特解用特定系数法可设为 ( ) A.x e b ax x y -+=*)( B. x e b ax x y -+=*)(2 C. x e b ax y -+=*)( D. x axe y -=* 解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每题2分,共30分) 31.设 ,1||,01||,1)(⎩⎨⎧>≤=x x x f ,则=)(sin x f _________ 解:1)(sin 1}sin |=⇒≤x f x .32.若=--+→x x x x 231lim 22=_____________ 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.已知x y 2arctan =,则=dy __________ 解:dx xdy 2412+= . 34.函数 bx x a x x f ++=23)(,在1-=x 处取得极值-2,则_______,==b a . 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(2.5,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设)(),(x g x f 是可微函数,且为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππ)sin (32x x _________解:3202sin )sin (023232ππππππππ=+=+=+⎰⎰⎰⎰---x xdx dx x x x . 38.设⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________解:⎰⎰⎰⎰--=--=+==-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 已知 }1,1,2{},2,1,1{-==b a,则向量a 与b 的夹角为=__________解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a.40.空间曲线⎩⎨⎧==022z xy 绕x 轴旋转所得到的曲面方程为 _________.解:把x y 22=中的2y 换成22y z +即得所求曲面方程x y z 222=+.41. 函数y x x z sin 22+=,则 =∂∂∂yx z2_________解: ⇒+=∂∂y x x x z sin 22y x yx z cos 22==∂∂∂ . 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( .43. 函数2)(x e x f -=在0=x 处的展开成幂级数为________________解: ∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________ 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n nn n n n n n nx n x n x n x .45.通解为x x e C e C y 321+=-的二阶线性齐次常系数微分方程为_________解:x x e C e C y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46. x x e x xx 2sin 1lim 3202-→-- 解:20300420320161lim 3222lim 81lim 2sin 1lim2222x e x xe x x ex xx e x x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.设x x x y 2sin 2)3(+=, 求dxdy解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:xx x x x x x y y 3322sin )3ln(2cos 2122++++='所以]3322sin )3ln(2cos 2[)3(222sin 2xx x x x x x x x y x +++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求 ⎰-dx x x 224解:⎰⎰⎰⎰-===-=dt t tdt tdt t tdx x x tx )2cos 1(2sin 4cos 2cos 2sin 4422sin 222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.求⎰--+102)2()1ln(dx x x解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x ..50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 是可微函数,求 yzx z ∂∂∂∂,解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂y vv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算积分⎰⎰=Dydxdy x I 2 ,其中:D 由直线1,2,===x x y x y 所围成的闭区域.解:积分区域如图所示,可表示为:x y x x 2,10≤≤≤≤.所以 ⎰⎰⎰⎰==1222xx Dydy x dx ydxdy x I10310323)2(10510421022====⎰⎰x dx x y dx x xx52.求幂级数nn nx ∑∞=--+0)1()3(11的收敛区间(不考虑端点). 解: 令t x =-1,级数化为 n n nt ∑∞=-+0)3(11,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim )3(1)3(1lim lim 11=--+-=-+-+==∞→+∞→+∞→nnn n n n n n n a a ρ,故级数nn nt ∑∞=-+0)3(11的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx ∑∞=--+0)1()3(11有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-.53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xxy x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2xCy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(xx C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每题7分,共计14分)54.某公司甲乙两厂生产一种产品,甲乙两厂月产量分别为y x ,千件;甲厂月产量成本为5221+-=x x C ,乙厂月产量成本为3222++=y y C ;要使月产量为8千件,且总成本最小,求甲乙两厂最优产量和最低成本?解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 . 由8=+y x 得x y -=8,代入得目标函数为0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故5=x 使C 得到极小唯一极值点,即最小值点.此时有38,3==C y . 所以 甲乙两厂最优产量分别为5千件和3千件,最低成本为38成本单位. 55.求曲线)2)(1(--=x x y 和x 轴所围成图形绕y 轴旋转一周所得的体积. 解:平面图形如下图所示:此立体可看作x 区域绕y利用体积公式⎰=ba y dx x f x V |)(|2π.显然,抛物线与x 两交点分别为(1,0);(2平面图形在x 轴的下方.故⎰⎰---==21)2)(1(2|)(|2x x x dx x f x V ba y ππ2)4(2)23(2212342123πππ=+--=+--=⎰x x x dx x x x .xx五、证明题(6分)56设)(x f 在],[a a -上连续,且>a ,求证⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.并计算⎰--+441cos ππdx e xx .证明:因为⎰⎰⎰--+=aaaadx x f dx x f dx x f 0)()()(,而⎰⎰⎰⎰-=-=--=-=-0)()()()()(aaa tx a dx x f dt t f t d t f dx x f ,故⎰⎰⎰⎰⎰-+=+=--aaa aa adx x f dx x f dx x f dx x f dx x f 0)()()()()( 即有⎰⎰--+=aaadx x f x f dx x f 0)]()([)(.利用上述公式有dx e e e x dx e x e x dx e x x x x x x x ⎰⎰⎰⎥⎦⎤⎢⎣⎡+++=+-++=+---404044111cos ]1)cos(1cos [1cos ππππ 22sin cos 4040===⎰ππx dx x .说明:由于时间紧,个别题目语言叙述与试卷有点不近相同,没有进行认真检查,考生仅作参考.河南省“专升本”考试《高等数学》辅导专家葛云飞提供.。

01—10年江苏专转本数学真题(附答案)

01—10年江苏专转本数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2010江苏省高考数学真题(含答案)

2010江苏省高考数学真题(含答案)

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的......位置上.... 1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x)(x ∈R)是偶函数,则实数a =_______▲_________6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x e x - 4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B.2121n n n n∞=++∑ C.1n n n ∞=D.212n n n ∞=∑5.二次积分111(,)y dy f x y dx+⎰⎰交换积分次序后得( ) A. 1101(,)x dx f x y dy+⎰⎰B.211(,)x dx f x y dy-⎰⎰C. 2111(,)x dx f x y dy-⎰⎰D.2111(,)x dx f x y dy-⎰⎰6.设3()3f x x x=-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分)7. 1lim()1xx x x →∞+=-8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

江苏省专转本高等数学试卷

江苏省专转本高等数学试卷

江苏省2010年普通高校专转本选拔统一考试数 学 试 题一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( ) A. 1条 B. 2条 C. 3条 D. 4条3.设函数22()cos t x x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos x xe x - D. 22cos x e x -4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B. 2121n n n n ∞=++∑C. 1n n ∞=D. 212n n n ∞=∑ 5.二次积分1101(,)y dy f x y dx +⎰⎰交换积分次序后得( )A.1101(,)x dx f x y dy +⎰⎰ B. 2110(,)x dx f x y dy -⎰⎰ C. 2111(,)x dx f x y dy -⎰⎰ D. 2111(,)x dx f x y dy -⎰⎰ 6.设3()3f x x x =-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分) 7. 1lim()1x x x x →∞+=- 8. 若(0)1f '=,则0()()lim x f x f x x→--= 9. 定积分312111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==r r ,若a r 与b r 垂直,则常数k =绝密★启用前11.设函数z =10x y dz=== 12. 幂级数0(1)nn n x n ∞=-∑的收敛域为 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限2011lim()tan x x x x→- 14、设函数()y y x =由方程2x y y ex ++=所确定,求22,dy d y dx dx15、求不定积分arctan x xdx ⎰16、计算定积分40⎰ 17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)2010年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A. 1,36a n ==B. 1,33a n ==C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()cos t xx e tdtΦ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A.222cos x xe x B.222cos x xe x - C. 2cos xxex-D. 22cos x ex -4.下列级数收敛的是8. 若(0)1f '=,则0()()lim x f x f x x →--=9. 定积分312111x dxx -++⎰的值为10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k = 11. 设函数24z x y=+,则10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限211lim()tanx x x x→- 14、设函数()y y x =由方程2x yy e x++=所确定,求22,dy d ydx dx15、求不定积分arctan x xdx ⎰ 16、计算定积分4021dx x +⎰17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。

18、设2(,)x z y f xy e =,其中函数f 具有二阶连续偏导数,求2z x y∂∂∂19、计算二重积分Dxdxdy ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域。

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本高等数学真题(附答案)

2010年江苏专转本⾼等数学真题(附答案)2010年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价⽆穷⼩,则常数,a n 的值为 ( ) A. 1,36a n = = B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( )A. 1条B. 2条C. 3条D. 4条 3.设函数22()c o s txx e t d tΦ=?,则函数()x Φ的导数()x 'Φ等于 ( )A. 222cos x xe x B. 222cos x xe x - C. 2cos xxe x - D. 22cos x e x -4.下列级数收敛的是( )A. 11n n n ∞=+∑ B. 2121n n n n ∞=++∑C. 1n n ∞= D. 212n n n ∞=∑5.⼆次积分111(,)y dy f x y dx+??交换积分次序后得( ) A. 1101(,)x dx f x y dy +?? B. 2110(,)x dx f x y dy -?? C. 2111(,)x dx f x y dy -?D. 2111(,)x dx f x y dy -??6.设3()3f x x x=-,则在区间(0,1)( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分) 7. 1lim( )1xx x x →∞+=- 8. 若(0)1f '=,则0()()limx f x f x x→--=9. 定积分211dx x -+?的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k =11.设函数lnz =10x y dz===12. 幂级数0(1)n nn x n ∞=-∑的收敛域为三、计算题(本⼤题共8⼩题,每⼩题8分,满分64分) 13、求极限2011lim()tan x x x x→-14、设函数()y y x =由⽅程2x yy e x ++=所确定,求22,dy d y15、求不定积分arctan x xdx ?16、计算定积分417、求通过点(1,1,1),且与直线23253x t y t z t =+??=+??=+?垂直,⼜与平⾯250x z --=平⾏的直线的⽅程。

2001-2010年专转本高等数学真题答案

2001-2010年专转本高等数学真题答案

又因为 F ( ) 0 ,说明 F ( x) 在 arccos
'

2
综上所述, F ( x) 的最小值是当 x 0 时,因为 F (0) 0 ,所以 F ( x) 在 足 F ( x) 0 . 26、 (1)设生产 x 件产品时,平均成本最小,则平均成本
C ( x)
C ( x) 25000 1 200 x, x x 40
x
06-10、CBABB 15、 ,
11、1 16、
12、 ( , 1]
13、0
3 1

e
1
dx
ln x 0
f ( x, y )dy
3 2
17、1
z x
x2 y2
2z y 2 yx (x y 2 )4
19、解:令 t x 1 ,则 x 2 时 t 1 , x 0 时, t 1 , 所以
2001 年江苏省普通高校“专转本”统一考试高 等 数 学 参 考 答 案
1、C 2、 D
3x
3、B
4、D
5、A
6、 2
7、 y e (C1 cos 2 x C 2 sin 2 x) ,其中 C1 、 C 2 为任意实数 8、
dy
0
2
y
y 2
f ( x, y )dx dy y f ( x, y )dx
13、原式 lim[(1 x ) x ]
2
2
1 x 1 cos x
2
2
x 0
lim e
x 0
x2 1 2 x 2
e2
14、 dz
1 x x x sec 2 dx 2 sec 2 dy y y y y

2010年江苏省普通高校专转本统一考试

2010年江苏省普通高校专转本统一考试

2010年江苏省普通高校专转本统一考试我省2010年“专转本”统一考试于2010年4月24日举行。

考试时间具体如下:2010年江苏省普通高校“专转本”统一考试大学英语本试卷分第I卷(客观题)和第II卷(主观题)两部分。

满分150分。

考试时间120分钟。

卷中未注明做大对象的试题为英语类和非英语类学生共同作答的试题,注明作答对象的试题按规定作答。

第Ⅰ卷Part ⅠReading Comprehension (共40分)Directions: There are 4 passages in this part. Each passage is followed by some questions or unfinished statements. For each of them there are 4 choices marked A, B, C and D. You should decide on the best choice and mark the corresponding letter on the Answer Sheet with a single line through the center.Passage OneQuestions 1 to 5 are based on the following passage.Sometimes you’ll hear people say that you can’t love others until you love yourself. Sometimes you’ll hear people say that you can’t expect someone else to love you until you love yourself. Either way, you’ve got to love yourself first and this can be tricky. Sure we all know that we’re the people of our parents’eyes, and that our Grandmas think we are great talents and our uncle Roberts think that we will go to the Olympics, but sometimes it’s a lot harder to think such nice thoughts about ourselves. If you find that believing in yourself is a challenge, it is time you built a positive self-image and learn to love yourself.Self-image is your own mind’s picture of yourself. This image includes the way you look, the way you act, the way you talk and the way you think. Interestingly, our self-images are often quite different from the images others hold about us. Unfortunately, most of these images are more negative than they should be, thus changing the way you think about yourself is the key to changing your self-image and your whole world.The best way to defeat a passive self-image is to step back and decide to stress your successes. That is, make a list if you need to, but write down all of the great things you do everyday. Don’t allow doubts to occur in it.It very well might be that you are experiencing a negative self-image because you can’t move past one flaw or weakness that you see about yourself. Well, roll up your sleeves and make a change of it as your primary task. If you think you are silly because you aren’t good at math. Find a tutor. If you think you are weak because you can’t run a mile, get to the track and practice. If you think you are dull because you don’t wear the latest trends, buy a few new clothes.The best way to get rid of a negative self-image is to realize that your image is far from objective and to actively convince yourself of your positive qualities. Changing the way you think and working on those you need to improve will go a long way towards promoting a positive self-image. When you can pat your self on the back, you’ll know you’re well on your way.1. You need to build a positive self-image when you _______.A.dare to challenge yourself B. feel it hard to change yourselfC. are unconfident about yourselfD. have a high opinion of yourself2. According to the passage, our self-images________.A. have positive effectsB. are probably untrueC. are often changeableD. have different functions3. How should you change your self-image according to the passage?A. Keep a different image of others.B. Make your life successfulC. Understand your own worldD. Change the way you think4. What is the passage mainly about?A. How to prepare for your successB. How to face challenges in your lifeC. How to build a positive self-imageD. How to develop your good qualities5. Who are the intended readers of the passage?A. parentsB. AdolescentsC. educatorsD. people in general Passage 2Questions 6 to 10 are based on the following passage.Do you want to live with a strong sense of peacefulness, happiness, goodness, and self-respect? The collection of happiness actions broadly categorized as “honor”helps you create this life of good feelings.Here’s an example to show how honorable actions create happiness.Say a store clerk fails to charge us for an item. If we keep silent and profit from the clerk’s mistake, we would drive home with a sense of sneaky excitement. Later we might tell our family or friends about our good fortune. On the other hand, if we tell the clerk about the uncharged item, the clerk would be grateful and thank us for ourhonesty. We would leave the store with a quite sense of honor that we might never share with another soul.Then, what is it to do with our sense of happiness?In the first case, where we don’t tell the clerk, a couple of things would happen. Deep down inside we would know ourselves as a type of thief. In the process, we would lose some peace of mind and self-respect. We would also demonstrate that we cannot be trusted, since we advertise our dishonor by telling our family and friends. We damage our own reputations by telling others. In contrast, bringing the error to the clerk’s attention causes different things to happen. Immediately, the clerk knows us to be honorable. Upon leaving the store, we feel honorable and our internal rewards of goodness and a sense of nobility.There is a beautiful positive cycle that is created by living a life of honorable actions. Honorable thoughts lead to honorable actions. Honorable actions lead us to a happier experience. And it is easy to think and act honorably again when we are happy. While the positive cycle can be difficult to start, once it’s started, it’s easy to continue. Keeping on doing good deeds brings us peace of mind which is important for our happiness.6. According to the passage, the positive action in the example contributes to our ___________.A. self-respectB. financial rewardsC. advertising abilityD. friendly relationship7. The author thinks that keeping silent about the uncharged item is equal to _____.A. lyingB. stealingC. cheatingD. advertising8. The phrase “bringing the error to the clerk’s attention” means_______.A. telling the truth to the clerkB. offering advice to the clerkC. asking the clerk to be more attentiveD. reminding the clerk of the charged item9. How will we feel if we let the clerk know the mistake?A. We’ll be very excitedB. We’ll feel unfortunateC. We’ll have a sense of humorD. We’ll feel sorry for the clerk10. Which of the following can be the best title of this passage?A. How to live truthfullyB. Importance of peacefulnessC. Ways of gaining self-respectD. Happiness through honorablePassage 3Questions 11 to 15 are based on the following passage.Sesame Street has been called “the longest street in the world”. That is because the television program by that name can now be seen in so many parts of the world. That program became one of America’s exports soon after it went on the air in New York in 1969.In the United States more than 6 million children watch the program regularly. The viewers include more than half of the nation’s pre-school children. Although some educators object to certain elements in the program, parents praise it highly. Many teachers also consider it a great help, though some teachers find thatproblems arise when first graders who have learned from “Sesame Street” are in the same class with children who have not watched the program.The program uses songs, stories, jokes and pictures to give children a basic understanding of numbers, letters and human relationships. Tests have shown that children have benefited from watching “Sesame Street”. Those who watch five times a week learn more than the occasional viewers. In the United States the program is shown at different times during the week in order to increase the number of children who can watch it regularly.Why has “Sesame Street”been so much more successful than other children’s shows? Many reasons have been suggested. People mention the educational theories of its creators, the support by the government and private businesses, and the skillful use of a variety of TV tricks. Perhaps an equally important reason is that mothers watch “Sesame Street”along with their children. This is partly because famous adult stars often appear on “Sesame Street”. But the best reason for the success of the program may be that it makes every child watching it feel able to learn. The child finds himself learning, and he wants to learn more.11. Why has Sesame Street been called “the longest street in the world”?A. the program has been shown ever since 1969.B. the program became one of America’s major exports soon after it appeared on TVC. the program is now being watched in most parts of the world.D. the program is made in the longest street in New York.12. Some educators are critical of the program because________.A. they don’t think it fit for children in every respectB. it takes the children too much time to watch itC. it causes problems between children who watched it and those who have notD. some parents attach too much importance to it13. So many children in the United States watch the program because______.A. it uses songs, stories and jokes to give them basic knowledgeB. it is arranged for most children to watch it regularlyC. tests have shown that it is beneficial to themD. both A and B14. Mothers often watch the program along with their children because______A. they enjoy the program as much as their childrenB. they find their children have benefited from watching the programC. they are attracted by some famous adult stars on the showD. they can learn some educational theories from the program15. What is the most important reason for the success of the program according to the author?A. the creators have good educational theories in making the programB. the young viewers find they can learn something from it.C. famous adult stars often appear in the programD. It gets support from the government and private businessPassage 4Questions 16 to 20 are based on the following passage.You will have no difficulty in making contact with the agent. As you enter his office, you will be greeted immediately and politely asked what you are looking for. The Estate Agent’s negotiator-as he is called-will probably check that you really know your financial position. No harm in that, but you can always tell him that you have confirmed the position with the XYZ Building Society. He will accept that.He will show you the details of a whole range of properties; many of them are not really what you are looking for at all. That does not matter. Far better turn then down than risk missing the right one.The printed details he will give you are called “particulars”. Over the years, a whole language has grown up, solely for use in Agent’s particulars. It is flowery, ornate and, providing you read it carefully and discount the adjectives, it can be very accurate and helpful.Since the passing of the Trades Description Act, any trader trying to sell something has had to be very careful as to what they say about it. Estate Agents have, by now, become very competent at going as far as they dare. For instance, it is quite acceptable to say “delightfully”situated. That is an expression of his opinion. You many not agree, but he might like the idea of living next to the gasworks. If, on the other hand, he says that the house has five bedrooms when, in fact, it has only two, that is a misstatement of fact and is an offence. This has made Estate Agents and others for that matter rather more careful.Basically, all that you need to know about a house is : how many bedrooms it has; an indication of their size; whether the house has a garage; whether there is a garden and whether it is at the back or the front of the house; whether its semi-detached of terraced.16. The Estate Agent’s negotiator will ________.A. want all details of your financial circumstancesB. want to satisfy himself that you understand the financial implications of buying a house.C. check your financial position with the XYZ Building SocietyD. accept any statement you make about your financial position17. The author believes ________.A. it is better to be given information about too many properties than too fewB. you should only look at details of properties of the kind you have decided to buy.C. the agent will only show you the details of properties you have in mind.D. it doesn’t matter if you miss a few properties you may be interested in.18. The adjectives in Agent’s particulars are ______.A. accurateB. helpfulC. both accurateD. safe to ignore19. The Trades Description Act applies to ___________.A. house agents onlyB. most estate agentsC. any traderD. buyer of houses20. The phrase “going as far as they dare” probably means______.A. covering as wide an area as possibleB. selling houses as far from the estate agent’s housesC. telling lies about properties if nobody is likely to find out about it.D. trying every possible means to make the description of houses sound attractive Part ⅡVocabulary and StructureDirections: In this part there are forty incomplete sentences. Each sentence is followed by four choices. Choose the one that best completes the sentence and then mark your answer on the Answer Sheet.21. Scientists will have to _____ new methods of increasing the world’s food supply in order to solve the problem of famine in some places.A. come up forB. come down withC. com down toD. come up with 22.I’d like to rent a house, modern, comfortable and ______in a quiet and safe neighborhood.A. all in allB. above allC. after allD. over all23. In order to expose corruption, they have decided to set up a special team to ____the company’s accounts.A. search forB. work outC. look intoD. sum up24. Some people would like to do shopping on Sundays since they expect to pick up a lot of wonderful _____ in the markets.A. batteriesB. basketsC. barrelsD. bargains25. The residents living in these apartments have free ____ to the swimming pool, the gym and other facilities.A. excessB. excursionC. accessD. recreation 26.Reporters and photographers alike took great _____at the rude way the actors behaved during the interview.A. annoyanceB. offenceC. resentmentD. irritation27. Nothing healthful should be omitted from the meal of a child because of a ___ dislike.A. provedB. supposedC. consideredD. related28. I’d like to ____ this old car for a new model but I am afraid I cannot afford it.A. exchangeB. convertedC. replaceD. substitute29. She said she liked dancing but was not in the ______for it just then when it was so noisy in the hall.A. mannerB. intentionC. moodD. desire30. He was _____ admittance to the concert hall for not being properly dressed.A. rejectedB. deniedC. withheldD. deprived31. Most people tend to ______ a pounding heart and sweating palms with the experience of emotion.A. classifyB. identifyC. satisfyD. modify32. The company _____ many fine promises to the engineer in order to get him to work for them.A. held upB. held onC. held outD. held onto33. _____the tragic news about their president, they have cancelled the 4th of July celebration.A. In the course ofB. In spite ofC. In the event ofD. In the light of34. The worker’ demands are _______, they are asking for only a small increase in their wages.A. particularB. moderateC. intermediateD. numerous35. Our explanation seemed only to have _____ his confusion. He was totally at a loss as to what to say.A. brought upB. added toC. worked outD. directed at36. With a standard bulb, only 5% of the electricity is ______ to light-the rest is wasted away as heat.A. compressedB. conformedC. convertedD. confined37. Modern technology has placed ______ every kind of music, from virtually every period in history and every corner of the globe.A. at our requestB. at our disposalC. in our presenceD. in our sight38. Much has been written on the virtues of natural childbirth, but little research has been done to ___ these virtues.A. confirmB. consultC. confessD. convey39. Plastic bags are useful for holding many kinds of food______their cleaness, toughness and low cost.A. by virtue ofB. at sight ofC. by means ofD. by way of40. I am trying to think of his mind, but my mind goes completely _____i must be slipping.A. bareB. blankC. hollowD. vacant41. _____ in the regulations that you should not tell other people the password of your email account.A. what is requiredB. what requiresC. It is requiredD. It requires42. It is generally believed that gardening is ______it is a science.A. an art much asB. much an art asC. as an art much asD. as much an art as43. The indoor swimming pool seems to be great more luxurious than ______.A. is necessaryB. being necessaryC. to be necessaryD. it is necessary44. He ______ English for 8 years by the time he graduates from the university next year.A. will learnB. will be learningC. will have learntD. will have been learnt.45. It was not until the sub prime loan crisis ______ great damage to the American financial system that Americans ______the severity of the situation.A. caused; realizedB. had caused; realizedC. caused; had realizedD. was causing; had realized46. The police think you brother John stole the diamond in the museum yesterday evening.Oh? But he stayed with me at home the whole evening; he ___ the museum.A. must have been toB. needn’t have been toC. should have been toD. couldn’t have been to47. _______ the meeting himself gave his supporters a great deal of encouragement.A. The president will attendB. The president to attendC. The president attendedD. The president’s attending48. Everything _____into consideration, the candidates ought to have anotherchance.A. is takenB. takenC. to be takenD. taking49. _______from heart trouble for years, Professor White has to take some medicine with him wherever he goes.A. SufferedB. SufferingC. Having sufferedD. Being suffered50. The concert will be broadcasted live to a worldwide television audience_____ thousand millionA. estimatingB. estimatedC. estimatesD. having estimated51. About half of the students expected there ______more reviewing classes before the final exams.A. isB. beingC. to beD. have been52. _____ made the school proud was____more than 90% of the students had been admitted to key universities.A. What; becauseB. What; thatC. That; whatD. That; because53. Information has been released ______ more middle school graduates will be admitted into universities this year.A. whileB. thatC. whenD. as54. He is the only one of the students who ______ a winner of scholarship for three years.A. isB. areC. have beenD. has been55. What’s that newly-built building?______ the students have out-of-class activities, such as drawing and singing. A. It is the building that B. That’s whereC. It is in whichD. The building that56.With a large amount of work_____ the chief manager couldn’t spare time for a holiday.A. remained to be doneB. remaining to doC. remained to doD. remaining to be done57. Why! I have nothing to confess, ______you want me to say?A. What is it thatB. what it is thatC. How is it thatD. How is it that58. David has made great progress recently.__________, and __________________.A. So he has, so you haveB. So he has; so have youC. So has he; so you haveD. So has he; so you have59. It is universally known that microscopes make small things appear larger than _____.A. really areB. are reallyC. are they reallyD. they really are60. Tom, _______, but your TV is going too loud.Oh, I’m sorry. I will turn it down right now.A. I’d like to talk with youB. I’m really tired of thisC. I hate to say thisD. I need your helpPart ⅢClozeDirections: There are 20 blanks in the following passages. For each bank there are 4 choices marked A, B, C and D. You chose the ONE that best fits into the passage, the corresponding letter on the Answer Sheet with a single line through the center.The eyes are the most important 61 of human body that is used to 62 information. Eye contact is crucial for establishing rapport 63 others. The way we look at other people can 64 them know we are paying attention to 65 they are saying. We can also look at a person and gave the 66 we are not hearing a word. Probably all of us have been 67 of looking directly at someone and 68 hearing a word while he or she was talking 69 we were thinking about something totally 70 to what was being said.Eye contact allows you to 71 up visual clues about the other person; 72, the other person can pick up clues about you. Studies of the use of eye contact 73 communication indicate that we seek eye contact with others 74 we want to communicate with them. When we like them, when we are 75 toward them (as when two angry people 76 at each other). And when we want feedback from them. 77, we avoid eye contact when we want to 78 communication, when we dislike them, when we are 79 to deceiving them, and when we are 80 in what they have to say.61 A. unit B. part C. link D. section62 A. transfer B. translate C. transmit D. transport63 A. against B. with C. for D. to64 A. forbid B. allow C. permit D. let65 A. how B. which C. what D. that66 A. impression B. expression C. suggestion D. attention67 A. ignorant B. careless C. guilty D. innocent68 A. nor B. so C. not D. neither69 A. or B. unless C. why D. because70 A. related B. relevant C. unrelated D. indifferent71 A. tear B. pick C. size D. take72 A. likewise B. moreover C. otherwise D. therefore73 A. in B. about C. with D. of74 A. why B. where C. when D. what75 A. friendly B. hostile C. respectful D. mistrustful76 A. glance B. glare C. gaze D. stare77 A. Exactly B. Generally C. Conversely D. Interestingly78 A. hold B. establish C. avoid D. direct79 A. wanting B. tending C. forcing D. trying80 A. informed B. unconcerned C. uninterested D. unheard第Ⅱ卷(共50分)Part Ⅳ TranslationSection ADirections: Translate the following sentences into Chinese you may refer to the corresponding passages in Part ONE.81. The best way to get rid of a negative self-image is to realize that your image is far from objective and to actively convince yourself of your positive qualities.82. There is a beautiful positive cycle that is created by living a life of honorable actions Honorable thoughts lead to honorable actions. Honorable actions lead us to a happier existence.83. While the positive cycle can be difficult to start, once it’s started, it’s easy to continue. Keeping on doing good deeds brings us peace of mind, which is important for your happiness.84. That is because television program by that name can not be seen in so many parts of the world. That program became one of American’s export soon after it went on the air in New York in 1969.85. For instance, it is quite acceptable to say “delightfully”situated. That is an expression of his opinion. You may not agree, but he might like the idea of living next to the gasworks.Section BDirections: translate the following sentences into English.86. 一个公司应该跟上市场的发展变化,这很重要。

2001—2010年江苏专转本高等数学真题附答案

2001—2010年江苏专转本高等数学真题附答案

2001—2010年江苏专转本高等数学真题附答案2009 一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为() A 、2,1-=-=b a B 、0,2=-=b a C 、0,1=-=b a D 、1,2-=-=b a2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为() A 、10<<α B 、10≤<α C 、1>α D 、1≥α4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' () A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 . 10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a .12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy .15、求不定积分:+dx x 12sin .16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程.18、计算二重积分Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2.20、求微分方程x y y =-''的通解.四、综合题(本大题共2小题,每小题10分,满分20分)21、已知函数13)(3+-=x x x f ,试求:(1)函数)(x f 的单调区间与极值;(2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间]3,2[-上的最大值与最小值.22、设1D 是由抛物线22x y =和直线0,==y a x 所围成的平面区域,2D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域,其中20<(2)求常数a 的值,使得1D 的面积与2D 的面积相等.五、证明题(本大题共2小题,每小题9分,满分18分)23、已知函数≥+<=-0,10,)(x x x e x f x ,证明函数)(x f 在点0=x 处连续但不可导. 24、证明:当21<<x 时,32ln 42-+>x x x x .。

2010年普通高等学校招生全国统一考试数学试卷及答案(江苏卷)

2010年普通高等学校招生全国统一考试数学试卷及答案(江苏卷)

2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲________2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲________3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

5、设函数f(x)=x(e x +ae -x ),x ∈R ,是偶函数,则实数a =_______▲_________O长度m组距0.050.040.030.014035302520151056、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S 的值是______▲_______8、函数y=x 2(x>0)的图像在点(a k ,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____▲_____开始 S ←1n ←1S ←S+2nS ≥33n ←n+1否 输出S结束是9、在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c 的取值范围是______▲_____ 10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____11、已知函数⎩⎨⎧<≥+=01012x ,x ,x )x (f ,则满足不等式)x (f )x (f 212>-的x 的范围是____▲____12、设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是_____▲____13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,C cos baa b 6=+,则=+Btan Ctan A tan C tan __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=梯形的面积梯形的周长)2(,则S 的最小值是_______▲_______二、解答题15、(14分)在平面直角坐标系xOy 中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长 (2)设实数t 满足(OC t AB -)·=0,求t 的值16、(14分)如图,四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900 (1)求证:PC ⊥BC(2)求点A 到平面PBC 的距离DCBAPβαdDBE17、(14分)某兴趣小组测量电视塔AE 的高度H(单位m ),如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大18.(16分)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y①设动点P 满足422=-PB PF ,求点P 的轨迹 ②设31,221==x x ,求点T 的坐标 ③设9=t ,求证:直线MN 必过x 轴上的一定点 (其坐标与m 无关)19.(16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.①求数列{}n a 的通项公式(用d n ,表示)A BO F②设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立。

江苏专转本高等数学真题(附答案) (2)

江苏专转本高等数学真题(附答案) (2)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试数学(江苏卷)(附答案,完全word版)

2010年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:锥体的体积公式:13V Sh =锥体,其中S 是锥体的底面面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设集合{1,1,3}A =-,{}4,22++=a a B ,{}3=⋂B A ,则实数a 的值为____▲____. 1.【答案】1.【命题意图】本题考查交集的定义,对求得的集合中的元素要进行检验.【解析】由题意得1,32==+a a .又由342=+a 不符合题意.经检验得1=a .2.设复数z 满足(23)64z i i -=+(i 为虚数单位),则z 的模为____▲____. 2.【答案】2.【命题意图】本题考查复数有关运算及复数模的计算. 【解析】由i i z 46)32(+=-得,2)32)(32()32)(46(3246i i i i i i i z =+-++=-+=即2,2=∴=z i z . 3.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是_ ▲__.3.【答案】21. 【命题意图】本题考查古典概型知识. 【解析】31.62p == 4.某棉纺厂为了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标).所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有_ ▲__ 根棉花纤维的长度小于20mm. 4.【答案】30.【命题意图】本题考查概率统计中频率分布直方图的有关运用,注意纵坐标是频率/组距.【解析】由频率分布直方图得棉花纤维长度小于mm 20的根数为(0.01+0.01+0.04)301005=⨯⨯. 5.设函数()()xxf x x e ae -=+(x ∈R )是偶函数,则实数a 的值为____▲____. 5.【答案】1-.【命题意图】本题考查函数的奇偶性.【解析】设R x ae e x g xx∈+=-,)(,由题意分析)(x g 应为奇函数(奇函数⨯奇函数=偶函数), 又R x ∈ ,0)0(=∴g ,则,01=+a 所以1-=a .6.在平面直角坐标系xOy 中,已知双曲线221412x y -=上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为____▲____.6.【答案】4.【命题意图】本题考查求曲线上点的坐标、双曲线的焦点坐标、两点间距离公式的运用. 【解析】由题意得点15,3(±M ),双曲线的右焦点的坐标为(4,0),2MF 22)015()43(-±+-==4.或用第二定义:2MFe d==,2d =,4MF =. 7.右图是一个算法流程图,则输出的S 的值是____▲____.7.【答案】63.【命题意图】本题考查算法流程图,由流程图得出S 的关系式,比较得出S 的值.【解析】由流程图得12345122222S =+++++=1+2+48+16+32=6333≥,即.63=S8.函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴的交点的横坐标为1k a +,其中k ∈N *.若116a =,则123a a a ++的值是____▲____.8.【答案】21.【命题意图】考查函数的切线方程、数列的通项.【解析】在点2(,)k k a a 处的切线方程为22(),k k k y a a x a -=-当0y =时,解得2ka x =,所以 1135,1641212kk a a a a a +=++=++=. 9.在平面直角坐标系xOy 中,已知圆224x y +=上有且只有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是____▲____. 9.【答案】(13,13)-.【命题意图】本题考查直线与圆的位置关系.【解析】如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线的距离为1,问题转化为原点(0,0)到直线05=+-c y x 的距离小于1,即1313,13,151222<<-∴<<+c c c .10.设定义在区间(0,)2π上的函数y=6cosx 的图象与y=5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y=sinx 的图像交于点P 2,则线段P 1P 2的长为____▲____. 10.【答案】.32y O 0512=+-c y x1 11【命题意图】本题考查三角函数问题,由图象相交,即三角函数值相等,建立关系式,求出,32sin =x 结合图象,数形结合分析P 1P 2的值.【解析】由题意得x x tan 5cos 6=,即x x xxx sin 5cos 6,cos sin 5cos 62==, 226(1sin )5sin ,6sin 5sin 60x x x x -=+-=得,32sin =x 结合图象分析得32sin 21==P P x .11.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____▲____.11.【答案】).12,1(--【命题意图】本题考查分段函数的单调性.【解析】2212,10,x x x ⎧->⎪⎨->⎪⎩解得121x -<<,所以x 的取值范围是).12,1(-- 12.设x,y 为实数,满足3≤2xy ≤8,4≤2x y≤9,则34x y 的最大值是____▲____.12.【答案】27.【命题意图】考查不等式的基本性质,等价转化思想.【解析】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy=⋅∈,43y x 的最大值是27.13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若6cos b a C a b +=,则tan tan tan tan C CA B+的值是 ▲ . 【答案】4.【解析】考查三角函数知识,三角形中的正、余弦定理的应用,等价转化思想. (方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性. 当A=B 或a=b 时满足题意,此时有1cos 3C =,21cos 1tan 21cos 2C C C -==+,2tan 22C =.等腰三角形中,1tan tan 2tan 2A B C ===,tan tan tan tan C CA B+=4. (方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=.2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B C A B C A B C A B C A B+++=⋅=⋅=⋅,由正弦定理,得上式22222214113cos ()662c c c c C ab a b =⋅===+⋅. 14.将边长为1m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记2(s =梯形的周长)梯形的面积,则s 的最小值是____▲____. 【答案323. 【解析】考查函数中的建模应用,等价转化思想. 设剪成的小正三角形的边长为x ,则222(3)(01)1133(1)(1)x s x x x x -==<<-⋅+⋅⋅-. (方法一)利用导数求函数最小值.22(3)()13x S x x -=-,2222(26)(1)(3)(2)()(1)3x x x x S x x -⋅---⋅-'=-222(31)(3)(1)3x x x ---=- 1()0,01,3S x x x '=<<=.当1(0,]3x ∈时,()0,S x '<递减;当1[,1)3x ∈时,()0,S x '>递增.故当13x =时,S 323. (方法二)利用函数的方法求最小值.令1113,(2,3),(,)32x t t t -=∈∈,则22218668331t S t t t t==-+--+-.故当131,83x t ==时,S 323. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平面直角坐标系xOy 中,已知点(1,2)A --,(2,3)B ,(2,1).C -- (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(OC t AB -)·OC =0,求t 的值.【解析】本小题主要考查平面向量的几何意义、线性运算、数量积,考查运算求解能力.满分14分.解:(1)由题设知(3,5)AB =,(1,1)AC =-,则 (2,6)A B A C +=,(4,4).AB AC -=所以||210AB AC +=||4 2.AB AC -= 故所求的两条对角线长分别为42,210.(2)由题设知 (2,1)OC =--,(32,5).AB tOC t t -=++由()0AB tOC OC -=,得(32,5)(2,1)0t t ++--=, 从而511t =-,所以11.5t =- 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.满分14分.解:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC. 由∠BCD=900,得BC ⊥DC.又PD DC D ⋂=,PD ⊂平面PCD ,DC ⊂平面PCD , 所以BC ⊥平面PCD.因为PC ⊂平面PCD ,所以PC ⊥BC. (2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF.则易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 由(1)知BC ⊥平面PCD ,所以平面PBC ⊥平面PCD.因为PD=DC ,PF=FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F. 易知DF=22.又点A 到平面PBC 的距离等于E 到平面PBC 的距离 的2倍,故点A 到平面PBC 2(方法二)连结AC.设点A 到平面PBC 的距离h. 因为AB ∥DC ,∠BCD=900,所以∠ABC=900. 从而由AB=2,BC=1,得ABC ∆的面积1ABC S ∆=.由PD ⊥平面ABCD 及PD=1,得三棱锥P ABC -的体积11.33ABC V S PD ∆== 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC.又PD=DC=1,所以22 2.PC PD DC =+=由PC ⊥BC ,BC=1,得PBC ∆的面积22PBC S ∆= 由1121333PBC V S h h ∆===,得2h =.因此,点A 到平面PBC 的距离为2. 17.(本小题满分14分)某兴趣小组要测量电视塔AE 的高度H(单位:m).如示意图,垂直放置的标杆BC 高度h=4m ,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125m ,试问d 为多少时,αβ-最大?【解析】本小题主要考查解三角形、基本不等式、导数等基础知识,考查数学建模能力、抽象概括能力和解决实际问题的能力.满分14分. 解:(1)由tan H AB α=,tan h BD β=,tan HAD β= 及AB BD AD +=,得tan tan tan H h Hαββ+=, 解得tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--.因此,算出的电视塔的高度H 是124m. (2)由题设知d AB =,得tan .H dα= 由tan tan H hAB AD BD ββ=-=-,得tan H h d β-=,所以tan tan tan()()1tan tan 2()h H H h H H h d dαβαβαβ--==≤-+⋅-+,当且仅当()H H h d d-=,即()125121555d H H h -⨯=. 所以当555d =tan()αβ-最大. 因为02πβα<<<,则02παβ<-<,所以当555d =αβ-最大.故所求的d 是555m. 18.(本小题满分16分)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y . (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解析】本小题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.满分16分.解:由题设得(3,0)A -,(3,0)B ,(2,0).F(1)设点(,)P x y ,则222(2)PF x y =-+,222(3).PB x y =-+ 由422=-PB PF ,得2222(2)(3)4x y x y -+---=,化简得92x =. 故所求点P 的轨迹为直线92x =. (2)由12x =,2211195x y +=及10y >,得153y =,则点5(2,)3M , 从而直线AM 的方程为113y x =+; 由213x =,2222195x y +=及20y <,得2109y =-,则点110(,)39N -, 从而直线BN 的方程为5562y x =-. 由11,355,62y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得7,10.3x y =⎧⎪⎨=⎪⎩所以点T 的坐标为10(7,)3. (3)由题设知,直线AT 的方程为(3)12m y x =+,直线BT 的方程为(3)6my x =-. 点11(,)M x y 满足112211(3),121,95m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩得 22111(3)(3)(3)9125x x x m -++=-,因为13x ≠-,则211339125x x m -+=-,解得212240380m x m -=+,从而124080m y m =+. 点22(,)N x y 满足2222222(3),61,953,m y x x y x ⎧=-⎪⎪⎪+=⎨⎪≠⎪⎪⎩解得22236020m x m -=+,222020m y m -=+. 若12x x =,则由222224033608020m m m m--=++及0m >,得210m = 此时直线MN 的方程为1x =,过点(1,0).D若12x x ≠,则210m ≠MD 的斜率2222401080240340180MDmm m k m m m +==---+, 直线ND 的斜率222220102036040120NDmm m k m mm -+==---+,得MD ND k k =,所以直线MN 过D 点. 因此,直线MN 必过x 轴上的点(1,0). 19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S .已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示);(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.满分16分. 解:(111(1)(1)n S S n d a n d =-=-,则当2n ≥时,221111()()232.n n n n n n n a S S S S S S a d d n ---=-==+由2132a a a =+,得221112(2)23a d a a d =+1.a d = 故当2n ≥时,222.n a nd d =-又21a d =,所以数列{}n a 的通项公式为2(21)n a n d =-.(21a d =1(1)n S a n d =-,得0d >,22n S n d =. 于是,对满足题设的k ,,m n ≠,有2222222()99()222m n k m n S S m n d d d k S ++=+>==.所以c 的最大值max 92c ≥.另一方面,任取实数92a >.设k 为偶数,令331,122m k n k =+=-,则k n m ,,符合条件,且22222222331()((1)(1))(94).222m n S S d m n d k k d k +=+=++-=+于是,只要22942k ak +<,即当29k a >-时,就有22122m n k S S d ak aS +<⋅=.所以满足条件的92c ≤,从而max 92c ≤.因此c 的最大值为92.20.(本小题满分16分)设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f .如果存在实数a 和函数)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称函数)(x f 具有性质)(a P . (1)设函数2()ln (1)1b f x x x x +=+>+,其中b 为实数. (i)求证:函数)(x f 具有性质)(b P ;(ii)求函数)(x f 的单调区间.(2)已知函数)(x g 具有性质)2(P .给定1212,(1,),,x x x x ∈+∞<设m 为实数,21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围.【解析】本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分.解:(1)(i)由2()ln 1b f x x x +=++,得'()f x 221.(1)x bx x x -+=+ 因为1x >时,21()0(1)h x x x =>+,所以函数)(x f 具有性质)(b P .(ii)当2b ≤时,由1x >得222121(1)0x bx x x x -+≥-+=->, 所以)('x f 0>,从而函数)(x f 在区间),1(+∞上单调递增.当2b >时,解方程210x bx -+=得214b b x --=,224b b x +-=因为214b b x --=2214b b b =<<+-,2241b b x +-=>,所以当2(1,)x x ∈时,)('x f 0<;当2(,)x x ∈+∞时,)('x f 0>;当2x x =时,)('x f =0.从而函数)(x f 在区间2(1,)x 上单调递减,在区间2(,)x +∞上单调递增. 综上所述,当2b ≤时,函数)(x f 的单调增区间为),1(+∞;当2b >时,函数)(x f 的单调减区间为24b b +-,单调增区间为24()b b +-+∞.(2)(方法一)由题意,得22'()()(21)()(1)g x h x x x h x x =-+=-. 又)(x h 对任意的),1(+∞∈x 都有)(x h >0,所以对任意的),1(+∞∈x 都有()0g x '>,()g x 在(1,)+∞上递增.当1m =时,1x α=,2x β=,不合题意.1212,(21)()x x m x x αβαβ+=+-=--. 当1,12m m >≠时,αβ<,且112212(1)(1),(1)(1)x m x m x x m x m x αβ-=-+--=-+-, 221212()()(1)()0x x m x x αβ∴--=---<,12x x αβ∴<<<或12x x αβ<<<,若12x x αβ<<<,则12()()()()f f x f x f αβ<<<,12|()()||()()|g g g x g x αβ∴->-,不合题意.12x x αβ∴<<<,即112122(1),(1),x mx m x m x mx x <+-⎧⎨-+<⎩解得1m <,11.2m ∴<< 当12m =时,αβ=,120|()()||()()|g g g x g x αβ=-<-,符合题意. 当12m <时,αβ>,且212112(),()x m x x x m x x αβ-=--=--,同理有12x x βα<<<,112122(1),(1),x m x mx mx m x x <-+⎧⎨+-<⎩解得0m >,10.2m ∴<<综合以上讨论,得所求的m 的取值范围是(0,1).(方法二)由题设知,()g x 的导函数2'()()(21)g x h x x x =-+,其中函数()0h x >对于任意的),1(+∞∈x 都成立,所以,当1x >时,2'()()(1)0g x h x x =->,从而()g x 在区间),1(+∞上单调递增. ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,222(1)mx m x x α<+-=,得12(,)x x α∈,同理可得12(,)x x β∈,所以由()g x 的单调性知()g α,()g β12((),())g x g x ∈,从而有|)()(βαg g -|<|)()(21x g x g -|,符合题设.②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,于是由1,1αβ>>及()g x 的单调性知12()()()()g g x g x g βα≤<≤,所以|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.③当1m ≥时,同理可得12,x x αβ≤≥,进而得|)()(βαg g -|≥|)()(21x g x g -|,与题设不符.因此,综合①、②、③得所求的m 的取值范围为(0,1).数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并.在.相应的答题.....区域内作答......若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C.若DA=DC ,求证:AB=2BC.【解析】本题主要考查三角形、圆的有关知识,考查推理论证能力.满分10分.证明:(方法一)连OD ,则OD ⊥DC.又OA=OD ,DA=DC ,所以∠DAO=∠ODA=∠DCO ,∠DOC=∠DAO+∠ODA=2∠DCO ,所以∠DCO=300,所以OC=2OD ,即OB=BC=OD=OA ,所以AB=2BC.(方法二)连结OD 、BD.因为AB 是圆O 的直径,所以∠ADB=900,AB=2OB.因为DC 是圆O 的切线,所以∠CDO=900.又因为DA=DC ,所以∠A=∠C ,于是△ADB ≌△CDO ,从而AB=CO.即2OB=OB+BC ,得OB=BC.故AB=2BC.B.选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,已知点(0,0),(2,0),(2,1)A B C --.设k 为非零实数,矩阵M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.【解析】本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力.满分10分.解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.由0001000k ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,0201002k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,021012k k -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 可知1(0,0)A ,1(0,2)B -,1(,2)C k -.计算得△ABC 的面积是1,△A 1B 1C 1的面积是||k ,则由题设知||212k =⨯=.所以k 的值为2-或2.C.选修4-4:参数方程与极坐标(本小题满分10分)在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++=相切,求实数a 的值.【解析】本题主要考查曲线的极坐标方程等基础知识,考查转化问题的能力.满分10分.解:将极坐标方程化为直角坐标方程,得圆的方程为22222,(1)1x y x x y +=-+=即,直线的方程为340x y a ++=.由题设知,圆心(1,0)到直线的距离为1221,34=+解得8a =-,或2a =.故a 的值为8-或2.D.选修4-5:不等式选讲(本小题满分10分)设a ,b 是非负实数,求证:3322()a b ab a b +≥+.【解析】本题主要考查证明不等式的基本方法,考查推理论证的能力.满分10分.证明:由a ,b 是非负实数,作差得 3322()()()a b ab a b a a a b b b b a ++=+55()[()()]a b a b =-.当a b ≥a b ≥,从而55()()a b ≥,得55()[()()]0a b a b -≥;当a b <a b <,从而55()()a b <,得55()[()()]0a b a b ->. 所以3322()a b ab a b +≥+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【解析】本题主要考查概率的有关知识,考查运算求解的能力.满分10分.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18,P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02.由此得X 的分布列为: X-3 2 5 10 P 0.02 0.08 0.18 0.72(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =. 所以3344440.80.20.80.8192P C C =+=. 故所求概率为0.8192.23.(本小题满分10分)已知△ABC 的三边长都是有理数.(1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数.【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.满分10分.证法一:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)①当1n =时,由(1)知cos A 是有理数.当2n =时,∵2cos22cos 1A A =-,因为cos A 是有理数,∴cos 2A 也是有理数;②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数.当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+, 11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++, 解得cos(1)2cos cos cos(1)k A kA A k A +=--. ∵cos A ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数,∴cos(1)k A +是有理数.即当1n k =+时,结论成立.综上所述,对于任意正整数n ,cos nA 也是有理数.证法二:(1)由AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB BC+-=是有理数. (2)用数学归纳法证明cos nA 和sin sin A nA 都是有理数.①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A =-也是有理数.②假设当(1)n k k =≥时,cos kA 和sin sin A kA 都是有理数.当1n k =+时,由cos(1)cos cos sin sin k A kA A A kA +=-,sin sin(1)sin (sin cos cos sin )A k A A A kA A kA +=+(sin sin )cos (sin sin )cos A A kA A kA A =+,及①和归纳假设,知cos(1)k A +与sin sin(1)A k A +都是有理数.即当1n k =+时,结论成立.综合①、②可知,对任意正整数n ,cos nA 也是有理数.毋意,毋必,毋固,毋我。

2006-2010年江苏省专转本高数真题集

2006-2010年江苏省专转本高数真题集

2006年—2010年江苏省专转本真题1、 计算11lim31--→x x x (32) 2、 已知)21()21(lim ,2)2(lim==∞→→x xf x x f x x 则 3、 求极限xx xx 3)2(lim -∞→ (6-e ) 4、求极限xx x x sin lim 30-→ (6)5、已知32lim22=-++→x bax x x ,则常数a,b 的值为( A ) A 、a=-1,b=-2 B 、a=-2,b=0 C 、a=-1,b=0 D 、a=-2,b=-16、设2)(lim =-∞→xx cx x ,常数c= ln2 。

7、计算xx x x )11(lim -+∞→ (2e ) 8、设当x →0时,函数f(x)=x-sinx 与g(x)=a n是等价无穷小,则常数a,n 的值为( A ) A.4,61.4,121.3,31.3,61========n a D n a C n a B n a 9、设423)(22-+-=x x x x f ,则x=2是f(x)的( B )A 、跳跃型间断点B 、可去间断点C 、无穷型间断点D 、振荡型间断点 10、若,)(lim 0A x f x =→且f(x)在x=x 0处有定义,则当A= f(x 0) 时f(x)在x 0处连续。

11、 设函数f(x)=⎪⎩⎪⎨⎧=≠+020)1(1x x kx x 在点x=0处连续,求常数k. (ln2)12、 函数)1(1)(2--=x x x x f 的第一类间断点是 x=113、 函数f(x)=⎪⎩⎪⎨⎧>≤+03tan 0x xx x x a 在x=0处连续,则a = 3 .14、设f(x)在[0,2a]上连续,且f(0)=f(2a)≠f(a),证明在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a). (令φ(x )=f(x)-f(x+a))15、 设y=f(x)由参数方程x=ln(1+t 2) , y = t-arctant 确定,求22,dx yd dx dy ( ,2t t t 412+)16、 设函数y=y(x)由方程xy e e yx=-确定,求220,==x x dx y d dxdy(1,-2)17、 函数f(x)是可导函数,下列各式中正确的是( A )18、函数y=y(x)由方程x=t-sint,y=1-cost 所确定,求22,dx y d dx dy ( 2cott , 2sin 414t -)19、设函数⎪⎩⎪⎨⎧>≤=01sin 00)(x x x x x f α在x=0处可导,则常数α的取值范围是( C ) A 、0<α<1 B 、0<α≤1 C 、α>1 D 、α≥120、设函数y=y(x)由参数方程⎩⎨⎧-+=+=32)1ln(2t t y t x 确定,求22,dx yd dx dy (2)1(2t +,2)1(4t +) 21、设⎪⎩⎪⎨⎧=≠=010)()(x x xx x f ϕ其中φ(x)在x=0处具有二阶连续导数,且φ(0)=0,φ/(0)=1,证明:函数f(x)在x=0处连续且可导。

01—10年江苏专转本数学真题(附答案)

01—10年江苏专转本数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2010年普通高校专转本选拔统一考试
数 学 试 题
一、单项选择题(本大题共6小题,每小题4分,满分24分)
1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46
a n == 2.曲线223456
x x y x x -+=-+的渐近线共有( ) A. 1条 B. 2条 C. 3条 D. 4条
3.设函数22
()cos t x x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos x xe x - D. 22cos x e x -
4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B. 21
21n n n n ∞=++∑
C. 1n n ∞=
D. 212n n n ∞=∑ 5.二次积分11
01(,)y dy f x y dx +⎰
⎰交换积分次序后得( ) A.
1101(,)x dx f x y dy +⎰⎰ B. 2110(,)x dx f x y dy -⎰⎰ C. 2111(,)x dx f x y dy -⎰⎰ D. 2111
(,)x dx f x y dy -⎰⎰ 6.设3()3f x x x =-,则在区间(0,1)内( )
A. 函数()f x 单调增加且其图形是凹的
B. 函数()f x 单调增加且其图形是凸的
C. 函数()f x 单调减少且其图形是凹的
D. 函数()f x 单调减少且其图形是凸的
二、填空题(本大题共6小题,每小题4分,满分24分) 7. 1lim()1
x x x x →∞+=- 8. 若(0)1f '=,则0()()lim x f x f x x
→--= 9. 定积分31
2111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==,若a 与b 垂直,则常数k =
绝密★启用前
11.
设函数z =10x y dz
=== 12. 幂级数0
(1)n
n n x n ∞=-∑的收敛域为 三、计算题(本大题共8小题,每小题8分,满分64分)
13、求极限2011lim()tan x x x x
→- 14、设函数()y y x =由方程2x y y e
x ++=所确定,求22,dy d y dx dx
15、求不定积分arctan x xdx ⎰
16
、计算定积分40⎰ 17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩
垂直,又与平面250x z --=平行的直
线的方程。

18、设2(,)x
z y f xy e =,其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂ 19、计算二重积分D
xdxdy ⎰⎰,其中D
是由曲线x =y x =及x 轴所围
成的闭区域。

20、已知函数x y e =和2x y e -=是二阶常系数齐次线性微分方程"'0y py qy ++=的两个解,试确定常数p,q 的值,并求微分方程"'x y py qy e ++=的通解。

四、证明题(每小题9分,共18分)
21、证明:当1x >时,121122
x e x ->+ 22、 设(),0,()1,
0,x x f x x x ϕ⎧≠⎪=⎨⎪=⎩其中函数()x ϕ在0x =处具有二阶连续导数,且
'(0)0,(0)1ϕϕ==,证明:函数()f x 在0x =处连续且可导。

五、综合题(每小题10分,共20分)
23、设由抛物线2(0)y x x =≥,直线2(01)y a a =<<与y 轴所围成的平面图形绕x
轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2(0)y x x =≥,直线2(01)y a a =<<与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值。

24、设函数()f x 满足方程'()()2x
f x f x e +=,且(0)2f =,记由曲线'()()f x y f x =与直线1,(0)y x t t ==>及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞。

相关文档
最新文档