数字信号处理 第4章_1

合集下载

《数字信号处理—理论与实践》课件第4章

《数字信号处理—理论与实践》课件第4章
由此得到 x(n) n 3n u(n 1)
4. 围线积分法(留数法) 留数法是求Z反变换的一种有用的方法。 根据复变函数 理论, 若
X (z) x(n)z n , Rx | z | Rx n
第 4 章 Z变换

式中, c是X(z)的收敛域中的一条逆时针方向环绕原点的闭 合积分围线。
直接计算围线积分比较麻烦, 一般采用留数定理求解。 按照留数定理, 若函数F(z)=X(z)zn-1在围线c上连续, 在c内 有K个极点zk, 而在围线外部有M个极点zm(M和K都取有限 值), 则有
第 4 章 Z变换
2. 一般X(z)是z的有理分式, 可以表示为X(z)=B(z)/A(z), B(z)、 A(z) 都是z的实系数多项式, 并且没有公因式。 记住了 常用序列的Z变换, 就可以将X(z)表示成简单项之和的形式, 而后求取其中的每一项Z反变换(可以查表), 然后把求得的 每一项部分分式相加, 就得到所求的x(n), 即若
第 4 章 Z变换
(1) X(z)的收敛域为|z|>Rx-, x(n)必为因果序列, 此时 应将X(z)展开为z的负幂级数, 为此X(z)的分子、 分母应按照 z的降幂排列(或z-1升幂);
(2) X(z)的收敛域为|z|<Rx+, x(n)必为左边序列, 此时 应将X(z)展开为z的正幂级数, 为此X(z)的分子、 分母应按照 z的升幂排列(或z-1降幂)。
1. 只在有限长度n1≤n≤n2内序列x(n)才具有非零值, 而在此 区间外x(n)=0, 即
第 4 章 Z变换
x(n), n1≤n≤n2 x(n)= 0, 其他
这类序列称为有限长序列。 有限长序列的Z变换为
n2
X (z) x(n) zn nn1

数字信号处理DSP第4章

数字信号处理DSP第4章
G[3] 1
k 0,1, , N 1
2
13
4.2 按时间抽取(DIT)的基2–FFT算法
将系数统一为 WNk 2 WN2k ,则可得
x[0]
N 4点
x[4]
DFT
G[0]
X [0]
G[1]
X [1]
x[2]
N 4点
WN0
x[6]
DFT
WN2
G[2]
1 G[3]
1
X [2] X [3]
x[1]
N 4点
X m1[i] WNr X m1[ j] , X m1[i] WNr X m1[ j]
m 1, 2 ,
每一个蝶形需要一次复数乘法和两次复数加法。
17
4.2 按时间抽取(DIT)的基2–FFT算法
N点的DIT-FFT计算量为
复数乘法:
1
N 2
log2
N
N 2
复数加法:
2
N 2
log2
N
N
例: 如果每次复数乘法需要100us,每次复数加法需要20us,来 计算N=1024点DFT,则需要
12
4.2 按时间抽取(DIT)的基2–FFT算法
同理
( N 4)1
( N 4)1
G[k] DFT[g[r]]
g[2l]WN2lk2
g[2l 1]WN(22l1)k
l 0
l 0
( N 4)1
( N 4)1
g[2l]WNlk 4 WNk 2
g[2l 1]WNlk 4 ,
l 0
l 0
k 0,1,
(3) WN0 WN4 WN8 WN12 WN16 WN20 WN24 WN28
或 WN4i i 0,1, 2, 3, 4, 5, 6, 7 (dm 1)

数字信号处理 第04章 正交变换

数字信号处理 第04章 正交变换
DCT 变换矩阵、DST 变换矩阵的 行向量。
给定:
x(n), n = 1, 2, , N
DST
定义: X s (k) =
∑ 2 N
nkπ
x(n) sin( )
N +1 n=1
N +1
k = 1, 2, , N
反变换: x(n) =
∑ 2
N +1
N k =1
X
s
(k
)
sin(
nkπ )
N +1
n = 1, 2, , N
y = Ax 3. 反变换: x = A−1 y = AT y
不需要求逆,特别有利于硬件实现
性质2:展开系数是信号在基向量上的
准确投影 ϕ2
α2
α3
ϕ3
x
α1
ϕ1
非正交基的情况下,“基向量”称为“标架 (Frame)”, 这时,展开系数不是准确投影。
性质3:正交变换保证变换前后信号的能量不变,
此性质又称为“保范(数)变换”。
2N
DCT 反变换
一阶马尔可夫过程(Markov-1):语音和图象处 理中常用的数学模型。一个随机信号 ,若其 pdf满足如下关系
p[ X (tn+1) ≤ xn+1 X (tn ) = xn , X ( tn−1) = xn−1, , X ( t0 ) = x0 ]
= p[ X (tn+1) ≤ xn+1 X (tn ) = xn ], X (tn ) X (n)
即为正交变换,或保范(数)变换
AN×N 实际上是正交矩阵, AT = A−1
(二)、正交变换的性质:
性质1:正交变换的基向量即是其对偶基

数字信号处理—原理、实现及应用(第4版)第4章 模拟信号数字处理 学习要点及习题答案

数字信号处理—原理、实现及应用(第4版)第4章  模拟信号数字处理 学习要点及习题答案

·78· 第4章 模拟信号数字处理4.1 引 言模拟信号数字处理是采用数字信号处理的方法完成模拟信号要处理的问题,这样可以充分利用数字信号处理的优点,本章也是数字信号处理的重要内容。

4.2 本章学习要点(1) 模拟信号数字处理原理框图包括预滤波、模数转换、数字信号处理、数模转换以及平滑滤波;预滤波是为了防止频率混叠,模数转换和数模转换起信号类型匹配转换作用,数字信号处理则完成对信号的处理,平滑滤波完成对数模转换后的模拟信号的进一步平滑作用。

(2) 时域采样定理是模拟信号转换成数字信号的重要定理,它确定了对模拟信号进行采样的最低采样频率应是信号最高频率的两倍,否则会产生频谱混叠现象。

由采样得到的采样信号的频谱和原模拟信号频谱之间的关系式是模拟信号数字处理重要的公式。

对带通模拟信号进行采样,在一定条件下可以按照带宽两倍以上的频率进行采样。

(3) 数字信号转换成模拟信号有两种方法,一种是用理想滤波器进行的理想恢复,虽不能实现,但没有失真,可作为实际恢复的逼近方向。

另一种是用D/A 变换器,一般用的是零阶保持器,虽有误差,但简单实用。

(4) 如果一个时域离散信号是由模拟信号采样得来的,且采样满足采样定理,该时域离 散信号的数字频率和模拟信号的模拟频率之间的关系为T ωΩ=,或者s /F ωΩ=。

(5) 用数字网络从外部对连续系统进行模拟,数字网络的系统函数和连续系统传输函数 之间的关系为j a /(e )(j )T H H ωΩωΩ==,≤ωπ。

数字系统的单位脉冲响应和模拟系统的单位冲激响应关系应为 a a ()()()t nTh n h t h nT === (6) 用DFT (FFT )对模拟信号进行频谱分析(包括周期信号),应根据时域采样定理选择采样频率,按照要求的分辨率选择观测时间和采样点数。

要注意一般模拟信号(非周期)的频谱是连续谱,周期信号是离散谱。

用DFT (FFT )对模拟信号进行频谱分析是一种近似频谱分析,但在允许的误差范围内,仍是很重要也是常用的一种分析方法。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]

北京邮电大学数字信号处理第4章答案

北京邮电大学数字信号处理第4章答案

习题解答4.1 根据给定的模拟滤波器的幅度响应平方,确定模拟滤波器的系统函数 H(s)。

(1) 261|()|164H j Ω=+Ω(2) 2222216(25)|()|(49)(36)H j -ΩΩ=+Ω+Ω分析:在模拟滤波器设计中,由各种逼近方法确定了幅度响应,通过下列步骤求出滤波器的系统函数H(s)。

更进一步,通过脉冲响应不变法或双线性变换法,可以得到数字滤波器的传输函数 H(z)。

(1)考虑s j =Ω,将幅度响应表达式整理为s 为变量的表达式,求 ()()a a H s H s - 表达式的零极点;(2)为了系统稳定,选择左半平面的极点构成 H(s);(3)如果没有特殊要求,可以选择取 ()()a a H s H s -以虚轴为对称轴的对称零点的任意一半(应是共轭对)作为 H a (s) 的零点。

但如果要求是最小相位延时滤波器,则应取左半平面零点作为 H a (s) 的零点。

(4)对比()a H s 和()a H j Ω 的低频特性或高频特性,从而确定增益常数K 0。

解:(1)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,先求2321()()()164()22H s H s H j a a as s -=Ω=+-Ω=-其极点为0.50.250.4330.50.250.433j j --±±我们选出左半平面极点s=0.5和 0.250.433j -± 为)(s H a 的极点,并设增益常数为0K ,则得)(s H a 为:002()(0.5)(0.250.433)(0.250.433)(0.5)(0.50.25)K K H s a s s j s j s s s ==++-+++++ 按着()a H s 和()a H j Ω的低频特性或高频特性的对比可以确定增益常数。

在这里我们采用低频特性,即由00()|()|a s a H s H j =Ω==Ω的条件可得增益常数0K 为:018K =最后得到)(s H a 为:21()8(0.5)(0.50.25)H s a s s s =+++(2)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,得)36)(49()25(16222)()()(222s s s s j aH s a H s a H --+=-=ΩΩ=- 其极点为:6,7±=±=s s其零点为:5j s ±=(皆为二阶,位于虚轴上)j Ω虚轴上的零点或极点一定是二阶的,其中一半(应为共轭对)属于 H a (s)。

数字信号处理-原理、实现及应用(第4版) 第四章 模拟信号的数字处理

数字信号处理-原理、实现及应用(第4版) 第四章 模拟信号的数字处理
(3)当未知时,由 x(n) 无法恢复原正弦信号。
结论:
正弦信号采样(2)
三点结论: (1)对正弦信号,若 Fs 2 f0 时,不能保证从采样信号恢
复原正弦信号; (2)正弦信号在恢复时有三个未知参数,分别是振幅A、
频率f和初相位,所以,只要保证在一个周期内均匀采样 三点,即可由采样信号准确恢复原正弦信号。所以,只要 采样频率 Fs 3 f0 ,就不会丢失信息。 (3)对采样后的正弦序列做截断处理时,截断长度必须 是此正弦序列周期的整数倍,才不会产生频谱泄漏。(见 第四章4.5.3节进行详细分析)。
D/A
D/A为理想恢复,相当于理想的低通滤波器,ya (t) 的傅里叶变换为:
Ya ( j) Y (e jT )G( j) H (e jT ) X (e jT )G( j)
保真系统中的应用。
在 |Ω|>π/T ,引入了原模拟信号没有的高频分量,时域上表现
为台阶。
ideal filter

-fs
-fs/2 o
• fs/2 fs
f •
2fs


-fs
-fs/2 o
fs/2

fs

f
2fs
措施
D/A之前,增加数字滤波器,幅度特性为 Sa(x) 的倒数。
在零阶保持器后,增加一个低通滤波器,滤除高频分量, 对信号进行平滑,也称平滑滤波器。
c
如何恢复原信号的频谱?
P (j)
加低通滤波器,传输函数为
G(
j)
T
0
s 2 s 2
s
0
s
X a ( j)
s 2
s c c
s
理想采样的恢复

《数字信号处理》第四章 相关分析

《数字信号处理》第四章 相关分析

对函数两边同时作傅立叶变换有:
F
r12( )


r12 (
)e j2f
d



x1
(t
)
x2
(t
)dtej2f d


x1
(t
)

x2
(t
)ej2f d dt

第二节 相关函数的性质
这是由于:
① r(τ)完全由它的能量谱或功率谱P(f )来决定; ② P(f ) =∣X(f )∣2
具有相同的振幅谱而不同相位谱的信号,可以 有相同的自相关函数。
第一节 相关
相关函数r(τ)存在的条件是:
信号x1(t)和x2(t)是绝对可积函数。
即:
x12
(t)dt

,


x(t)dt

x 2 2
(t)dt


与自相关函数相对应,如果参与相关的两个信号是
不同的信号,则其相关函数称为互相关函数。
第一节 相关
t
min
xe2 (t)

x
2
(t
)dt
1


x(t

)
y(t
)dt

2

x
2
(t
)dt

y2 (t)dt



若令
xy

x(t) y(t)dt
x2 (t)dt y2 (t)dt


则相对误差可表示为
min

1

(t

)dt

精品课件-数字信号处理(第四版)(高西全)-第4章

精品课件-数字信号处理(第四版)(高西全)-第4章

点DFT和(4.2.10)式或(4.2.11)式所示的N/4个蝶形运算,
如图4.2.3所示。依次类推,经过M次分解,最后将N点DFT
分解成N个1点DFT和M级蝶形运算,而1点DFT就是时域序列
本身。一个完整的8点DIT-FFT运算流图如图4.2.4所示。
图中用到关系式
。W图N中k / m输入W序Nmk列不是顺序排
In Time FFT,简称DIT-FFT ); 频域抽取法FFT (Decimation In Frequency FFT,简称DIF-FFT)。本节介 绍DIT-FFT
设序列x(n)的长度为N,且满足N=2M,M为自然数。按n 的奇偶把x(n)分解为两个N/2点的子序列
x1(r) x(2r), x2 (r) x(2r 1),
x1
(2l
1)WNk
( /
2l 2
1)
l 0
l 0
N / 41
N / 41
x3 (l)WNkl/ 4 WNk / 2
x4
(l
)WNk
l /
4
l 0
l 0
X 3 (k ) WNk/ 2 X 4 (k )
k 0, 1, , N 1 2
(4.2.9)
第4章 快速傅里叶变换(FFT)
式中
N / 41
r0
2
(4.2.6)
由于X1(k)和X2(k)均以N/2为周期,
kN
WN 2
WNk

,因此X(k)又可表示为
第4章 快速傅里叶变换(FFT)
X (k) X1(k) WNk X 2 (k),
X
(k
N 2
)
X1(k)
WNk
X

数字信号处理(第三版)教程及答案第4章

数字信号处理(第三版)教程及答案第4章

第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.4 例
[例4.4.1] 例

设FIR滤波器的系统函数为
1 H ( z ) = (1 + 0.9 z −1 + 2.1z − 2 + 0.9 z −3 + z − 4 ) 10
求出其单位脉冲响应, 判断是否具有线性相位, 画出直 接型结构和线性相位结构(如果存在)。
第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.1 教材第 章学习要点 教材第5章学习要点
数字信号处理系统设计完毕后, 得到的是该系统的系 统函数或者差分方程, 要实现还需要按照系统函数设计一 种具体的算法。 不同的算法会影响系统的成本、 运算的复 杂程度、 运算时间以及运算误差等。 教材第5章的学习要点 如下: (1) 由系统流图写出系统的系统函数或者差分方程。
: 解: 上式的分子分母是因式分解形式, 再写成下式:
− 8 + 20 z −1 − 6 z −2 H ( z ) = 16 + (1 − 0.5 z −1 )(1 − z −1 + 0.5 z −2 )
上式的第二项已是真分式, 可以进行因式分解。
第 4 章 时域离散系统的网络结构及数字信号处理的实现
时域离散系统的网络结构及数字信号处理的实现41教材第5章学习要点42按照系统流图求系统函数或者差分方程43按照系统函数或者差分方程画系统流图44例题45教材第章学习要点46教材第章习题与上机题解答时域离散系统的网络结构及数字信号处理的实现41教材第5章学习要点数字信号处理系统设计完毕后得到的是该系统的系统函数或者差分方程要实现还需要按照系统函数设计一种具体的算法
− 8 + 20 z −1 − 6 z −2 H1 ( z) = (1 − 0.5 z −1 )(1 − z −1 + 0.5 z − 2 )

数字信号处理_程佩青_PPT第四章

数字信号处理_程佩青_PPT第四章
第四章 快速傅里叶变换 (FFT)
主要内容
DIT-FFT算法 DIF-FFT算法 IFFT算法 Chirp-z算法 线性卷积的FFT算法
§4.0 引言
FFT: Fast Fourier Transform
1965年,Cooley&Turky 发表文章《机器计算傅 里叶级数的一种算法》,提出FFT算法,解决 DFT运算量太大,在实际使用中受限制的问题。 FFT的应用。频谱分析、滤波器实现、实时信 号处理等。 DSP芯片实现。TI公司的TMS 320c30,10MHz 时钟,基2-FFT1024点FFT时间15ms。
又WN
k
N 2
W
N /2 N
W W
k N
k N
k X (k ) X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1 (2) X ( N k ) X ( N k ) W ( N / 2 k ) X ( N k ) 1 N 2 2 2 2 k X1 (k ) WN X 2 (k ),k 0,1,2,...N / 2 1


n为偶
n为奇
N / 2 1

rk k rk x ( r ) W W x ( r ) W 1 N /2 N 2 N /2 r 0 r 0 X1 ( k )
N / 2 1
2 rk rk (这一步利用: WN WN /2
) r , k 0,1,...N / 2 1
N为2的整数幂的FFT算法称基-2FFT算法。
将序列x(n)按n的奇偶分成两组:
x1 (r ) x(2r ) ,r 0, 1, 2, ...N/ 2 1 x2 (r ) x(2r 1)

数字信号处理-答案第四章

数字信号处理-答案第四章
m 0
y
l 1
m
( n) ,然后对它求一次 N 点
DFT , 即可计算 X ( z )在单位圆上的 N点抽样 (b)若:N M,可将x ( n)补零 到N点, 即 x ( n) x0 ( n ) 0 则:X (e
j 2 k N
0 n M 1 M n N 1
令 X 1 (k0 , n1 , n0 )
n2 0
x(n , n , n )W
2 1 0 1 ' 1
2
n2 k 0 3
,
k0 0,1,2
X 1' (k0 , n1 , n0 ) X 1 (k0 , n1 , n0 )W6n1k 0 X 2 (k0 , k1 , n0 )
n1 0
2 . 已知X (k ),Y (k )是两个N点实序列x(n), y(n)的DFT值, 今需要从 X (k ),Y (k )求x(n), y (n)值, 为了提高运算效率, 试用一个N点IFFT 运算一次完成。
解 : 依据题意 : x ( n ) X ( k ); y ( n ) Y ( k ) 取序列 Z ( k ) X ( k ) jY ( k ) 对Z ( k )作N点IFFT可得序列 z ( n ). 又根据DFT性质: IDFT [ X(k) jY(k) ] IDFT( [ X( k ) ] jIDFT [Y(k) ] x ( n) jy(n) 由原题可知: x(n),y(n) 都是实序列, 再根据 z(n) x ( n) jy(n) 可得:x(n) Re[ z(n) ] y(n) Im[z(n) ] 综上所述,构造序列 Z(k) X(k) jY(k)可用一次 N点IFFT完成计算x(n),y(n) 值的过程。

数字信号处理第4章部分习题详解

数字信号处理第4章部分习题详解
其中 ni 、 k i 都是二进制数。
)( 2 k1 k0 ) n1k0 ( 2 n 2 n3 级间旋转因子 W16 。 W16
4
22 n1 2n2 n3 23 n0
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111 x(0) x(8) x(4) -j x(12) x(2) x(10) x(6) -j x(14) x(1) x(9) x(5) -j x(13) x(3) x(11) x(7) x(15) -j -1 -1 -1 -1 -1 -1 -1 -1
nk X (k ) x(n)WN n 0 N 1

1
1
n3 0 n2 0 1
x(n n n n )W
n1 0 1 n0 0 1 0 1 2 3 0 1 2 3
1
1
1
( 23 n0 2 2 n1 2 n2 n3 )( 23 k3 2 2 k 2 2 k1 k0 ) 16
3
n1 0

3
3 n1 ( 4 k1 k 0 ) x(n0 n1 )W4n0 k 0 W16 n 0 0
n1k0 X 1 (n1k0 ) W16 W4n1k1 X 2 (k1k0 ) n1 0
n1 k 0 其中 W16 是级间旋转因子。

n3 0 n 2 0 1 1

n1 0
1 n3 ( 2 2 k 2 2 k1 k 0 ) x(n0n1n2n3 )W2n0 k 0 W4n1k 0 W2n1k1 W8n2 ( 2 k1 k 0 ) W2n2 k 2 W16 W2n3 k3 n 0 0

南京工程学院通信工程学院数字信号处理第4章

南京工程学院通信工程学院数字信号处理第4章

1.如果一台通用计算机的速度为平均每次复数乘需要50µs ,每次复数加需要5µs 。

用它来计算N =512点DFT ,问直接计算需要多少时间,用FFT 运算需要多少时间?照这样计算,用FFT 进行快速卷积对信号进行处理时,估算可实现实时处理的信号最高频率。

解:(1)当N =512=52时,直接计算DFT 的复数乘法运算次数为: 2N =512⨯512=262 144次 复数加法运算次数为:511512)1(⨯=-N N =261 632次 直接计算DFT 所用计算时间D T 为:D T =50⨯610-⨯262 144+5⨯610-⨯261 632=14.41 536 s 用FFT 算512点DFT 所用计算时间F T 为:ms76.81055512525121050 105210506666=⨯⨯⨯+⨯⨯⨯=⨯⨯+⨯⨯=----NlbN lbN NT F (2)快速卷积时,需要计算一次N 点FFT (考虑到)(k H =DFT[h(n)]已经计算好存入内存)、N 次复数乘法和一次N 点IFFT 。

所以计算512点快速卷积的计算时间c T 约为:c T =2F T +512次复数乘法计算时间=153.6 ms+50⨯610-⨯512 s=179.2 ms所以每秒钟处理的采样点数(即采样速率)2857102.1795125123=⨯=<-c s T F 次/秒 由采样定理知,可实时处理的信号最高频率为5.1428228572max ==<s F f Hz=1.428 kHz 应当说明,实际实现时,max f 还要小些。

这是由于实际中要求采样频率高于奈奎斯特速率,而且在采用重叠相加法时,重叠部分要计算两次。

重叠部分长度与h(n)长度有关,而且还有存取数据和指令周期等消耗的时间。

2.如果将通用计算机换成数字信号处理专用单片机TMS320系列,则计算复数乘仅需要400 ns 左右,计算复数加需要100ns 。

《数字信号处理》 第4章

《数字信号处理》 第4章
造成倒位序的原因: 将其按标号的偶奇的不断分组, 每次分解总是将偶序列放在上面, 把奇序列放在下面。 首先最低位按0、1分为偶、奇两组, 接着次低位也按0、1分组, 依此类推
右图为描述倒位序的树状图(N=8)
5 倒位序的实现
对照表
变址功能
产生倒序数的十进制运算规律 N=2M,用M位二进制数表示,则从左至右的十进制权值为:
N 1 4
x1(2l)WNk22l
N 1 4
x1(2l
1)WNk22l1
r0
l0
l0
N1
N1
4
4
x3(l)WN kl4WN k2 x4(l)WN kl4
l0
l0
X 3(k) W N k2X 4(k),k0 ,1 ,
,N 1 2
式中
N1 4
N1 4
X3(k)DFTx3(l) x3(l)WN kl4 X4(k)DFTx4(l) x4(l)WN kl4
47线性调频变换chirp变换算法471算法原理已知序列xn0nn1是有限长序列其z变换为为适应z可沿z平面更一般的路径取值就沿z平面上的一段螺线作等分角的采样z的这些采样点zk为因此有其中a决定起始采样点z0的位置a0表示z0的矢量半径长度通常取a010表示z0的相角0表示两相邻采样点之间的角度差w0一般为正值表示螺线的伸展率图471线性调频变换在平面的螺线采样当mn即时各采样点zk就均匀等间隔地分布在单位圆上这就是求序列的dft
N
W N k(N n)W N (N k)nW N kn,
W
2 N
1
N
k
WN 2
WNk
利用这些特性,使DFT运算中有些项可以合并,并且可以 将长序列的DFT分解为几个短序列的DFT,以减少DFT的运算 次数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 离散系统分析及IIR系统结构
4.2 滤波的基本概念 4.3 IIR系统的结构及信号流图 4.4 IIR 系统滤波器的设计
使分子多项式 = 0 的
的 Zeros (零点) 使分母多项式 = 0 的
的Poles(极点)
为了保证系统分子、分母多项式的系数始终为 实数,所以,如果系统有复数的极、零点,那 么这些复数的极、零点一定共轭出现。即:
若在某一个

处, 在单位圆上有一零点,
| H (e ) | 0
j
若在某一个

处, 在接近单位圆有一极点,
低通滤波器在 z 1 处一定没有零点,在 其附近应有一个极点; 同理,高通滤波器在 z 1 处一定没有 零点,在其附近应有一个极点;
例: 给定系统
1 .1836+.7344z +1.1016z +.7374z +.1836z H ( z) -1 -2 -3 -4 100 1-3.0544z +3.8291z -2.2925z +.55075z
4.3 IIR系统的结构及信号流图
观察:实现本系统,需要一个加法器, N M 个乘法器,N M 个延迟器。
若将上图作一改造,可大量节约延迟器
则:
直 接 实 现 :
IIR系统的直接实现使用了N个延迟单元,
(N+M)个乘法器及两个加法器。
级 联 实 现 :
H k ( z)
1 k ,1 z 1 k ,2 z 2 1 ak ,1 z ak ,2 z
序列 e( n ); e( n )在系统中传递,最后出现在输出端; 系统的系数也要量化,量化就必然产生误差,该误 差一定会影响系统的性能; 系统中加、减和乘法运算将产生舍入误差 。
请思考:直接实现、级联实现
和并联实现,哪一种实现方式 对上述误差最不敏感?
由于并联结构的每一个子系统都是独立的,不受 其他子系统系数量化误差及乘法舍入误差的影响, 因此,是所述三种结构中对误差最不敏感的结构 形式。
系统分析的任务:
பைடு நூலகம்
给定一个系 统,可能是
判断(或 分析)
线性?移不变?稳定?因果?
幅频:低通?高通?带通?… 相频:线性相位?最小相位?
极零分析的应用
1. 稳定性: 判别条件1:
h( n)
n 0

h(n) l1
稳定性: 判别条件2 :
所有极点都 必需在单位 圆内!
2. 幅频特性:
-1 -2 -3 -4
求: 频率响应
单位抽样响应
极-零图
1 0.8 0.6 0.4
Imaginary Part
0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1.5 -1 -0.5 Real Part 0 0.5 1
极-零图
1.5
1
0.5
0
0
0.1
0.2
0.3
0.4
0.5
0 -2 -4 -6 -8 -10 0 0.1 0.2 0.3 0.4 0.5
低通滤波器
2

c
0 c 0 c
2

高通滤波器 带通滤波器
2

c
2
2

c 2 c1
c 2 c1 0
2
带阻滤波器
2
c 2 c 2 c1 0
c1

2
3. 相频:
例:
4. 极--零点对系统幅频的影响:
0 -1 0 Real Part 1 1
Imaginary Part
1 0 -1 -1 1 0
0.5
高通
0 0.5 1
0 0 Real Part 1 1.5 1 0.5
Imaginary Part
0
带通
0 0.5 1
-0.2
-1 -1 0 Real Part 1
0
10
20
0
有关数字滤波器设计的一般原则:
1 2
N , k 1, , 2
系统总输出
式中, 是子系统 对应的单位 抽样响应。 每一个二阶子系统对应的信号流图如下:
并 联 实 现 :
在数字信号处理中,由于表示“数”的字长 总是有限的,这就必然带来误差。对一个离散系 统,这些误差包括如下几个方面:
模拟信号抽样时的量化误差 ,相当于引入个误差
e
0
j
| e j zr |
zr
| e pk |
j
pk
观察:
1. 当 时,
0

e
j
| e pk | 最小; 2. 极点 pk 越接近于单位圆, | e pk |
j
j
越小;
j
如何影 响幅频
3. 注意,向量 | e
pk | 在分母上。
H (e j )
频率响应
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
0
5
10
15
20
25
30
35
40
单位抽样响应
4.2 滤波的基本概念
LTI离散时间系统的一个应用,就是让输入序 列中的某种频率分量没有任何失真地通过, 同时阻止其他频率分量通过。这样的系统称 为数字滤波器。在本课程中离散时间系统和 数字滤波器这两个概念是等效的。
滤波的基本概念
目的:去除噪声,或不需要的成分;
原理:信号通过线性系统输入-输出的关系。
X (e )
j
H (e )
j
Y (e )
j

例:给定 三个系统, 分析其幅 频相应
c

1
c

线性滤波的原理
1 z H 0 ( z) a 1 1 pz 1 z 1 H1 ( z ) b 1 1 pz
若使设计的滤波器不让某频率通过,应在 单位圆上相应的频率处设置一个零点。
反之,若使某频率的信号尽量无衰减通过, 应在单位圆内相应的频率处设置一极点。 极点越接近单位圆,在该频率处频响幅值 越大,形状越尖。 在原点处的零极点不影响幅频响应,它们仅 影响相频响应。
极-零分析是数字信号处 理的基本功,对不太复杂 的系统,应能从系统的极 -零分布图大致判断出该 系统的幅频特性。
4.4 IIR 系统滤波器的设计
(1 z )(1 z ) H 2 ( z) c j 1 j 1 (1 re z )(1 re z )
1
1
h( n)
Imaginary Part
0.2 1 0 -1
极零图
1
H (e j )
0.1
0.5
低通
0 0.5 1
0 0 1 0.5 0 -0.5 0 0.2 10 20 10 20
相关文档
最新文档