勒贝格积分[tou]
勒贝格积分
![勒贝格积分](https://img.taocdn.com/s3/m/08df460616fc700abb68fcef.png)
勒贝格积分将给定的函数按函数值的区域进行划分,作和、求极限而产生的积分概念,就是勒贝格积分。
概念简述定义:设f (x) 是E ∈ L q(mE < ∞) 上的有界函数,则称f (x) ∈ L(E) ,如果对任意ε > 0,必然存在E 的分划D,使S(D, f ) -s(D, f ) = ΣωimEi<ε,这里S(D, f ) 及s(D, f )分别是f (x) 关于分划D 的大和及小和,ωimEi是Ei上的振幅。
它与黎曼积分的主要区别在于前者是对函数的函数值区域进行划分;后者是对函数定义域进行划分。
对此Lebesgue自己曾经作过一个比喻,他说:假如我欠人家一笔钱,现在要还,此时按钞票的面值的大小分类,然后计算每一类的面额总值,再相加,这就是Lebesgue积分思想;如不按面额大小分类,而是按从钱袋取出的先后次序来计算总数,那就是Riemann积分思想。
(参见:周性伟,实变函数教学的点滴体会,《高等理科教学》,2000.1) 即采取对值域作分划,相应得到对定义域的分划(每一块不一定是区间), 使得在每一块上的振幅都很小, 即按函数值的大小对定义域的点加以归类。
积分介绍积分是“和”的概念。
即将东西加起来。
所以积分早期是从面积,路程等计算中发展起来。
比如计算面积,将X轴的区间分成若干小区间,将小区间的高度(Y值)乘以小区间的长度,然后加起来。
用极限法就可以求得精确的面积。
这是传统的积分概念(黎曼积分)。
勒贝格从另一个角度来考虑积分概念,导致勒贝格积分和测度概念。
比如计算面积,可以将小区间的高度(Y值)乘以对应的所有小区间的长度的和(测度),然后加起来。
又比如现有硬币:25, 25,10,5,10,1,5,25。
用黎曼积分来求和:25+25+10+5+10+1+5+25=106。
用勒贝格积分来求和:25*3+10*2+5*2+1=106。
结果是一样。
但对于一些“坏”函数,结果是不一样。
第二讲 勒贝格积分的思想简介
![第二讲 勒贝格积分的思想简介](https://img.taocdn.com/s3/m/3411b1a2f46527d3250ce0d0.png)
第2讲勒贝格积分的思想简介勒贝格的生平简介• 1875年6月28日生于法国的博韦• 1894—1897在巴黎高师学习• 1899—1902在南锡的一所中学任教• 1902年发表了博士论文《积分、长度、面积》• 1921年获得法兰西学院教授称号, 翌年作为Jordan的后继人被选为巴黎科学院院士• 1941年7月26日卒于巴黎一、勒贝格积分的思想简介1902年勒贝格(Lebesgue, 法, 1875-1941)建立的这套新的积分理论(L积分理论), 对函数限制较少, 适用范围更大.Lebesgue自己曾经作过一个比喻,他说:假如我欠人家一笔钱,现在要还,此时按钞票的面值的大小分类,然后计算每一类的面额总值,再相加,这就是Lebesgue积分思想;如不按面额大小分类,而是按从钱袋取出的先后次序来计算总数,那就是Riemann积分思想.具体来说, 假设一堆乱七八糟的零钱需要汇总:1 2 2 1 5 5 2 5 1 2 2 1 5✓ 1+2+2+1+5+5+2+5+1+2+2+1+5=34——Riemann ✓ 1×4+2×5+5×4=34——Lebesguexa b yo 01lim 0ni i T i x ω→=∆=∑黎曼可积的充要条件(从分割函数值域着手) 01,i n m y y y y M =<<<<<=步骤如下: step1. 分割 ()[,],[,],f x m M x a b ∈∈不妨设1i y -iy 11max{}.i i i n y y δ-≤≤=-记M mxa b yo1{[,]:()},i i i E x a b y f x y -=∈≤<1[,),i i i y y ξ-∈任取"i E "边的长度底i imE ξstep2. 近似作和 i ξi E 1i y -iy 11max{},i i i ny y δ-≤≤=-记Mm xa b yo 1n i =∑近似求和[,]01()()d lim ().ni i a b i L f x x m E δξ→==∑⎰step3. 求极限优势 通过y 轴上对值域作划分来限制函数值变动的振幅,相应得到对定义域的划分. (可能是分散而杂乱无章的点集及其并集)4E xyo✓(1) 集合E 的“长度”m (E ) 如何定义?(测度论) 2. 实现新思路的攻关路线 ✓(2)怎样的函数可使每个 E i 都有“长度”? ✓(3)如何定义Lebesgue 积分并研究其性质? (积分论) (可测函数)1{[,]:()}i i i E x a b y f x y -=∈≤<1)集合, 2)元素, 3)集合与元素的关系, 6)子集 5)集合与集合之间的关系, 二、集合及相关概念1. 集合的概念4)表示, 2. 集合的运算 1)并与交{:}A B x x A x B =∈∈或并{:}A B x x A x B =∈∈且交XABXAB{:,}A x x A αααα∈Γ=∃∈Γ∈使{|}{}A A αααα∈Γ∈Γ或集簇: {}n A 特别当 时, 称集簇为集列, 简记为 Γ=集簇的并与交集簇的并Γ为指标集集簇的交 {:,}A x x A αααα∈Γ=∀∈Γ∈有2)差与补\{:,}A B x x A x B =∈∉差:但\,cA X A =补(余): 其中X 为全集cAXA关于集合的并与交的一些运算性质: (1) 交换律 , ;AB BA AB BA ==()(),()();A BC A B C A B C A B C ==(2)结合律 ()()(),()()(),A B C A B A C A B C A B A C ==(3)分配律 ()(),()().A B A B A B AB αααααααα∈Γ∈Γ∈Γ∈Γ==,.ccccA A A A αααααααα∈Γ∈Γ∈Γ∈Γ⎛⎫=⎪⎝⎭⎛⎫=⎪⎝⎭(4)德摩根(De Morgan )公式1)集合的对等3. 对等与基数 设A , B 是两个集合, 如果存在某映射11:,A B ϕ-−−→例如 {1,2,3,...},A ={2,4,6,...},B =则 ~.A B (0,1).x ∀∈11:(0,1),ϕ-−−→构造映射区间(0, 1)和实数域 对等,π()tan(π),2x x ϕ=-例如 则称A 和B 对等, 记为 .AB2)集合的基数注2 按照基数可将所有的集合进行分类. 注1 基数是一切彼此对等的集合之间的某种共同属性,是有限集的元素个数概念的推广. 设A , B 是两个集合, 如果则称A 与 B 的基数或势是相等的, 记为 ,A B .A B (两个集合属于同一类当且仅当它们对等)4. 可数集与不可数集 2)可数集的性质 (略)记自然数集 的基数为 0.ℵ若 则称集合 为可数集或可列集. 0,A =ℵA 注 A 为可数集 A 的元素可以用自然数加以编号,使之成为无穷序列的形式,即例如 有理数全体 可数集合.1)可数集(可列集)12{,,,,}.n A a a a =——不是可数集的无 限集称为不可数集.有限集集合可数集无限集不可数集⎧⎪⎧⎨⎨⎪⎩⎩注 [0, 1]的基数记为又称为连续基数. 1(),c ℵ或3)不可数集(不可列集)例如 区间[0, 1]是不可数集.区间(0, 1)和实数集 的基数为 .cn 维欧几里德空间n设n 为一个正整数, 称n 元有序数对 的全体为n 维欧几里德空间, 记为.n12(,,,)n x x x 每一个 称为 中的一个点(或元素)其中 为该点的第 个坐标. 12(,,,)n x x x i x i n12(,,,),n x x x x 即,x.nc =,.n中可赋予运算: 加法和数乘 在上述运算下构成一线性空间个,,nx y 中任意两点引入距离2221122(,)()()().n n d x y x y x y x y =-+-++-n开集中的、闭集.(详见参考文献1)参考文献1. 周民强. 实变函数论, 北京: 北京大学出版社, 2001.2. 郑维行, 王声望. 实变函数与泛函分析概要, 北京:高等教育出版社, 2010.3. 程其襄等. 实变函数与泛函分析基础, 北京: 高等教育出版社, 2010.4. 夏道行等. 实变函数论与泛函分析, 北京: 高等教育出版社, 2010.感谢大家的聆听!。
第七章 勒贝格积分理论简介
![第七章 勒贝格积分理论简介](https://img.taocdn.com/s3/m/780bccf0763231126fdb11b8.png)
第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。
所说可测均指。
所指函数也都是定义在实数子集上的实值函数。
可测-L 在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。
由此积分的定义可以看出,定义在一个可测集上的符号函数是可以积分的当且仅当E f 是可测的,由此引入了可测函数的概念。
但是从可测函数的角)(1+<≤i i y f y E 度考虑,可测函数可以另外的方式引入。
本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。
进一步的内容可以在任何一本实变函数的教材可见。
§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。
7.1定义:设是定义在上的函数,若对任意集合是可侧集,f E R ∈a )(a f E <称是可侧函数。
f 7.2命题. 设是集合上的函数。
f E (1)若是可侧,在上连续,则是上可测函数。
E f E f E (2)若是上可测函数,,则集合,,,f E R ∈a E )(f a E ≤)(f a E <都是可测集。
)(a f E ≤(3)若,且在上可测,则是上的可测函数。
φ==)0(f E f E f1E 证明:(1)对任意,是中开集,即存在中开集,使得R ∈a )(a f E <E R G ,故是可侧集。
E G a f E =<)()(a f E <(2)结论可由如下的集合等式得到)(a f E E n <=∈ω)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞= )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E 可知是可侧集。
定积分的勒贝格积分
![定积分的勒贝格积分](https://img.taocdn.com/s3/m/e1054642a36925c52cc58bd63186bceb19e8edab.png)
定积分的勒贝格积分定积分是微积分中的一个重要的概念,是对函数在一定区间上的面积的计算。
在定积分的计算中,勒贝格积分是一种非常重要的积分方法。
1. 定积分的定义定积分是在一定的积分区间上,对函数的一段长度进行求和的过程。
在数学上,定积分可以表示为:I = ∫ab f(x)dx其中,a和b表示积分的区间,f(x)表示被积函数。
定积分的几何意义就是表示在函数曲线与x轴之间的面积。
2. 勒贝格积分勒贝格积分,是由法国数学家亨利·勒贝格所创立的积分方法。
勒贝格积分提供了一种非常有效的方法来计算具有不连续性的函数的积分。
勒贝格积分的基本思想是将被积函数分为两个部分,一个是连续的部分,另一个是不连续的部分。
对于连续的部分,可以使用黎曼积分进行计算,而对于不连续的部分,则采用类似积分的方式进行计算。
使用勒贝格积分方法,可以推广到高维空间和泛函分析中,具有非常广泛的应用。
3. 勒贝格积分的特点勒贝格积分与黎曼积分相比,具有以下几个特点:1. 勒贝格积分可以计算具有不连续性的函数的积分。
2. 勒贝格积分的定义更加精确严谨,相比于黎曼积分需要更少的假设条件。
3. 勒贝格积分可以推广到高维空间和泛函分析中,具有非常广泛的应用。
4. 勒贝格积分的计算方法更加灵活,在实际操作中更加方便。
4. 勒贝格积分的计算勒贝格积分的计算方法主要分为两类,一种是使用勒贝格-斯蒂尔切斯公式计算,另一种则是使用勒贝格积分的性质进行计算。
勒贝格-斯蒂尔切斯公式是使用勒贝格积分的划分法进行计算。
通过将被积函数等分为若干个小的区间,然后对每个小的区间进行求和,最后将这些小的区间的和相加得到最终的积分结果。
另一种计算方法是使用勒贝格积分的积分性质,将被积函数拆分为连续的函数部分和不连续的函数部分。
对于连续的部分,采用黎曼积分的方法进行计算,对于不连续的部分,则采用类似积分的方式进行计算。
5. 结论勒贝格积分是微积分中非常重要的一个概念,对于一些具有不连续性的函数,使用勒贝格积分的方法进行计算会更加准确可靠。
不定积分的勒贝格积分
![不定积分的勒贝格积分](https://img.taocdn.com/s3/m/cd4b6a42a36925c52cc58bd63186bceb18e8ed65.png)
不定积分的勒贝格积分在高等数学中,不定积分是一个重要的工具,在各个领域都有着广泛的应用。
而勒贝格积分则是积分学中的一种重要的积分方式。
在本文中,我们将通过对不定积分的勒贝格积分进行深入的探讨,来进一步了解这一话题。
勒贝格积分,是以勒贝格测度为核心的定义的一种广义积分。
在勒贝格积分的定义中,我们使用关注积分范围内每个小区间长度的方式来计算积分,可以较好地适应各种不同的积分求解需求。
在实际应用中,勒贝格积分的优点也得到了充分的利用。
而对于不定积分求解,我们也可以使用勒贝格积分来辅助求解。
在实践中,我们常常面临求解形如$f(x)dx$形式的不定积分问题。
而这些问题本身的定义并不严谨,存在着多种不确定性。
但是我们可以通过勒贝格积分的方法来解决这些不确定性,从而得到更加精确的解答。
对于一个不定积分问题,我们可以使用勒贝格积分对函数原形式进行优化,从而得到更加精确的答案。
勒贝格积分的核心思想是分区间求和,而对于一个不定积分的求解问题,则可以将整个求解过程看成一个区间的求和过程。
我们可以将需要求解的函数在某一区间内分解成多个小区间,并在每个小区间内分别求解,最终将这些小区间计算出的结果求和即可得到整个函数的不定积分。
在这个过程中,我们使用的勒贝格积分方法也需要考虑到函数定义上可能存在的不连续性。
在具体实践中,我们可以根据具体的问题要求,选择不同的分区方法。
对于一些较复杂的函数,我们可能需要进行多次分区,才能得到较为精确的答案。
为了保证结果的精确性,我们需要仔细的推导和计算每一个小区间内的勒贝格积分,以得到最终答案。
总而言之,通过使用勒贝格积分对不定积分进行求解,我们可以得到更加精确的答案,避免了某些不连续性或误差对计算结果的影响。
这不仅提高了数值计算的精度,还有助于我们更好的认识数学中的一些重要概念和方法。
因此,在数学学习中,我们需要深入了解和掌握勒贝格积分等相关的积分方法,在实践中得到更好的应用。
第四章勒贝格积分
![第四章勒贝格积分](https://img.taocdn.com/s3/m/81aa5cee964bcf84b8d57bdb.png)
第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
勒贝格积分公式
![勒贝格积分公式](https://img.taocdn.com/s3/m/d052855077c66137ee06eff9aef8941ea66e4b51.png)
勒贝格积分公式一、勒贝格积分的定义。
1. 简单函数的勒贝格积分。
- 设E⊆R^n是可测集,φ(x)=∑_i = 1^k c_iχ_E_i(x)是E上的非负简单函数,其中c_i≥slant0,E_i⊆ E是可测集且E=bigcup_i = 1^k E_i,E_i∩ E_j=varnothing(i≠ j),χ_E_i是E_i的特征函数。
- 则∫_Eφ(x)dx=∑_i = 1^k c_im(E_i),这里m(E_i)表示集合E_i的勒贝格测度。
2. 非负可测函数的勒贝格积分。
- 对于E上的非负可测函数f(x),定义∫_E f(x)dx=sup<=ft{∫_Eφ(x)dx:φ(x)≤slant f(x),φ(x)是简单函数}。
3. 一般可测函数的勒贝格积分。
- 设f(x)是E上的可测函数,将f(x)分解为f(x)=f^+(x)-f^-(x),其中f^+(x)=max{f(x),0},f^-(x)=-min{f(x),0}。
- 如果∫_E f^+(x)dx和∫_E f^-(x)dx至少有一个是有限值,则∫_E f(x)dx=∫_Ef^+(x)dx-∫_E f^-(x)dx。
当∫_E f^+(x)dx和∫_E f^-(x)dx都有限时,称f(x)在E上勒贝格可积。
二、勒贝格积分的基本性质。
1. 线性性质。
- 设f(x)和g(x)是E上的勒贝格可积函数,α,β∈R,则∫_E[α f(x)+βg(x)]dx=α∫_E f(x)dx+β∫_E g(x)dx。
2. 单调性。
- 若f(x)≤slant g(x)在E上几乎处处成立(即除了一个勒贝格测度为零的集合外成立),则∫_E f(x)dx≤slant∫_E g(x)dx。
3. 可加性。
- 设E = E_1∪ E_2,E_1∩ E_2=varnothing,f(x)在E上勒贝格可积,则∫_Ef(x)dx=∫_E_1 f(x)dx+∫_E_2 f(x)dx。
勒贝格积分的概念
![勒贝格积分的概念](https://img.taocdn.com/s3/m/abb836a4b9f67c1cfad6195f312b3169a451eace.png)
勒贝格积分的概念勒贝格积分是数学中的一个重要概念,它是对函数在某个区间上的积分进行定义和计算的一种方法。
勒贝格积分是由法国数学家亨利·勒贝格(Henri Lebesgue)在20世纪初提出的,它是对黎曼积分的一种推广和拓展,能够更好地处理一些复杂的函数和集合。
一、勒贝格可积函数的定义在介绍勒贝格积分之前,首先需要了解什么样的函数是勒贝格可积的。
给定一个定义在闭区间[a, b]上的函数f(x),如果存在一个数I,对于任意给定的ε > 0,都存在一个分割P = {x0, x1, ..., xn},使得当这个分割的任意一种选取方式下,对应的上下和满足:S*(f, P) - S(f, P) < ε其中S*(f, P)和S(f, P)分别表示上和下达尔差分和。
如果这个数I存在且唯一,那么称函数f(x)在闭区间[a, b]上是勒贝格可积的,此时这个数I就是函数f(x)在[a, b]上的勒贝格积分,记作∫[a,b]f(x)dx。
二、勒贝格积分的性质勒贝格积分具有许多优良的性质,使得它在数学分析和实际问题中得到广泛应用。
以下是一些勒贝格积分的重要性质:1. 可积函数的有界性:勒贝格可积函数在定义区间上是有界的,即存在一个常数M,使得|f(x)| ≤ M对于所有x∈[a, b]成立。
2. 线性性质:勒贝格积分具有线性性质,即对于任意可积函数f(x)和g(x),以及任意实数α、β,有∫[a, b](αf(x) +βg(x))dx = α∫[a, b]f(x)dx + β∫[a, b]g(x)dx。
3. 单调性质:如果在闭区间[a, b]上有f(x) ≤ g(x),则∫[a,b]f(x)dx ≤ ∫[a, b]g(x)dx。
4. 加法性质:如果函数f(x)在闭区间[a, b]上可积,且在点c∈[a, b]上连续,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c,b]f(x)dx。
勒贝格积分的概念
![勒贝格积分的概念](https://img.taocdn.com/s3/m/237f0434a36925c52cc58bd63186bceb18e8ed5b.png)
勒贝格积分的概念勒贝格积分是数学中的一个重要概念,它是对函数在某个区间上的积分进行定义和计算的一种方法。
勒贝格积分是由法国数学家亨利·勒贝格于19世纪末提出的,它是黎曼积分的一种推广和扩展。
1. 勒贝格积分的定义勒贝格积分的定义是基于集合论的,它将函数的积分看作是对函数在某个区间上的值进行加权求和的过程。
具体来说,给定一个函数f(x)和一个定义在区间[a, b]上的集合E,勒贝格积分的定义如下:∫f(x)dμ = sup{∫φ(x)dμ | φ(x)是[a, b]上的简单函数,且φ(x) ≤ f(x)在E上几乎处处成立}其中,sup表示上确界,简单函数是指形如φ(x) = ΣaiχAi(x)的函数,其中ai是常数,Ai是区间[a, b]上的可测集合,χAi(x)是Ai上的特征函数。
2. 勒贝格积分的性质勒贝格积分具有许多重要的性质,使得它成为了数学分析中不可或缺的工具。
以下是一些勒贝格积分的性质:(1)线性性质:对于任意的实数a和b,以及函数f(x)和g(x),有∫(af(x) + bg(x))dμ = a∫f(x)dμ + b∫g(x)dμ。
(2)单调性质:如果在E上几乎处处有f(x) ≤ g(x),则∫f(x)dμ ≤ ∫g(x)dμ。
(3)绝对收敛性:如果∫|f(x)|dμ存在,则∫f(x)dμ也存在。
(4)有界性:如果在E上几乎处处有|f(x)| ≤ M,其中M是常数,则∫f(x)dμ存在且|∫f(x)dμ| ≤ M。
(5)积分与极限的交换:如果函数序列{f_n(x)}在E上几乎处处收敛于f(x),且存在可积函数g(x)使得|f_n(x)| ≤ g(x)在E上几乎处处成立,则有lim(n→∞)∫f_n(x)dμ = ∫f(x)dμ。
3. 勒贝格积分与黎曼积分的关系勒贝格积分是对黎曼积分的一种推广和扩展。
黎曼积分是通过将区间[a, b]划分成若干小区间,然后在每个小区间上对函数进行近似求和来定义的。
第七章 勒贝格积分理论简介
![第七章 勒贝格积分理论简介](https://img.taocdn.com/s3/m/068edd8a52ea551811a68710.png)
第七章 勒贝格积分理论简介本章所讨论的测度都是勒贝格测度,故不再特别说明。
所说可测均指可测-L 。
所指函数也都是定义在实数子集上的实值函数。
在第六章第二节中,我们曾经提到勒贝格积分的一种定义方式。
由此积分的定义可以看出,定义在一个可测集E 上的符号函数f 是可以积分的当且仅当)(1+<≤i i y f y E 是可测的,由此引入了可测函数的概念。
但是从可测函数的角度考虑,可测函数可以另外的方式引入。
本章先讨论可测函数的刻画方式和一些基本性质,然后对勒贝格积分的常见计算方式作一些粗略的介绍。
进一步的内容可以在任何一本实变函数的教材可见。
§1 可测函数的定义刻画与运算我们先给出可测函数的一种最朴素的定义方式。
7.1定义:设f 是定义在E 上的函数,若对任意R ∈a 集合)(a f E <是可侧集,称f 是可侧函数。
7.2命题. 设f 是集合E 上的函数。
(1)若E 是可侧,f 在E 上连续,则f 是E 上可测函数。
(2) 若f 是E 上可测函数,R ∈a ,则集合E ,)(f a E ≤,)(f a E <,)(a f E ≤都是可测集。
(3)若φ==)0(f E ,且f 在E 上可测,则f1是E 上的可测函数。
证明:(1)对任意R ∈a ,)(a f E <是E 中开集,即存在R 中开集G ,使得E G a f E I =<)(,故)(a f E <是可侧集。
(2)结论可由如下的集合等式得到)(a f E E n <=∈ωY)(\)(a f E E f a E <=≤)1()(1f na E f a E n ≤+=<∞=Y )(\)(f a E E a f E <=≤(3)由⎪⎪⎩⎪⎪⎨⎧<><=<><>=<0)1()0(0)0(0)0()1()1(a a f E f E a f E a f E a f E a f E I Y 可知)1(a fE <是可侧集。
勒贝格积分直观解释
![勒贝格积分直观解释](https://img.taocdn.com/s3/m/a86d299251e2524de518964bcf84b9d528ea2ced.png)
勒贝格积分直观解释
勒贝格积分是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。
在最简单的情况下,对一个非负值的函数的积分可以看作是求其函数图像与轴之间的面积。
勒贝格积分将积分运算扩展到其他函数,并扩展了可以进行积分运算的函数的范围。
它是以昂利·勒贝格命名的,他于1904年引入了这个积分定义。
可以将勒贝格积分看作是将给定的函数按函数值的区域进行划分,作和、求极限而产生的积分概念。
换句话说,勒贝格积分就是对“y轴”无限细分之后,将“函数值相等”的“x轴的长度”乘以相应的函数值,然后加起来取极限。
简单来说,勒贝格积分是横着划然后加起来,而黎曼积分则是竖着划然后加起来。
在实分析和在其他许多数学领域中,勒贝格积分拥有重要的地位。
它可以被广义地定义为相对于一个测度而定义的函数积分,或者狭义地定义为相对于勒贝格测度在实直线或者更高维数的欧氏空间的一个子集中定义的函数的积分。
勒贝格积分的引入为许多拓扑向量空间中的定义以及其中的极限运算提供了巨大的简化。
同时,它也是现代数学分析中的一个重要
工具,特别是在处理不规则函数的积分问题时。
勒贝格积分通俗理解
![勒贝格积分通俗理解](https://img.taocdn.com/s3/m/affdba4e4531b90d6c85ec3a87c24028905f8517.png)
勒贝格积分通俗理解
嘿,朋友们!今天咱就来唠唠勒贝格积分,这可真是个有意思的东西啊!
比如说,你想象一下,你要计算一块奇形怪状的土地的面积。
常规的积分就好像拿着把大尺子去量,可碰到那些弯弯扭扭的边界就傻眼了。
但勒贝格积分呢,就像是有一双超级厉害的眼睛,能把这片地的每一个小角落都看得清清楚楚!
咱再举个例子啊,假设你有一堆乱七八糟的糖果,有大有小,形状各异。
你要是用普通的方法来数它们的数量,可能会很麻烦。
但勒贝格积分就像是一个神奇的分类机器,能把这些糖果按照不同的特征精确地分类和计算。
勒贝格积分啊,它就像是一个聪明的小精灵,总能找到最巧妙的方法来解决问题。
它可不是那种死脑筋的家伙,会灵活地根据实际情况来调整计算方式。
还记得我之前学勒贝格积分的时候呀,那可真是绞尽脑汁。
我就跟它较上劲了,心想我还搞不定你了咋的!我就不断地研究、思考,和同学们一起讨论。
“嘿,你觉得这个勒贝格积分这里是不是应该这样理解?”“哎呀,
不对不对,应该是那样。
”在这种交流和争辩中,我们对勒贝格积分的理解越来越深刻。
它就像是一扇通往新世界的大门,一旦你走进这扇门,哇,原来数学的天地可以这么广阔!它让那些以前觉得很难搞的问题,一下子变得清晰起来。
嘞贝格积分真的太神奇了!它打开了我们的思维,让我们看到了更多的可能性。
大家千万不要被它一开始的复杂吓倒,只要用心去感受,去探索,你就会发现它的独特魅力!相信我,一旦你真正理解了它,你会像发现了宝藏一样兴奋不已!。
积分的勒贝格积分
![积分的勒贝格积分](https://img.taocdn.com/s3/m/2ba98750571252d380eb6294dd88d0d233d43c2b.png)
积分的勒贝格积分积分是高等数学中一项重要的内容,被广泛用于各个领域的计算和研究中。
其中,勒贝格积分是一种被广泛采用的积分方法,其应用范围涵盖了大部分实数函数和复杂函数。
本文将结合实例,详细探讨勒贝格积分的定义、计算方法、性质及其与其他积分方法的对比等方面。
一、勒贝格积分的定义勒贝格积分是由法国数学家亨利·勒贝格发明的一种积分方法,其理论基础是将积分范围进行分割,然后计算每个小范围内的积分,最终将这些小范围内的积分加起来,得到整个积分的结果。
具体来说,勒贝格积分将被积函数划分为正函数和负函数的和,分别求出其在积分范围内的上、下积分和,然后将两者相加或相减,得到最终积分的结果。
其中,上积分指的是在积分区间范围内,被积函数处于一个上界之下的部分的积分值,而下积分则是指处于下界之上的部分的积分值。
这种分段计算的方法,不仅适用于实数函数,也适用于复杂函数,而且具有很高的计算精度和广泛的应用价值。
二、勒贝格积分的计算方法勒贝格积分的计算方法相对来说比较复杂,需要根据具体的函数形式,采用相应的积分公式进行计算。
下面将通过两个例子讲解具体的计算过程,以帮助读者更好地理解。
1、勒贝格积分的计算:计算f(x)=x在[0,1]上的勒贝格积分。
解:首先将函数f(x)划分为正函数和负函数的和,其结果为f(x)= max{0,x}-min{0,x}。
然后,分别计算max{0,x}和min{0,x}在区间[0,1]上的上、下积分。
max{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}max\{0,x\}dx=1/2$$∫_{0}^{1}max\{0,x\}dx=0$min{0,x}在该区间上的上积分和下积分分别为:$∫_{0}^{1}min\{0,x\}dx=0$$∫_{0}^{1}min\{0,x\}dx=-1/2$因此,f(x)在该区间上的上积分和下积分分别为:$∫_{0}^{1}f(x)dx =∫_{0}^{1}(max\{0,x\}-min\{0,x\})dx$$=∫_{0}^{1}max\{0,x\}dx-∫_{0}^{1}min\{0,x\}dx=1$2、勒贝格积分的计算:计算f(x)=sin(x)在[0,π]上的勒贝格积分。
勒贝格积分_高等教育-微积分
![勒贝格积分_高等教育-微积分](https://img.taocdn.com/s3/m/612bd6c1185f312b3169a45177232f60ddcce71f.png)
第5章 勒贝格积分到现在我们为了建立勒贝格积分已经做了必要的准备工作,我们有了可测集,可测函数的概念和理论,定义Lebesgue 积分的条件已经成熟. 本章我们讨论Lebesgue 积分的基本内容.§5.1 测度有限集上有界可测函数的积分1.有界可测函数积分的定义定义5.1.1 设n E R ⊂,mE <∞,f 是定义在E 上的有界可测函数,即存在,,R αβ∈,使()(,)f E αβ⊂. 若01:n D l l l αβ=<<<= 是[,]αβ的任一分点组,则记11()max()k k k nD l l δ-≤≤=-,1[]k k kE E l f l -=<≤.对任意的1[,]k k k l l η-∈,作和式1()nk k k S D mE η==∑,称()S D 为f 关于分点组D 的一个和数.如果存在常数A ,使得对任意的0ε>,总有0δ>,当任意分点组D 满足()D δδ<时,有|()|S D A ε-<.换句话说,()0lim ()D S D A δ→=时,则称f 在E 是Lebesgue 可积的,并称A 为f 在E 上的Lebesgue 积分,记作()EA f x dm =⎰.有时为了简便也记()EA f x dx =⎰,若[,]E a b =,则记[,]()a b A f x dx =⎰. 当()f x 是Riemann 可积函数时,其Riemann 积分仍沿用数学分析中的记法,记作()b af x dx ⎰.对[,]αβ的任意分点组01:n D l l l αβ=<<<= ,有两个特殊的和数尤其重要:11()[]nk k k k S D l mE l f l -==<≤∑,111()[]nk k k k S D l mE l f l --==<≤∑.称()S D 和()S D 分别为f 关于分点组D 的大和数与小和数. 显然对于f 的任一和数()S D ,有()()()S D S D S D ≤≤.因此,极限()0lim ()D S D δ→存在当且仅当()0lim ()D S D δ→和()0lim ()D S D δ→都存在且相等.定理 5.1.1 设n E R ⊂,mE <∞,f 是E 上的有界可测函数,则f 在E 上Lebesgue 可积.证明 因为()f x 是有界可测函数,所以有,R αβ∈,使()(,)f E αβ⊂.设sup{()}DS S D =,inf{()}DS S D =. 即S 是对(,)αβ的所有分点组D 的小和的上确界,S 是对(,)αβ的所有分点组D 的大和的下确界.往证S S =.首先证明:S S ≤,设01:n D l l l <<< ,01:m D l l l ''''<<< . 是对(,)αβ任意的两个分点组,则()S D S ≤,()S D S ≥.将D 和D '合并起来构成一个新的分点组,记为D '',D ''可以看成分点组D 中又加进了一些分点,称为D 的一个加细,假设对任意k ,1k l -与k l 之间加入了某些分点1j l -',1,,,k j j j j l l l ++''' ,(把1k l -和k l 算在内)即 111k k j j j j j k l l l l l l --++''''=<<<<= ,于是 111()[]nk k k k S D lmE l f l --==<≤∑111[]kj j n k i i k i j lmE l f l +--==''=<≤∑∑111[]kj j ni i i k i jl mE l f l +--=='''≤<≤∑∑()()S DS D ''''=≤ 11[]kj j n ii i k i j l mE l f l +-=='''=<≤∑∑11[]kj j nki i k i j l mE l f l +-==''≤<≤∑∑11[]nk k k k l mE lf l -==<≤∑()S D =. 这样,有()()()()S D S D S D S D ''''≤≤≤,同样的方法,有()()()()S D S D S D S D ''''''≤≤≤.这说明,对于任一分点组D ,加细后的分点组D '',其大和数不增,小和数不减. 且由()()()S D S D S D '''≤≤, ()()()S D S D S D '''≤≤.说明对于任意一个分点组的小和数不超过其它任意一个分点组的大和数. 此即sup{()}inf{()}DDS D S D ≤,于是S S ≤.再证明S S =.设D 为任意的分点组,则由于()()S D S S S D ≤≤≤,有0()()S S S D S D ≤-≤-111()[]nkk k k k ll mE l f l --==-<≤∑()D mE δ≤.这样对任意的0ε>. 取分点组*D ,使*()D mEεδ<,则0S S ε≤-<. 由0ε>是任意的,有S S =. 令S S S ==,往证()0lim ()D S D S δ→=. 注意到()()S D S S D ≤≤,()()()S D S D S D ≤≤,所以()()()()S S D S D S D D mE δ-≤-≤, ()()()()S D S S D S D D mE δ-≤-≤.因此|()|()()()S D S S D S D D mE δ-≤-≤.所以()0lim ()D S D S δ→=.即f 在E 上Lebesgue 可积.注:本定理还证明了()f x 在E 上Lebesgue 可积,则()sup{()}inf{()}EDDf x dx S D S D ==⎰.例1 考察[0,1]上的Dirichlet 函数()D x .1,[0,1]()0,[0,1]x D x x ∈⎧=⎨∈⎩则()D x 在[0,1]上Lebesgue 可积,且[0,1]()0D x dx =⎰.证明 ([0,1]){0,1}[D =⊂-,对于(1,2)-的任一组分点:D 0112n l l l -=<<<= .当11()max{}0k k k nD l l δ-≤≤=-→时,0和1不能在同一个小区间上.设10(,]i i l l -∈,11(,]j j l l -∈,则1i j n ≤<≤. 取1[,]i i i l l η-∈,则是有理数;是无理数.1|||0|||()i i i i l l D ηηδ-=-≤-≤,因此当()0D δ→时,0i η→. 而1[()]j j E l D x l Q -<≤⊂(有理数集),所以1[()]0j j mE l D x l -<≤=.当,k i j ≠时,由于1[()]k k E l D x l φ-<≤=,则1[()]0k k mE l D x l -<≤=.因此11()[()]nk k k k S D mE l D x l η-==<≤∑11[()][()]i i i j j j mE l D x l mE l D x l ηη--=<≤+<≤ 1[()]i i i m E l D x l η-=<≤ 于是1()0()0lim ()lim [()]i i i D D S D mE l D x l δδη-→→=<≤0=,即[0,1]()0D x dx =⎰.我们知道()D x 在[0,1]不是Riemann 可积的,所以Lebesgue 可积函数类比Riemann 可积函数类要广.2.有界可测函数积分的性质定理5.1.2 设nE R ⊂,mE <∞,()f x 、()g x 都是E 上的有界可测函数,则 (i )对任意的a R ∈,()()EEaf x dx a f x dx =⎰⎰;(ii )若1,,m E E 是E 的可测子集,()i j E E i j φ=≠ ,1mi i E E ==,则1()()()mEE E f x dx f x dx f x dx =++⎰⎰⎰;(iii )(()())()()EEEf xg x dx f x dx g x dx +=+⎰⎰⎰;(iv )当()()..f x g x a e ≤于E 时,()()EEf x dxg x dx ≤⎰⎰;证明 证(ii ). 只须就2m =的情形证明.设()(,)f E αβ⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 令111[]i i i E E l f l -=<≤,221[]i i i E E l f l -=<≤,1,2,,i n = . 那么121[]i i i i i E E E E l f l -==<≤ ,且12i i E E φ= ,所以12i i i mE mE mE =+,1,2,,i n = .对于分点组D ,用12(),(),()E E E S D S D S D 分别表示f 在12,,E E E 上对应D 的大和数.1()nE i i i S D l mE ==∑1211nniiiii i l mE l mE===+∑∑12()()E E S D S D =+ 该等式对任意的分点组D 成立.对任意的0ε>,存在(,)αβ的分点组1D ,使得111()inf{()}2E E DS D S D ε<+,也存在(,)αβ的分点组2D ,使得222()inf{()}2E E DS D S D ε<+.设*12D D D = ,则*D 即是1D 也是2D 的加细,因此12***()inf{()}()()()E E E E EDf x dx S D S D S D S D =≤=+⎰121212()()()()E E E E S D S D f x dx f x dx ε≤+<++⎰⎰由0ε>是任意的,所以12()()()EE E f x dx f x dx f x dx ≤+⎰⎰⎰.同样考虑小和数和()sup{()}EDf x S D =⎰可证相反的不等式,所以12()()()EE E f x dx f x dx f x dx =+⎰⎰⎰.证(iii ). 设()(,)f E αβ⊂,()(,)g E αβ''⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,对(,)αβ''的任一分点组01:m D l l l αβ''''''=<<<= . 令1[]i i i E E l f l -=<≤,1[]j j j E E l g l -'''=<≤ 1[]ij i j j E E l g l -''=<≤11[,]i i j j E l f l l g l --''=<≤<≤1[]j i i E l f l -'=<≤,(1,2,,;1,2,,.)i n j m == 由此可知,E 可分解为有限个互不相交的可测集的并.1111n m n mij i j i j i j E E E E ===='=== .于是()()iji j ij E f g dx l l mE '+≤+⎰i ij j ij l mE l mE '=+.11()()ijn mEE i j f g dx f g dx ==+=+∑∑⎰⎰11nmiijji j l mE l mE ==''≤+∑∑()()f g S D S D'=+. 该不等式对(,)αβ的任意分点组D 和(,)αβ''的任意分点组D '都成立. 因为inf{()}f EDfdx S D =⎰,inf{()}g ED gdx S D ''=⎰.所以对任意的0ε>,有(,)αβ的分点组1D 和(,)αβ''的分点组1D ',使 1()()2f E S D f x dx ε<+⎰, 1()()2g ES D g x dx ε'<+⎰.因此可得11()()()f g Ef g dx S D S D '+≤+⎰()()EEf x dxg x dx ε<++⎰⎰由0ε>是任意的,有()()()EEEf g dx f x dx g x dx +≤+⎰⎰⎰.同样考虑小和数及所有小和数的上确界可得相反的不等式. 因而()()()EEEf g dx f x dx g x dx +=+⎰⎰⎰.证(i ). 引理1 若()f x c ≡(常数),x E ∈. 则()Ef x dx cmE =⎰.因为存在,R αβ∈,使c αβ<<. 对(,)αβ的任一分点组01n l l l αβ=<<<= . 若1(,]i i c l l -∈,1i n ≤≤,则1[]i i mE l f l -<≤mE =,任取1(,]i i i l l η-∈,则1||()i i i c l l D ηδ--≤-≤.因此当()0D δ→时,i c η→.而当k i ≠时,1[]k k E l f l φ-<≤=,因而1[]0k k mE l f l -<≤=,于是11()0()01lim[]lim []nk k k i i i D D k mE lf l mE l f l δδηη--→→=<≤=<≤∑c mE =⋅.以下证明()()EEaf x dx a f x dx =⎰⎰.若0a =,则()0af x ≡,x E ∈. 由引理1,()000()()EEEaf x dx mE f x dx a f x dx =⋅===⎰⎰⎰.若0a >,设()af x αβ<<,对(,)αβ的任一分点组01:n D l l l αβ=<<<= .由于()f x aaαβ<<,分点组D 相当于(,)a aαβ的一个分点组011:n l l l D a a a a aαβ=<<<= .任取1[,]i i i l l η-∈,则1,ii i l l a a a η-⎡⎤∈⎢⎥⎣⎦. 1111[]nni i i i i i i i l l mE l af l mE f aa ηη--==⎡⎤<≤=<≤⎢⎥⎣⎦∑∑,而1111()0()011lim lim nnii i i i i D D i i l l ll a mE f a mE f a a a aa a δδηη--→→==⎡⎤⎡⎤<≤=<≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑()E a f x dx =⎰,并且1()0()0D D δδ→⇔→,因此1()01()lim[]ni i i ED i af x dx mE laf l δη-→==<≤∑⎰11()01l i m ()nii iD E i l l amE f a f x dx a a a δη-→=⎡⎤=<≤=⎢⎥⎣⎦∑⎰.若0a <,则0a ->. 则0[()]Eaf a f dx =+-⎰()EEafdx a fdx =+-⎰⎰()EEafdx a fdx =+-⎰⎰于是()EEafdx a fdx =--⎰⎰Ea fdx =⎰.综上,对任意的a R ∈,有()()EEaf x dx a f x dx =⎰⎰.证(iv ). 引理2 定义在零测度集上的任何有界函数是可积的,而且积分为零. 事实上,设()f x 定义在E 上,0mE =,设()f x αβ<<,x E ∈. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,则由1[]i i E l f l E -<≤⊂,所以1[]0,1,2,,i i mE l f l i n -<≤== .于是,任取1[,]i i i l l η-∈,11[]0ni i i i mE lf l η-=<≤=∑,因此1()01()lim[]0ni i i ED i f x dx mE lf l δη-→==<≤=∑⎰.为证(iv ),令()()()F x g x f x =-,则()0..F x a e ≥于E . 由引理2,不妨设()0,F x x E ≥∈.设()(,)F E αβ⊂. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 对每一个1i n ≤≤,考察1[]i i i mE l F l η-<≤,其中1[,]i i i l l η-∈,若0i η<,则当()0D δ→时,0i l <,此时1[]i i E l F l φ-<≤=,因而1[]0i i i mE l F l η-<≤=.若0i η≥,则由1[]0i i mE l F l -<≤≥知1[]0i i i mE l F l η-⋅<≤≥,因此1()01()lim[]0ni i i ED i F x dx mE lF l δη-→==<≥≥∑⎰,于是()(()())EEF x dx g x f x dx =-⎰⎰ [()(())]Eg x f x dx =+-⎰ ()()EEg x dx f x dx =+-⎰⎰()()0EEg x dx f x dx =-≥⎰⎰. 因而()()EEg x dx f x dx ≥⎰⎰.推论 设mE <∞,且()f x 是E 上的有界可测函数,则||||EEfdx f dx ≤⎰⎰.证明 因为||||f f f -≤≤,所以由定理5.1.2的(iv )和(i )有||||EEEf dx fdx f dx -≤≤⎰⎰⎰,即||||EEfdx f dx ≤⎰⎰.定理 5.1.3 设mE <∞,()f x 是E 上的有界可测函数,若()0..f x a e ≥于E ,且()0Ef x dx =⎰,则()0..f x a e =于E .证明 因为()0..f x a e ≥E ,则[0]0mE f <=,且[0]()0E f f x dx <=⎰,若能证明[0]0mE f >=,则定理得证.[0][0][0]E E f E f E f ==<> .令1,1,2,n E E f n n ⎡⎤=≥=⎢⎥⎣⎦ ,则1[0]n n E f E ∞=>= ,对任意取定的n N +∈,有 0()Ef x dx =⎰[0][0]()()E f E f f x dx f x dx <≥=+⎰⎰[0]()E f f x dx ≥=⎰[0]()()nnE E f E f x f x dx ≥-=+⎰⎰1()nn E f x mE n≥≥⎰所以0,1,2,n mE n == ,因此11[0]0n n n n mE f m E mE ∞∞==⎛⎫>=≤= ⎪⎝⎭∑ ,于是()0..f x a e =于E .§5.2 一般可测集上一般可测函数的积分对于广义Riemann 积分,有积分区间无限的广义积分和无界函数的广义积分,对于Lebesgue 积分也有无限测度集上的积分和无界可测函数的积分的情形.本节的任务就是讨论这种一般情形的积分.1.有限可测集上无界可测函数的积分(i )非负函数情形 设nE R⊂,mE <∞,()f x 是E 上的非负可测函数.N R +∈,称[]()m i n {(N f x f x N =为()f x 的N -截断函数.有了N -截断函数的概念,我们可以构造有界可测函数列{()}n f x .其中()[]()n n f x f x =.1,2,n = .显然,这样构造的函数列{}n f 满足:12()()()n f x f x f x ≤≤≤≤ ,x E ∈.并且lim ()()n f x f x =.因而12()()()n EEEf x dx f x dx f x dx ≤≤≤≤⎰⎰⎰ ,所以极限lim()n n Ef x dx →∞⎰存在(可能是+∞).定义 5.2.1 设n E R ⊂,mE <∞,()f x 是E 上的非负可测函数.()[]()n n f x f x =,,1,2,x E n ∈= .称lim ()n n Ef x dx →∞⎰为()f x 在E 上的Lebesgue 积分.记为:()lim ()n En Ef x dx f x dx →∞=⎰⎰.若()n Ef x dx ⎰是有限数,称()f x 在E 上可积,若()n Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )一般函数情形定义5.2.2 设()f x 在n E R ⊂上可测,如果()f x +和()f x -中至少有一个在E 上可积,那么称()()EEf x dx f x dx +--⎰⎰为()f x 在E 上的Lebesgue 积分.记为:()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.当()f x +和()f x -都在E 上可积时,称f 在E 上可积.定义中要求()f x +和()f x -中至少有一个在E 上可积是因为如果()f x +和()f x -在E 上都不可积时,()Ef x dx +=+∞⎰且()Ef x dx -=+∞⎰.此时()Ef x dx +-⎰()()()Ef x dx -=+∞-+∞⎰,没有意义,因而没有积分值.若()f x +和()f x -中至少有一个在E 上可积时,()Ef x dx +-⎰()Ef x dx -⎰有意义,但可能为+∞或-∞.无论()Ef x dx ⎰是有限数,+∞或-∞,我们都说()f x 在E 上有积分值,当|()|Ef x dx <+∞⎰时,称f 在E 上可积.2.非有限测度可测集上的积分(i )()f x 是非负可测函数设nE R ⊂,mE =∞.设12{(,,,):||,1,2,,}m n i x x x x m i n K =≤= .令m m E E =K ,则m mE <∞,1,2,m = ,且12m E E E ⊂⊂⊂⊂ 是单调增加集列,有1lim m mm m E EE ∞→∞=== .由前面讨论,()f x 在每个m E 上有积分值()mE f x dx ⎰.记()mm E J f x dx =⎰.则{}m J 是单调增加数列,极限lim m m J →∞存在(可能是+∞).定义5.2.3 设n E R ⊂,mE =∞,()f x 是E 上的非负可测函数.称lim lim ()mm m m E J f x dx →∞→∞=⎰(m E 如上说明)为()f x 在E 上的Lebesgue 积分,记为()lim ()mEm E f x dx f x dx →∞=⎰⎰.若()Ef x dx ⎰是有限数,称()f x 在E 上可积,若()Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )()f x 是一般可测函数定义5.2.4 设nE R ⊂,mE =∞,()f x 是E 上的可测函数.如果()Ef x dx +⎰和()Ef x dx -⎰至少有一个是有限数,则称()Ef x dx +⎰()Ef x dx --⎰为()f x 在E 上的Lebesgue 积分,记为()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.若()Ef x dx +⎰和()Ef x dx -⎰都是有限数,称()f x 在E 上可积.至此,非有限测度集和无界可测函数积分的概念已经建立,以下继续讨论积分的性质. 定理5.2.1 (1)设()f x 是E 上的函数,0mE =,则()0Ef x dx =⎰.(2)设()f x 在E 上可积,则[||]0mE f =∞=,即()f x 是E 上几乎处处有限的函数. 证明 (1)由0mE =,()f x 在E 上可测,所以[]n f +和[]n f -都是E 上的有界可测函数(1,2,)n = ,从而[]()0n Ef x dx +=⎰,[]()0n Ef x dx -=⎰,(1,2,)n = .所以()Ef x dx +=⎰lim []()0n n Ef x dx +→∞=⎰,()Ef x dx -=⎰lim []()0n n Ef x dx -→∞=⎰.于是()Ef x dx =⎰()Ef x dx +-⎰()0Ef x dx -=⎰.(2)令1[]E E f ==+∞,2[]E E f ==-∞.往证120mE mE ==.用反证法,若10mE δ=>,则对任意的正整数n ,有()[]()n EE f x dx f x dx ++≥≥⎰⎰1[]()n E f x dx n δ+=⎰,1,2,n = ,所以()Ef x dx +=+∞⎰,这与()f x 在E 上可积矛盾.因此必须有10mE =.同理可证20mE =.于是1212[||]()0mE f m E E mE mE =∞=≤+= .定理5.2.2 设()f x 在E 上可测,()g x 在E 上非负可积,|()|(),f x g x x E ≤∈,则()f x 也在E 上可积,且|()|()EEf x dxg x dx ≤⎰⎰.证明 因为|()|()()f x f x f x +-=+,所以()()f x g x +≤,()()f x g x -≤.对任意的正整数,k n 有[]()kn E f x dx +≤⎰[]()kn E g x dx ≤⎰()Eg x dx <+∞⎰,所以对每一个正整数k ,{[]()}kn E f x dx +⎰,(1,2,)n = 是单调增加有上界的数列,有有限极限()kE f x dx +=⎰lim []()kn n E f x dx +→∞≤⎰()kE g x dx <+∞⎰.而{()}kE f x dx +⎰,(1,2,)k = 也是单调增加有上界的数列,也有有限极限()Ef x dx +=⎰lim ()kk E f x dx +→∞≤⎰lim ()kk E g x dx →∞⎰()Eg x dx =<+∞⎰.同理可证()Ef x dx -≤⎰()Eg x dx <+∞⎰. 因此()f x 在E 上可积.由|()|()f x g x ≤,x E ∈,有[||]()[](),1,2,n n f x g x n ≤= ,所以对每一个正整数k ,有[||]kn E f dx ≤⎰[](),1,2,kn E g x dx n =⎰ .令n →∞,有|()|kE f x dx ≤⎰(),1,2,kE g x dx k =⎰.令k →∞,有|()|Ef x dx ≤⎰()Eg x dx ⎰.定理5.2.3 设E 是可测集,则(i )当12,,,m E E E 是E 的互不相交的可测子集,1mi i E E ==,()f x 在E 上有积分值时,()f x 在每一个i E 上有积分值,且()Ef x dx =⎰1()E f x dx +⎰2()()mE E f x dx f x dx ++⎰⎰.特别地,当()f x 是E 上的非负可测函数时,()Ef x dx ⎰()iE f x dx ≥⎰,1,2,,i m = ;(ii )对任意常数c ,()Ecf x dx =⎰()Ec f x dx ⎰;(iii )若()f x ,()g x 都是E 上的可积函数,则[()()]Ef xg x dx +=⎰()Ef x dx +⎰()Eg x dx ⎰;(iv )若()f x 在E 上有积分值,且()()f x g x =..a e 于E ,则()Ef x dx =⎰()Eg x dx ⎰;(v )当()f x ,()g x 都在E 上可积,且()()f x g x ≤()x E ∈时,()Ef x dx ≤⎰()Eg x dx ⎰.证明 证(i ). 只须就2m =的情形证明,一般情形利用归纳法可证. 由定理5.1.2的(ii ),对任意的正整数,k m ,有[]km E f dx +=⎰12[][]k k m m E E E E f dx f dx +++⎰⎰ , []k m E f dx -=⎰12[][]k k m m E E E E f dx f dx --+⎰⎰ ,先对m 后对k 取极限,有Ef dx +=⎰12E E f dx f dx +++⎰⎰, Ef dx -=⎰12E E f dx f dx --+⎰⎰.若()f x 在E 上有积分值,则Ef dx +⎰和Ef dx -⎰至少有一个是有限数,不妨设Ef dx+⎰是有限数,那么1E f dx +⎰2E f dx ++⎰是有限数.从而1E f dx +⎰和2E f dx +⎰都是有限数,因而()f x 在1E 和2E 上都有积分值,且()Ef x dx =⎰Ef dx +-⎰Ef dx -⎰()12E E f dx f dx ++=+⎰⎰()12E E f dx f dx ---+⎰⎰1()E f x dx =⎰2()E f x dx +⎰.当()f x 是E 上非负可测函数时,由()i i E E E E =- ,且()i i E E E φ-= ,1,2i =.则()Ef x dx =⎰()()iiE E E f x dx f x dx -+⎰⎰(),1,2iE f x dx i ≥=⎰.为证明(ii )和(iii ),先证明如下结果:引理1 若(),()f x g x 是E 上的非负函数,0c >,则对任意正整数n 成立. (1)2[][][][]n n n n f g f g f g +≤+≤+; (2)[][]1[][][]n n nccc f cf c f +≤≤,其中[]nc 表示不超过nc的最大整数,而[]n f 等表示f 的n -截断函数.证明 (1)先证[][][]n n n f g f g +≤+. 设0x E ∈,若0()f x n <且0()g x n <,则000000[()()]()()[()][()]n n n f x g x f x g x f x g x +≤+=+.若0()f x 和0()g x 中至少有一个不小于n ,例如0()f x n ≥,则000[()()][()]n n f x g x n n g x +=≤+00[()][()]n n f x g x =+.再证2[][][]n n n f g f g +≤+.由于[][]n n f g f g +≤+,[][]2n n f g n +≤,所以[][]min{,2}n n f g f g n +≤+2[]n f g =+. (1)得证. (2)[]min{,}min{,}n n cf cf n c f c==, 而min{,[]}min{,}min{,[]1}n n nf f f c c c≤≤+.所以min{,[]}min{,}min{,[]1}n n nc f c f c f c c c≤≤+.于是[][]1[][][]n n n ccc f cf c f +≤≤. (2)得证.证(ii ). 若0c =,则0cf =()x E ∈.对任何正整数,k m 有()000kkk E E cf dx dx mE ===⎰⎰,所以()lim ()0kEk E Ecf dx cf dx c fdx →∞===⎰⎰⎰.若0c >,则()cf cf ++=,()cf cf --=,由引理1的(2),[][]1[][][]m m mc cc f cf c f ++++≤≤,因此()()lim []km EEm E k cf dx cf dx cf dx +++→∞→∞==⎰⎰⎰[]1l i m[]km m E c k c f dx +→∞+→∞≤⎰Ec fd x +=⎰.另外()()EEcf dx cf dx ++=⎰⎰l i m[]km m E k cf dx +→∞→∞=⎰[]lim[]km m E c k c f dx +→∞→∞≥⎰Ec f dx +=⎰.因此()EEcf dx c f dx ++=⎰⎰.同理1()EEcf dx c f dx --=⎰⎰.所以()EEcf dx c fdx =⎰⎰.当0c <,可按定理5.1.2中的(i )相应的情形证明.证(iii ). 先设()f x 和()g x 都是非负可测函数.由引理1的(1),对任意的正整数m ,有2[][][][]m m m m f g f g f g +≤+≤+,所以对任意的正整数k ,有[][][]kkkm m m E E E f g dx f dx g dx +≤+⎰⎰⎰2[]km E f g dx ≤+⎰,由f 和g 是可积的,有lim[[][]]kkm m m E E k f dx g dx →∞→∞+⎰⎰()()EEf x dxg x dx =+⎰⎰,所以,lim []()()km m E EEk f g dx f x dx g x dx →∞→∞+≤+⎰⎰⎰2lim []km m E k f g dx →∞→∞≤+⎰.由左边不等式知f g +可积,有()EEEf g dx fdx gdx +≤+⎰⎰⎰.由右边不等式,有()EEEfdx gdx f g dx +≤+⎰⎰⎰.因此()EEEf g dx fdx gdx +=+⎰⎰⎰.再设()f x 和()g x 都是一般的函数.由于()f g f g ++++≤+,()f g f g ---+≤+.因此若,f g 都在E 上可积,则f g +也在E 上可积.因为()()()()f g f g f g f g f g +-++--+-+=+=+-+,所以()()f g f g f g f g +--++-+++=+++,因而[()][()]EEf g f g dx f g f g dx +--++-+++=+++⎰⎰,由已证结果,有[()()EEEEEEf g dx f dx g dx f dx g dx f g dx +--++-+++=+++⎰⎰⎰⎰⎰⎰,所以[()()()()EEEEEEf g dx f g dx f dx f dx g dx g dx +-+-+-+-+=-+-⎰⎰⎰⎰⎰⎰.此即()EEEf g dx fdx gdx +=+⎰⎰⎰.证(iv ). 设()()f xg x =..a e 于E ,()f x 在E 上有积分值,记1[()()]E f x g x ==,2[()()]E f x g x =≠,则20mE =,12E E φ= ,12E E E = .由(i ),12EE E fdx fdx fdx =+⎰⎰⎰12E E gdx fdx =+⎰⎰因为零测度集上的有界函数积分为零(§5.1引理2).所以对任何正整数m ,2[]0m E f dx +=⎰,2[]0m E f dx -=⎰,因而22lim []0m E m E f dx f dx ++→∞==⎰⎰,22lim []0m E m E f dx f dx --→∞==⎰⎰.所以2()0E f x dx =⎰,同理2()0E g x dx =⎰.因为f 在E 上有积分值,所以由(i ),f 在1E E ⊂也有积分值,而在1E 上,f g ≡,因此g 在1E 上有积分值.对任意的正整数,m k ,由k mE <∞,[]m g +和[]m g -都是有界函数,依测度有限集上有界函数的积分定义,有121[][][][]kk k k m m m m E E E E E E E g dx g dx g dx g dx ++++=+=⎰⎰⎰⎰.令m →∞,k →∞,则1EE g dx g dx ++=⎰⎰.同理,1EE g dx g dx --=⎰⎰.因为g 在1E 上有积分值,所以g 在E 上有积分值.并且_EEEgdx g dx g dx +=-⎰⎰⎰11E E g dx g dx +-=-⎰⎰11E E gdx fdx ===⎰⎰12E E Efdx fdx fdx +=⎰⎰⎰.证(v ). 设()()()F x g x f x =-,则()0()F x x E ≥∈,并且()F x 在E 上可积,且()0EF x dx ≥⎰,而(),()f x g x 都在E 上可积,并且()()()g x F x f x =+.由(iii )()[()()]()()EEEEg x dx F x f x dx F x dx f x dx =+=+⎰⎰⎰⎰()Ef x dx ≥⎰.至此定理证毕.定理 5.2.4(积分的绝对可积性) 设()f x 是E 上的可测函数,则()f x 在E 上可积的充要条件是|()|f x 在E 上可积,并且|()||()|EE f x dx f x dx ≤⎰⎰.证明 若()f x 在E 上可积,则Ef dx +⎰和Ef dx -⎰都是有限数,即f +和f -都在E 上可积,而|()|()()f x f x f x +-=+,由定理5.2.3的(iii )有|()|()()EEEf x dx f x dx f x dx +-=+<∞⎰⎰⎰,因而|()|f x 在E 上可积.反之,若|()|f x 在E 上可积,则由||f f +≤,||f f -≤,由定理5.2.2,f +和f -都在E 上可积,所以f 在E 上可积.并且由||||f f f -≤≤,有||||EEEf dx fdx f dx -≤≤⎰⎰⎰, 此即||||EEfdx f dx ≤⎰⎰.定理5.2.5(积分的绝对连续性) 设()f x 在E 上可积,则对任意的0ε>,存在0δ>,使得对于E 的任意子集A ,当mA δ<时,就有|()|Af x dx ε<⎰.证明 (1)先证明在mE <∞,且()f x 在E 上有界的条件下结论成立.设|()|()f x x E ≤K ∈,则任取可测集,A E ⊂|()|Af x dx ⎰|()|Af x dx mA ≤≤K ⋅⎰.对任意的0ε>,取εδ≤K,则当mA δ<时,有|()|Af x dx mA εε≤K ⋅<K ⋅=K⎰.(2)一般情形()f x 在E 上可积,则|()|f x 也在E 上可积,由lim [|()|]|()|nn n E Ef x dx f x dx →∞=⎰⎰知,对任意的0ε>,存在正整数N ,使|()|[|()|]2NN EE f x dx f x dx ε-<⎰⎰.另一方面,由情形(1),对这个0ε>,存在0δ>,使当N A E ⊂,且mA δ<时,有[|()|]2N A f x dx ε<⎰,因此,当A E ⊂且mA δ<时,便有()|()||()||()||()|N NAAA A E A E f x dx f x dx f x dx f x dx -≤=+⎰⎰⎰⎰()||(||[||])[||]N NNN N A A E A E A E f dx f f dx f dx -=+-+⎰⎰⎰,因为()N N N A A E A E E E -=-⊂- ,所以|()|||(||[||])[||]NN NN N AE E E A E f x dx f dx f f dx f dx -≤+-+⎰⎰⎰⎰(||[||])[||]22NNN N EE A E f dx f dx f dx εεε=-+<+=⎰⎰⎰.例 1 设()f x 在[,]E a b =上可积,则对任何0ε>,必存在E 上的连续函数()x ϕ,使|()()|b af x x dx ϕε-<⎰.证明 设[||]n e E f n =>,则1[||]nn E f e∞==∞=.因为{}n e 是单调减少集列,所以1lim n n n n e e ∞→∞== .而由mE b a =-<∞知,1me <∞,因而1lim (lim )()[||]0n n n n n n me m e m e mE f ∞→∞→∞=====∞=由积分的绝对连续性,对任意的0ε>,必存在正整数N ,使||4NN e N me f dx ε⋅<<⎰.令N N B E e =-,在N B 上由Lusin 定理,存在闭集N N F B ⊂和R 上的连续函数()x ϕ,使得(1)()4N N m B F Nε-<;(2)当N x F ∈时,()()f x x ϕ=,且sup |()|sup |()|NRF x f x N ϕ=≤.所以|()()||()()||()()|NNb ae Bf x x dx f x x dx f x x dx ϕϕϕ-=-+-⎰⎰⎰|()||()||()()|NNN Ne e B Ff x dx x dx f x x dxϕϕ-≤++-⎰⎰⎰|()()|NF f x x dx ϕ+-⎰2044N N me N Nεε≤+⋅+⋅+442εεε<++ε=.§5.3 Lebesgue 积分的极限定理本节讨论如下的问题,假设{}n f 是集E 上的一个函数序列,按某种意义收敛到f ,如果每个n f 在某种意义下都有积分,()f x 是否有积分?如果()f x 也有积分,n f 的积分之极限是否等于()f x 的积分?也就是极限与积分是否可以交换顺序的问题.我们会看到这个问题在Lebesgue 积分范围内得到比在Riemann 积分范围内更为完满的解决,这也正是Lebesgue 积分的最大成功之处.定理5.3.1(Lebesgue 控制收敛定理) 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,即|()|()..n f x F x a e ≤于(1,2,)E n = ,且()F x 在E 上可积,如果()()mn f x f x −−→,则()f x 在E 上是可积的,并且lim ()()n n EEf x dx f x dx →∞=⎰⎰.证明 若0mE =,结论显然成立,因此不妨设0mE >.由于mn f f −−→,由F·Riesz 定理,存在{()}n f x 的子列{()}i n f x ,使 lim ()()..i n i f x f x a e →∞=于E ,由|()|()..i n f x F x a e ≤于E 知|()|()..f x F x a e ≤ 于E . 因为()F x 在E 上可积,所以()f x 在E 上可积.往证lim()()n n EEf x f x dx →∞=⎰⎰.(1)mE <∞因为()F x 在E 上可积,由积分的绝对连续性,对任意的0ε>,存在0δ>,使当e E ⊂且me δ<时,有()4eF x dx ε<⎰.又因为m n f f −−→,所以存在N N +∈,使当n N ≥时,有[||]2n n mE mE f f mEεδ=-≥<,所以当n N ≥时,()4nE F x dx ε<⎰,因此|()()|n EEf x dx f x dx -=⎰⎰|(()())|n Ef x f x dx -⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|nnn n E E E f x f x dx f x f x dx -=-+-⎰⎰2()()2nnE F x d x m EE mEε≤+⋅-⎰22εεε<+=.因此,lim()()n n EEf x f x dx →∞=⎰⎰.(2)设mE =∞因为()F x 在E 上可积,对任意的0ε>,取,k m 充分大,使()[]()4km EE F x dx F x dx ε-<⎰⎰,所以()()()kkE E EE F x dx F x dx F x dx -=-⎰⎰⎰()[]()4km EE F x dx F x dx ε≤-<⎰⎰另一方面,在k E 上可测函数列{||}n f f -满足:||2..n f f Fa e -≤于,1,2,k E n = ,||0mn f f -−−→,k mE <∞.因此,由(1)的结果,存在正整数N ,使当n N ≥时||2kn E f f dx ε-<⎰.所以|()()|n EEf x dx f x dx -⎰⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|kkn n E E E f x f x dx f x f x dx -=-+-⎰⎰ 2()2kE EF x dx ε-≤+⎰.242εεε<⋅+=因此lim ()()n n EEf x dx f x dx →∞=⎰⎰.综上定理得证.定理5.3.1' 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,若lim ()()..n n f x dx f x a e →∞= 于E ,则()f x 在E 上可积且lim ()()n n Ef x dx f x dx →∞=⎰.定理5.3.1''(勒贝格有界收敛定理) 设mE <∞,{()}n f x 是可测集E 上的可测函数列且测度收敛于()f x ,如果{()}n f x 一致有界,即存在常数M ,使得对任意的x E ∈和对任意的正整数n ,有|()|n f x M ≤,则()f x 在E 上可积,且有()lim ()n En Ef x dx f x dx →∞=⎰⎰.定理5.3.1''对于Riemann 积分不适用.例1 设12{,,,,}n r r r 是[0,1]中的全体有理数. 作如下函数列:1111,;()0,[0,1]{}.x r f x x r =⎧=⎨∈-⎩ 122121,,;()0,[0,1]{,}.x r r f x x r r =⎧=⎨∈-⎩ … … … … … … … …12121,,,,;()0,[0,1]{,,,}.n n n x r r r f x x r r r =⎧=⎨∈-⎩… … … … … … … …那么{()}n f x 在[0,1]上一致有界,|()|1,[0,1],1,2,n f x x n ≤∈= . 而且1,()()0,n f x D x ⎧→=⎨⎩因为每个()n f x 在[0,1]上只有有限个不连续点,因而Riemann 可积,然而()D x 在[0,1]上不是Riemann 可积的.定理5.3.2(勒维Levi ,1875-1961,意大利数学家) 设 (i ){()}n f x 是E 上非负可测函数列; (ii )1()()n n f x f x +≤ (,1,2,)x E n ∈= ; (iii )()lim ()n n f x f x →∞=,则()lim ()n En Ef x dx f x dx →∞=⎰⎰.证明 先设()Ef x dx <∞⎰,对任意的0ε>,取正整数,k m ,使[]()()2k m E E f x dx f x dx ε>-⎰⎰.此处k k E E =K ,12{(,,,)k n x x x K = :||,1,2,,}i x k i n ≤= .注意到k mE <∞,且在k E 上[]()lim[]()m n m n f x f x →∞=,由Egoroff 定理知,存在k E E ε⊂,使4mE mεε<,且在k E E ε-上[]()n m f x 一致收敛到[]()m f x .设正整0n 使0n n ≥时,对一切k x E E ε∈-,都有x 为[0,1]上的有理数;x 为[0,1]上的无理数.0[]()[]()4(1)m n m k f x f x mE ε≤-<+则当0n n ≥时,()[]()[]()4k k n n m m EE E E E f x dx f x dx f x dx εεε--≥≥-⎰⎰⎰,而[]()[]()[]()kk m m m E E E E f x dx f x dx f x dx εε-=+⎰⎰⎰[]()4k m E E f xdx εε-<+⎰,所以当0n n ≥时,()[]()4k n m EE E f x dx f x dx εε->-⎰⎰[]()44km E f xdx εε>--⎰()Ef x dx ε>-⎰.因此lim()()n n EEf x dx f x dx ε→∞≥-⎰⎰,由0ε>是任意的,有lim ()()n n EEf x dx f x dx →∞≥⎰⎰.另一方面,对任意的n ,显然有()()n f x f x ≤()x E ∈,所以()()n EEf x dx f x dx ≤⎰⎰,从而lim()()n n EEf x dx f x dx →∞≤⎰⎰.综上得lim ()()n n EEf x dx f x dx →∞=⎰⎰.当()Ef x dx =∞⎰时,由积分定义,对任意的0M >.存在,k m 使得[]()km E f x dx M ≥⎰,由[]()[]()n m m f x f x →()n →∞与[]()km E f x dx <∞⎰及上面的证明,知lim []()[]()kkn m m n E E f x dx f x dx M →∞=≥⎰⎰.于是lim ()lim []()n n m n En Ef x dx f x dx →∞→∞≥⎰⎰lim []()kn m n E f x dx →∞≥⎰M ≥.由0M >是任意的,有lim ()()n n EEf x dx f x dx →∞=∞=⎰⎰.定理得证.定理 5.3.3(Lebesgue 基本定理) 设{()}n f x 是可测集E 上的非负可测函数列,1()()n n f x f x ∞==∑,则1()()n EEn f x dx f x dx ∞==∑⎰⎰.证明 设1()(),1,2,nn i i g x f x n ===∑ ,则{()}ngx 是E 上非负可测函数列,且1()()(,1,2,)n n g x g x x E n +≤∈= ,1lim ()()n n n n g x f x ∞→∞==∑()f x =.由Levi 定理有1lim ()(())()n i n EEEi g x dx f x dx f x dx ∞→∞===∑⎰⎰⎰,而1lim ()lim (())nn i n En Ei g x dx f x dx →∞→∞==∑⎰⎰1lim ()ni n Ei f x dx →∞==∑⎰1()i Ei f x dx ∞==∑⎰.所以1()()n EEn f x dx f x dx ∞==∑⎰⎰.定理5.3.4(积分对区域的可数可加性) 若,1,2,i E i = 是E 的互不相交的可测子集列,1i i E E ∞== ,当()f x 在E 上有积分值时,则()f x 在每一个i E 上都有积分值,且1()()iEE i f x dx f x dx ∞==∑⎰⎰.。
勒贝格积分的定义和应用
![勒贝格积分的定义和应用](https://img.taocdn.com/s3/m/57df8c1ccec789eb172ded630b1c59eef9c79a47.png)
勒贝格积分的定义和应用积分是高等数学中的一个重要概念,勒贝格积分是其中的一种。
本文将着重探讨勒贝格积分的定义和应用。
一、勒贝格积分的定义勒贝格积分是法国数学家勒贝格(Henri Lebesgue)于20世纪初创立的一种积分。
与黎曼积分相比,它具有更广泛的应用范围和更强的理论基础。
首先,我们需要了解可积函数的概念。
对于定义在区间[a,b]上的函数f(x),如果存在一个实数I,使得对于任意的ε>0,都存在一个宽度足够小的区间[a1,b1],使得其中的任何一组点x1,x2,...,xn,满足有|Σ(fiΔxi)-I|<ε其中,Δxi=xi+1-xi,fi为xi,x(i+1)之间的任意点。
则函数f(x)在区间[a,b]上可积。
我们称这个实数I为函数f(x)在区间[a,b]上的黎曼积分。
但是,黎曼积分并不能处理所有函数,比如说在区间[0,1]上的Dirichlet函数:1,x属于[0,1]的有理数f(x)=0,x属于[0,1]的无理数如果我们想对这个函数进行积分,我们会发现无论采取什么方法,这个函数在[0,1]上的积分都不存在。
因此,勒贝格引入了新的积分概念——勒贝格积分。
勒贝格积分的定义与黎曼积分不同,勒贝格积分是先将函数f(x)拆分成单调递增或递减的函数,然后再对其进行积分。
这样就能够处理其他类型的函数,比如Dirichlet函数。
二、勒贝格积分的应用勒贝格积分在实际应用中具有广泛的用途,下面将介绍其中的一些应用。
1.概率论概率密度函数是概率论中的一个重要概念。
对于一个随机变量X,概率密度函数f(x)表示X在某一区间内取值的概率密度大小。
而对于连续型随机变量,其概率密度函数可以表示为:f(x)=lim(n->∞)[P(a<X<b)/n]其中,P(a<X<b)表示X在区间(a,b)内取值的概率,n则表示将区间(a,b)划分成越来越多的小区间。
那么,这个式子中的极限存在吗?答案是肯定的,因为f(x)是一个单调递增或递减的函数,因此可以使用勒贝格积分进行求解。
勒贝格积分计算
![勒贝格积分计算](https://img.taocdn.com/s3/m/f87f64589a6648d7c1c708a1284ac850ad0204ba.png)
勒贝格积分计算以勒贝格积分(Lebesgue integral)是数学中的一种积分方法,在测度论中起着重要的作用。
它是由法国数学家亨利·勒贝格(Henri Léon Lebesgue)在20世纪初提出的,用来解决无法用黎曼积分解决的问题。
勒贝格积分是现代数学分析的基础之一,被广泛应用于概率论、泛函分析、调和分析等领域。
勒贝格积分的基本思想是通过测度来度量函数的大小。
在黎曼积分中,将定义域分割成若干小区间,然后计算每个小区间上函数值与区间长度的乘积,并将这些乘积相加。
而在勒贝格积分中,我们将定义域分割成若干个可测集合,然后计算函数在每个可测集合上的积分,最后将这些积分值相加。
勒贝格积分的定义涉及到测度的概念。
测度是一种将集合映射到实数的函数,用来度量集合的大小。
在勒贝格积分中,我们需要定义一个合适的测度,称为勒贝格测度。
勒贝格测度可以用来度量定义域上的可测集合的大小,从而确定勒贝格积分的值。
勒贝格积分的定义是通过逐步逼近的方式来进行的。
首先,定义了可测简单函数的积分,这些函数可以用有限个取值来表示。
然后,通过逼近可测函数,将其分解成非负部分和负部分,并分别计算它们的积分。
最后,将非负部分的积分和负部分的积分相加,得到函数的勒贝格积分值。
与黎曼积分相比,勒贝格积分具有更广泛的适用性。
黎曼积分要求函数在定义域上连续,而勒贝格积分只要求函数是可测的。
因此,勒贝格积分可以处理更加复杂的函数,如间断函数、非可微函数等。
此外,勒贝格积分还具有良好的性质,如可加性、线性性、保序性等,使得它在数学分析中得到广泛应用。
勒贝格积分在概率论中有着重要的应用。
在概率论中,随机变量的分布函数是一种非减的右连续函数,可以用勒贝格积分来表示。
通过勒贝格积分,可以计算出随机变量在某个区间上的概率,从而研究随机变量的性质和分布规律。
在泛函分析中,勒贝格积分被用来定义函数空间的范数。
通过勒贝格积分,可以度量函数空间中的函数的大小,并研究其性质和结构。
勒贝格 曲面积分
![勒贝格 曲面积分](https://img.taocdn.com/s3/m/a52c7f70590216fc700abb68a98271fe910eafa9.png)
勒贝格曲面积分全文共四篇示例,供读者参考第一篇示例:勒贝格曲面积分,是数学中的一个重要概念,被广泛应用于物理学、工程学等领域。
在三维空间中,曲面积分是对曲面上的向量场或者标量场进行积分的一种方法,通过曲面积分可以描述场沿曲面的流量或者作用量。
在勒贝格曲面积分的理论基础上,人们可以更深入地研究场的性质,解决实际问题。
曲面积分的概念最早由高斯提出,但是到了19世纪末20世纪初,勒贝格进一步完善了曲面积分的理论体系,成为了现代数学中的重要内容之一。
勒贝格曲面积分的基本思想是将曲面上的场分解为垂直于曲面的法向分量和沿曲面的切向分量,然后分别对这两个分量进行积分,最终得到曲面上的积分值。
在数学表达上,勒贝格曲面积分可以写成如下形式:\iint_S \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \iint_S\mathbf{F} \cdot \mathbf{n} \mathrm{d}SS表示曲面,\mathbf{F}表示场,\mathbf{n}表示曲面的单位法向量,\mathrm{d}\mathbf{S}表示曲面的面积元素。
勒贝格曲面积分可以分为两种类型,一种是对向量场的曲面积分,另一种是对标量场的曲面积分。
对于向量场的曲面积分,结果是一个向量,表示场经过曲面的总流量;而对于标量场的曲面积分,则是一个标量,表示标量场在曲面上的积分均值。
除了物理学和工程学,勒贝格曲面积分还有着许多其他应用领域。
在地质学中,曲面积分可以用来描述地球表面的地质性质,比如地热分布、地震活动等。
在生物学中,曲面积分可以应用于细胞膜的表面积计算,研究细胞内的物质运输等。
在计算机图形学中,曲面积分可以用来计算曲面上的光照效果,渲染逼真的图像。
第二篇示例:勒贝格曲面积分是微积分中的一个重要概念,它广泛应用于物理学、工程学等领域。
在这篇文章中,我们将介绍勒贝格曲面积分的概念、计算方法以及应用。
勒贝格曲面积分是对矢量场在曲面上的积分,通过曲面上的矢量场与曲面元素相乘后求和来计算。
积分学的革命—勒贝格积分的诞生
![积分学的革命—勒贝格积分的诞生](https://img.taocdn.com/s3/m/ea2fa5f66037ee06eff9aef8941ea76e58fa4a01.png)
积分学的革命—勒贝格积分的诞生古典的微积分学自诞生之日起,处理的函数几乎只针对那些连续可导的函数,因为实际问题中涉及到的函数几乎都是这样的,它们至多也只在有限个点处不连续(进而不可导)。
久而久之,数学界就形成了一种共识,不可导函数等性质不好的病态函数没有研究的必要和价值,反而它们的存在破坏了数学的美与和谐。
但数学自身的发展往往表明,任何瑕疵都可能造成一场彻彻底底的革命!很久以来,在人们的想象和认知里,一个连续的函数应当除了个别点之外都是可导的。
但爱挑刺的“流言终结者”魏尔斯特拉斯却偏偏在1872年构造出了一个处处连续但处处不可导的函数来。
数学界为之一振,原来想象是靠不住的。
对于传统黎曼积分很难处理函数不连续点无限多的不足,达布曾证明了只要函数的不连续点能够包含在有限多个长度任意小的区间内,那这个函数仍然是黎曼可积的。
狄利克雷提出了著名的狄利克雷函数:简单来说,也就是:狄利克雷函数的出现给了传统的黎曼积分论致命的打击,因为它看起来是个非常简单的函数但在黎曼积分的意义却是不可积的。
但数学界对于传统积分论还是一如既往的执着,他们还是认为这是病态而不健康的函数,研究这些函数的人是吹毛求疵的老学究,是在玩脱离实际的数学游戏。
就连当时的数学领袖庞加莱也说:“过去人们为了一个实际的目的而创造一个新的函数,而今天人们为了说明先辈在推理方面的不足而故意造出些函数来,但这些函数所能推出来的也就仅此而已”。
庞加莱做为当时的大数学家,说的这段话自然举足轻重,于是批评病态函数的声音越来越大,这使得很多人都望而却步了。
但真理却往往有人站出来捍卫,就像罗巴切夫斯基一样。
为了说明传统黎曼积分的不足,我们还是先简单地介绍一下传统的黎曼积分。
对一个在闭区间[a,b]有定义的实值函数f,分割定义域后定义黎曼和如下:其中ti∈(xi,xi+1).形象地来说,黎曼积分就是当分割越来越“精细”的时候,黎曼和趋向的极限。
但严格来说,如果在闭区间[a,b] 上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数的黎曼和都“会趋向于一个确定的值,那么f在闭区间[a,b] 上的黎曼积分存在,并且定义为黎曼和的极限,这时候称函数f就称为为是黎曼可积的。
1.2 勒贝格积分(tou )例题
![1.2 勒贝格积分(tou )例题](https://img.taocdn.com/s3/m/a1b6416c25c52cc58bd6bed4.png)
证:
机动
目录
上页
下页
返回
结束
第4页 页 可积, 例4 设f (t)在(-∞,+∞)上L可积 其富立叶变换为 在 ∞ ∞ 上 可积
证明 1) 证: 1)
在(-∞,+∞)上连续 ∞ ∞ 上连续; 上连续
2)
⇒ 2)
是连续函数
机动
目录
上页
下页
返回
结束
第5页 页
f (t)在(-∞,+∞)上L可积 所以有 控制收敛定理有 可积, 在 ∞ ∞ 上 可积 所以有L控制收敛定理有
机动
目录
上页
下页
返回
结束
第3页 页 在矩形域{(x,t)|a≤x≤b, α≤t≤β}上有定义 且满足 ∀t∈[α,β], f (x,t) 上有定义,且满足 例3 设f(x,t)在矩形域 在矩形域 ≤ ≤ ≤ 上有定义 且满足:1) ∈ 是[a,b]上L可积函数2) ∃C>0, 使得 上 可积函数
证明
第1页 页
例1 求 解:当0<x<1时 当 时 ,
非一致收敛, 非一致收敛 但
上非负可测, 在[0,1]上非负可测 由定理 有 上非负可测 由定理9有
机动
目录
上页
下页
返回
结束
第2页 页
例2 求极限
解:当0≤x≤1 当 ≤ ≤ 时,
因为 由L控制收敛定理有 控制收敛定理有
可积,从而 在[0,1]上R可积 从而 可积 上 可积 从而L可积
机动
目录
上页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、勒贝格积分的概念与性质 1. 测度有限集上有界函数L积分 定义1 (L积分) 设m(E)<, f (x)是E上的有界可测函数, 且 <f (x) < . ①分割:=y1<y2<...<yn=
( ) (E ②作乘积和式: im i)
i 1
n
(i [ yi-1,yi ], Ei=E( yi-1 f <yi )={x | yi-1 f(x) <yi}
x ) dm x ) dm f( f(
E i 1 E i n
不等式 性质
n
i 1
有限可加性
注:在零测集上任意改变被积函数的值,或被积函数无定义,都不影响函数 的可积性及积分值。(L积分与R积分的显著区别)
例:在[0,1],dirichlet函数D(x)=0(a.e.), 从而有:
E
[ f ( x )] [ f ( x )] ... [ f ( x )] ... 1 2 n
存在 x ) dm lim x )] dm f( [f(
E n E n
注:当极限值有限时,称f(x)在E上L可积; 当极限值无限时,则称f(x)在E上 有积分。
(2) 设m(E)<+, f (x)是E上的一般无界可测函数.则有
第二节 勒贝格积分
•勒贝格积分思想的产生 •勒贝格积分的概念和性质 •积分极限定理
一、勒贝格积分思想的产生 1. 黎曼(Riemann)积分(即定积分)的基本思想 设f(x)在[a,b]上有界,分割[a,b],作乘积,求和,取极限
( R ) x ) dx lim f ( x i) i f(
f ( x ) f ( x ) f ( x ) f ( x ) f ( x ) f ( x )
( L ) x ) dm ( R ) x ) dx f( f(
[ a , b ] a
b
定理3 (L积分基本性质) 设m(E)<, f (x)及g(x)都是E上的有界可测函数,与是常数。 1) [ f ( x ) g ( x )] dm f ( x ) dm g ( x ) dm E E E 线性 性质 ( x ) ( 常数 ) f ( x ) dm m ( E ) 2) f
x [ x , x ] i 1 i x [ x , x ] i 1 i
注: f(x)在[a,b]上R可积 lim f(i)xi存在 lim (S-s)=0 lim ixi=0
这表明: f(x)在[a,b]上R可积时, =max xi充分小时, 每个振幅i(i=1,2,…)都 很小或振幅i不能任意小的子区间的长度之和(即测度)很小.
E
3) 4)
m ( E ) 0 ( x ) dm 0 f
E
E E
零测集上的积分性质
m(E(fg))=0 f ( x ) g ( x )( a . e .) f ( x ) dm g ( x ) dm
( x ) 0 f ( x ) dm 0 5) f E
6)
f ( x ) m ( E ) f ( x ) dm m ( E )
E
( x ) g ( x )( a . e .) f ( x ) dm g ( x ) dm 7) f E E m(E(f<g))=0
可E 测 E , ( i j ), E E 8) E i i j i
(x )dm 0 D
E
2. 无界函数及测度无限集上的L积分
(1) 设m(E)<+, f (x)是E上的非负无界可测函数.作函数
f( x ) f( x ) n [f( x )] n n f( x ) n
{[f (x)]n}是一非负有界可测函数列, 称[f (x)]n 为 f (x)的第n截断函数. 都存在 n , [f(x )] dm n
b a n
0
1 ( n )i
2.达布(Darbour)大和与达布小和 设xi(i=1,2,..n)为区间[a,b]的任一分点组, 记 :
M sup f ( x ),m inf f ( x ) i i
=Mi−mi称为f(x)在[xi-1,xi]上的振幅 S=Mixi为f(x)的D大和 s=mixi为f(x)的D小和
3. R积分的局限性 (1) 对被积函数和积分域要求过于严格. 要求积分域为区间, 对一般点 集而言, R积分无法定义;并要求被积函数f(x)在积分区间[a,b]上的变化 不能太快,至少急剧变化的点不能太多(一般f(x)在[a,b]上应是连续或分 段连续, 即几乎处处连续). 象[0,1]上的狄里克来函数就不R可积. (2)另一方面, R积分理论上存在弊端. R可积函数序列的极限函数(逐 点收敛)未必可积;极限运算与积分运算只有在很强的条件下(一致收敛) 才能交换积分次序; 由R可积函数类构成的某些空间不具有完备性. 4 L积分的产生 为克服R积分的缺陷, 法国数学家勒贝格1902年建立了一套新的积分理论 (L积分理论), 对函数限制较少, 适用范围更大。L积分与极限交换次序所要求 的条件较之R积分要弱得多.,而切使用起来也比较灵活.
E
n
( ) 0 i 1
c
0 aE i1 Ei2
也称f (x)在E上L可积
x Ei3Ei4b
定理1 (L积分存在定理) m(E)<, f (x)在E上是有界可测函数f (x)在E上L可积
定理2 (L积分与R积分的关系) f (x)在E=[a,b]上R可积f (x)在E=[a,b]上L可积,且
③取极限: lim m ( E ) ( ( ) max ( y y )) i i i i 1
( ) 0 i 1
1 i
则函数f (x)在E上的L积分定义
( L ) x ) dm lim m ( E i i) f(