学而思小升初培优三_规律,程序,新运算(原版)
湖南小升初招生考试原创培训系列2-2规律探索与定义新运算
。。 。 。。
。。。 。。。 。。。
。。。。 。。。。 。。。。 。。。。
ห้องสมุดไป่ตู้
①②
③
④
⑤
不难发现①是1行1列,②是2行2列,······⑤则是5行5列
如下图,摆1个∆用3根小棒,摆2个∆用5根小棒,摆3个∆用7 根小棒。照这样,摆5个∆用( )根小棒,用2013根这样的小棒可以摆 ( )个∆ 。
摆1个∆用2+1=3根小棒,摆2个∆用2×2+1=5根小棒 摆3个∆用2×3+1=7根小棒,摆5个∆用2×5+1=11根小棒 用2013根这样的小棒需(2013-1)÷2=1006个∆ 。
可采用归纳递推法:1条直线最多分成1+1=2部分 2条直线最多分成1+1+2=4部分 3条直线最多分成1+1+2+3=7部分
则n 条直线将一个平面最多分成1=1+2+3+4+···+n=1+n×(n+1)÷2部分 则6条直线将一个平面最多分成1+6×7÷2=22部分
若规定a∆b=(a+b)÷(a-b),则10∆(3∆1)=
先算括号内的3∆1=(3+1)÷(3-1)=2 则10∆(3∆1)=10∆2=(10+2)÷(10-2)=
第四部分
真题再现
定义a※b=a×b-(a+b),如果3※(5※x)=3,则x=( )
先算括号里的5※x=5x-5-x=4x-5 则3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=3 故方程的解为x=2
小升初数学算术规律知识总结
小升初数学算术规律知识总结小升初数学算术规律知识总结1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)5=25+456、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的`末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数(不为零),等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有的算式并计算。
10、分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
学而思小升初排列组合(排列组合三宝)
之老阳三干创作1.排列组合的意义与计算方法2.排列组合三宝:捆绑法、插空法、挡板法(★★☆)8月26日晚上师资组刚到蜜桃仙谷,大家都很兴奋。
王雨洁、夏川、杨秀情、谷运增、崔兆玉、刘丽娜、兰海等高年级的七位老师想站在一块儿合个影,这个时候争执出现了:⑴雨洁觉得:7个人随便站成一排,她认为这样简单公平;⑵夏川认为:7个人可以站成两排,前3后4,这样看起来比较美观;⑶兰海固执:自己必须站在正中间,因为自己的脑瓜长的比他人更圆一些;⑷兆玉发言:自己和丽娜站两端,“我们俩宽度一样,这样比较对称”⑸秀情老师:“我和阿增不站两端,其余的随便排,快点,不要磨叽!”(★★☆)高年级组的7位老师继续照相,这次排队有了新的讲究:雨洁、夏川、丽娜三位美女老师强烈要求必须相邻,任谁劝都不听,这小升初计数重点考查内容————排列组合时候只见摄像师老段拿着一根绳子嘿嘿阴笑着就走过来了:我能很快解决你们这样一共有几种排队方式的问题。
(★★☆)刚才的事儿影响了照相的进度。
嘿,在这段时间里老杨和谷老师打起来了,还把谷老师的耳朵给咬了……海哥在劝架的过程由于处理不当和老杨、谷老师同时起了矛盾,3人带着情绪照相,强烈要求:互不相邻(秀情:下一步就是把海哥的鼻子给啃下来),这样还有几种排队的方式?(★★☆)7个人照完相,集体已经讨论好晚饭的事儿了,大家一致决定从我们7人中推选出3个人来去买晚饭,其余人在这儿围着篝火唱个舞、跳个歌啊什么的。
推选三个人去买饭,有几种选法?(★★★☆)饭终于买回来了,这时候海哥、老杨、兆玉买回来了20个桃子,只见海哥悄悄地说:咱们7人悄悄的分了,每人至少一个(假定桃子一模一样)到底有多少种分法呢?1.由数字1,2,3,4,5可以组成 ______个没有重复数字的正整数?2.(2010年10月西城区实验中学小升初试题)三个老师和五个学生排成一列照相,如果要求三个男同学不相邻,两个女同学必须相邻,而三个老师必须相邻,那么一共有______种分歧的排法。
学而思培优之找规律程序运算定义新运算含答案
第五讲找规律、程序运算、定义新运算板块一 数列、数表找规律一般规律发现需要“观察、归纳、验证”有时要通过类比联想才能找到隐含条件。
数列规律:【例1】(2009年龙岩)观察下列一组数:12,34,56,78,…,它们是按一定规律排列的。
那么这一组数的第k 个数是_______。
(k 为正整数)【例2】找规律,并按规律填上第五个数:357924816--,,,, ,第n 个数为: 。
(n 为正整数)【例3】(2009年牡丹江市)有一列数12-,25,310-,417,…,那么第7个数是 。
第n 个数为(n 为正整数)。
【例4】(2009-2010海淀区期末考试第16题3分) 若一组按规律排成的数的第n 项为()1n n + (n 为正整数),则这组数的第10项为 ;若一组按规律组成的数为:2,6,12-,20,30,42-,56,72,90-,…,则这组数的第3n (n 为正整数)项是 。
【例5】(2008北京中考)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数)。
【例6】有一列数1,1,2,3,5,8,13,21…,那么第9个数是 。
【例7】瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而大开光谱奥妙的大门。
请你按这种规律写出第7个数据是 .第n 个分数为 。
【例8】(2008宜宾)按一定规律排列的一列数:11234691319,,,,,,,,,…按此规律排列下去,19后面的数应为 。
例题精讲【例9】(海淀区期末考试)探索规律:观察下面算式,解答问题:21342+==;213593++==;21357164+++==;213579255++++== ①请猜想1357919++++++=_________;②请猜想13579(21)(21)(23)n n n ++++++-++++=____________; ③请你用上述规律计算:10310510720032005+++++数列规律:【例10】(2008遵义)如下图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = 。
学而思初一数学秋季班第5讲.找规律、程序运算和定义新运算.基础-提高班.教师版
1初一秋季·第5讲·基础-提高班·教师版生活水平提高了满分晋级阶梯漫画释义5找规律、程序运算 和定义新运算代数式3级 找规律、程序运算 和定义新运算代数式2级整体思想求值代数式1级整式的概念及加减运算2初一秋季·第5讲·基础-提高班·教师版题型切片(六个) 对应题目题型目标 数列的规律 例1;练习1 数表的规律 例2;练习2 图形的规律 例3;练习3 算式的规律 例4;练习4 程序运算例5、例6:练习5 定义新运算 例7;练习6找规律解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:⑴一列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系.⑵一列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系. ⑶图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系.⑷图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.⑸数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.常见的数列规律:⑴ 1,3,5,7,9,… ,21n -(n 为正整数). ⑵ 2,4,6,8,10,…,2n (n 为正整数). ⑶ 2,4,8,16,32,…,2n (n 为正整数). ⑷ 2,5,10,17,26,…,21n +(n 为正整数). ⑸0, 3, 8, 15, 24,…,21n - (n 为正整数). ⑹ 2, 6, 12, 20,…, (1)n n +(n 为正整数). ⑺x -,x +,x -,x +,x -,x +,…,(1)n x -(n 为正整数).⑻x +,x -,x +,x -,x +,x -,…,1(1)n x +-(n 为正整数). ⑼特殊数列:①斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.②三角形数:1,3,6,10,15,21,…,(1)2n n +.【例1】 ⑴ 观察下列一组数:12,34,56,78,…,它们是按一定规律排列的.那么这一组数 的第k 个数是 .(k 为正整数)数列的规律思路导航题型切片3初一秋季·第5讲·基础-提高班·教师版⑵瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第八个数据是 .⑶找规律,并按规律填上第五个数:357924816--,,,, ,第n 个数为: . (n 为正整数)⑷有一列数12-,25,310-,417,…,那么第7个数是 .第n 个数为 . (n 为正整数)(5)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 .(n 为正整数)【解析】 ⑴ 212k k -; (2) 10096, ⑶1132-,21(1)2n n n +-;⑷ 750-,2(1)1nn n -+ ;(5)207b a -,31(1)n n nb a --.【例2】 ⑴将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形,若用有序数对(),m n 表示第m 行,从左到右第n 个数,如()4,3表示分数112.那么()9,2表示的分数是 . 1112211136311114121241111152030205(2) 正整数按图的规律排列. 请写出第20行第21列的数字: .数表的规律4初一秋季·第5讲·基础-提高班·教师版⑶按一定的规律排列成的数表如图所示.①当“X”型框中间数字为15时,框中五个数的和为 .当“X”型框中间数字为-57时,框中五个数的和为 .②如果设“X”型框中间的数为a ,请用含a 的代数式表示“X”型框中五个数的和; ③若将“X”型框上下左右移动,所框住的五个数之和能等于-285吗?若能,请求出这-13 -5 7 -9 11 -13 15 -17 19 -21 23 -25 27 -29 31 -33 35 -37 39 -41 43 -45 47 -49 51 -53 55 -57 59 -61 63 -65 67 -69 71 ………………【解析】 ⑴172⑵ 420;观察可得规律: 第一行第二列的数:212=⨯;第二行第三列的数:623=⨯; 第三行第四列的数:1234=⨯; ……第n 行第1n +列的数:(1)n n +故可得第20行第21列的数为:2021420⨯=.(3)①-45,171 ②-3a ③不能,中间数字应该为95,但是95却在最后一列第一行 第二行 第三行 第四行 第五行 第一列第二列 第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)232221………5初一秋季·第5讲·基础-提高班·教师版【例3】 ⑴ 下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由 个基础图形组成,……,第n (n 是正整数)个 图案由 个基础图形组成.⑵观察下列图形:它们是按照一定规律排列的,依照此规律,第9个图形中共有个★,第n 个图形有 个★.⑶ 图1是一个三角形,分别连接这个三角形三边的中点得到图2,再分别连接图2中间小三角形三边的中点,得到图3.图3图2图1① 图2有 个三角形;图3有 个三角形;② 按上面的方法继续下去,第n 个图形中有多少个三角形?⑷如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】 ⑴ 10,31n +; ⑵;28,3n+1;⑶ ①5,9.② 43n -. ⑷(2)n n +或22n n +或2(1)1n +-;算式的规律图形的规律第1个图形 第2个图形 第3个图形 第4个图形6初一秋季·第5讲·基础-提高班·教师版【例4】 观察下列等式:①23a a +=;②65a a +=;③127a a+=;④209a a +=…;则根据此规律第6个等式为 ,第n 个等式为 .【解析】 1342=+aa ; 122+=++n a n n a .一般的以计算机程序为背景的新型求值题,解这类题的关键是弄清计算机程序与数学表达式之间的关系.【例5】 ⑴ 如下图,输入23x =-,则输出值y 是 .y=-x +4(x >1)y=x +4(x ≤1)输出 y输入 x⑵ 如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 .YES NO输出结果<-5计算1+x -2x 2输入x 的值⑶ 如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24, 第2次输出的结果为12,……,第2013次输出的结果为 .x +3x 2x 为奇数x 为偶数输出输入x⑷ 按下面的程序计算,若开始输入的值x 为正整数,最后输出的结果为853,试求出满足条件的x 的所有值.程序运算思路导航7初一秋季·第5讲·基础-提高班·教师版>800输出结果是否将值赋给x ,再次运算计算4x +1的值输入x【解析】 ⑴5-;此程序为选择式,因91x =-≤,故4945y x =+=-+=-.⑵ 9-;经过第一次程序运算得2-,因为25->-,需要返回循环;经第二次运算得9-,因为95-<-,此程序结束,故输出结果为9-. ⑶ 6.(提示:利用循环,多进行几次运算.)⑷ 由题意:()85314213>0-÷=,()2131453>0-÷=,()531413>0-÷=,()13143>0-÷=,()1314>02-÷=∴只有213,53,13,3符合题意.(也可用方程思想理解:∵ x 为正整数, ∴ 415x +≥. 当41853x +=时,213x =. 当41213x +=时,53x =. 当4153x +=时,13x =. 当4113x +=时,3x =.综上所述,213x =或53x =或13x =或3x =).【例6】 阅读右面的框图并回答下列问题: (1)若A 为785,则E=_____________;(2)按框图流程,取不同的三位数A ,所得E 的值都相同吗?如果相同,请说明理由;如果不同,请求出E 的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数A ,它的百位数字减去个位数字所得的差大于..2.”,其余的步骤不变,请猜想E 的值是否为定值?并对你猜想的结论加以证明. 【解析】 ⑴E =1089; ⑵ E 的值都相同.理由如下:设A =100a+10b +c 且a -c =2,则B =100c +10b + a .∴C =A -B =(100a +10b +c )-(100c +10b + a )=99a -99c =99(a -c )=99×2=198. ∴D =891.∴E =C +D =198+891=1089. (3) E =1089.8初一秋季·第5讲·基础-提高班·教师版证法1:设A =100a +10b +c 且a -c >2,则B =100c +10b + a .∴C =A -B =(100a +10b +c )-(100c +10b + a )=100(a -c )+(c -a )=100(a -c -1)+10×9+(10+c -a ) . ∴D =100(10+c -a ) +10×9+ (a -c -1) .∴E =C +D =[100(a -c -1)+10×9+(10+c -a )]+[ 100(10+c -a ) +10×9+ (a -c -1)]=1089.定义新运算⑴基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、运算律进行运算.⑵注意事项:①新的运算不一定符合运算律,特别注意运算顺序. ②每个新定义的运算符号只能在本题中使用.【例7】 ⑴现定义两种新运算∆∇、,对于任意两个整数a 、b ,都有:1a b a b ∆=+-, 1b a b a ∇=-.试求:(∆∆∇(34)21)的值.⑵ 用“×”定义新运算:对于任意a b ,,都有a ×b 2a b =-. 例如,4×27479=-=,那么5×3= ; 当m 为有理数时,m ×(1-×2)= .⑶ 对于正整数a ,b ,c ,d ,规定a b ad bc c d=-,若1134bd <<,则b d += .⑷ 定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =-, ① 2a 是1a 的差倒数,则2a = ; ② 3a 是2a 的差倒数,则3a = ;③ 4a 是3a 的差倒数,则4a = ,…,依此类推,则2009a = .【解析】 ⑴ 6;⑵ 22,21m +;⑶由题意得42bd -=,故2bd =,又b d ,为正整数,所以3b d +=.定义新运算思路导航9初一秋季·第5讲·基础-提高班·教师版⑷ ①34;② 4;③ 13-;34. 【点评】 一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.【选讲题】【例8】 (1)右图为手的示意图,在各个手指间标记字母A B C D ,,,.请你按图中箭头所指方向(即A B C D C B A B →→→→→→→C →→…的方式)从A 开始数连续的正整数1234,,,,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).【解析】 B ,603,63n + . (2)数1234,,,,a a a a 满足下列条件:10a =,211a a =-+ ,322a a =-+,433a a =-+,则2013a 的值为 .【解析】 1006(3)如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去:⑴ 填表:⑵ 如果剪了100次,共剪出多少个小正方形? ⑶ 如果剪n 次,共剪出多少个小正方形?【解析】 ⑴ 如表.剪的次数1 23 4 5 正方形个数 47101316⑵ 如果剪了100次,共剪出11003301+⨯=个小正方形; ⑶ 如果剪n 次,共剪出13n +个小正方形.剪的次数1 2 3 4 5 正方形个数 4 710 初一秋季·第5讲·基础-提高班·教师版训练1. 下面是一组按规律排列的数:1,2,4,8,16,……,第2002个数应该是( )A .20022B .200221-C .20012D .以上答案均不对【解析】 C.训练2. 根据右图所示的程序计算变量y 的值,若输入自变量x 的值为32,则输出的结果是 .(汇文中学期中) 【解析】 72-.训练3. 读一读:式子“12345100++++++”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“12345100++++++”表示为1001n n =∑,这里“∑”是求和符号.例如:1357999++++++,即从1开始的100以内的连续奇数的和,可表示为50121n n =-∑(); 又如333333333312345678910+++++++++可表示为1031n n =∑.通过对以上材料的阅读,请解答下列问题.⑴ 246810100++++++(即从2开始的100以内的连续偶数的和)用求和符号可表示为 . ⑵ 计算5211n n =-=∑() .(填写最后的计算结果)(北大附中期中)【解析】 ⑴ 5012n n =∑;⑵ 50,52222221(1(11(21(31(41(5150n n=-=-----=∑))+)+)+)+)训练4. 在某种特制的计算器有一个按键★★★,它代表运算2a b a b++-.例如:输入顺序 1,★★★,2-,ENTER=屏幕显示()1***2-2上述操作即是求()()12122+-+--的值,运算结果为2.回答下面的问题:y=-x -2(1<x ≤2)y=x 2(-1≤x ≤1)y=x -2(-2≤x <-1)输出y 的值输入x 的值11初一秋季·第5讲·基础-提高班·教师版⑴ 小明的输入顺序为5-,★★★,7,ENTER=,运算结果是 .⑵ 小杰的输入顺序为100101,★★★,165-,ENTER=,★★★,1101-,ENTER=,★★★,6665-,ENTER=,★★★,101100,ENTER=,运算结果是 .⑶ 若在20112012-,20102011-,20092010-,……,12-,0,12,……,20092010,20102011这些数中,任意选取两个作为a 、b 的值,进行★★★运算,则所有的运算结果中最大的值是 .(一零一期中)【解析】 ⑴ 7⑵6665⑶ 2011201212 初一秋季·第5讲·基础-提高班·教师版数列的规律【练习1】 ⑴ 观察一列有规律的数:4,8,16,32,…,它的第2007个数是( )A .20072B .200721-C .20082D .20062⑵ 观察下列单项式,2x ,25x -,341017x x -,,……根据你发现的规律写出第5个式子是 ,第8个式子是 ,第n 个式子是 .(n 为正整数)【解析】 ⑴ C . ⑵ 582665x x -, ,12(1)(1)n n n x +-+.数表的规律【练习2】 下面是由自然数排成的数表,分为A ,B ,C 三列,按这个规律,1999在第 列。
学而思小升初数学总复习资料归纳讲解学习
小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)×h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
三级学而思
第一讲带符号搬家秘籍导航在做计算时学会运用带符号搬家的方法,调整运算顺序惊醒凑整数或抵消从而达到巧算的目的。
秘籍1加数互补要带符号搬家例1(1)计算238+147+62分析观察算式发现238和62的尾数是“好朋友”,正好能凑成整百,我们把“+62”一起搬到238的后面,+147原式=238+124-89=300+147=447(2)计算376-89+124分析观察算式发现376和124的尾数是“好朋友”,正好能凑成真白,我们把“+124”一起报到376的后面,-89的前面,计算就简便了。
原式=376+124-89=500-89=441(3)计算128+136+72+64分析观察算式发现128和72的尾数是“好朋友”,136和64的尾数是“好朋友”,正好能凑成整百,所以带着符号搬家进行凑整。
原式=(128+72)+(126+64)=200+200=400秘籍2减号同尾要带符号搬家例2(1)计算363-78-63分析观察算式发现363和63的个位、十位都相同,而63前面的符号是“-”所以可以把“-63”搬到363的后面,先算363减63等于300,再减去78,使计算更简便。
原式=363-63-78=300-78=222(2)计算637+95-37分析观察算式发现637和37的个位、十位数都相同,而37后面的符号是“-”,所以可以把“-37”搬到637的后面。
原式=637-37+95=600+95=695(3)计算572+156-172+144分析观察算式发现156和144尾数是好朋友,正好能凑成整百;572和172的个位、十位数都相同,而172的符号是“-”,所以可以把“-172”移到572的后面。
原式=(426-116)+(228-168)=310+120=430秘籍3不够减时带符号搬家例3(1)计算136-248+164分析观察算式发现136-248不够减,136+164=300,可以交换“-248”和“+164”的位置,先算136+164=300原式=136+164-248=300-248=52(2)计算116-200+114分析观察算式发现116-200不够减,116+114=230,可以交换“-200”和“+114”的位置,先算116+114=300,再计算230-200,这样计算比较简便。
三级学而思.
第一讲带符号搬家秘籍导航在做计算时学会运用带符号搬家的方法,调整运算顺序惊醒凑整数或抵消从而达到巧算的目的。
秘籍1 加数互补要带符号搬家例1 (1)计算238+147+62分析观察算式发现238和62的尾数是“好朋友”,正好能凑成整百,我们把“+62”一起搬到238的后面,+147原式=238+124-89=300+147=447(2)计算376-89+124分析观察算式发现376和124的尾数是“好朋友”,正好能凑成真白,我们把“+124”一起报到376的后面,-89的前面,计算就简便了。
原式=376+124-89=500-89=441(3)计算128+136+72+64分析观察算式发现128和72的尾数是“好朋友”,136和64的尾数是“好朋友”,正好能凑成整百,所以带着符号搬家进行凑整。
原式=(128+72)+(126+64)=200+200=400秘籍2 减号同尾要带符号搬家例2 (1)计算363-78-63分析观察算式发现363和63的个位、十位都相同,而63前面的符号是“-”所以可以把“-63”搬到363的后面,先算363减63等于300,再减去78,使计算更简便。
原式=363-63-78=300-78=222(2)计算637+95-37分析观察算式发现637和37的个位、十位数都相同,而37后面的符号是“-”,所以可以把“-37”搬到637的后面。
原式=637-37+95=600+95=695(3)计算572+156-172+144分析观察算式发现156和144尾数是好朋友,正好能凑成整百;572和172的个位、十位数都相同,而172的符号是“-”,所以可以把“-172”移到572的后面。
原式=(426-116)+(228-168)=310+120=430秘籍3 不够减时带符号搬家例3 (1)计算136-248+164分析观察算式发现136-248不够减,136+164=300,可以交换“-248”和“+164”的位置,先算136+164=300原式=136+164-248=300-248=52(2)计算116-200+114分析观察算式发现116-200不够减,116+114=230,可以交换“-200”和“+114”的位置,先算116+114=300,再计算230-200,这样计算比较简便。
第三节 找规律、定义新运算和程序运算(含答案)...七年级数学 学而思
第三节 找规律、定义新运算和程序运算高频核心考点1.找规律解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:(1)一列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系:(2)-列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号以之间的关系;(3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号挖之间的关系:(4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数;(5)数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论. 2.常见的数列规律1n 2,,9,7,5,3,1)1(-Λ(n 为正整数); n 2,,10,8,6,4,2)2(Λ (n 为正整数);n 2,,32,16,8,4,2)3(Λ(n 为正整数); 1,,26,17,10,5,2)4(2+n Λ(n 为正整数); 1,,24,15,8,3,0)5(2-n Λ(n 为正整数);)1(,,20,12,6,2)6(+n n Λ(n 为正整数):x x x x x x x n ⋅-+-+-+-)1(,,,,,,,)7(Λ(n 为正整数); x x x x x x x n ⋅--+-+-++1`)1(,,,,,,,)8(Λ(n 为正整数);(9)特殊数列:①斐波那契数列:,,13,8,5,3,2,1,1Λ从第三个数开始每一个数等于与它相邻的前两个数的和:②三角形数:2)1(,,21,15,10,6,3,1+n n Λ(n 为正整数). 3.定义新运算(1)基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、运算律进行运算;(2)注意事项:①新的运算不一定符合运算律,特别注意运算顺序; ②每个新定义的运算符号只能在本题中使用. 4.程序计算解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 5.数学能力探究、归纳、总结和知识迁移的能力,方法技巧提炼1.规律题观察,总结,猜想,验证. 2.新定义观察定义,对比代入,注意运算顺序以及符号. 3.程序运算精题精讲精练例1.(山东威海中考)一组按规律排列的数:,167,93,41Λ,3621,2513请你推断第9个数是检测1.(1)(福建福州中考)瑞士中学巴尔末成功地从光谱数据Λ,3236,2125,1216,59中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第七个数据日是(2)(吉林长春中考)按下列规律排列的一列数对,),8,7(),5,4(),2,1(Λ第5个数对是例2.(四川内江中考)?100321=++++Λ经过研究,这个问题的一般性结论是+++321),1(21+=+n n n Λ 其中n 是正整数,现在我们来研究一个类似的问题:+⨯+⨯3221?)1(=++n n Λ 观察下面三个特殊的等式:),210321(3121⨯⨯-⨯⨯=⨯),321432(3132⨯⨯-⨯⨯=⨯).432543(3143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完这段材料,请你思考后回答:=⨯++⨯+⨯1011003221)1(Λ=++++⨯⨯+⨯⨯)2(1n 432321)2(n n )(Λ检测2.(1)观察下面的几个算式:,4121=++ ,912321=++++ ,161234321=++++++Λ,25123454321=++++++++根据你所发现的规律,请你直接写出下面式子的结果:=++++++++++1239910099321ΛΛ (2)已知:,3223222⨯=+,8338332⨯=+,154415442⨯=+,245524552⨯=+…,若a ba b ⨯=+21010符合前面式子的规律,则=+b a例3.如图2-3-1所示的运算流程中,若输出的数y=5,则输入的数x 。
学而思-小升初专项训练-找规律篇-教师版
名校真题测试卷6 (找规律篇)1 、如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 、观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+()=200223、一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是.4、在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5、请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。
为了达到这些目的。
(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 、【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。
2 、【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。
3 、【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。
4 、【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。
学而思思维训练教程之比较大小、估算、定义新运算
比较大小、估算、定义新运算1. 如果20052006a =,20062007b =,那么a ,b 中较大的数是_________。
2.如果111111110444444443,222222221888888887A B ==,A 与B 中哪个数较大?3.24807319<<在上式的方框内填入一个整数,使不等式成立,那么= 。
4.已知除法算式12345678910111213÷31211101987654321,它的计算结果的小数点后的前三位数字分别是________。
5.老师在黑板上写了7个自然数,让小明计算它们的平均数(保留小数点后面两位),小明算出的答数是14.73,老师说:“除最后一位数字外其他都对了”,那么正确的得数应是 。
6.1357991246810010⨯⨯⨯⨯⨯与相比,哪个更大,为什么?7.数1111110111219++++的整数部分是几?8.如果#B A A B A B -=⨯,那么1#22#33#42002#20032003#2004-----=。
9.两个用同样材料做成的球A 和B ,一个实心,一个空心,A 的直径为7,重量为22,B 的直径为10.6,重量为33.3。
问哪一个球是实心球? 在199819981999199920002000,,,199919992000200020012001中最小的分数是___.10.8.88.988.9988.99988.99998A =++++,求A 的整数部分 .11.已知:1,___111198019812006S S =+++则的整数部分是.12.有8个数,2524130.51,,,0.51,,,394725是其中六个如果按从小到大的顺序排列时,第四个数是0.51,那么按从大到小排列时,第四个数是哪一个?13.试比较1995194619981949和的大小。
14.如果A=2222144443,.___3333266665B A B 那么与中较大的数是.15.有13个自然数,它们的平均值利用四舍五入精确到小数点后一位是26.9。
第三节 找规律、定义新运算和程序运算-学而思培优
第三节 找规律、定义新运算和程序运算一、课标导航二、核心纲要l.找规律解题思维过程:从简单、局部或特殊情况人手,经过提炼、归纳和猜想,探索规律,获得结论.有时还需要通过类比联想才能找到隐含条件,一般有下列几个类型:(1)-列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系.(2)-列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系.(3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系.(4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.(5)数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.常见的数列规律:12,,9,7,5,3,1)1(-n (n 为正整数).n 2,,10,8,6,4,2)2( (n 为正整数).n 2,,32,16,8,4,2)3( (n 为正整数).1,,26,17,10,5,2)4(2+n (n 为正整数).1,,24,15,8,3,0)5(2-n (n 为正整数).)1(,,20,12,6,2)6(+n n (n 为正整数).x x x x x x x n )1(,,,,,,,)7(-+-+-+- (n 为正整数).x x x x x x x n 1)1(,...,,,,,,8+--+-+-+)((n 为正整数).(9)特殊数列:①斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和. ②三角形数:⋅+2)1(,,21,15,10,6,3,1n n 2.定义新运算(1)基本思路:严格按照新定义的运算规则,把已知的数代人,转化为加、减、乘、除的运算,然后按照基本运算过程、运算律进行运算.(2)注意事项:①新的运算不一定符合运算律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.3.程序计算解题的关键是要准确理解新程序的数学意义,进而转化为数学问题.4.数学能力:探究、归纳总结和知识迁移的能力.本节重点讲解:两大能力,三种题型(找规律、定义新运算和程序计算).三、全能突破基 础 演 练1.根据图2-3-1中数字的规律,在图形中填空.2.观察下面一列整式:,,201,121,61,21161698442 y x y x y x y x --照此规律第6个整式是 ,第n 个(n≥1且为整数)整式是3.正整数按图2-3-2中的规律排列.请写出第45行,第46列的数字4.图2-3-3所示是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,以此递推,第10层中含有正三角形个数是 个.5.如图2-3-4所示,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 ;第2012次“移位”后,则他所处顶点的编号是 .6.观察下列等式: ;531422⨯=-①;732522⨯=-②;933622⨯=-③;1134722⨯=-④…则第n (n 是正整数)个等式为 7.我们规定一种运算:,bc ad d c ba -=若,0124=-x x 则=x8.魔术师为大家表演魔术,他请观众想一个数,然后将这个数按图2-3-5所示的步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-1,那么他告诉魔术师的结果应该是 ,(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.能 力 提 升9.已知:,,10244,2564,644,164,4454321 =====以上算式结果的个位数字分别为4,6,4,6,…,按照上面的研究方法确定2006200720072006+的个位数字为( ) 3.A 4.B 5.C 6.D10.如图2-3-6所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .11.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图2-3-7 (a)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2-3-7(b)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )15.A 25.B 55.C 1225.D12.(1)探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数,先把这个数每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字立方再求和,重复运算下去,就能得到一个固定的数T ,我们称它为数字“黑洞”,T 为何具有如此魔力,通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T 是 . (2)任取一个自然数串,数出这个数中的偶数字个数、奇数字个数及所有数字的个数,用这3个数组成下一个数字串,重复上述程序,就能得到一个固定的数,我们称它为数字“黑洞”,则这个固定的数为 .13.在下表中,我们把第i 行第j 列的数记为j i a ,(其中i ,j 都是不大于5的正整数),对于表中的每个数j i a ,规定如下:当j i ≥ 时,;1,=j i a 当j i <时,.0.i =j a 例如:当1,2==j i 时,.11,2,==a a j i 按此规定,=3,1a .;表中的25个数中,共有 个1;计算.3,12,2,11,1,1a a a a a i i +⋅+⋅ 5,5,14,4,13,i i i a a a a a ⋅+⋅+的值为14.为确保信息安全,信息需加密传输,发送方由明文一密文(加密),接收方由密文一明文(解密),已知加密规则如图2-3-8所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .15.已知,2,2≥≥n m 且m ,n 均为正整数,如果将nm 进行如图2-3-9所示方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11.②在34的“分解”中最小的数是13.③若3m 的“分解”中最小的数是23,则m 等于5.其中正确的是16.有一个运算程序,当n b a =Θ(n 为常数)时,则,2)1(,1)1(-=+Θ+=Θ+n b a n b a 若,211=Θ则=Θ2012201217.按图2-3-10所示的程序计算:若输入x = 100,输出结果是501,若输入x = 25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 的可能值为 . 18.如图2-3-11所示,从左到右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.9 & # x -62 … …图2-3-11(1)可求得x= .第2012个格子中的数为 .(2)判断:前m 个格子中所填整数之和是否可能为20127若能,求出m 的值;若不能,请说明理由;19.阅读图2-3-12并回答下列问题:(1)若A 为785,则E= ;(2)按框图流程,取不同的三位数A ,所得E 的值都相同吗?如果相同,请说明理由;如果不同,请求出E 的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数A ,它的百位数字减去个位数字所得的差大于2”,其余的步骤不变,请猜想E 的值是否为定值?并对你猜想的结论加以证明.中 考 链 接20.(2010.北京)图2-3-13所示为手的示意图,在各个手指间标记字母A ,B ,C ,D.请你按图中箭头所指方向(即 →→→→→→→→→C B A B C D C B A 的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).21.(贵阳市中考题改编)符号“f"表示一种运算,它对一些数的运算结果如下:,3)4(,2)3(,1)2(,0)1(====f f f f ①,5)51(,4)41(,3)31(,2)21(====f f f f ② 利用以上规律计算:=-)2012()20121(f f22.(1)(2009年·成宁)如图2-3-14所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,…,第2009次输出的结果为 .(2)(山东临沂中考)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表所示:十六进制 O 1 2 3 4 5 6 7 8 9 A B C D E F 十进制O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15例如,用十六进制表示:,1,123,5B D E F F A =+=+=+则=⨯C A巅 峰 突 破23.图2-3-15所示是一个流程图,图中“结束”处的计算结果是24.对于两数a 和b ,给定一种运算,:ab b a b a -+=井“井”则在下列等式中: ;a b b a 井井①= ;0a a =井② ).()(c b a c b a 井井井井③=正确的是 (填序号).25.正整数,n 小于100,并满足等式,]6[]3[]2[n n n n =++其中[x]表示不超过x 的最大整数,这样的正整数 n 有多少个?。
六升初第6讲 找规律、程序运算和定义新运算
第6讲 找规律、程序运算和定义新运算一、知识要点 1. 正数和负数自然界有许多具有相反意义的量,如上升与下降,向东与向西、盈余与亏损等都可以用正负数来表示.如+5,+78,+2.4等带有正号的数叫正数;正号通常可以省略。
如-65,-78,-92.4等带有负号的数叫负数;“0”既不是正数,也不是负数。
二、例题精选【例1】 (1)观察下列一组数:12,34,56,78,…,它们是按一定规律排列的.那么这一组数的第k 个数是.(k 为正整数)(2)有一列数12-,25,310-,417,…,那么第7个数是 .第n 个数为 .(3)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 .(n 为正整数)【巩固1】(1)瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而打 开了光谱奥妙的大门.请你按这种规律写出第八个数据是 ,第n 个数据是__________(2)找规律,并按规律填上第五个数:357924816--,,,, ,第n 个数为: .【例2】 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【巩固2】下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由 个基础图形组成,……,第n (n 是正整数)个图案由 个基础图形组成.【例3】 如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……,第2013次输出的结果为 .x +3x 2x 为奇数x 为偶数输出输入x第1个图形 第2个图形 第3个图形 第4个图形【巩固3】如下图所示是计算机程序计算,若开始输入1x =-,则最后输出的结果是 .【例4】 定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =-,① 2a 是1a 的差倒数,则2a = ; ② 3a 是2a 的差倒数,则3a = ;③ 4a 是3a 的差倒数,则4a = ,…,依此类推,则2009a = .【巩固4】⑴现定义两种新运算∆∇、,对于任意两个整数a 、b ,都有:1a b a b ∆=+-,1ba b a ∇=-.试求:(∆∆∇(34)21)的值.(2)对于正整数a ,b ,c ,d ,规定a b ad bc c d=-,若1134bd <<,则b d += _____.【例5】 正整数按图的规律排列. 请写出第20行第21列的数字: .【巩固5】将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形,若用有序数对(),m n 表示第m 行,从左到右第n 个数,如()4,3表示分数112.那么()9,2表示的分数是 .1112211136311114121241111152030205L L L L LLYES NO输出结果<-5计算1+x -2x 2输入x 的值第一行 第二行 第三行 第四行 第五行 第一列第二列 第三列 第四列 第五列 1 2 5 10 17 ... 4 3 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)24232221………三、回家作业数列的规律【练习1】 ⑴ 观察一列有规律的数:4,8,16,32,…,它的第2007个数是( )A .20072B .200721-C .20082D .20062 ⑴ 观察下列单项式,2x ,25x -,341017x x -,,……根据你发现的规律写出第5个式子是 ,第8个式子是 ,第n 个式子是 .(n 为正整数)图形的规律【练习2】 如图,有一正方形,通过多次划分,得到若干个正方形,具体操作如下:第1次把它分成4个小正方形,第2次将上一次分成小正方形其中的一个又等分成4个小正方形,第3次将上次分成小正方形的其中一个又等分成4个小正方形……依此操作下去.请通过观察和猜想,将第3次,第4次和第n 次划分图中得到的正方形总个数(m )填入下表:程序运算【练习3】 ⑴ 根据右图中的程序,当输入2x =时,输出结果y = .⑵ 按下面的程序计算,若开始输入的x 值为正数,最后输出的结果为656,则满足条件的不同的值分别是: .定义新运算【练习4】 定义运算※为a ※()b a b a b =⨯-+① 求5※7,7※5.② 如果3※(5※x )3=,求x .第三次第二次第一次……输出结果4)。
小升初数学培优讲义全46讲—第22讲 规律问题
第22讲 规律问题1、考察范围:数字与图形规律问题。
2、考察重点:主要考察学生的分析与归纳能力。
3、命题趋势:规律问题考察非常频繁,主要提升学生的观察能力与归纳能力,特别偏向考察周期规律问题。
①找规律:同学们在探索某一类事物的性质或它们之间的关系时,经常从观察具体事物入手,通过分析、猜测、验证,找出这类事物的一般属性。
这种从特殊到一般的推理方法,叫做归纳法,或者称之为找规律,很多人也称为周期问题。
②找规律是解决数学问题的一种重要手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力。
③找规律问题一般可分为:数列规律问题,图形规律问题,周期规律问题。
④常用的解决规律问题的方法;观察法、类比法、归纳法、总结法,往往解决规律问题需要把几种方法结合起来。
【例1】已知一串有规则的数:⋅⋅⋅,,,,,5534211385321,这串数中的第8个数是 。
【变式练习】1、有一串数⋅⋅⋅⋅⋅⋅19,16,13,10,7,4,1,问这串数的前2017个数中,偶数有多少个?考点解读知识梳理典例剖析2、有数组【1,2,3,4】【2,4,6,8】【3,6,9,12】,那么第100个数组的四个数的和是多少?【例2】 观察下面两道等式,根据你发现的规律,再写出一道同规律的等式。
① 11516142-=⨯② 13839372-=⨯ ③【变式练习】1、观察下列算式:2552=,225152=,625252=,1225352=,2025452=⋅⋅⋅,通过观察猜想,)(56252=.A 、65B 、75C 、85D 、952、观察下列等式(式子中的“!”是一种运算符号):11=!,122⨯=!,1233⨯⨯=!,12344⨯⨯⨯=!,⋅⋅⋅,则=!!98100 。
第1列 第2列 第3列 第4列 第5列 … 第1行 1 4 9 16 25 … 第2行 2 3 8 15 24 … 第3行 5 6 7 14 23 … 第4行 10 11 12 13 22 … 第5行 17 18 19 20 21 … …………………A 、第2行第7列B 、第2行第8列C 、第2行第9列D 、第2行第10列【变式练习】1、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 … 输出…21 52 103 174 265 …那么,当输入的数据是8的时候,输出的数据是 。
学而思小升初培优七:计算与规律学生版
小升初培优(七):计算与规律课前热身:1、计算:39×148149+148×86149+48×74149=____________________. 2、计算14131211++++ 345. 6??7元。
12[34、131171001⨯⨯⨯=⨯=abc abc abcabc 6006610016131177877=⨯=⨯⨯⨯=⨯⇒如:[讲解练习]:2007×20062006-2006×5、()()b a b a b a -+=-22[讲解练习]:82-72+62-52+42-32+22-12____.6、742851.071 =428571.072 =…… [讲解练习]:71化成小数后,小数点后面第2007位上的数字为____。
7n 化成小数后,小数点后若干位数字和为1992,问n=____。
7、1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 28、1211111=⨯12321111111=⨯112345654321111112=[讲解练习]1×(1+2+3+4…8+…4+3+2+1)是一个数的平方,则这个数是_____9[122S=22[拓展10、[【例10.3。
【例2为6,求这三个真分数。
【例3】如果1=1!1×2=2!1×2×3=3!……1×2×3×…×99×100=100!那么1!+2!+3!+…+100!的个位数字是________·【例4】从1到1999这1999个自然数中,有_______个数与5678相加,至少发生一次进位.【例5】(★★★)所有分母小于30并且分母是质数的真分数相加,和是__________。
【例6】(★★★)分母为1996的所有最简分数之和是_________。
二、各类速算(请大家在做题过程中注意总结)【例7】19+199+1999+……+919999991个=_________。
学而思小升初排列组合(排列组合三宝)
之蔡仲巾千创作1.排列组合的意义与计算方法2.排列组合三宝:捆绑法、插空法、挡板法(★★☆)8月26日晚上师资组刚到蜜桃仙谷,大家都很兴奋。
王雨洁、夏川、杨秀情、谷运增、崔兆玉、刘丽娜、兰海等高年级的七位老师想站在一块儿合个影,这个时候争执出现了:⑴雨洁觉得:7个人随便站成一排,她认为这样简单公平;⑵夏川认为:7个人可以站成两排,前3后4,这样看起来比较美观;⑶兰海固执:自己必须站在正中间,因为自己的脑瓜长的比他人更圆一些;⑷兆玉发言:自己和丽娜站两端,“我们俩宽度一样,这样比较对称”⑸秀情老师:“我和阿增不站两端,其余的随便排,快点,不要磨叽!”(★★☆)高年级组的7位老师继续照相,这次排队有了新的讲究:雨洁、夏川、丽娜三位美女老师强烈要求必须相邻,任谁劝都不听,这小升初计数重点考查内容————排列组合时候只见摄像师老段拿着一根绳子嘿嘿阴笑着就走过来了:我能很快解决你们这样一共有几种排队方式的问题。
(★★☆)刚才的事儿影响了照相的进度。
嘿,在这段时间里老杨和谷老师打起来了,还把谷老师的耳朵给咬了……海哥在劝架的过程由于处理不当和老杨、谷老师同时起了矛盾,3人带着情绪照相,强烈要求:互不相邻(秀情:下一步就是把海哥的鼻子给啃下来),这样还有几种排队的方式?(★★☆)7个人照完相,集体已经讨论好晚饭的事儿了,大家一致决定从我们7人中推选出3个人来去买晚饭,其余人在这儿围着篝火唱个舞、跳个歌啊什么的。
推选三个人去买饭,有几种选法?(★★★☆)饭终于买回来了,这时候海哥、老杨、兆玉买回来了20个桃子,只见海哥悄悄地说:咱们7人悄悄的分了,每人至少一个(假定桃子一模一样)到底有多少种分法呢?1.由数字1,2,3,4,5可以组成 ______个没有重复数字的正整数?2.(2010年10月西城区实验中学小升初试题)三个老师和五个学生排成一列照相,如果要求三个男同学不相邻,两个女同学必须相邻,而三个老师必须相邻,那么一共有______种分歧的排法。
归纳小升初数学运算规律知识
归纳小升初数学运算规律知识
归纳小升初数学运算规律知识
由于"小升初"不允许统一考试各个重点中学自行按照
各自的标准录取学生而备受关注。
下面是为大家收集的小升初数学运算规律知识,供大家参考。
运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即
(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
第 2 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初培优(三)找规律、定义新运算和程序运算一、课堂要求二、知识结构l.找规律解题思维过程:从简单、局部或特殊情况人手,经过提炼、归纳和猜想,探索规律,获得结论.有时还需要通过类比联想才能找到隐含条件,一般有下列几个类型:(1)-列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系.(2)-列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系.(3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系.(4)图形变换的规律:找准循环周期图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.(5)数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.常见的数列规律:12,,9,7,5,3,1)1(-n Λ(n 为正整数).n 2,,10,8,6,4,2)2(Λ(n 为正整数).n 2,,32,16,8,4,2)3(Λ(n 为正整数).1,,26,17,10,5,2)4(2+n Λ(n 为正整数).1,,24,15,8,3,0)5(2-n Λ(n 为正整数).)1(,,20,12,6,2)6(+n n Λ(n 为正整数).x x x x x x x n )1(,,,,,,,)7(-+-+-+-Λ(n 为正整数).x x x x x x x n 1)1(,...,,,,,,8+--+-+-+)((n 为正整数).(9)特殊数列:①斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和. ②三角形数:⋅+2)1(,,21,15,10,6,3,1n n Λ 2.定义新运算(1)基本思路:严格按照新定义的运算规则,把已知的数代人,转化为加、减、乘、除的运算,然后按照基本运算过程、运算律进行运算.(2)注意事项:①新的运算不一定符合运算律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.3.程序计算解题的关键是要准确理解新程序的数学意义,进而转化为数学问题.4.数学能力:探究、归纳总结和知识迁移的能力.本节重点讲解:两大能力,三种题型(找规律、定义新运算和程序计算).三、全能突破小试牛刀1.根据图2-3-1中数字的规律,在图形中填空.2.观察下面一列整式:,,201,121,61,21161698442Λy x y x y x y x --照此规律第6个整式是 ,第n 个(n≥1且为整数)整式是3.正整数按图2-3-2中的规律排列.请写出第45行,第46列的数字4.图2-3-3所示是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,以此递推,第10层中含有正三角形个数是 个.5.如图2-3-4所示,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 ;第2012次“移位”后,则他所处顶点的编号是 .6.观察下列等式:;531422⨯=-①;732522⨯=-②;933622⨯=-③;1134722⨯=-④…则第n (n 是正整数)个等式为 7.我们规定一种运算:,bc ad d c ba -=若,0124=-x x 则=x8.魔术师为大家表演魔术,他请观众想一个数,然后将这个数按图2-3-5所示的步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-1,那么他告诉魔术师的结果应该是 ,(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.能 力 提 升9.已知:,,10244,2564,644,164,4454321Λ=====以上算式结果的个位数字分别为4,6,4,6,…,按照上面的研究方法确定2006200720072006+的个位数字为( ) 3.A 4.B 5.C 6.D10.如图2-3-6所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .11.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图2-3-7 (a)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2-3-7(b)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )15.A 25.B 55.C 1225.D12.(1)探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数,先把这个数每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字立方再求和,重复运算下去,就能得到一个固定的数T ,我们称它为数字“黑洞”,T 为何具有如此魔力,通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T 是 . (2)任取一个自然数串,数出这个数中的偶数字个数、奇数字个数及所有数字的个数,用这3个数组成下一个数字串,重复上述程序,就能得到一个固定的数,我们称它为数字“黑洞”,则这个固定的数为 .13.在下表中,我们把第i 行第j 列的数记为j i a ,(其中i ,j 都是不大于5的正整数),对于表中的每个数j i a ,规定如下:当j i ≥&时,;1,=j i a 当j i <时,.0.i =j a 例如:当1,2==j i &&时,.11,2,==a a j i 按此规定,=3,1a .;表中的25个数中,共有 个1;计算.3,12,2,11,1,1a a a a a i i +⋅+⋅ 5,5,14,4,13,i i i a a a a a ⋅+⋅+的值为14.为确保信息安全,信息需加密传输,发送方由明文一密文(加密),接收方由密文一明文(解密),已知加密规则如图2-3-8所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .15.已知,2,2≥≥n m 且m ,n 均为正整数,如果将nm 进行如图2-3-9所示方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11.②在34的“分解”中最小的数是13.③若3m 的“分解”中最小的数是23,则m 等于5.其中正确的是 16.有一个运算程序,当n b a =Θ(n 为常数)时,则,2)1(,1)1(-=+Θ+=Θ+n b a n b a 若,211=Θ则=Θ2012201217.按图2-3-10所示的程序计算:若输入x = 100,输出结果是501,若输入x = 25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 的可能值为 .18.如图2-3-11所示,从左到右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.9 & # x -62 … …图2-3-11(1)可求得x= .第2012个格子中的数为 .(2)判断:前m 个格子中所填整数之和是否可能为20127若能,求出m 的值;若不能,请说明理由;19.阅读图2-3-12并回答下列问题:(1)若A 为785,则E= ;(2)按框图流程,取不同的三位数A ,所得E 的值都相同吗?如果相同,请说明理由;如果不同,请求出E 的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数A ,它的百位数字减去个位数字所得的差大于2”,其余的步骤不变,请猜想E 的值是否为定值?并对你猜想的结论加以证明.中 考 链 接20.图2-3-13所示为手的示意图,在各个手指间标记字母A ,B ,C ,D.请你按图中箭头所指方向(即Λ→→→→→→→→→C B A B C D C B A 的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).21.符号“f"表示一种运算,它对一些数的运算结果如下:Λ,3)4(,2)3(,1)2(,0)1(====f f f f ①Λ,5)51(,4)41(,3)31(,2)21(====f f f f ② 利用以上规律计算:=-)2012()20121(f f22.(1)如图2-3-14所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,…,第2009次输出的结果为 .(2)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表所示: 十六进制 O 1 2 3 4 5 6 7 8 9 A B C D E F 十进制O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15例如,用十六进制表示:,1,123,5B D E F F A =+=+=+则=⨯C A难 点 突 破23.图2-3-15所示是一个流程图,图中“结束”处的计算结果是24.对于两数a 和b ,给定一种运算,:ab b a b a -+=井“井”则在下列等式中: ;a b b a 井井①= ;0a a =井② ).()(c b a c b a 井井井井③=正确的是 (填序号).25.正整数,n 小于100,并满足等式,]6[]3[]2[n n n n =++其中[x]表示不超过x 的最大整数,这样的正整数 n 有多少个?。