遗传学重点复习内容
遗传学复习资料
遗传学复习资料遗传学复习资料第⼀章绪论1、遗传:亲代与⼦代之间同⼀性状相似的现象。
2、变异:亲代与⼦代、⼦代与⼦代之间出现性状差异的现象。
3、遗传学模式⽣物——果蝇①只有野⽣型基因存在时,果蝇才长出红眼,该基因突变后,不再长出红眼。
②野⽣型发⽣突变后,出现黄体,则称该突变基因为黄体基因4、孟德尔的豌⾖杂交试验——选择豌⾖的原因:稳定的,可以区分的性状;⾃花(闭花)授粉,没有外界花粉的污染;⼈⼯授粉也能结实。
易栽培,⽣长周期短;种⼦多,便于收集数据;具有许多稳定易区分的性状。
豌⾖花冠各部分结构较⼤,便于操作,易于控制。
成熟后,豌⾖种⼦保留在⾖荚内不会脱落,每粒种⼦的性状不会丢失。
第⼆章、第三章1、减数分裂过程1)减数分裂:是在配⼦形成过程中进⾏的⼀种特殊的有丝分裂。
包括两次连续的核分裂⽽染⾊体只复制⼀次,每个⼦细胞核中只有单倍数的染⾊体的细胞分裂形式。
2)过程:①减数分裂Ⅰ(最复杂最长)A、前期Ⅰ:细线期——出现姐妹染⾊单体,但染⾊质浓缩为细长线状,看不出染⾊体的双重性,核仁依然存在。
在细线期和整个的前期中染⾊体持续地浓缩。
偶线期——同源染⾊体开始联会,出现联会复合体。
(联会复合体=四联体=⼆价体)。
粗线期——染⾊体完全联会,联会配对完毕,缩短变粗,但核仁仍存在。
⼀对配对的同源染⾊体称⼆价体或四联体。
⾮姐妹染⾊单体间可能发⽣交换。
双线期——染⾊体继续变短变粗,双价体中的两条同源染⾊体彼此分开。
在⾮姐妹染⾊单体间可见交叉结构,交叉结构的出现是发⽣过交换的有形结果。
交叉数⽬逐渐减少,在着丝粒两侧的交叉向两端移动,这种现象称为交叉端化。
终变期——染⾊体进⼀步收缩变粗变短,便于分裂移动,分裂进⼊中期。
B、中期Ⅰ:核仁、核膜消失,各个双价体排列在⾚道板上,着丝粒分居于⾚道板的两侧,附着在纺缍丝上,⽽有丝分裂的中期着丝粒位于⾚道板上。
中期I 着丝粒并不分裂。
C、后期Ⅰ:双价体中的同源染⾊体彼此分开,移向两极,但同源染⾊体的各个成员各⾃的着丝粒并不分开。
遗传学课程知识要点汇总
遗传学课程知识要点汇总1.遗传学:是研究生物体遗传与变异规律和机制的一门科学。
是认识和阐明生物体遗传信息的组成、传递和表达规律的科学。
2.相对性状:同一单位性状在不同个体间所表现出来的。
3.完全显性:F1所表现的性状都和亲本之一完全一样。
4.互补基因:两对独立遗传基因分别处于纯合显性或杂合状态时,共同决定一种性状的发育。
当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状。
5.变异:亲代与子代之间的差异。
6.性状:生物体所表现的形态特征和生理特性的总称。
7.镶嵌显性:双亲的性状在后代的同一个体不同部位表现出来,形成镶嵌图式。
8.修饰基因:某些基因可以影响其他基因的表型效应,这些基因被称为修饰基因。
9.伴性遗传:性染色体上的基因,他的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
10.基因定位:指确定基因在染色体上的相对位置和排列顺序的过程。
11.细胞质遗传:细胞质遗传又称核外遗传,由细胞质的遗传物质决定的,细胞质中的遗传物质能够自律的复制,通过细胞质由一代传至下一代。
12.遗传率:是指亲代传递其遗传特性的能力。
13. C 值:一种生物的单倍体基因组的DNA 总量。
14.母性影响:在核遗传中,正交及反交的子代表型通常是一样的。
但有时正反交的结果并不相同,子代的表型受到母本基因型的影响,而和母本的表型一样。
这种由于母本基因型的影响,而使子代表现母本性状的现象叫做母性影响,又叫前定作用。
母性影响分为两种:一种是短暂的,仅影响子代个体的幼龄期。
一种是持久的,影响子代个体的终生。
15.图距:两个连锁基因在染色体图上的相对距离基因的直线排列。
16..性导:指接合时由F '因子所携带的外源DNA 整合到细菌染色体过程。
17. DNA 的复性(退火) :变性后成为单链的DNA在适当条件下回复成为双链DNA,称为DNA复性。
18.基因组:最早指的是一套具有完整遗传信息的基因拷贝或者一套完整的染色体。
遗传学--复习资料
四、名词解释1、中断杂交试验一种用来研究细菌接合过程中基因转移方式的试验方法。
把接合中的细菌在不同时间取样,并把样品猛烈搅拌以分散接合中的细菌,然后分析受体细菌的基因顺序。
是大肠杆菌等细胞中用来测定基因位置的一种方法。
2. 母性影响由于卵细胞质中存在母体核基因的某些代谢产物,使子代的性状并不受本身的基因型所决定,而表现与母体相似性状的遗传方式。
3.抑制作用在两对以上独立遗传的基因中,其中一对显性基因本身并不控制性状表现,但对其它对基因的表现有抑制效应。
4、细胞质遗传(核外遗传)指由细胞质基因所决定的遗传现象和遗传规律。
其原因是控制某性状的基因位于线粒体、叶绿体等细胞器上。
细胞质遗传在农业生产上应用最成功的例子是杂种优势利用中质核互作型控制雄性不育现象。
5、转换与颠换转换:指DNA分子中一种嘌呤被另一种嘌呤替换,或一种嘧啶被另一种嘧啶替换的突变方式;颠换:指DNA分子中的嘌呤碱基被嘧啶碱基替换,或嘧啶碱基被嘌呤碱基替换的突变方式。
6、核型分析把生物细胞核内全部染色体的形态特征(染色体长度、着丝点位置、长短臂比、随体有无等)所进行的分析,也称为染色体组型分析。
7、遗传平衡定律(Hardy-Weinberg):在一个完全随机交配群体内,如果没有其他因素(如突变、选择、遗传漂移和迁移)干扰时,则基因频率和基因型频率常保持一定。
8、突变的平行性亲缘关系相近物种因遗传基础近似,常发生相似的基因突变。
9. 影印培养法使在一系列培养皿的相同位置上出现相同菌落的接种培养方法。
把长有细菌菌落的培养皿倒过来印到绒布上,接着把无菌培养皿倒过来,在绒布上印一下,将每一菌落接种到相应的位置上。
4. 母性影响:由于卵细胞质中存在母体核基因的某些代谢产物,使子代的性状并不受本身的基因型所决定,而表现与母体相似性状的遗传方式。
10、转导以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。
即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。
遗传学复习提纲
遗传学复习提纲刘庆昌绪言1、遗传学研究的对象,遗传、变异、选择2、遗传学的发展,遗传学的发展阶段,主要遗传学家的主要贡献3、遗传学在科学和生产发展中的作用第一章遗传的细胞学基础1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体2、染色体的形态和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析3、细胞的有丝分裂:细胞周期、有丝分裂过程及遗传学意义4、细胞的减数分裂:减数分裂过程及遗传学意义5、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖6、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期第二章遗传物质的分子基础1、DNA作为主要遗传物质的证据:间接证据、直接证据(细菌的转化、噬菌体的侵染与繁殖、烟草花叶病毒的感染与繁殖)2、核酸的化学结构:DNA和RNA及其分布、DNA和RNA的分子结构3、DNA的复制:DNA复制的一般特点、原核生物DNA合成、真核生物DNA合成的特点以及与原核生物DNA合成的主要区别4、RNA的转录及加工:三种RNA分子、RNA合成的一般特点、原核生物RNA的合成、真核生物RNA的转录及加工5、遗传密码与蛋白质翻译:遗传密码及其特征、蛋白质的合成过程、中心法则及其发展第三章孟德尔遗传1、分离规律:孟德尔的豌豆杂交试验、性状分离、分离现象的解释、表现型和基因型、分离规律的验证(测交法、自交法、F1花粉鉴定法)、分离比例实现的条件、分离规律的应用2、独立分配规律:两对相对性状的遗传及其分离比、独立分配现象的解释、独立分配规律的验证(测交法、自交法)、多对基因的遗传、独立分配规律的应用,某2测验3、孟德尔规律的补充和发展:显隐性关系的相对性、复等位基因、致死基因、非等位基因间的相互作用、多因一效和一因多效第四章连锁遗传和性连锁1、连锁和交换:连锁遗传的发现及解释、完全连锁和不完全连锁、交换及其发生机制2、交换值及其测定:交换值、交换值的测定(测交法、自交法)3、基因定位与连锁遗传图:基因定位(两点测验、三点测验、干扰与符合)、连锁遗传图4、真菌类的连锁与交换:着丝点作图5、连锁遗传规律的应用6、性别决定与性连锁:性染色体、性别决定、性连锁、限性遗传、从性遗传第五章基因突变1、基因突变的时期和特征:基因突变的时期、基因突变的一般特征2、基因突变与性状表现:显性突变和隐性突变的表现、大突变和微突变的表现3、基因突变的鉴定:植物基因突变的鉴定(真实性、显隐性、突变频率)、生化突变的鉴定(营养缺陷型及其鉴定)、人类基因突变的鉴定24、基因突变的分子基础:突变的分子机制(碱基替换、缺失、插入)、突变的修复(光修复、暗修复、重组修复、SOS修复),转换与颠换,DNA防护机制(简并性、回复突变、抑制突变、多倍体、致死突变)5、基因突变的诱发:物理因素诱变(电离辐射与非电离辐射)、化学因素诱变(碱基类似物、DNA诱变剂)第六章染色体结构变异1、缺失:类型、细胞学鉴定、遗传效应2、重复:类型、细胞学鉴定、遗传效应3、倒位:类型、细胞学鉴定、遗传效应4、易位:类型、细胞学鉴定、遗传效应5、染色体结构变异的应用:基因定位、果蝇的CIB测定法、利用易位制造玉米核不育系的双杂合保持系、易位在家蚕生产上的利用、利用易位疏花疏果防治害虫第七章染色体数目变异1、染色体的倍数性变异:染色体组及其整倍性、整倍体与非整倍体(名称、染色体组成、联会方式)2、同源多倍体的形态特征、同源多倍体的联会和分离(染色体随机分离、染色单体随机分离)3、异源多倍体、多倍体的形成与应用、同源联会与异员源联会(烟草、小麦)、单倍体4、非整倍体:亚倍体(单体、缺体)、超倍体(三体、四体),三体的基因分离5、非整倍体的应用:单体测验、三体测验、染色体替换第八章数量遗传1、数量性状的特征:数量性状的特征、多基因假说、超亲遗传2、数量性状遗传研究的基本统计方法:均值、方差、标准差3、遗传模型:加性-显性-上位性效应及其与环境的互作,显性3表现形式4、遗传率的估算及其应用(广义遗传力和狭义遗传力)5、数量性状基因定位,单标记分析法,区间定位法,复合区间定位法,应用(3方面)第九章近亲繁殖和杂种优势1、近交与杂交的概念、自交和回交的遗传效应,纯合率2、纯系学说3、杂种优势的表现和遗传理论(显性假说、超显性假说、上位性假说)4、杂种优势利用与固定第十章细菌和病毒的遗传1、细菌和病毒遗传研究的意义:细菌、病毒、细菌和病毒在遗传研究中的优越性2、噬菌体的遗传分析:噬菌体的结构(烈性噬菌体、温和性噬菌体)、噬菌体的基因重组与作图3、细菌的遗传分析转化:转化的概念与过程、转化和基因重组作图接合:接合的概念与过程、U型管实验、F因子及其存在状态、中断杂交试验及染色体作图性导:性导的概念与过程、性导的作用转导:转导的概念与过程、利用普遍性转导进行染色体作图第十一章细胞质遗传1、细胞质遗传的概念和特点:细胞质遗传的概念、细胞质遗传的特点2、母性影响:母性影响的概念及其与母性遗传的区别3、叶绿体遗传:叶绿体遗传的表现、叶绿体遗传的分子基础4、线粒体遗传:线粒体遗传的表现、线粒体遗传的分子基础5、共生体和质粒决定的染色体外遗传:共生体的遗传(卡巴粒)、4质粒的遗传6、植物雄性不育的遗传:雄性不育的类别及其遗传特点(核不育型和质核不育型、孢子体不育和配子体不育、单基因不育和多基因不育、不育基因的多样性)、雄性不育的发生机理、雄性不育的利用(三系法、二系法)第十二章基因工程1、基因工程概述4、重组DNA分子5、将目的基因导入受体细胞(常用导入方法)、转基因生物的鉴定、基因工程的应用、转基因生物(食品)的安全问题第十三章基因组学1、基因组学的概念与概述、C值、N值2、基因组学的研究内容:结构基因组学、功能基因组学、蛋白质组学3、基因组图谱的构建(遗传图谱与标记种类、物理图谱)4、基因组测序策略:鸟枪法、重叠克隆群法5、基因组图谱的应用(5个方面)6、生物信息学与蛋白质组学第十四章基因表达的调控1、基因的概念及其发展、基因的微细结构、顺反测验、基因的作用与性状的表达2、原核生物的基因调控:转录水平的调控,乳糖操纵元、色氨酸操纵元;翻译水平的调控3、真核生物的基因调控:DNA水平、染色质水平(组蛋白、非组蛋白)、转录水平(顺式作用元件、反式作用因子)、翻译水平的调5控、蛋白质加工4、原核生物与真核生物在基因调控上的区别第十五章遗传与发育1、细胞核和细胞质在个体发育中的作用:细胞质在细胞生长分化中的作用、细胞核在细胞生长分化中的作用、细胞核与细胞质在个体发育中的相互依存、环境条件的影响2、基因对个体发育的控制:个体发育的阶段性、基因与发育模式、基因与发育过程3、细胞的全能性第十六章群体遗传与进化1、群体的遗传平衡:等位基因频率和基因型频率、哈迪-魏伯格定律及其应用2、改变基因平衡的因素:突变、选择、遗传漂变、迁移3、达尔文的进化学说及其发展:生物进化的概念、达尔文的进化学说及其发展、分子水平的进化4、物种的形成:物种概念、物种形成的方式(渐变式、爆发式)6。
遗传学 知识点 笔记 详细 试题 复习必备
遗传学知识点笔记详细试题复习必备遗传学知识点笔记详细试题复习必备一、名词释义1染色质间期细胞核内能被碱性染料染成深色的物质。
染色体在细胞分裂期,染色质卷缩成具有一定形态结构和被碱性染料染色很深的物质。
染色单体一个dna双螺旋分子与与蛋白质结合形成的染色线。
异固缩是由于不同的螺旋度在同一染色体上发生不同的染色反应的现象。
3同源染色体生物体内,大小形态结构功能相同的一对染色体。
非同源染色体真核细胞中,某一对染色体与另一对形态结构彼此不同的染色体,互为-----4核型、每对染色体的大小、着丝粒位置、臂比和有无卫星。
核型分析是对生物体细胞核内所有染色体的形态特征的分析。
5a染色体每种真核细胞的细胞内必须具有一套或几套基本的染色体,它们相互协调,维持生物的生命活动,这些染色体称为----6b染色体有些生物细胞中除了a染色体外,还常出现一些形态和行为不同于a染色体的额外染色体,又称超数染色体或副染色体。
7细胞周期细胞从前一次分裂结束到下一次分裂终了所经历的时间,包括分裂间期和分裂期。
每个二价四分体包含四个染色单体,称为四分体。
联会膜中同源染色体之间的配对。
9姐妹染色单体一条染色体的两条染色单体之间互为-----。
非姐妹染色单体两条染色体间的染色单体互为----10双受精在被子植物中,一个精核与卵细胞受精结合为合子发育成胚,另一个精核与两个极核结合为胚乳核,将来发育成胚乳。
如果3N胚乳的性状受精核的影响,则胚乳或花粉的直接感觉直接反映了父本的某些性状。
如果2n种皮或果皮组织在发育过程中受花粉的影响而表现出父本的某些性状,则也称为种皮直接性。
11无融合生殖雌雄配子不发生核融合的一种特殊无性生殖方式,它能形成性器官,但没有发生受精过程而形成胚和种子。
单性结实子房在没有受精的情况下发育成果实,有时需要花粉或激素刺激。
12生活周期生物体一生中所经历的生长发育直至死亡的全过程。
世代交替在大多数有性生殖的生物中,生活周期包括一个无性世代和一个有性世代,二者交替发生称----性状指生物体的形态和生理特征。
遗传学复习重点
第一章1、遗传:同种物种上代与子代之间及子代个体之间相似的现象。
2、变异:同种物种上代与子代之间及子代个体之间相异的现象。
3、生物进化与新品种选育的三大因素。
遗传、变异和选择孟德尔1856-1864年从事豌豆杂交试验,首次提出分离和独立分配两个遗传基本规律。
贝特生1906年提出遗传学作为一个学科的名称。
约翰生于1909年发表『纯系学说』,并且首先提出『基因』一词,以代替孟德尔遗传因子概念。
摩尔根等用果蝇试验发现性状连锁现象。
1944年阿委瑞用试验方法直接证明DNA是转化肺炎的遗传物质。
1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理论。
第二章染色体组/核心分析:对生物细胞核内全部染色体的形态特征所进行的分析。
染色体分带技术:交叉端化:在终变期中,交叉数目逐渐减少,在着丝粒两侧的交叉向两端移动.这个现象称为交叉端化.形态特征:必备:主缢痕、着丝粒/点、臂、端粒/体;额外:次缢痕、随体。
不同物种和同一物种染色体大小(长度)差异都很大,宽度上同一物种的染色体大致相同。
形态变化:有丝分裂:间期复制形成染色单体,前期染色质变粗形成染色体,中期着丝点排在赤道板上,后期着丝点分裂,染色单体分开形成的染色体分向细胞两极,末期染色体分到两个子细胞)减数分裂:减I前的间期复制形成染色单体,减I过程同源染色体联会和分离,减II着丝点分裂,姐妹染色单体分离数目变化:有丝分裂:后期着丝点分裂,染色体数目加倍,末期又减半从而恢复到原来数目。
减数分裂:减I末期减半,减II后期着丝点分裂,暂时加倍,到减II末期又减半。
遗传学意义:有丝分裂维持了个体的正常生长和发育,保持了亲、子代细胞间的遗传性状的稳定和物种的连续性。
减数分裂维持了生物前后代体细胞中染色体数目的恒定,促进遗传物质重新组合;保证了物种相对的稳定性;为生物变异提供了重要的物质基础,并为人工选择提供了丰富的材料。
第三章核小体:冈崎片段转化:某一基因型的细胞从周围介质中吸收来自另一基因型的DNA而使它的基因型和表现型发生相应变化的现象。
遗传学部分整理复习提纲
遗传学部分整理复习提纲遗传学部分整理复习提纲第⼀章:绪论1. 最重要⼈物的贡献、年份、论著1900年,孟德尔规律的重新发现标志遗传学的诞⽣,贝特⽣发现了连锁现象,但做出了错误的解释,发现连锁与交换规律的科学家是摩尔根。
约翰⽣最先提出“基因”⼀词。
斯特蒂⽂特绘制出第⼀张遗传连锁图。
1953年,⽡特森和克⾥克提出DNA分⼦结构模式理论。
第⼆章:遗传的细胞学基础1. 重要概念:染⾊体:间期细胞核内由DNA、组蛋⽩、⾮组蛋⽩及少量RNA 组成的线性复合结构。
异染⾊质:染⾊质上染⾊深,通常不含有功能基因,在细胞周期中变化较⼩的区域,具有这种固缩特性的染⾊体。
A染⾊体:真核细胞染⾊体组的任何正常染⾊体,包括常染⾊体和性染⾊体(A染⾊体在遗传上是重要的,对个体的正常⽣活和繁殖是必需的。
其数⽬的增减和结构的变化对机体会造成严重的后果);B染⾊体:在⼀组基本染⾊体外,所含的多余染⾊体或染⾊体断⽚称为B染⾊体,它们的数⽬和⼤⼩变化很多。
⼀般在顶端都具有着丝粒,⼤多含有较多的异染⾊质。
随体:位于染⾊体次缢痕末端的、圆形或圆柱形的染⾊体⽚段。
胚乳直感(花粉直感):在3n胚乳的性状上由于精核的影响⽽直接表现⽗本的某些性状。
果实直感:种⽪或果⽪组织在发育过程中由于花粉影响⽽表现⽗本的某些性状。
⽆融合⽣殖:雌雄配⼦不发⽣核融合的⼀种⽆性⽣殖⽅式。
巨型染⾊体:⽐普通染⾊体显著巨⼤的染⾊体的总称。
有丝分裂⼀般没有同源染⾊体联会,果蝇唾腺中的多线染⾊体,染⾊质线不断复制,但是染⾊体着丝粒不分裂。
联会:在减数分裂前期过程中,同源染⾊体彼此配对的过程。
⼆价体:减数分裂前期Ι的偶线期,同源染⾊体联会形成联会复合体的⼀对染⾊体。
单价体:在特殊情况,减数分裂前期Ι的偶线期联会时,存在不能配对的染⾊体。
同源染⾊体:形态、结构和功能相似的⼀对染⾊体,⼀条来⾃⽗本,⼀条来⾃母本。
组型分析:利⽤染⾊体分带技术等,在染⾊体长度、着丝粒位置、长短臂⽐、随体有⽆特点基础上,进⼀步根据染⾊的显带表现区分出各对同源染⾊体。
遗传学详细复习资料
遗传学名词解释1.等位基因:位于同源染色体对等部位上的基因叫等位基因。
2.数量性状:表现型变异是连续的一类遗传性状。
3.转导:以噬菌体为媒介将供体菌部分DNA转移到受体菌内的细菌遗传物质重组的过程。
4.遗传力;可遗传变异占变异总量的百分比。
5.F’因子:F因子因为不正确环出而携带有细菌染色体一些基因,这种携带有细菌染色体片段的F因子称为F’因子。
6.胚乳直感:如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。
7.广义遗传力:通常定义为遗传方差占表现型方差的比率。
8.孟德尔群体:通过个体间的交配结果孟德尔的遗传因子以各种不同方式从一代传递到下一代。
9.杂种优势:是生物界的普遍现象,它是指杂合体在一种或多种性状上表现优于两个亲本的现象。
10.复等位基因:是指在同源染色体的相同位点上,存在三个或三个以上的等位基因,这种等位基因在遗传学上称为复等位基因。
11.基因突变:是指染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对性关系。
12.交换值:是指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
13.母性影响:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响14.性导;是指接合时由F’因子所携带的外源DNA转移到细菌染色体的过程。
15.狭义遗传力:通常定义为加性遗传方差占表现型方差的比率。
16.同源染色体;形态结构彼此相同,遗传性质相似的一对染色体,其中一条来自母本,一条来自父本。
17.基因:在DNA分子链上,具有遗传效应的特定的核苷酸序列。
18.质量性状:表现型和基因型具有不连续的变异。
19.细菌的接合:是指供体细胞的遗传物质通过细胞质桥单向地转移到受体细胞中,并通过交换而发生重组的过程。
20.雄性不育:即雄蕊或雄花发育不正常,不能产生花粉,但雌蕊和雌花发育正常,能接受外来花粉受精结实的现象。
21.保持系:雄蕊,雌蕊发育正常,将它的花粉授给不育系,使不育性得到保持。
普通遗传学复习重点
第一章绪论1.什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。
(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
2.遗传学诞生的时间,标志?1900年孟德尔遗传规律的重新发现 标志着遗传学的建立和开始发展)第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。
2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。
4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?)答:有丝分裂:间期前期中期后期末期染色体数目:2n 2n 2n 4n 2nDNA分子数:2n-4n 4n 4n 4n 2n染色单体数目:0-4n 4n 4n 0 0减数分裂:*母细胞初级*母细胞次级*母细胞*细胞染色体数目:2n 2n n(2n) nDNA分子数:2n-4n 4n 2n n染色单体数目:0-4n 4n 2(0) 05.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)特点:细胞进行有丝分裂具有周期性。
即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。
遗传复习资料
遗传复习资料遗传复习资料遗传学是生物学中的一个重要分支,研究的是物种遗传信息的传递和变异。
在生物进化和物种多样性的形成中,遗传学起着至关重要的作用。
本文将为大家提供一些遗传学的复习资料,帮助大家更好地理解和掌握这一学科的知识。
一、基本概念1. 遗传物质:DNA是细胞中的遗传物质,它携带了生物体的遗传信息,并通过遗传过程传递给后代。
2. 基因:基因是DNA分子中的一个特定片段,它编码了一个特定的蛋白质或RNA分子。
3. 染色体:染色体是DNA和蛋白质组成的复杂结构,它们携带了基因,并通过有丝分裂和减数分裂进行遗传。
二、遗传的模式1. 显性遗传:当一个基因突变后,表现出来的性状会完全覆盖掉正常基因的表达。
2. 隐性遗传:当一个基因突变后,只有在两个突变基因都存在时,才会表现出来。
3. 部分显性遗传:当一个基因突变后,表现出来的性状介于正常基因和突变基因之间。
三、遗传的机制1. 遗传变异:遗传变异是指在基因水平上的改变,包括基因突变、基因重组和基因转移等。
2. 基因突变:基因突变是指DNA序列发生改变,包括点突变、插入突变和缺失突变等。
3. 基因重组:基因重组是指染色体上的基因位置发生改变,导致基因的组合方式发生变化。
4. 基因转移:基因转移是指基因从一个个体传递到另一个个体,可以通过性繁殖和细胞分裂实现。
四、遗传的规律1. 孟德尔定律:孟德尔通过对豌豆杂交实验的观察,提出了遗传的基本规律,包括隔离定律、自由组合定律和优势定律。
2. 隔离定律:孟德尔指出,在杂交过程中,两个纯合子基因会在子代中分离,并独立地传递给后代。
3. 自由组合定律:孟德尔认为,在杂交过程中,不同基因的组合方式是独立的,互不影响。
4. 优势定律:孟德尔观察到,在杂交过程中,某些基因表现得比其他基因更为突出。
五、遗传的应用1. 人类遗传病:遗传学的研究可以帮助我们了解人类遗传病的发生机制,并寻找相应的治疗方法。
2. 作物改良:通过遗传学的知识,可以培育出适应不同环境条件、产量更高、品质更好的作物品种。
医学遗传学背诵重点分章复习重点知识总结
《医学遗传学》背诵重点第一章绪论【名词解释】1、遗传性疾病(genetic disease):简称遗传病,是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。
2、先天性疾病:是指个体出生后即表现出来的疾病。
大多数是遗传病与遗传因素有关的疾病和畸形。
3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人同患一种疾病。
【简答题】遗传病的特征及分类(1)特征:①垂直遗传②基因突变或染色体畸变是遗传病发生的根本原因,也是遗传病不同于其他疾病的主要特征。
③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。
④遗传病常有家族性聚集现象。
(2)分类:(一)单基因病:由染色体上某一等位基因发生突变所导致的疾病。
①常染色体显性遗传病②常染色体隐性遗传病③X连锁隐性遗传病④X连锁显性遗传病⑤Y连锁遗传病⑥线粒体遗传病(二)多基因病:由两对以上的等位基因和环境因素共同作用所致的疾病。
(三)染色体病:染色体数目或结构改变所致的疾病。
(四)体细胞遗传病:体细胞中遗传物质改变所致的疾病。
第二章基因【名词解释】1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。
2、断裂基因(split gene):真核生物结构基因包括编码序列和非编码序列两部分,编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。
3、基因突变(gene mutation):是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因的表达产物蛋白质的氨基酸变化,从而引起表型的改变。
4、外显子(exon):编码顺序称为外显子5、内含子(intron):非编码顺序称为内含子6、多基因家族(mumlti gene family):指某一共同祖先基因经过重复和变异所产生的一组基因。
来源相同、结构相似、功能相关。
7、假基因(pseudo gene):基因序列与具有编码功能的类α和类β珠蛋白基因序列类似,因为不能编码蛋白质,所以称为假基因。
遗传学复习要点
遗传学复习要点0.细菌的遗传分析F因子将供体细胞的基因导入受体,形成部分二倍体的过程叫性导或F-导。
F 因子整合进细菌染色体→[Hfr] → F’→与F-接合→ 产生部分二倍体。
F’和λd颗粒不同,它加进了细菌的基因,并不减少本身的基因。
F’因子也没有蛋白质外壳包装的问题,所以长度不为包装所限制。
细菌的转化和转导作图:转化:没有噬菌体作介导,由DNA直接转入受体细胞的过程,称为转化。
细菌的转导与作图转导:以病毒作为载体把遗传信息从一个细菌细胞传到另一个细菌细胞。
转导分为一般性和特殊性转导转导病毒产生的频率非常低。
由于噬菌体外壳蛋白决定噬菌体附着细胞表面的能力,因此,这种噬菌体颗粒仍然具有侵染性。
它感染细菌细胞,并将其内含物-细菌的DNA片断注入其中。
进入的DNA片段可以和寄主细胞DNA发生重组,形成遗传结构发生重组的细菌细胞-转导体。
②共转导频率与图距的关系式1966年,T.T Wu (Harvard University)得到了一个共转导频率与从接合实验中得到的图距相连系的数学表达式:(4)局限性(特异性)转导与作图由温和噬菌体进行的转导叫做局限性转导(specialized transduction)。
该噬菌体DNA整合进细菌染色体中时,都占有一个特定的位置,所以只转移细菌染色体的特定部分。
细菌同源重组的特点细菌的转化、接合和转导重组都是同源重组。
细菌中的重组发生在一个完整的环状双螺旋DNA分子与一个单链或双链DNA分子片段之间,而且没有相对应的(相反的)重组子。
重组发生在单链DNA片段和完整的双链DNA之间,且供体单链与受体DNA之间结合形成一段异源双链区,最后结果取决于错配修复。
无重组发生:校正切除的是异源双链区中的属原供体单链的核苷酸。
若无修复校正作用,则该细菌分裂后产生两个细胞,一个是受体的基因型,另一个是重组体的基因型。
高效率标记:有些遗传标记在转化中很少发生校正作用,或校正切除几乎总是在受体DNA上,因此转化频率较高,这类遗传标记称为~。
(完整版)遗传学知识点归纳(整理)3篇
(完整版)遗传学知识点归纳(整理)(一)基因、DNA和染色体1.基因:指遗传信息在染色体上的基本单位,是控制个体形态、结构、功能以及遗传特征的遗传物质。
2.DNA:脱氧核糖核酸,是一种大分子聚合物,包含四种碱基,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C),这四种碱基的不同排列组合构成了不同的基因。
3.染色体:指遗传信息在细胞有丝分裂过程中可被观察和测定的可见的结构,是由DNA、蛋白质等构成的细胞核的主要组成部分,人类体细胞中通常有46条染色体(23对),其中一对性染色体决定个体的性别。
4.基因表达:指基因信息从DNA转录成RNA再翻译成蛋白质的过程,是生物体表现出各种形态、性状和生理功能的基础。
5.突变:指基因的突发性的基因变异,可导致个体的遗传特征发生变化,阳性突变可能会导致疾病的发生。
(二)遗传规律1.孟德尔遗传规律:指在同种基因型的个体之间产生的后代,表现出明显的分离和随机性。
2.随机吸配规律:指不论个体(除果蝇外),只要其一对染色体上的基因位点相互独立,其分离组合在后代的频率和概率不受影响而呈随机排列的规律。
3.连锁和基因重组:指一对染色体上的多个基因位点由于位置的接近而具有连锁性,但两个染色体在有丝分裂和减数分裂中的重组作用会破坏连锁基因,从而形成新的联合和分离组合。
4.多因素遗传规律:指人类遗传性状和疾病的发生、发展和表现受多个基因和环境因素相互作用的影响。
5.基因剪接:指在转录过程中RNA前体在剪接过程中剪下不必要的外显子以及与此同时,选择性的保留某些外显子与内含子并将其接合在一起,形成成熟RNA的过程。
(三)遗传学应用1.遗传学诊断:利用遗传学原理对个体遗传信息进行检测和分析,以确定某些遗传性状或疾病的遗传方式和危险程度。
2.基因治疗:指通过利用细胞和基因工程技术,将正常基因导入患者体内来代替缺少或异常的基因,以治疗某些遗传性疾病。
3.基因编辑:指使用CRISPR/Cas9等技术对人类基因进行修饰和编辑,可用于去除病原体基因、纠正遗传缺陷等。
生物技术091遗传学复习重点
第一章遗传的细胞学基础1.胚乳直感:植物经过了双受精,胚乳细胞是3n,其中2n来自极核,n来自精核,如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。
2.果实直感:植物的种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,称为果实直感。
3.植物的双受精:植物被子特有的一种受精现象。
当花粉传送到雌雄柱头上,长出花粉管,伸入胚囊,一旦接触助细胞即破裂,助细胞也同时破坏。
两个精核与花粉管的内含物一同进入胚囊,这时1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
同时另1精核(n)与两个极核(n+n)受精结合为胚乳核(3 n),将来发育成胚乳。
这一过程就称为双受精。
4.植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?答:植物的10个花粉母细胞可以形成:花粉粒:10×4=40个;精核:40×2=80个;管核:40×1=40个。
10个卵母细胞可以形成:胚囊:10×1=10个;卵细胞:10×1=10个;极核:10×2=20个;助细胞:10×2=20个;反足细胞:10×3=30个。
5.玉米体细胞里有10对染色体,写出叶、根、胚乳、胚囊母细胞、胚、卵细胞、反足细胞、花药壁、花粉管核(营养核)各组织的细胞中染色体数目。
答:⑴. 叶:2n=20(10对)⑵. 根:2n=20(10对)⑶. 胚乳:3n=30⑷. 胚囊母细胞:2n=20(10对)⑸. 胚:2n=20(10对)⑹. 卵细胞:n=10⑺. 反足细胞n=10⑻. 花药壁:2n=20(10对)⑼. 花粉管核(营养核):n=106.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?答:有丝分裂在遗传学上的意义:多细胞生物的生长主要是通过细胞数目的增加和细胞体积的增大而实现的,所以通常把有丝分裂称为体细胞分裂,这一分裂方式在遗传学上具有重要意义。
遗传学所有重点内容总结
遗传学所有重点内容总结第⼀章绪论1什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):⽣物亲⼦代间相似的现象。
(2).变异(variation):⽣物亲⼦代之间以及⼦代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究⽣物的遗传和变异,必须密切联系其所处的环境。
⽣物与环境的统⼀,这是⽣物科学中公认的基本原则。
因为任何⽣物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进⾏⽣长、发育和繁殖,从⽽表现出性状的遗传和变异。
2.⽣物进化和新品种选育的三⼤因素是遗传,变异和选择四、近交与杂交在育种上的应⽤1、近亲繁殖在育种上的应⽤固定优良性状保持个别优秀个体的⾎统发现并淘汰隐性有害(不良)基因2、杂交在育种和⽣产上的应⽤在育种上,利⽤杂交组合不同品种、或品系、或类群间的优良特性,培育具有多种特点的优良品种在⽣产上,主要利⽤杂交产⽣的杂种优势杂种优势理论:显性假说:认为双亲对很多座位上的不同等位基因的纯合体形成杂种后,由于显性有利基因的积聚,遮盖了隐性有害基因,从⽽表现出超显性假说:认为双亲基因型异质结合所引起基因间互作杂种优势等位基因间⽆显隐性关系,但杂合基因间的互作> 纯合基因明显杂种优势特点:杂交(h y b r i d i z a t i o n):指通过不同个体之间的交配⽽产⽣后代的过程近交(i n b r e e d i n g):亲缘关系相近个体间杂交,亦称近亲交配近亲系数(F):是指个体的某个基因座上两个等位基因来源于共同祖先某个基因(即得到⼀对纯合的,⽽且遗传上等同的基因)的概率。
近交与杂交的遗传效应:近交增加纯合⼦频率,杂交增加杂合⼦频率。
近交降低群体均值,杂交提⾼群体均值。
近交使群体分化,杂交使群体⼀致。
近交加选择能加⼤群体间基因频率的差异,从⽽提⾼杂种优势。
近交产⽣近交衰退,杂交产⽣杂种优势数量性状遗传的多基因假说多基因假说要点:1.决定数量性状的基因数⽬很多;2.各基因的效应相等;3.各个等位基因的表现为不完全显性或⽆显性或有增效和减效作⽤;4.各基因的作⽤是累加性的。
遗传学复习重点
一、染色体变异1、引起染色体结构变异的原因─先断后接假说:染色体折断、重接错误、结构变异、新染色体。
染色体折断是结构变异的前奏。
染色体的结构变异:染色体某些区段发生改变,片段增减和重排.染色体数目变异:染色体数目发生改变,成套染色体增减和单条或多条染色体增减.2、缺失:染色体的某一区段丢失。
顶端缺失:缺失的区段为某臂的外端。
中间缺失:缺失的区段为某臂的内段。
顶端着丝点染色体:染色体整条臂的丢失。
断片:当断裂的区段无着丝粒时,容易丢失.无着丝颗粒染色体称为~。
缺失杂合体:某个体的体细胞内同时含有正常染色体及其缺失染色体.缺失纯合体:某个体的缺失染色体是成对的.缺失的遗传效应:缺失对个体的生长和发育不利;含缺失染色体的个体遗传反常(假显性)。
3、重复:染色体多了与自己相同的某一区段。
顺接重复:指某区段按照染色体上的正常顺序重复。
反接重复:指重复时颠倒了某区段在染色体上的正常直线顺序。
重复的遗传效应:⑴基因的剂量效应:细胞内某基因出现次数越多,表现型效应越显著。
⑵基因的位置效应:基因的表现型效应因其所在的染色体不同位置而有一定程度的改变。
4、倒位:染色体某一区段正常直线顺序颠倒.臂内倒位(一侧倒位):倒位区段在染色体的某一个臂的范围内。
臂间倒位(两侧倒位):倒位区段内有着丝粒,即倒位区段涉及染色体的两个臂。
倒位的遗传效应:⑴倒位可以形成新种,促进生物进化;(2)降低倒位杂合体的连锁基因重组率。
倒位杂合体联会的二价体在倒位区段内形成“倒位圈”。
倒位圈是由一对染色体形成(而缺失杂合体或重复杂合体的环或瘤则是由单个染色体形成)。
在倒位圈内外,非姐妹染色单体间均可发生交换。
5、易位:某染色体的一个区段移接在非同源的另一个染色体上。
相互易位:两个非同源染色体都折断,而且这两个折断的染色体及其断片交换地重接(常见)。
简单易位(转移):某染色体的一个臂内区段,嵌入非同源染色体的一个臂内(少见)。
易位的遗传效应:半不育是易位杂合体的突出特点;位置效应;改变正常连锁群;基因重排;易位造成染色体融合,导致染色体数目变异。
遗传学考试复习资料
一、概念对比说明(名词解释)遗传学与基因工程遗传学:是研究生物遗传和变异规律的科学。
由于生命体的遗传与变异的物质基础是基因,所以现代遗传学是研究基因的结构、功能及其变异、传递和表达规律的学科。
基因工程:基因工程是狭义的遗传工程,指按照人们预先设计好的蓝图,从分子水平上对基因进行体外操作,将外源基因加工后插入到质粒和病毒等载体中,转化受体细胞并使目的基因得以扩增和表达,从而实现人们定向改造生物,得到人们所需的生物性状或基因工程产品的技术。
其核心技术为DNA重组技术。
亲缘系数与近交系数亲缘系数:是指将群体中个体之间基因组成的相似程度用数值来表示。
近交系数:是指根据近亲交配的世代数,将基因的纯化程度用百分数来表示。
遗传与变异遗传:亲代与子代之间同一性状相似的现象。
变异:亲代与子代或子代之间出现性状差异的现象。
同源染色体与等位基因同源染色体:形态和结构相同的一对染色体称为同源染色体。
等位基因:在同源染色体上占据相同座位的两个不同形式的基因。
等位基因与复等位基因等位基因:在同源染色体上占据相同座位的两个不同形式的基因,是由突变所造成的许多可能的形式之一。
复等位基因:一个基因存在很多等位形式,称为复等位现象,这组基因就叫复等位基因。
常染色质与异染色质常染色质:是指间期细胞核内染色质纤维折叠压缩程度低,相对处于伸展状态,用碱性染料染色时着色浅的那些染色质。
异染色质:是指间期细胞核内染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的那些染色质。
一倍体与多倍体一倍体:只有一个染色体组的细胞或体细胞中只含有单个染色体组的个体。
多倍体:体细胞中含有三个或三个以上染色体组的个体。
同源多倍体与异源多倍体同源多倍体:由同一物种的染色体组加倍所形成的细胞或个体。
异源多倍体:两个或两个以上的不相同物种杂交,其杂种的染色体组经染色体加倍形成的多倍体。
整倍体与非整倍体整倍体:是指具有某物种特有的一套或几套整倍数染色体组的细胞或个体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请认真复习以下内容:
回复突变
剂量补偿效应
冈崎片段
C值悖论
微卫星DNA
同源染色体
内含子
转化
转导
中心法则
外显子
隔裂基因
复等位基因
伴性遗传
F因子
F'因子
近亲繁殖与杂种优势
转座因子(跳跃基因)
(了解专座的发现,经典案例)
细胞质遗传
核外遗传
母性影响
(了解持久母体影响:田螺的遗传)基因工程
共显性
假显性
不完全连锁
完全连锁
基因突变
位置效应
移码突变
重组DNA技术
平衡致死品系
连锁群性导
图距
常染色质
异染色质
世代交替
上位效应
阈性状
遗传漂变
孟德尔群体
适合度
瓶颈效应
生物信息学
连锁图谱
遗传学的分支学科
性染色体与常染色体的异同
真核细胞与原核细胞的区别
DNA复制的方式与基本规律
DNA是遗传物质的直接和间接证据
复等位基因
ABO血型的基因型和表现型
三点测交法
三点测交法的优势
两点测交法
染色体畸变的种类
基因突变产生的原因
Hardy-Weinberg定律
区别基因频率和基因型频率
并发系数
有丝分裂和减数分裂比较
减数分裂
遗传三大定律
性染色体决定性别的类型
环境因子决定性别的类型
果蝇、蜜蜂、鳄鱼、青蛙、后螠的性别决定方式
系谱图常用符号P65
几种遗传学分析图谱的作图
经典的人类遗传病(如血友病、色盲、21三体、多指等)
课后计算习题
遗传学的各种经典案例(需要了解!)
Ps:祝大家考试顺利!羊年快乐
回复突变
回复突变(reverse mutation): 突变体(mutant)经过第二次突变又完全地或部分地恢复为原来的基因型和表现型。
完全恢复是由于突变的碱基顺序经第二次突变后又变为原来的碱基顺序,故亦称真正的回复突变.部分恢复是由于第二次突变发生在另一部位上,其结果是部分恢复原来的表现型。
亦称为第二位点突变(second site mutation)或基因内校正(intragenic suppression)。
突变基因再次发生突变又恢复原来的基因,这类突变称为回复突变。
但单是表现型变得和原来一样,并不一定被称为回复突变。
与这种回复突变相对应,最初的那种突变被称作正向突变。
就一个基因而言,回复突变率通常要比正向突变率低,有的突变基因完全不发生回复突变,这样的基因认为是由于原来的基因发生缺失造成的。
由于它的表现型效应被基因组第2位点的突变抑制,所以回复突变又称抑制突变。
剂量补偿效应
剂量补偿效应,英文名是 dosage compensation 。
使细胞核中具有两份或两份以上基因的个体和只有一份基因的个体出现相同表型的遗传效应。
一个细胞核中某一基因的数目称为基因剂量。
在以性染色体决定性别的动物中,常染色体上的基因剂量并无差别,因为雌雄两性动物的常染色体的形态和数目都相同。
但是对于性染色体来讲,包括人类在内的哺乳动物雌性个体的每一体细胞中有两条X染色体,所以在X染色体上的基因剂量有两份,而雄性个体只有一条 X染色体,基因剂量只有一份。
C值悖论编辑
在每一种生物中其单倍体基因组的DNA总量是特异的,被称为C值(C-Value)。
DNA的长度是根据碱基对的多少推算出来的。
各门生物存在着一个C值范围,在每一门中随着生物复杂性的增加,其基因组大小的最低程度也随之增加
微卫星DNA
重复单位序列最短,只有2~6bp,串联成簇,长度50~100bp,又称为短串联重复序列(Short Tandem Repeat STR)。
广泛分布于基因组中。
其中富含A-T碱基对,是在研究DNA多态性标记过程中发现的。
1981年Miesfeld等首次发现微卫星DNA,其重复单位长度一般为1~6个核苷酸,双核苷酸重复单位常为(CA)n和(TG)n。
同源染色体
是在二倍体生物细胞中,形态、结构基本相同的染色体,并在减数第一次分裂(参考减数分裂)的四分体时期中彼此联会(若是三倍体及其他奇数倍体生物细胞,联会时会发生紊乱),最后分开到不同的生殖细胞(即精子、卵细胞)的一对染色体,在这一对染色体中一个来自母方,另一个来自父方。