信号与系统考试试题库
(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。
离散系统的激励与响应都是____离散信号 __。
2.请写出“LTI ”的英文全称___线性非时变系统 ____。
3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。
5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。
6。
线性性质包含两个内容:__齐次性和叠加性___。
7。
积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。
8。
已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。
9。
根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。
10。
信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。
11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。
12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。
13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。
信号与系统考试试题及答案

长沙理工大学拟题纸课程编号1 拟题教研室〔或老师〕签名 教研室主任签名符号说明:sgn 〔f 〕为符号函数,仇,〕为单位冲击信号,/幻为单位脉冲序列,仪,〕为单位阶跃信号,式k 〕为 单位阶跃序列.一、填空〔共30分,每题3分〕1,f ⑴=〔尸+4〕4f 〕,求/"〔,〕=.*0〕 + 45⑺2,/'〔%〕 = {12-2,1},〃〔攵〕={3,424},求/〔攵〕*/#〕 = /〔攵〕*/?〔%〕 = {3,10,4,38-6,4} 3 .信号通过系统不失真的条件为系统函数""&〕= ------------ ° HljcoH't江 4江「/、/〔-〕Oax= ------- =—— 4 .假设/⑺最高角频率为那么对 4取样的最大间隔是 -------------- . 练ax /5 .信号/〔,〕= 4cos20加+ 2COS 30R 的平均功率为6 .一系统的输入输出关系为〕C 〕= /'〔3/〕,试判断该系统是否为线性时不变系统 --------- O 故系统为线性时变系统.F 〔5〕=--——! --7 .信号的拉式变换为 .一+1〕〔5-1〕,求该信号的傅立叶变换/〔/8〕= ----------- .故傅立叶变换/O&〕不存在.H ⑵= -- ----- \ ----- r8 .一离散时间系统的系统函数 2 + z7-z--,判断该系统是否稳定 -------------- .故系统不稳定.「〔/+2f 〕6〔T + lk 〃 =9 . J -x--------- 0 310 .一信号频谱可写为/〔jMnA^y 乂iQA^y 〕是一实偶函数,试问/⑺有何种对称性 ------------------- .关于仁3的偶对称的实信号.二、计算题〔共50分,每题10分〕1 .连续时间系统的单位冲激响应〃“〕与鼓励信号/«〕的波形如图A-1所示,试由时域求解该系 统的零状态响应〕'0〕,画出〕'〔/〕的波形.图A-12 .系统的零状态响应〕"〕= /«〕*〃0〕,其波形如图A-7所示.X P= Z|K 「= 22 +22 +l + l = 10 J?-w3.在图A-2所示的系统中,〕〔%〕 = 66-2〕,〃2〔幻=〔0・5〕匕〔%〕,求该系统的单位脉冲响应M2〕.图A-22 h(k)=6攵)+ 4(k) * h<k) = 5(k) + b(k - 2)* (0.5)匕网=3(k) + (0.5)k^2£(k - 2)4.周期信号/«〕的双边频谱如图A-3所示,写出/⑺的三阶函数表示式° 〕< 2 〔.M -1 »~ =2 |0 2 3 n图A-35.写出周期信号/⑷指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为8/«〕=2"."%=/2叩+2/3+2 + 2/卬 +/如=2 + 4cos/f +2cos24fK-006.信号f⑴=4/〕- - 1〕通过一线性时不变系统的响应〕«〕如图AK所示,试求单位阶跃信号£«〕通过该系统的响应并画出其波形.图A-4X0= /«〕+/〔1〕+…+/〔1〕+…=Z/〔i〕4.由于 5 故利用线性时不变特性可求出£«〕通过该7W〕} = W>〔D系统的响应为・. 波形如图A-8所示.进行拉斯反变换可得〃(,)=*+2_*)初*•J 1 4 完全响应为y(t) = y x (t) +e-2t -e-5\t>05.己知/⑺的频谱函数/C/3)= Sg 〃3+l )-Sg 〃3-l),试求/⑷,2, 同 < 1F(jco) = Sgn(co +1) - Sgn(a )-1) = < =2g 2(co)5.I 〞网>1 ,由于g2")0 2Sa (⑼,由对称性可得:254.)= 2咫2(-助=2甯2(助,因此,有2/(,) = — S 〃(f)丸三、综合计算题(共20分,每题10分)1. 一线性时不变因果连续时间系统的微分方程描述为),〞(/) + 7/(0 +1 Oy(t) = 2r ⑺ + 3/(r)")=f),y (吁1,y (°-)=1,由s 域求解:(1)零输入响应K"),零状态响应完全响应>'(');⑵系统函数"(S ),单位冲激响应并判断系统是否稳定: ⑶画出系统的直接型模拟框图.解:L (1)对微分方程两边做单边拉斯变换得S 2Y(S )-孙(.-)-y (0-) + 75/(5)_ 7y(0_) + 10Y(s) = (2s + 3)尸(s) 整理后可得y (s )=s ),(0-) + y (0-) + 7),(0-) + 2s+ 3 F"s 2 +75 + 10 s 2+ls + \O 零输入响应的s 域表达式为Z (s )=5 + 82-1— ---------------- - =------------ H ---------:s 〜+ 7s + 10 5 + 2 5 + 5进行拉斯反变换可得 y4)= 2c-2—零状态响应的S 域表达式为,(s) =25 + 3 1+7s + 10 /.)=25 + 3 (1 + 7s + 10)(s+ 1)1/4 1/3 12/7---- + ------- - -------- 5+1 5+2 S+5图A-8(2)根据系统函数的定义,可得“、乙⑸ 2s+ 3-1/3 7/3H(s)=-——=- ------------------ = ------- + ------F (5) S 2+7S + \0 S + 2 S + 5进行拉斯反变换即得i 7由于系统函数的极点为-2、-5,在左半s 平而,故系统稳定.2J +3s-2 l + 7s-10s-2由此可画出系统的直接型模拟框图,如图A-9所示y(k) + 3y(k -1) + 2y(k -2) = f(k)k>0f (k) = £(Z),y(—l) = -2, M —2) = 3,由 z 域求解:(1)零输入响应汽(幻,零状态响应力(幻,完全响应〉'伏); (2)系统函数“(Z ),单位脉冲响应做攵). (3)假设/(") = £(4)-£(攵-5),重求 ⑴、(2).2. (1)对差分方程两边进行z 变换得y (z) + 3{z-'y (z) + y(-l)} + 2{z-2y(Z) + r'y(-l) + y(-2)}=尸(z) 整理后可得 y (7} = -3y(-1)-2d)-2y(-2) =4z- = 44 ,' 1 + 3z-i + 2z"1 + 3Z "+2Z -2 \ + z7 1 + 2—进行z 变换可得系统零输入响应为工也)=[4(—/一4(一2)〞—(幻零状态响应的Z 域表示式为v/、 /⑵1 1 1/6 -1/2 4/3Y ( 7)= ____________ = __________________ _ _______ p _______ I ------------ fl + 3z~l +3z~2 \ + 3z'l +3z'2 1-Z -' (1-Z -1) (1 + Z-1) (l + 2z-1) 进行z 反变换可得系统零状态响应为1 ।3,伙】=[厂7(-1)〜:(一2力£(公6 2 4系统的完全响应为7 X 1y(k) = y x + y f (k) = [-(-1)A --(-2)k +&上(k)(2)根据系统函数的定义,可得"(s) =⑶将系统函数改写为2. 一线性时不变因果离散时间系统的差分方程描述为y f(z)i"l + 3^+2^2一1 2T+7r+T+27r进行z反变换即得万(攵)=[—(—iy+2(—2 门£(幻(3)假设八外二以幻一式卜-5),那么系统的零输入响应外(幻、单位脉冲响应Mk)和系统函数〞(乃均不变, 根据时不变特性,可得系统零状态响应为T{£(幻一£(攵- 5)}=力(幻一y f (k - 5)1 1 Q 1 1 Q6 2 4 6 2 4完全响应为y(k) = y x(k) + T[£(k)-£(k-5)}] 7 8 1 1 3o 2 3 o 2 4长沙理工大学拟题纸课程编号 2 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,5(E)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,£(*)为单位阶跃序列.一、填空(共30分,每题3分)y(t) = !-4-2X(0)1.某系统的输入输出关系为力(其中X(0)为系统初始状态,/⑺为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) ------------ 系统.线性时变广(2r2+3r)J(lr-2)Jr = _______________2. J 2 0 04 j:s(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2f)力=J:dt = 1K-04.Z(k) = 2k{s(k)~ 式k -3)) J; (k) = {2, S ,3},计算于仆)*f式k) =力(%)*力(幻={21,21,26,12}5.假设信号/⑷通过某线性时不变系统的零状态响应为力⑴=监.—0),(<,0为常数)那么该系统的频率特性〞(13)= ------------- 单位冲激响应〃(/)= ------------ J 系统的频率特性"(W) = K .*,单位冲激响应/") = K /一°).6 .假设/“)的最高角频率为九(%),那么对信号y(,)= /«)/(2f)进行时域取样,其频谱不混迭的最大取样T丁 心=钙一= TT (s )间隔,max- -------------- ,maK 为 max inF'(s)=—;——! ----7 .信号的拉式变换为("+1).-1),求该信号的傅立叶变换尸(/.)= --------------- ,不存在8 .一离散时间系统的系统函数 2 + Z-I-Z--,判断该系统是否稳定 ------------ o 不稳定「(/+21)6(-/ + 1卜〃=9 . J-K10.一信号频谱可写为尸(,⑼二人侬州一衣)(⑼是一实偶函数,试问/«)有何种对称性 ,因此信号是关于1=3的偶对称的实信号.二、计算题(共50分,每题10分)1 .一连续时间系统的单位冲激响应乃 ,愉入信号/(')= 3 +.32人一8〈'〈8时,试求该系统的稳态响应.二、解:1 .系统的频响特性为 H .&) = FT[h(t)] = ; ge (°)=利用余弦信号作用在系统上,其零状态响应的特点,即T {cos^r + 0)] = \H(ja^ )| cosQj + 认例)+ 6)可以求出信号/(0 = 3+cos2r,-eo<r < 8 ,作用在系统上的稳态响应为} = 1 + —cos2z,—O0< z V82 .信号/(2f + 2)如图A -1所示,试画出/(4-2,)波形.i/(2r + 2)图A-l2 . /(2/-2) -/(4-2/),根据信号变换前后的端点函数值不变的原理,有 /3+2) = /(4-2%) /(2r 2+2) = /(4-2G 2)'1/3,罔<3 0, \co\> 3-2-1变换前信号的端点坐标为4 =2,〃 =-2,利用上式可以计算出变换后信号的端点坐标为Zu = (4 — 2/1 — 2)/2 = —1J22 = (4 —-2)/2 = 3由此可画出/(4-2,)波形,如图A-8所示.3.信号/⑴如图A-2所示,计算其频谱密度函数/"⑼.4.信号/⑺可以分解为图A-10所示的两个信号与八")之和,其中&(f)=超(助 + -!-/i (r) = 2s{-t + 2) = 2s[-(t - 2)] e由于jco根据时域倒置定理:/(-Do〞一/⑼和时移性质,有再(/⑼=F71£(T + 2)1 = 2 昉(3)— -—F2(汝)=FT[f2(t)] = 6s-3) 故利用傅立叶变换的线性特性可得4.某离散系统的单位脉冲响应〃(幻=KT)'5+(一°・5)1]夕心,求描述该系统的差分方程.4.对单位脉冲响应进行z变换可得到系统函数为“-1 — 2 _ - 3-2,5z 1‘-1 + z-1 + 1+0.5Z-1 " l + 1.5z-| +0.5z-2 由系统函数的定义可以得到差分方程的z 域表示式为(1 +1"1+ O&T)y f⑵=(-3 - 2.5/ )F(z) 进行z反变换即得差分方程为y(k) + \.5y(k - 1) + 0.5y(k -2) = -3/'(2)一25f* - 1)5.一离散时间系统的模拟框图如图A-3所示,写出该系统状态方程和输出方程.X](k + 1) = 一ax[(攵)+ f(k \ x 2(k + 1) = -bx?(k) + f(k) 国绕输出端的加法器可以列出输出方程为X (左)=为⑹ + x 2(k\y 2(k) = x l (幻 + 々⑹写成矩阵形式为三、综合计算题(共20分,每题10分)1.描述某线性时不变因果离散时间系统的差分方程为31y ⑹一力…+邛.2) = 2浜)+ 3〃1)人.f(k) = £(⑥,><-1) = 2, y(-2) = -l在Z 域求解:(I)系统的单位脉冲响应力(幻及系统函数〞(Z ): (2)系统的零输入响应以(公; (3)系统的零状态响应力"(外;(4)系统的完全响应)'("),暂态响应,稳态响应; (5)该系统是否稳定?.对差分方程两边进行z 变换得31丫 ⑵一⑵+>-1)}+7{4丫&) + %-.(-1)+义-2)} = (2+32-1)尸⑵48整理后可得3 1 1 4''(T )_ Q M-l) _ 77 y (-2)2 + 37T y (Z) = ------------ ——1——十; \ F(z) 1-1 —、+-尸 4 848(1)根据系统函数的定义,可得5.根据图A-5中标出的状态变量,围绕输入端的加法器可以列出状态方程为玉(左+ 1)x^(k +1)一.玉(女)-b x4k)—J — 11 + 1 f(k)升⑹=1 丁2(幻 1 1 _内(幻 1 々(幻h*) = F-i [H(z)] = [16(1/-14(;了阳.r 1 x ✓ 1 \k 14 1^ 40q . »(^) = [-16(-) + —(-) +—]^) 乙 J J (4)系统完全响应/,、〃、「55」、氏 97」、氏 40 小y(k) = y x (k} + y f (k) = [-—(-) + —(-) + —^)「55/、氏 97/ g 小40 〃、 [——(一)+ — (一) ]£(攵)£(k)从完全响应中可以看出, 4 2 24 4 随着k 的增加而趋于零,故为暂态响应,3 不随 着k 的增加而趋于零,故为稳态响应.(5)由于系统的极点为号=1/2,与=1/4均在单位圆内,故系统稳定.2.试分析图A-4所示系统中B 、C 、D 、E 和F 各点频谱并画出频谱图./⑷的频谱尸"&)如图A-6,&.(/)=&(,_"),丁 = 0・.2K--<»B 、C 、D 、E 和F 各点频谱分别为品(/助=4 £#3-〃线),4 =:=100乃 //---X * 11 00xF&S = — F(y<y)*F^(j6?) = -g) = 50 2/3-"100冗)F D (J3) = Fc (J 2 Hi(ja ))F E (jTy) = —[F D (CO +\ 00^-) + F D (d )-l 00^)]2进行z 反变换即得"⑵= 〃⑵= 2 + 3尸 = _____________ + ________尸⑵ 1 3 T 1 -2 1 1-1 1 1-1 4 8 2 416 -14 (2)零输入响应的z 域表达式为 3 1 17 y(_ 1)--^1 >(_ 1)- 3 y (-2) 工口)=^——H« D T 1 一,4 取z 反变换可得系统零输入响应为13 1 T豆一/ _ 9/4 T -5/8< 3 _[ 1 _*) . 1 _1 . 1 -1 1——Z 、-z - 1 —— Z 1--Z 4 8 24(3)零状态响应的z 域表达式为'⑵=-v~~~\ -------------- /⑵= 48取z 反变换可得系统零状态响应为2 + 3z 〞-16 14/3 40/3(4*z-2)(T )一干+ 干+中-20r2(»,r0.1F「(〃>) = Y (〃)) = F E (ja))H2( jco)长沙理工大学拟题纸课程编号 3 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)1.假设信号/⑴通过某线性时不变系统的零状态响应为»⑴=灯Q T.), (K /为常数)那么该系统的频率特性---------------- ,单位冲激响应〃")= ------------- .系统的频率特性"(W)= Ke〞.,单位冲激响应力⑺=K"I.).2.假设/⑺的最高角频率为/£法),那么对信号>.)=/(,)/(2,)进行时域取样,其频谱不混迭的最大取样丁 1 1 ,、J = ----------- = ------ (S)T ___ T max o, 久 '间隔ma、- ...... , max 为max ./〃73J:£(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2t)dt = j dt = 14,工⑹=2"{仪外一£伙一3)}/伙)={2,5,3},计算工(幻*/2的=0/(攵)*/式外={2621,26,12}),«)= /"⑺+ 2X(0) 乙,、5.某系统的输入输出关系为“dt(其中X(0)为系统初始状态,/«)为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) -------------- 系统.线性时变,3 , 1I ⑵2+3/2(—— 2)4 = _____________6. J 2 o 0+3相-2/⑶=一,(Re(s) >.),7.某连续信号的单边拉式变换为5(厂+9) 求其反变换/«)=------------ cf (/) = (2cos3f+ 6“ sin 3r)ty(f)8,a二口e ' 〞"'>-2'计算其傅立叶变换Y(j°)= ----------------------------------------- .r(»=.—!—=——----------------------------------jco+2 jco+5 (汝尸+7/G+lOE(z)=?「二幽 >3) 9.某离散信号的单边z 变换为(z — 2)(z + 3),求其反变换/(&)= -------------/(幻=z*F(s)]=⑵ + (-3)、伏)h(t) = —「H(jco)e J6X dt =—「e-w ./晨〃 =—「/*年力=冬2乃 Lx 2 4 2 万 L%n二、计算题(共50分,每题10分)1./⑴的频谱函数尸(j3)= Sg 〃3+l)-Sg 〃3-l),试求/⑺.[2,同<1 F("D ) = Sgn(a )+1) - Sg 〃3-1) = S=2g 2(a ))1.m 网,由于g2")= 2Sa ⑼,由对称性可得:254(/) = 2咫2(-助=2砥3),因此,有 22.h(t) = . (/) + J(/)]* [% ⑴ + — = [£(f -1) + 6(f)] *_2) + e -2^(f)]=-1) *- 2) +-1) *+ J(O* 2) + J(r)* e^2,£(t)-6 ]=—(1 - e-3"3))£« - 3)+ 一(1 - e-2"-D )£(f _ 1)+e^£(t - 2) + e^s(t) 3 23.信号/")和g")如图A-2所示,画出了⑺和g«)的卷积的波形.3 . /«)和g«)的卷积的波形如图A-9所示."(1&) =、10.某理想低通滤波器的频率特性为“3 间 < 纵° 其他 ,计算其时域特性的)=0)]2.某系统如图A-1所示,求系统的各单位冲激响应.其中九⑴=e[t -1), h 2 (r) = e-3,s(t - 2), h 3 (r) = e-2,S (t)图A-l4.某连续时间系统的系统函数〞⑸悬,画出其直接型系统模拟框图,并写出该系统状态方程的输出方程.H〔5〕= ------ : -----5.将系统函数改写为l + 5sy+3s-由此可画出系统的直接型模拟框图,如图A-11所示.选择枳分器的输出作为状态变量,围绕模拟框图输入端的加法器可得到状态方程为图A-11£⑴=%2.〕, ±2 ⑴=f〔0 - 5%2 ⑴ + f ⑴围绕模拟框图输出端的加法器可得到输出方程为刈=7王«〕 + 2勺〔,〕6.试证实:用周期信号力"〕对连续时间带限信号/«〕〔最高角频率为〕取样,如图A-3所示,只要取样间隔咻,仍可以从取样信号人"〕中恢复原信号图A-35.利用周期信号频谱和非周期信号频谱的关系可以求出心"〕的傅立叶系数为厂1 r n T 0 2产绮、 24F,t = T2Sa =2T Sa〕.°=于由此可以写出周期信号fr⑺的傅立叶级数展开式M )= »产=E 等)*知n--oox // 一 对其进行傅立叶变换即得fr (0的频谱密度F T .&)片(/⑼=2乃 £-〃%)X 乙1今取样信号工⑴=/(/)力,(/),利用傅立叶变换的乘积特性可得j ①)=;F (J ⑼*耳(J ⑼=£ 2S/(竺产)F3-〃g) 2乃 n —0C 2/ 4从以(/助可以看出,当为之24r 时,工(/⑼频谱不混迭,即◎〞仍可从取样信号方⑺中恢复原信号f"三、综合计算题(共20分,每题10分)1.描述某线性时不变因果连续时间系统的微分方程为y"(O + 7y «) +10y (0 = 2/〞 ⑺ + f[t}f ⑴=/£«),)=4, y (o -)=-3,在 s 域求解:(1)系统的单位脉冲响应/?〞)及系统函数H(s). (2)系统的零输入响应/〞) (3)系统的零状态响应‘7")(4)假设/«) = /"-"£«-1),重求(1)、⑵、⑶.解:1.对微分方程两边做单边拉斯变换得S 2Y(S )-町(.一)一 y (0") + 75/(5)- 7),(0-) + 10X(5)= (2s + 1)F (5) 整理后可得(1)根据系统函数的定义,可得进行拉斯反变换即得/z(O = (-^2/+3^5r )f(r)(2)零输入响应的s 域表达式为U/、 45 + 25 -5/3 17/3Y(s) = - ..................... = -------- + ------+75 + 10 5 + 2 5 + 5取拉斯反变换即得yx (')= _ge-2' +y-^5/,r >0(3)零状态响应的s 域表达式为取拉斯反变换即得匕 «)=(-0.25eT +^2/ -0.75e-5z )^(r)请浏览后下载,资料供参考,期待您的好评与关注!y (s )=) 一/(O-) + 7y(0-) 25 + 1s 2 +75 + 10s 2 +75 + 10 JJH(s) =Yf (s) 2s + 1 -1 3尸⑸— ----------- = --------- F ----- s-+7s + 10 s + 2 s + 5 25 + 1 /(S )= T(s- +75 + 10)(5 + 1)-0.25 1-0.75 + --------5 + 56. /(0 = [£(t +1) - £{t - l)]cos(100r) 的 频 谱 F*o) =FT{ [s(t +1) - £(t — l)]cos(l OOf)} = Sa(co - 100) + Sa(co +100)g _ /?(k) = g ⑹ 一 g(A — 1) = (ft ⑹ - (g)h*(攵-1)8,假设 /(0 = 2 + 4cosCOr) + 3cos(20r),(-o < r < oo) 3)= 10为基频),那么 f(t)的平均功率P=f 方「= 2? +22 + 2? + (32 + (1)2 = 16.54t \ m,'〔/〕= /〔:〕/〔7〕9,假设/⑷最高角频率为那么对 4 2取样,其频谱不混迭的最大间隔是 -------------- ,©max 3%10.假设离散系统的单位脉冲响应力〔幻=[〔-1〕1+〔-°5〕11£〔口,那么描述该系统的差分方程为 y 〔k 〕 + 1.5y 〔k -1〕 + 0.5y 〔k -2〕 = -3/〔幻一 2.5/〔攵-1〕二、计算题〔共50分,每题10分〕1 ./⑴的波形如图A-1所示,令. A/‘⑺图A-1试计算输入为-*〕 = 23〔%〕 + £代〕时,系统的零状态响应〕膜〕,“、sin 4/5.连续信号 t 的频谱 -------------------------------- /(〃?) =咫8(&)= < 4,囱<40,网>47. 己知一离散时间LTI 系统的单位阶跃响应计算该系统单位脉冲响应⑴用仪/〕和k 〕表示/⑷:〔2〕画出了〔一2,-4〕的波形.⑵将〃一2,-4〕改成/[-2« + 2〕],先压缩,再翻转,最后左移2,即得/〔一2,-4〕,如图A-8所示.八〔一〕“£〔4NL \\( 一)£(& —1)2.某线性时不变(LTD离散时间系统,当输入为演“一1)时,系统地零状态响应为2 试计算输入为/(%)= W) +仪外时,系统的零状态响应,3.信号/«)的频谱如图A-2所示,求该信号的时域表示式.-----------7}- ................. co 0F -5, 4 5 6图A-2由于系统函数为H(jco) = [g2(a)+5)+ g2(co-5)]e~j2a由于g2(')= 2Sa(.),由傅立叶变换的对称性可得:254“)= 2咫2(-助=2处23) 即— Sa(t)<^>g2(co)由调制性质,有2— Sa(t}cos5t <=> g)(3 + 5) + g)(少一5)71由时移性质,有2—Sa(t - 2)cos5(r - 2) o [g, 3 + 5) + g, (.- 5)k“"7T -因此2h(t) = — Sa(t - 2)cos5(r- 2)4.一连续时间系统的频响特性如图A-3所示,输入信号/⑷= 5 + 3cos2f+cos4/,—8</vs,试求该系统的稳态响应)'")▲〞(为)图A-34.利用余弦信号作用在系统的零状态响应的特点,即T{ cos^jZ +.)} = )| cos(卬 + 或4) +.)在此题中,火G)=0,因此由上式可以求出信号/⑺作用在系统上的稳态响应为T[f(t)] = 5H(jO) + 3H(J2)cos2r + //(J4)cos4r = 5 + 2cos2r -oo vs5.信号f⑴=£“)- - 1)通过一LTI系统的零状态响应为)*)=演/ +1) - -1),试求图A-4所示信号g(f)通过该系统的响应人〞)并画出其波形.. g0)—乙--- «--------- ►/T| i图A-45.由于以""[如'")’",所以,利用线性时不变系统的积分特性,可得y R (0 = L y(r)dr = £x[J(r + 1) +J(r-l)Jr] = s[t + 1) + s{t-\) 其波形如图A-9所示.JLfe i图A-9三、综合计算题(共20分,每题10分)1.描述一线性时不变因果连续时间系统的微分方程为y〞⑺ + 5/(0 + 6y(r) = 2/f) + f(t)f⑴=e-■),y(°-)=i,y's=1由s域求解:(1)零输入响应)'X⑺零状态响应力"),完全响应)*):(2)系统函数“(S),单位冲激响应〃“),并判断系统是否稳定:(3)画出系统的直接模拟框图(1)由于H,(jco) = --[g2(co-3)-g2(co+3)] + [3(c()-2)-3(co+2)],Sa(r) = g)(0)又由于江-,由调制定理,可得—Sa(t) sin(30 =上[g?(口—3) —取(切 + 3)]7t 2j即一/‘Sa(f)sin(3f) =-!火2(口一3)-心(3 + 3)]乃2由于sin(2r) = —2) —5(3+2)],即■/ sin(2f) o 6(3 - 2)- 6(少 + 2)7t由频域微分性质,可知:-所以有■—jth(t) = [5i/(/)sin(3r) - sin ⑵)]万,整理得1 3 2h(t) = —[Sa(t)sin(3t) -sin(20] = —Sa(t)Sa(3t) --Sa(2t)70 71 71(2)由于“行⑼是一个带通滤波器,下限角频率为2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s 请浏览后下载,资料供参考,期待您的好评与关注!的信号分量可以通过该滤波器.由cos (卬)->\H (凡)|cos[^r +旗例)]可知O.4cos0/) . 0.4|H(j3)|cosPr + 旗 3)]由于口(万)|=.5,奴3) = 0,所以有:0.4cos@)f 0.2cos@),即 /'(,) = 1 + 0.6cosr + 0.4cos3r + 0.2cos5r —> y(f) =0.2cos(3r)2.在图A-5所示的系统中,周期信号P (')是一个宽度为7)的周期矩形脉冲串,信号/⑺的频谱为 F(js) , (1)计算周期信号p«)的频谱工;⑵计算〃⑺的频谱率密度〃03): ⑶求出信号/p ⑺的频谱表达式心口⑸(4)假设信号/⑺的最高频率°%为了使乙频谱不混迭,T 最大可取多大?图A-51)利用傅立叶级数的计算公式可得到周期信号PQ )的频谱/为⑵周期信号〃“)的指数函数形式的傅立叶级数展开式为〃⑺=z 产、〃=7C 1 \ ^ /对其进行Fourier 变换即得〃⑴的频谱密度尸㈠⑼为P(/3) = 1Sag 算卜0_〃4)⑶由于/p") = /(')〃"),利用傅立叶变换的乘积特性,可得I8 讯5(/3) = 丁/(1&)*= Z 〒Sa(4)从信号(⑺的频谱表达式G 〞5可以看出,当4之29〃时,0".)频谱不混迭,即P")1 T/2 [ r/2 1-7721 -r/2AT(-jna )^e2万一初%r=r/2 r="r/2Cz Mo =7tA sin(〃g"2) _ M | T 〃g"2 T ’一9)长沙理工大学拟题纸课程编号 5拟题教研室(或老师)签名 教研室主任签名符号说明:sgn(f)为符号函数,仇,)为单位冲击信号,/幻为单位脉冲序列,仪,)为单位阶跃信号,式k)为 单位阶跃序列.一、填空(共30分,每题3分)1.[4/)一£«-2)15(2/ -2) =./.—4/ - 2)卜 6(2/ - 2) = [£(/)-^(r-2)]-l J(r-l) = l一 1)222 .假设某离散时间EH 系统的单位脉冲响应出6={2』,3},鼓励信号/(幻={1,-2],2},那么该系统的零状态响应/(")*〃/)= ----------- c 利用排表法可得 /(%)*〃(2) = {2,-33-1,5,6}3 .连续时间信号/«)= sin«)的周期丁.= ------------- .假设对/⑺以人=1%进行抽样,所得离散序列八幻二 ------- ,该离散序列是否是周期序列 ---------- o7(A )= /“)|07=sink .不是4 .对连续时间信号延迟%的延迟器的单位冲激响应为6"一,.), ---------------- 积分器的单位冲激响应为£“) -------,微分器的单位冲激响应为 ---------- o £«)“(j ⑼=1 + W5 .一连续时间LTI 系统的频响特性I% 该系统的幅频特性= ---------------------- 相频特性 ---------------- 是否是无失真的传输系统 ----------- .不是〞(/0) = /arctan 助= 1 .(⑼=2OTCtan ⑻f (―)2^ =6 .根据Parseval 能量守恒定律,计算人.0 t ------------------------ 0力=5 ji 咫 2(助|"刃=;!/43=乃7.一连续时间LTI 系统得单位冲激响应为〃“),该系统为BIBO (有界输入有界输出)稳定系统的充要]>(琲〃条件是 ------- .-8,信号/⑺的最高频率为e (m‘〃s ),信号/2«)的最高频率是 -------------------- ©)%(女) 9 .某连续时不变(LTI)离散时间系统,假设该系统的单位阶跃响应为4h(k) = g(k)-g(k-\) = [^\ 响应为141V4;10--------------------------------------------------------------------------------------------- .连续时间信号/(')= sin42(f) + w(f_//2)],其微分/'«)= ------------------------_ 2a )m (rad/s) 0 .,那么该系统的单位脉冲£(1)H(Z )= ——————r、(1)将系统函数改写为 l + 3z"+2z-+Z 、,由此可画出系统的直接型模拟框图,如图A-10所示.4 .连续时间LTI 因果系统工程微分方程为y 〞⑺- 5),⑺ + 6y(t) = /(r) + 4/f >.输入 /⑴=,初始状态 N°-)= L y'(O-)= 3.(1)利用单边拉式变换的微分特性将微分方程转换为S 域代数方程.(2)由s 域代数方程求系统的零输入响应入⑴和零状态响应>'/⑴o 4、(1)对微分方程两边做单边拉斯变换即得s 域代数方程为 S 2Y(S ) - sy(O-) - y'(0~)- 5sY(s)-5y(O-) + 67(5)= (4s + 1)F(J ) (2)整理上述方程可得系统完全响应得s 域表达式为其中零输入响应的s 域表达式为v/、 s —21匕⑸二7^7r 三取拉斯反变换可得取拉斯反变换可得4«) = ( —卜一+一3/一%斗⑺5 .连续系统的系统函数"(S )的零极点如图A-3所示,且"(8)= 2.图A-3(1)写出〃(s )的表达式,计算该系统的单位冲激响应〃“); (2)计算该系统的单位阶跃响应g (').5、(1)由零极点分布图及“(8)的值可得出系统函数〞(s)为请浏览后下载,资料供参考,期待您的好评与关注!丫(S )= 盯(0-) + ),(.-)一53,(0-)4s+ 1 s 2+55 + 6+ 1—5S + 6 F(s) 零状态响应的s 域表达式为'($)= zT s — 5s + 6F(s) =45 + 1-1/4 -3 13/4 ------ + -------+ -------(S — 2)($ —3)(5— 1) 5 + 1 5-2 5-3“⑸〞—=3)=2 + 3 + 二^(5+ 1)(5+ 3) (5+ 1)(5+ 3)5 + 1 5 + 3取拉斯反变换可得h ⑴=26(,) + (31 -15/')£«)(2)单位阶跃响应的s 域表达式为取拉斯反变换可得g") = (- 3e-‘ +5e -"立⑺三、综合计算题(共20分,每题10分)1. 一离散时间LTI 因果系统的差分方程为y (外 + 3y(k -1) + 2y(k -2) = 2f(k)+f(k-l)系统的初始状态= 1/2M —2) = 1/4,愉入/(攵)=式k) o(1)由z 域求系统的零输入响应为(幻和零状态响应丁/公. (2)求该系统的系统函数"(Z ),并判断系统是否稳定. 1、(1)对差分方程两边进行z 变换得y (z) + 3[/y (z) + y(-D] + 2[z-2y(Z) + z\(—l) + y(-2)] = (2 + z 〞"⑵ 整理后可得二 ='—〉-2)+ _ 甲1 + 3Z "+2Z -21 + 3二+2「零输入响应的z 域表达式为_3y(-l)-2/y(-1)-2y(-2) __2_/ = ] -3 * '1 + 3]+2z"1 + 37+2Z -2 \ + zT 1 + 2/取z 反变换可得系统零输入响应为y x U)= 1(-1/-3(-2/kU)零状态响应的Z 域表达式为(2 + z"Q) 2 + ' —1/2 2 1/2/ (7) = --------------------------------- = ----------------------------------------------- = --------------- + ---------------- + -----------71 + 3/ +2z- (1 + 3] +2Z -2)(1 — Z T) 1 — Z T 1 + 2/ 「才取z 反变换可得系统零状态响应为V (幻=[一? 一1» + 2(-2) J f 仪幻〃⑵=四=,(2)根据系统函数的定义,可得 /口)l + 3z +2z-由于系统的极点为芍=-1,Z2 =-2,均不在单位圆内,故系统不稳定2.某高通的幅频特性和响频特性如图A-4所示,其中@=80万------ >3-.269一阳图A-4⑴计算该系统的单位冲激响应""):G(S ) = H(s)LT[e(t)] =25(5-2) 1 (5+ 1)(5 +3) S 一3 5--- + ----- 5+1 5+3CD(2)假设输入信号/«)= 1 + 0・58$60加+ 0.2.05120",求该系统的稳态响应丫02、(1)由于系统的频率特性为:"C/&)=U-g2&3)k-s.又由于co咐=1, r阚)""),所以,有h} (0 = J(/)-" Sa(a)c t) = d(t)一80S.80 加)乃由时移性质得/?(,) = h} (t — t()) = 3(,一八))一805380%(7-%)](2)由于高通系统的截频为80%,信号/(,)只有角频率大于80万的频率分量才能通过,故y(t) = 0.2cosl20^(r-r())长沙理工大学拟题纸课程编号6 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)I J: « - 3)3(—2/ + 4卜〃 =(f — 3)6(/ — 2)力=万(f - 3)| 1=2= -0.5[;(1-3)6(-2/ + 4)力6/八EV , \ £>/ \ . -V/ \ 〉'(,)=-[/(,)+ J(T)12.实信号/«)的傅立叶变换/OM = H3)+ K3),信号, 2 的傅立叶变换3为---------------- .H(5)= —3.某连续时间系统的系统函数为s + 1,该系统属于------------- 类型.低通4.如以下图A-1所示周期信号/«),其直流分量= ------------- ,4图A-1X 上任+ 1, ^>0!>(〃)y^hi=L .八=伏+1)5(幻5.序列和= ---------------------由于I., .6. LTI离散系统稳定的充要条件是----------- .“(Z)的全部极点在单位圆内.7.信号/⑺的最高频率」.(及),对信号〃〃2)取样时,其频率不混迭的最大取样间隔T 1 11 = ----------- = ----»nr, max .1max= ------------- o 'max 为max ©8.一连续系统在输入/⑺作用下的零状态响应〉"〕=/'〔4,〕,那么该系统为 ---------------- 系统〔线性时变性〕.线性时变9.假设/⑺最高角频率为9",那么对〕"〕一、"了〕"5〕取样,其频谱不混迭的最大间隔是------------ .T 万44= ------------ =T—* 3绦/⑵= ---------- ----------10./〔*〕的Z变换屋+ ]〕屋+ 2〕,尸⑵得收敛域为H>max〔Z],Z2〕= 2时,/⑹是因果序列.二、计算题〔共50分,每题10分〕1.某线性时不变连续时间系统的单位冲激响应川,〕和输入/⑺如图A-2所示,从时域求解该系统的零状态响应〕*〕.1、系统的零状态响应y«〕=%〕*、〔>如图A-4所示, 刈xp1 2 3图A-42.系统y'«〕+2y⑴=/«〕的完全响应为M + 3应.2、对微分方程取拉斯变换得sy〔s〕-y〔0-〕 + 2y 〔s〕 = F 整理得r〔5〕=2122+_Lr〔5 5 + 2 5 + 2因此有匕"〕=吗匕⑸」s + 2 , s +取拉斯反变换,得零输入响应为工〔力='〔.-〕6-4£.〕由给定的系统全响应可知,鼓励信号应为:fdd〕,因此,求系统的零输入响应和零状态响⑸〕严s〕其拉斯变换为图A-2"S 户占,因而有y f (t) = (ke t -ke 2t )e(t)因此.系统的全响应为y(t) = [ke-1 + NO"-,- 2 ]£«)+ 3二小⑴比拟,可得:k = 2, ),(.一)= 5 y x (t) = y(0')e^£(t) = 5e^£(t)系统的零状态响应为>7 (0 =叱-心把⑺=2(e-l - e-2f )s(t)i N-1*]=—Z/k —川3.N=5点滑动平均系统的输入输出关系为N“.,求系统的单位脉冲响应,并判断系统是否因果、稳定.3.根据系统的单位脉冲响应的定义,当系统的输入信号/(外为单位脉冲序列演幻时,其输出y (幻就是系统 的单位脉冲响应力依),即1 N-l 1 1h*) = — >5(k — n) = 一[6(= + d(k -1) + 5(k - 2) + d(k -3) + 5[k -4)]= 一国Z)-式k - 5)]NM 5 5由于 〃(%)满足 h(k) = 0,k <.£|力冈1=41=1 j- J 氏一0所以系统是因果、稳定的.H ⑸=———— -----------4.连续时间系统的系统函数1 + 2s- + 3s +1 ,写出其状态方程和输出方程°4.根据系统函数画出系统的模拟框图,并选择积分器的输出作为状态变量,如图A-5所示,围绕模拟框图输入 端的加法器可得到状态方程为图A-5吊(1)=々«),左⑺二七⑷,£3.)= _3.)_2勺.)_3七") + /«)围绕模拟框图输出端的加法器可得到输出方程为〉'“)=$⑺+9〞)5.在图A-3所示的系统中,周期信号〃⑺是一个宽度为1'(TV T)的周期矩形脉冲串,信号/⑺的频谱为 F(js),乙(s) =取拉斯反变换,得零状态响应为—F (5)=——-—— ........................ — 5 + 2 (s + l)(s + 2) 5 + 1 5 + 2与给定的系统全响应武')=[2,… 因此,系统的零输入响应为(1)计算周期信号p(f)的频谱工;⑵计算〃⑷的频谱率密度〃()⑼: ⑶求出信号/.⑺的频谱表达式分〞⑸(4)假设信号/⑺的最高频率为了使勺.⑹频谱不混迭,T 最大可取多大?TK 二(4)从信号(⑺的频谱表达式/"⑨可以看出,当多々2%时,色〞句频谱不混迭,即以三、综合计算题(共20分,每题10分)1.描述一线性时不变因果离散时间系统的差分方程为6y (女)一5y(k - 1) + y(k -2) = f(k)k >0/‘(%)=式k), >'(-1) =-2, y(—2) = 3,由 % 域求解:(1)零输入响应工(外零状态响应力(外,完全响应,'("): (2)系统函数“(Z ),单位冲激响应〃伏): (3)假设f*) = 2式k-D,重求⑴、(2) 1.(1)对差分方程两边进行z 变换得6y(z) — 5{/y (z) + >'(—l)} + {z-2y (z) + /N —l) + y(-2)} = F(z) 整理后可得*、5),(一1)一[-.(一1) 一),(一2), 尸⑵丫 (z) = --------------- ; --- S ------ + --------- ; ----- r6-5z +Z- 6-5z +z-请浏览后下载,资料供参考,期待您的好评与关注!〃⑺图A-35、(1)利用傅立叶级数的计算公式可得到周期信号〃⑺的频谱心为[7721 r/2F"=1J A U =1-7721 -r/2A T(—jS )C2万一初eyyr=r/2 r="r/2⑵周期信号P«)的指数函数形式的傅立叶级数展开式为XT AP3=£ 亏 Sa对其进行Fourier 变换即得〃⑴的频谱密度,(/助为X T AP(js) = 2笈Z —Sa〃=Y T⑶由于Jp ⑺= /("〃"),利用傅立叶变换的乘积特性,可得18 rA工,(加)=丁产(M*P (W )=c4 sin("g"2) _ tA T T3 — 〃%)一.)零输入响应的Z 域表示式为零状态响应的z 域表示式为取z 反变换可得系统零状态响应为系统的完全响应y ⑹=外〔幻+力*〕 = [-5〔夕+1〔乎+蛔.〔2〕根据系统函数的定义,可得取z 反变换即得系统单位冲激响应为〃〔攵〕=[;〔〕"一!〔9国外乙 乙 J J〔3〕假设/〔幻=2仪〞-1〕,那么系统的零输入响应以〔攵〕、单位冲激响应力〔口和系统函数"〔Z 〕均不变,根据线 性时不变特性,可得系统零状态响应为力伙〕=[一〔;〕1 + +1]£〔々 T 〕乙 J J系统全响应为y ⑹=X ⑹+力〔攵〕=[-沼〕氏+ R 〕>⑹+[-〔;产+杲严+ i]£d 〕 乙 乙 J J 乙 J J 2.连续时间线性时不变〔LTI 〕系统的微分器的系统函数为:Z (s) = s假设设:那么用〔2〕式代替〔1〕式中的s 来设计离散时间ED 系统的方法称之为双线性变换法.是在设计过程中须确定 的一个大于零的数.〔1〕试画出离散系统的框图.〔2〕确定离散时间系统的频率响应画出它的幅度及相位响应.2,解:〔1〕令"d 〔Z 〕为离散系统的系统函数,那么由题中给出的公式〔1〕和〔2〕得:(―T)工⑵=5y(-1) 一 zN-l) -),(-2)-13+2/ -9/2 7/36 — 5Z "+Z -26-5z" +z"取z 反变换可得系统零输入响应为o 1 7 1n 〔外=【一3〔3〕' +]〔7〕人上〔发〕丫售〕=尸⑵-1/2 1/6 1/26-5/+Z-2(6-527+1)(1-1)H(z) =1/2一 1/3F ⑺6-5Z "+Z -2। 1, 1 一六〃d (z) =因此可知该系统可由两个子系统级联构成,如图A-6 (a)所示:图A-7长沙理工大学拟题纸(7)一、填空(共30分,每题3分)1、某连续系统的零状态响应为,'(/)= 2/«)-1 ,试判断该系统特性(线性、时不变、稳定 性)-非线性、时不变、稳定系统-5(f)cos (2f)= J(r)cos(2r) = J(r)3、假设离散时间系统的单位脉冲响应为力(口={1,-1,2},那么系统在/(幻={1,2,-2,1}鼓励下的零状态响应r -/⑹*/?⑹= {1,1,27-5,2 •为.可简化为图A-6 (b):(b) 图A-6(2)由系统函数可得该系统的频率响应凡®%⑵L 出为%(*)=Ts 1 + 产 Tsq .n c. /.、 J 弓),2$皿(5)2 Q 虐—n 一n『=J- 5- = — tan(5)e -.-,彳、 J s CCS 厂外 2e - (e 2 +e -) cos (—)7 O 凡(*)= j — tan —注意Owl :时,有:Ts 2幅频特性和相频特性如图A-7 (a)、(b)所示.,Q(a)(b)4、一周期信号/⑷的周期"=2乃,其频谱为尸° =1,6 =05et=0.5e-,\ 尼=—0.2j,%=S2/ ,写出/(/)的时域表达式f(t)= £ F n e jn%, = 1 + 0.5/'*')+ 0.5V-G + 0,2je-j3^ - 0.2je j^'1 n-oo=1 + cos(gf + TT)+ 0.4cos(3gr - zr / 2)(由于 g = 24/" = 1)=1 + cos(f + 4)+ OAcosQt - /z7 2) = 1 -cos(Z) + 0.4siii(3r)nv .、2+〃y. F〔JCD〕= ------- ----------5、信号/«〕= e cos〔100f〕£〔f〕的频谱2/&〕=o100?+4-b6、连续系统与离散系统的重要区别特点是,离散系统的频谱具有周期性:7、设连续时间信号/⑺的傅立叶变换为产".〕,那么尸〔"〕的傅立叶变换为.2叭-⑼.8、单位门信号gf«〕的频谱宽度一般与其门信号的宽度T有关,T越大,那么频谱宽度越窄 .9、拉普拉斯变换域傅立叶变换的根本差异是J言号满足绝对可积条件时才存在傅立叶变换:它们的关系是—而信号不满足绝对可积条件时也可能存在拉普拉斯变换:产sin co , d coJ co10、二、计算题〔共50分,每题10分〕F〔5〕=——1、s〔Je "〕,收敛域Re〔s〕>°,试求其拉氏反变换了⑴,并画出了⑺的波形.1 1 1 00।L 由于自四一 "〕= h, 〔Re⑸>.〕x 12"〕 0 r令7 = 2,得〃・. 1-6 O由傅立叶变换的时域卷积性质,有X00f ⑴=s〔t〕 * Z 5〔1 - 2"〕 =>" 2〃〕〃-. 〃i〕,其波形如图A-6所示.⑴系统的单位冲激响应力〞);(2)输入 fS = 1 + 0・6cosf + 04cos3f + 0.2cos5fLs <t <s ,系统的输出 y(f). 2.解(1)由于H ,(ja )) = ~[g 2(co-3)-g 2(co+3)]+[3(cD-2)-3(co+2)]乙又由于江 -,由调制定理,可得-Sa«) sin(3r) =,■;[w (公 一 3) — 心(刃 + 3)1乃 2)一/’Sa(f)sin(3f)o -2[g2(G-3)-g2(G + 3)]2由于sin(2f) = -M33-2)-53+2)],即—sin(2r) = 6(3—2)-6(—+2) 7t由频域微分性质,可知:一"〃")0所以有一 jth(t) = -—[ Sa(t) s in(3r) - s in(2r)]万 ,整理得1 3 2h(t) = —[Sa(0 sin(3f) - sin(2z)] = — Sa(t)Sa(3t)--Sa(2t)(2)由于""⑼是一个带通滤波器,下限角频率为 的信号分量可以通过该滤波器.由 COS3J) T 〃(J4)|cos 画/ + 收.)]可知O.4cos0r) —>0.4|H(j3)|cos|3r+ ^?(3)]2、某连续LTI 时间系统得频率响应〞(/⑼如图A-1所示,试求:7t2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s。
信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是( D ):A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2,则其和信号x(t)+y(t) 是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和 ,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。
3.下列说法不正确的是( D )。
A、一般周期信号为功率信号。
B、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C、ε(t)是功率信号;D、e t为能量信号;4.将信号f(t)变换为( A )称为对信号f(t)的平移或移位。
A、f(t–t0)B、f(k–k0)C、f(at)D、f(-t)5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、)0(d )()(f t t t f =⎰+∞∞-δ9.下列基本单元属于数乘器的是( A ) 。
信号与系统题库(完整版)

信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。
A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。
[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。
A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。
A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。
信号与系统考试试题库

..信号与系统试题库一、填空题:1.计算 e (t 2)u(t) (t3)。
2.已知 X (s)11的收敛域为 Re{ s} 3 , X (s) 的逆变换3s1s为。
3.信号 x(t)(t )u(t )u(t t 0 ) 的拉普拉斯变换为。
4.单位阶跃响应 g (t) 是指系统对输入为的零状态响应。
5.系统函数为 H (s)1的 LTI系统是稳定的,则 H ( s) 的收敛域(s2)(s 3)为。
6.理想滤波器的频率响应为 H ( j )2,1000,,如果输入信号为100x(t)10 cos(80t) 5 cos(120t ) ,则输出响应 y(t) =。
7.因果 LTI系统的系统函数为s2则描述系统的输入输出关系的H ( s),s24s 3微分方程为。
8.一因果 LTI 连续时间系统满足:d 2 y( t )5 dy (t ) 6 y ( t ) d 2 x( t )3 dx ( t) 2 x (t ) ,则系统的单位冲激响应h(t)dt 2dt dt 2dt 11.卷积积分 x(t t1 ) *(t t 2 )。
12.单位冲激响应 h(t ) 是指系统对输入为的零状态响应。
13. e 2t u(t) 的拉普拉斯变换为。
14.11的收敛域为3Re{ s} 2 , X (s) 的逆变换已知 X (s)ss 23为。
15.连续 LTI 系统的单位冲激响应h(t )满足,则系统稳定。
16.已知信号 x(t ) cos(0t ) ,则其傅里叶变换为。
17.设调制信号 x(t) 的傅立叶变换 X ( j)已知,记已调信号 y(t ) 的傅立叶变换为Y( j) ,载波信号为 c(t)e j0t , 则Y ( j )=。
18.因果 LTI 系统的系统函数为H (s)s 1,则描述系统的输入输出关系的微5ss26分方程为。
19一连续时间周期信号表示为 x(t)a k e jk0t,则 x(t ) 的傅立叶变换kX ( j) =。
信号系统期末考试

常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库01试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、信号)(t f 波形如右图所示,则其表达式为 B ;A )]1()1([+--t u t u tB )]1()1([--+t u t u tC )]1()1([++-t u t u tD )]1()1([/1+--t u t u t2、下列说法错误的是 B ;A 系统的零状态响应包括自由响应和强迫响应两部分;B 若系统初始状态为零,则系统的零状态响应就是系统的强迫响应;C 零状态响应与系统起始状态无关,而由系统的激励信号产生;D 零输入响应与系统激励无关,而由系统的起始状态产生;3、已知()f t 的频谱函数为()F j ω,则()cos c f t t ω的频谱函数 为 A ;A[])()(21c c j j F j j F ωωωω-++ B [])()(21c c j j F j j F ωωωω--+ C [])()(21c c j j F j j F ωωωω+-- D [])()(41c c j j F j j F ωωωω--+4、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的单边..拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sF C. )0()(-+f s sF D. ⎰-∞-+0)(1)(ττd f ss sF5、已知1()f k 的Z 变换为1()F z ,2()f k 的Z 变换为2()F z ,则12()*()f k f k 的Z 变换结果为 C ;A 12()*()F z F zB 121()*()2F z F z π C 12()()F z F z D 121()()2F z F z π二、填空题15分,每题3分1、所谓线性系统是指其具有_________齐次性_______和___________ 叠加性____;2、积分(3)t t e dt δ∞--∞+⎰=______3e ____________;3、频谱函数)2()2()(++-=ωδωδωj F 的傅立叶逆变换)(t f 为t 2cos 1π;4、已知信号的最高频率为f ,要抽样后的信号能完全恢复原信号,则最大抽样间隔为 1/2f ;5、函数)(2cos t tu 的拉普拉斯变换为_____24ss +;三、计算卷积14分,每题7分1)()(2t u e t u e t t --*⎰⎰------==*tttt ttt u d eet u d eet u et u e 020)(22)()()()(τττττ4分)()()()1(22t u e e t u e e t t t t ----=-=3分2已知两个有限序列}3,2,1{)(-=k x ,}1,1,1,1{)(-=k h ,求)()(k h k x *;利用就地相乘法方法4分,结果2分1 1 1 1 × 123 = 3 3 3 3 2 2 2 2 1 1 1 1=1 3 6 6 5 3其中,k =0时的值为11分四、试判断系统)()(2t e t r =是否为线性的,时不变的,因果的 并证明之;9分 解:令)()]([)(2t e t e T t r ==,其中][⋅T 代表系统函数;)]([)(11t e T t r =,)]([)(22t e T t r =那么2221122112222112211)]()([)]()([)()()()(t e C t e C t e C t e C T t e C t e C t r C t r C +=+≠+=+ ∴系统是非线性的; 3分)]([)()-(0020t t e T t t e t t r -=-= ,∴系统是时不变的;3分由于)()(2t e t r =可知,系统输出只与当前的输入值有关,因而系统是因果的;五、已知)(t f 的双边拉普拉斯变换为)(s F ,试证明⎰∞-td f ττ)(的双边拉氏变换为s s F /)(;6分 证明:[])(t f L 代表)(t f 的拉普拉斯变换;⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t )(=)](*)([t u t f L 3分 ⎥⎦⎤⎢⎣⎡⎰∞-ττd f L t)(=[]s s F s s F t u L t f L /)(/1)()]([)(=•=• 3分六、已知矩形脉冲信号)(t f 如右图所示, (1) 写出)(t f 的时域表达式; (2) 求)(t f 的频谱函数; (3) 画出)(t f 频谱图;12分 解:1)21()21()(--+=t u t u t f 3分2)(t f 中1=A ,1=τ1分⎪⎭⎫⎝⎛↔=2)()(ωτττSa A t g t f 4分-1/21/20t所以,)2()(ωωSa j F =1分34分其中,E =1,1=τ七、描述某系统的微分方程为)()(2)(t f t y t y =+',求输入)()(t u e t f t -=时系统的响应;14分解:取傅氏变换,有)()(2)(ωωωωj F j Y j Y j =+2分21)()()(+==ωωωωj j F j Y j H 2分输入信号11)()()(+=↔=-ωωεj j F t e t f t 3分 故:1111)1)(2(1)()()(+-+=++==ωωωωωωωj j j j j F j H j Y 4分 取反变换)()()(2t e e t y t t ε---=3分八、已知线性时不变系统的差分方程为()()()n u n y n y 512=-+ ,()11=-y ,求系统的全响应;15分 解:202-==+r r齐次解()()nh C n y 21-=3分特解()()(常数)时全为 5 05≥=n n u n x ()C n y p =∴)0(52≥=+n C C35=∴C 3分 全解()()()()3521+-=+=np h C n y n y n y 2分()迭代出由11=-y 3)1(25)0( 0=--==y y n 3分()(),得代入 解3521+-=nC n y()35301+==C y341=∴C 2分 ()()035234≥+-=∴n n y n 2分常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库02试题总分: 100 分 考试时限:120 分钟一、选择题15分,每题3分1、函数)(t f 的波形如下图所示,则)(t f 的一次积分的波形为A ;A B C D2、连续周期信号的频谱具有 D ;A 连续性、周期性B 连续性、收敛性C 离散性、周期性D 离散性、收敛性3、已知)()(ωF t f ↔,则)24(t f -的频谱函数为 A ; A ωω2)2(21j e F -- B ωωj e F --)2(21 C ωω2)2(21j e F - D ωω2)2(21j e F ---4、拉普拉斯变换性质中,卷积定理的形式正确的是 A ;A )()()()(2121s F s F t f t f ↔*B )()(2)()(2121s F s jF t f t f *↔*πC )()(21)()(2121s F s F jt f t f π↔* D )()(2)()(2121s F s jF t f t f *↔π5、序列)(])1(1[21k u k -+的Z 变换为 B ;A 221z z +B 221z z -C 21z z +D 21z z -二、填空题15分,每题3分1、系统的全响应可分解为 零状态响应 和零输入响应两部分响应之和,又可以分解为 自由响应和强迫响应两部分响应之和; 2、积分⎰+∞∞-⋅dt t tt)(22sin δ等于 4 ;3、频谱结构中,当脉宽减小时,信号的频宽____增大 _;4、信号)()1()(t u e t f t α--=的象函数为_________()as s a +;5、12()2F z z z --=+对应的原始时间序列为 (1)2(2)k k δδ-+- 三、已知信号ft=)]23cos(31)22cos(21)2[cos(2111πωπωπωπ-+-+-t t ,画出ft 的单边、双边幅度频谱图和相位频谱图;12分解:单边谱:每图3分 双边谱:每图3分111四、设)()(ωj F t f ↔,求下列各式的频谱函数;15分,每题5分 1)3()3(t f t -- 解:由展缩特性)31(31)3(ωj F t f -↔-2分由频域微分特性)31(31)]31(31[)3(ωωωωj F d d j j F d d jt tf -=-↔-2分 因此)31()31(31)3(3)3()3()3(ωωωj F j F d d j t f t tf t f t ---↔---=--1分2dtt df )42(+-解:由展缩和时移特性,得ωωj e j F t f 2)21(21)42(--↔+-3分 再根据时域微分特性ωωωj e j F j t f dt d 2)21(21)42(--↔+-2分 3t j e t f 2)23(-- 解:由展缩和时移特性,得ωωj e j F t f 32)31(31)23(-↔-3分再根据频移特性)2(322)]2(31[31)23(+--+↔-ωωj tj e j F et f 2分 下方程和非零起始条件表示的连续时间因果LTI 系统,⎪⎩⎪⎨⎧==+=++--5)0(',2)0()(52)(4522y y t f dtdft y dt dy dt y d 五.已知输入)()(2t u e t f t-=时,试用拉普拉斯变换的方法求系统的零状态响应)(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t ;15分 解:方程两边取拉氏变换:)(455245)0(5)0(')0()()()(22s F s s s s s y y sy s Y s Y s Y zi zs ⋅++++++++=+=---3分 455221459222+++⋅+++++=s s s s s s s 43/713/134592)(2+-+=+++=s s s s s s Y zi 2分 )()37313()(4t u e e t y t t zi ---=3分42/122/111459221)(2+-+-+=+++⋅+=s s s s s s s s Y zs 3分 )()2121()(42t u e e e t y tt t zi -----=2分 )()61721316()()()(42t u e e e t y t y t y t t t zi zs -----=+=2分六、有一因果离散时间LTI 系统,激励为)()21()(1n u n f n =时,全响应为)()21()(2)(1t u n u n y n n -=;起始状态不变,激励为)()21(2)(2n u n f n =时,其全响应为)()21(2)(23)(2n u n u n y n n -⋅⋅=,求:1系统的零输入响应,2激励为)()21(5.0)(3n u n f n ⋅=时的完全响应起始状态保持不变;14分 解:设相同初始条件下,零输入响应分量)(n y zi ,则 )()()(11n y n y n y zi f +=2分 由线性关系)()(2)()()(122n y n y n y n y n y zi f zi f +=+=3分解得:)()21()(22)(1n u n u n y n n f -⋅=2分因此)(2)()()(11n u n y n y n y n f zi -=-=2分所以)()(5.0)()()(133n y n y n y n y n y zi f zi f +=+=3分)()21(21)(3n u n y n⋅-=2分 七、已知系统框图如下,求该系统的单位样值响应;14分解:可得()()()()()261523---+--=n y n y n x n x n y即()()()()()232615--=-+--n x n x n y n y n y 4分 求得齐次解n n C C 2321+2分假定差分方程式右端只有xn 项起作用,不考虑3xn-2项作用,此时系统单位样值响应为)(1n h ; 由1)0(1=h ,0)1(1=-h 可得⎪⎩⎪⎨⎧+=+=2121213101C C C C解得31=C ,22-=C())(23)(111n u n h n n ++-=4分当-3xn-2项起作用时,由线性时不变特性 ())2(233)(112---=--n u n h n n 2分)2()23(3)()23()()()(111121----=+=--++n u n u n h n h n h n n n n 2分也可通过Z 变换得到常熟理工学院20 ~20 学年第 学期信号与系统考试试卷试卷库03试题总分: 100 分 考试时限:120 分钟一、填空题本大题共10小题,每小题2分,共20分;不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;1、对于连续的线性系统,若输入为)(1t f 时的响应为)(1t y ,输入为)(2t f 时的响应为)(2t y ,则对于任意常数1a 和2a , 输入为)()(2211t f a t f a +时的响应为______)()(2211t y a t y a +2、某连续系统的输入信号为f t,冲激响应为h t,则其零状态响应为____)(*)(t h t f3、一线性时不变连续时间系统是稳定系统的充分且必要条件是系统函数的极点位于S 平面的 左半平面 ;4、=--)(*)(2τδt t u e t )()(2ττ---t u e t5、()dt t e t 12-⎰+∞∞--δ= e -2 ; 6、已知 ft 的傅里叶变换为Fj ω, 则f2t-3的傅里叶变换为 )2(2123ωωj F e j - ; 7、已知 651)(2+++=s s s s F ,则=+)0(f 1 ; =∞)(f 0 ;8、、若描述某线性时不变连续系统的微分方程为)(3)()(2)(2)(t f t f t y t y t y +'=+'+'',则该系统的系统函数Hs=__223)(2+++=s s s s H ___________; 9、信号)(n u a n 的z 变换为_____az z- ________;10、已知信号的最高频率为m f ,要使抽样后的信号能完全恢复原信号,则最大的抽样间隔为mf 21 二、选择题本大题共10小题,每小题2分,共20分;在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内;1、假如周期矩形脉冲信号的周期为T ,脉冲宽度为τ,高度为A ,下列关于对周期矩形脉冲信号的频谱叙述不正确的是 B ;A. 当T 不变,将τ减小时,频谱的幅度将减小B. 当T 不变,将τ减小时,相邻谱线的间隔将变密C. 当T 不变,将τ减小时,频谱包络线过零点的频率将增高D. 当τ不变,将T 增大到∞时,频谱将由离散谱变为连续谱 2、题2图中信号)(t f 的表达式是 A ;A. )1()]1()([-+--t u t u t u tB. )]1()([--t u t u tC. )]1()()[1(---t u t u tD. )]2()([--t u t u t3、已知)(t f 的波形如题3a 图所示,则)22(--t f 为图3b 图中的的波形为 A ;4、积分⎰∞∞--+dt t t )2()1(2δ的值为 D ;A.1B.3C.4D.55、已知)(t f 的拉普拉斯变换为)(s F ,则dtt df )(的拉普拉斯变换为 B ; A. )(s sF B.)0()(--f s sFC. )0()(-+f s sFD. ⎰-∞-+0)(1)(ττd f s s sF6、周期信号)(t f 如题6图所示,其三角形式傅里叶级数的特点是 B ;A. 含余弦项的偶次谐波且含直流分量B. 含余弦项的奇次谐波且无直流分量C. 含正弦项的奇次谐波且无直流分量D. 含正弦项的偶次谐波且含直流分量7、已知dtt d t f )()(δ=,则其频谱)(ωj F 等于 C ; A.ωj 1 B.)(1ωπδω+jC. ωjD.)(21ωπδω+j 8、题8图a 中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态其初始状态分别为)0(-L i 和)0(-C u ,请在题8图b 中选出该电路的s 域模型为 B ;_题8图(a))(t u c b-L 1题8图(b)sc -A.-L 1sc -B.-L 1sc -C.-L 1sc -D.9、已知某离散序列,其它, , ⎩⎨⎧=≤=n N n n f 0||1)(该序列还可以表述为 C ; A. )()()(N n u N n u n f --+= B. )()()(N n u N n u n f ---+-= C. )1()()(---+=N n u N n u n f D. )1()()(----+-=N n u N n u n f 10、离散信号fn 是指 BA .n 的取值是连续的,而fn 的取值是任意的信号B .n 的取值是离散的,而fn 的取值是任意的信号C .n 的取值是连续的,而fn 的取值是连续的信号D .n 的取值是连续的,而fn 的取值是离散的信 三、计算题本题共16分1已知 6116332)(232+++++=s s s s s s F ,试求其拉氏逆变换ft ;8分解:1找极点())3)(2)(1(3322+++++=s s s s s s F 2分2展成部分分式 ()321321+++++=s k s ks k s F 2分 362511)( +++-++=s s s s F 所以 2分()[]1e αs t u L t +=-α根据 ()0e 6e 5e )(:32≥+-=---t t f tt t 得 2分2()。
信号与系统试题库整理

信号与系统试题库整理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】信号与系统试题库一、选择题共50题1.下列信号的分类方法不正确的是(A):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是(D):A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2,则其和信号x(t)+y(t)是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和 ,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。
3.下列说法不正确的是(D)。
A、一般周期信号为功率信号。
B、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C、ε(t)是功率信号;D、e t为能量信号;4.将信号f(t)变换为(A)称为对信号f(t)的平移或移位。
A、f(t–t0)B、f(k–k0)C、f(at)D、f(-t)5.将信号f(t)变换为(A)称为对信号f(t)的尺度变换。
A、f(at)B、f(t–k0)C、f(t–t0)D、f(-t)6.下列关于冲激函数性质的表达式不正确的是(B)。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t t εττδ=⎰∞-D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是(D )。
A 、⎰∞∞-='0d )(t t δB 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞-D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是(B )。
A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δC 、)(d )(t tεττδ=⎰∞-D 、)0(d )()(f t t t f =⎰+∞∞-δ9.)1()1()2(2)(22+++=s s s s H ,属于其零点的是(B )。
信号与系统参考题库

信号与系统参考题库一、选择题 (2*8=16分) 1、信号)(t f 波形如右图所示,则其表达式为( )。
(A ) )]1()1([+--t u t u t (B ) )]1()1([--+t u t u t(C ) )]1()1([++-t u t u t (D ) )]1()1([/1+--t u t u t 2、下列说法错误的是( )。
(A )系统的零状态响应包括自由响应和强迫响应两部分;(B )若系统初始状态为零,则系统的零状态响应就是系统的强迫响应; (C )零状态响应与系统起始状态无关,而由系统的激励信号产生; (D )零输入响应与系统激励无关,而由系统的起始状态产生。
3、右图所示信号波形的时域表达式是( )。
(A ))1()1()()(---=t u t t u t f (B ) )1()()(-+=t u t tu t f (C ))1()()(--=t u t tu t f (D ) )1()1()()(---=t u t t tu t f 4、因果信号是指( )。
(A )若t<0时有)(t f <0,而t>0时有)(t f >0 (B )若t<0时有)(t f >0,而t>0时有)(t f <0 (C )若t<0时有)(t f =0,而t≥0时有)(t f ≠0 (D )若t<0时有)(t f =0,而t>0时有)(t f >0 5、积分式⎰--+++442)]2(2)()[23(dt t t t t δδ的积分结果为( )。
A .14B .24C .26D .286. 序列)8()(--k u k u 的Z 变换为( )。
(A )611z z -- (B )17---z z z (C )7211z z --- (D )6311z z --7、为使LTI 连续系统是稳定的,其系统函数H(s)的极点必须在s 平面的( )。
信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统试卷题库完整

信号与系统题库一.填空题1. 的周期为: 10 。
4.==7. LTI系统在零状态条件下,由引起的响应称为单位冲激响应,简称冲激响应。
8. LTI系统在零状态条件下,由引起的响应称为单位阶跃响应,简称阶跃响应。
13. 当周期信足狄里赫利条件时,则可以用傅里叶级数表示:,由级数理论可知:= ,,。
14. 周期信号用复指数级数形式表示为:,则。
15. 对于周期信号的重复周期T当保持周期T,相邻谱线的间隔不变,频谱包络线过零点的频率,频率分量增多,频谱幅度的收敛速度相应变慢。
16. 对于周期信号的重复周期T当T增大时,则频谱的幅度随之,相邻谱线的间隔变小,谱线变密,但其频谱包络线过零点的坐标。
17.= 。
反变换18.19.的傅里叶变换为:的频谱是。
的频谱是。
22. 的频谱是。
23. 在时-的频谱是。
24.是。
25. 的频谱是。
26. 的频谱是。
27.。
28. z变换为。
29. z变换为。
二、作图题:12. 画出如下信号的波形。
a) f(-2t) b) f(t-2)3. (本题94. 求下列周期信号的频谱,并画出其频谱图。
5.6.7.三、计算题:1. 判断下列系统是否为线性系统。
(本题6)2.已知某连续时间LTI求:1.2. 3. 4.3. 给定系统微分方程初始条件s域分析法求其全响应。
4.5. 如图所示系统,已知输入信号()t f 的频谱为()ωF ,试画出信号()t y 的频谱。
6. 连续线性LTI 因果系统的微分方程描述为:)(3)('2)(10)('7)("t x t x t y t y t y +=++(1)系统函数H (s ),单位冲激响应h (t ),判断系统是否稳定。
(2)画出系统的直接型模拟框图。
7. 设有二阶系统方程 0)(4)('4)("=++t y t y t y ,在某起始状态下的初始值为:1)0(=+y , 2)0('=+y , 试求零输入响应。
信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
信号与系统试题库

1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
信号与系统试题库含答案

2、
F (s)
s2 s2
4s 5 3s 2
[答案:(1) f (t) ( 2 e2t 2 e3t )(t)
3
3
(2) f (t) (t) (2et e2t ) (t) ]
十、已知系统的传递函数
H
(s)
s2
s4 3s
9
9
或: h(t) (1 et 17 e10t ) (t) ]
9
9
七、 图(a)所示系统,其中 f (t) sin 2t , s(t) cos(1000t) ,系统中理想带通滤波
2 t
器的频率响应如图(b)所示,其相频特性() 0, 求输出信号 y(t) 。
[答案: sin t cos1000t
B. e3tu(t)
C. e3tu(t)
D. e3tu(t)
7. f (t) e2tu(t) 的拉氏变换及收敛域为( )
A. 1 , Re{s} 2
s2
B. 1 , Re{s} 2
s2
C. 1 , Re{s} 2
s2
D. 1 , Re{s} 2
s2
8.
F (s)
)
A. 1 e j5
2 j
B. 1 e j2
5 j
C. 1
2 j( 5)
D.
1
2 j( 5)
5.已知信号 f(t) 如图所示,则其傅里叶变换为(
)
A.
2
Sa(
4
)
2
Sa(
2
)
B.
Sa(
4
信号与系统试题库及答案

信号与系统试题库及答案信号与系统试题库及答案,共22页1.下列信号的分类办法不正确的是(A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是(D ):A 、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B 、两个周期信号x(t),y(t)的周期分离为2和,则其和信号x(t)+y(t) 是周期信号。
C 、两个周期信号x(t),y(t)的周期分离为2和,其和信号x(t)+y(t)是周期信号。
D 、两个周期信号x(t),y(t)的周期分离为2和3,其和信号x(t)+y(t)是周期信号。
3.下列说法不正确的是(D )。
A 、普通周期信号为功率信号。
B 、时限信号(仅在有限时光区间不为零的非周期信号)为能量信号。
C 、ε(t)是功率信号;D 、et 为能量信号;一、填空(每空1分,共15分)1、离散信号基本运算有;;;四种。
2、拉氏变换中初值定理、终值定理分离表示为)(lim )0(S SF f S ∞→=,;)(l i m )(0S SF f S →=∞ 。
3、延续系统的分析办法有时域分析法;频域分析法和复频域分析法。
这三种分析办法,其输入与输出表达式分离是y(t)=h(t)*f(t); Y(jω)= H(jω)?. F(jω); Y(s)= H(s)?. F(s)集美高校2022—2022学年第2学期信号与系统试卷及答案一、推断题(共9分,每题1.5分,对的打“V ”,错的打“X ”)。
1、一个信号的脉冲持续时光越小,它的频带宽度也就越小。
(× )2、一个信号的脉冲幅度数值越大,它的频谱幅度也就越大。
(V )3、一个能量有限的延续时光信号,它一定是属于瞬态信号。
(V )4、一个功率有限的延续时光信号,它一定是属于周期信号。
(× )5、一个因果稳定的延续时光系统,它的零极点必定都位于S 左半平面。
信号与系统试卷题库

信号与系统题库一.填空题1. 正弦信号)4/2.0sin(5)(ππ+=t t f 的周期为: 10 。
2.))()1((t e dtdt ε--=)(t e t ε-3.ττδd t⎰∞-)(=)(t ε4.⎰+---⋅325d )1(δe t t t = 5.⎰+∞∞--⋅t t d )4/(δsin(t)π=6. )(*)(t t εε=)(t t ε7. LTI 系统在零状态条件下,由引起的响应称为单位冲激响应,简称冲激响应。
8. LTI 系统在零状态条件下,由引起的响应称为单位阶跃响应,简称阶跃响应。
9. )(*)(t t f δ=)(t f10. )('*)(t t f δ=)('t f11. )(*)(21t f t f 的公式为 12. =2*)(t δ13. 当周期信号)(t f 满足狄里赫利条件时,则可以用傅里叶级数表示:∑∞=++=1110)]sin()cos([)(n n n t nw b t nw a a t f ,由级数理论可知:0a =,n a = ,n b = 。
14. 周期信号)(t f 用复指数级数形式表示为: ∑∞-∞==n tjnw neF t f 1)(,则n F = 。
15. 对于周期信号的重复周期T 和脉冲持续时间τ(脉冲宽度)与频谱的关系是: 当保持周期T 不变,而将脉宽τ减小时,则频谱的幅度随之 ,相邻谱线的间隔不变,频谱包络线过零点的频率,频率分量增多,频谱幅度的收敛速度相应变慢。
16. 对于周期信号的重复周期T 和脉冲持续时间τ(脉冲宽度)与频谱的关系是: 当保持周期脉宽τ不变,而将T 增大时,则频谱的幅度随之 ,相邻谱线的间隔变小,谱线变密,但其频谱包络线过零点的坐标。
17. 对于非周期信号)(t f 的傅里叶变换公式为:)(w F = 。
反变换公式:)(t f =18. 门函数⎪⎩⎪⎨⎧<=其他2||1)(ττt t g 的傅里叶变换公式为:19.)()(2t t εδ+的傅里叶变换为:20. te23-的频谱是。
(完整版)信号与系统试题库-整理

信号与系统试题库一、选择题共50题1.下列信号的分类方法不正确的是( A ):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是( D ):A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2,则其和信号x(t)+y(t)是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和 ,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号. 3。
下列说法不正确的是( D ).A、一般周期信号为功率信号。
B、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C、ε(t)是功率信号;D、e t为能量信号;4.将信号f(t)变换为( A)称为对信号f(t)的平移或移位。
A、f(t–t0)B、f(k–k0)C、f(at)D、f (—t)5.将信号f(t)变换为(A)称为对信号f(t)的尺度变换。
A 、f (at )B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B ).A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞-D 、)()-(t t δδ=7。
下列关于冲激函数性质的表达式不正确的是(D).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t t εττδ=⎰∞-D 、⎰∞∞-=')(d )(t t t δδ8。
下列关于冲激函数性质的表达式不正确的是( B ).A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δC 、)(d )(t t εττδ=⎰∞-D 、)0(d )()(f t t t f =⎰+∞∞-δ9。
信号与系统考试题及答案

信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。
傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。
2. 解释什么是系统的冲激响应,并举例说明。
答案:系统的冲激响应是指系统对单位冲激信号的响应。
它是系统特性的一种表征,可以用来分析系统对其他信号的响应。
例如,一个简单的RC电路的冲激响应是一个指数衰减函数。
三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。
答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。
信号与系统试题库

信号与系统综合复习资料一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档为O 信号与系统试题库一、填空题:1・ 计算 e (t 2)u(t) (t 3) 。
2. 已知X(s) — 士的收敛域为Re{s} 3, X(s)s 3 s 1的逆变换为。
3. 信号x(t) (t) u(t) u(t to)的拉普拉斯变换为。
4. 单位阶跃响应 g(t )是指系统对输入为 的零状态响应。
5. 系统函数为H (S )( 2); 3)的LTI 系统是稳(s 2)(s 3) 定的,贝g H(s)的收敛域 为。
6. 理想滤波器的频率响应为 H (j ) 2' 100 ,如果输入信号为 0, 100 7x(t) 10cos(80 t) 5cos(120 t), 则输出响应y(t)则描述系统的输入输出关系的微分方程7. 因果LTI 系统的系统函数为H(s) s 2s 2 4s 3精品文档8. 一因果LTI连续时间系统满足:弟5畔6y(t) d^ 3畔2x(t),则系统的单dt d t dt dt 7位冲激响应h(t) 为。
9.对连续时间信号X a(t) 2sin(400 t) 5cos(600 t)进行抽样,则其奈奎斯特频率为。
10.给定两个连续时间信号X(t)和h(t), 而x(t)与h(t)的卷积表示为y(t),则x(t 1) 与h(t 1)的卷积为。
11.卷积积分X(t t1)* (t t2) 。
12.单位冲激响应h(t)是指系统对输入为的零状态响应。
13. e 2t u(t)的拉普拉斯变换为。
14.已知X(s)七七的收敛域为 3 Re{s} 2 ,s 2 s 3X (S)的逆变换为 _____________________15.连续LTI系统的单位冲激响应h(t)满足____________________ ,贝g系统稳定。
为。
17.设调制信号X(t)的傅立叶变换X(j )已知,16.已知信号X(t) cos( 0t),则其傅里叶变换精品文档记已调信号y(t)的傅立叶变换为Y(j),载波信号为c(t) e j 0t,则Y(j )= 。
18.因果LTI系统的系统函数为H(s)暑二,s 5s 6 J 则描述系统的输入输出关系的微分方程为。
19 一连续时间周期信号表示为x(t) a k e jk 0t,k则x(t) 的傅立叶变换X(j )= 。
20.某一个连续时间信号x(t)的傅里叶变换为亠,则信号tx(t) 的傅里叶变换j 1为。
21. 2 平(t)dt 。
22.信号x(t倒x(at)的运算中,若a>1,则信号x(t)的时间尺度放大a倍,其结果是将信号x(t)的波形沿时间轴__________ a倍。
(放大或缩小)23.已知x(t)的傅里叶变换为X(j ),则(t 1)x(t)的傅里叶变换为__________ 。
24.已知x[n] {1,2,2,1}, h[n] {3,6,5},则卷积和x[ n] * h[ n] ___________________ 。
25.信号时移只改变信号的_______________ 频谱;不改变信号的____________ 频谱。
26.单位冲激响应h(t)与单位阶跃响应s(t)的关系为__________________ 。
27.设两子系统的单位冲激响应分别为h i(t)和,则由其并联组成的复合系统的单位冲激h2(t)响应h(t)= _____________________ 。
28.周期为T的连续时间信号的频谱是一系列_____________ 的谱线,谱线间的间隔为29.离散时间信号x i[n]与x2[n]的卷积和定义为。
X i[n]* X2【n] ___________________________30.单位冲激序列[n]与单位阶跃序列u[n]的关系为_______________ 。
31.系统输入为X(t),响应为y(t)的因果LTI连续时间系统由下式描述:警2y(t) 3讐x(t),dt dt 1则系统的单位冲激响应为32.连续时间信号te at u(t)的傅里叶变换h(t)= 。
为。
33卷积和n [n]* [n 2] 。
34.连续时间信号t2e at u(t)的拉氏变换为。
35.若某系统在信号x(t)激励下的零状态响应,则该系统的单位冲激响应y x(t)t x(t)dth(t) ________________ 。
36 .设两子系统的频率响应分别为比仃)和H2(j ),则由其串联组成的复合系统的频率响应H(j )= ________ 。
37.设反因果连续时间LTI系统的系统函数H(s) 土 ,则该系统的频率响应S 2 ‘H(j ) _________________ ,单位冲激响应h(t)_____________________ 。
38.如果某连续时间系统同时满足___________ 和________ ,则称该系统为线性系统。
39.设两子系统的单位冲激响应分别为h1(t)和h2(t),则由其串联组成的复合系统的单位冲激响应h(t)= _____________________________________ 。
40.已知周期连续时间信号x(t)厂,则其傅里41.如果对带限的连续时间信号x(t)在时域进叶变换为___________________ 。
41.如果对带限的连续时间信号x(t)在时域进行压缩,其对应的频带宽度则会__________ ;而对其在时域进行_________ ,其对应的频带宽度则会压缩。
42.连续时间LTI系统的完全响应可以表示为零状态响应和之和__________________ 。
43.已知系统1和系统2的系统函数分别为H’s)和H2(S),则系统1和系统2在并联后,再与系统2串联组成的复合系统的系统函数为44.x(t)dt是信号x(t)的傅里叶变换存在的________ 条件。
45.信号的拉普拉斯变换为46.已知x(t)的傅里叶变换为x(j ),x(t)的波形如图所示,47.已知连续时间信号x(t)罟,则其傅里叶54.已知某连续时间信号x(t)的频谱为(),则变换X(j ) _________________________________ 。
48. 周期矩形脉冲信号的周期越大,则其频 谱谱线之间的间隔越 __________ 。
49. 已知某因果连续时间系统稳定,贝淇系 统函数H(s)的极点一定在s 平面的50. 已知连续时间信号x (t )的拉普拉斯变换为 X(s) &,Re{s} 1 , 贝y x(t)* (t 1) _________________________________ 。
51. 已知某连续LTI 系统满足微分方程H(s) _______________________________ 。
52. 已知某连续时间LTI 系统的输入信号为 x(t),单位冲激响应为h(t),贝M 系统的零状态响 应y(t) ___________________________________ 。
53. 已知连续时间LTI 系统的初始状态为零, 当系统的输入为u(t)时,系统的响应为e 2t u(t), 则当系统输入为(t)时,系统的响应为原信号x(t) ________________________________ 。
2d y(t) 2dy(t) dt 2 dt 2y(t) dx(t)dt 3x(t)则该系统的 系统函数55.已知某连续时间LTI系统,若输入信号为eb(t),系统的零状态响应为e t u(t) e2t u(t),则系统的频率响应H(j ) ___________________________________ 。
56.已知连续时间因果信号x(t)的拉普拉斯变换为X(s),则信号* x( 1)d的拉普拉斯变换为57.某连续时间LTI系统对任意输入x(t)的零状态响应为x(t t o),t o 0,则该系统的系统函数H(s) _______________________________ 。
58.已知连续信号x(t)的拉普拉斯变换为X(s) —1—e s,Re{s} 0,贝U x(t)=。
s(2s 1) ------------------------------------------------- 59.连续时间信号x(t)的频谱包括两个部分,它们分别是_________ 和________ 。
60.已知某连续时间LTI系统,当输入信号为x(t)时,系统的完全解为(3sint 2cost)u(t),当输入信号为2x(t),系统的完全解为(5sint cost)u(t),则当输入信号为3x(t),系统的完全解为61.x(t) 0 sin罗(t 1) (t 1))dt o精品文档62.连续时间系统系统结构中常用的基本运算有________ 、_________ 和 ________ 。
63.连续时间系统的单位冲激响应h(t) _______________ (是或不是)随系统的输入信号的变化而变化的。
64.矩形脉冲信号x(t) u(t)u(t i)经过某连续LTI系统的零状态响应为s(t) s(t 1),则该系统的单位冲激响应h(t)= _____________________ 。
65.某连续时间LTI系统的系统结构如图所示,则该系统的系统函数H(s) _______________________________66.某连续时间LTI因果系统的系统函数H(s)丄,且系统稳定,则a应满足s a67.已知信号y(t) xjt 2)*X2( t 3),其中x i(t) e 2t u(t),X2(t) e 3t u(t),则y(t)的拉普拉斯变换Y(s)精品文档68.已知x(t)的傅里叶变换为x(j ),则信号y(t) x(才3)*cos4t 的傅里叶变换Y(j ) ________________________________ 。
69.设连续信号x(t)的傅里叶变换为x(j),则信号的傅里叶变换y(t) x(t)cos( t)Y(j ) ________________________________ 。
70.具有有理系统函数的因果连续时间系统稳定的s域充要条件:系统函数H(s)的所有极点都位于s平面的__________________________ 。
二、选择题:1、理想低通滤波器的频率响应为.如果输入信号为H(j) 0,1200, 120x(t) 10 cos(100 t) 5cos(200 t), 则输出信号为y(t)= 。
A、10cos(100 t) B 、10cos(200 t) C 、20 cos(100 t)D 5 cos(200 t)2、矩形信号u(t 1) u(t 1)的傅里叶变换为。