成都石室中学初中学校必修第一册第三单元《函数概念与性质》测试卷(有答案解析)
成都石室外语学校必修第一册第三单元《函数概念与性质》测试(包含答案解析)

一、选择题1.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( )A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦ C .[32,)+∞ D .(0,32]2.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+; ③函数()f x 的图象关于原点对称;④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A .1B .2C .3D .43.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞4.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-15.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞6.函数()21x f x x-=的图象大致为( )A .B .C .D .7.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .8.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .1029.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,210.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭11.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤< B .1a ≥- C .10a -<≤ D .01a <≤ 12.若01m n <<<且1mn =,则2m n +的取值范围是( )A .[22,)+∞B .[3,)+∞C .(22,)+∞D .(3,)+∞13.函数3e exx x y -=+(其中e 是自然对数的底数)的图象大致为( ) A . B .C .D .14.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-15.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-2018二、填空题16.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______. 17.函数()112f x x x=+-的定义域为__________. 18.研究函数22())a x f x a b c -=<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).19.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______. 20.函数()f x =___________.21.设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220202020420x f x f ---≤的解集为______.22.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.23.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.24.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.25.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,则1232019A A A A ⋂⋂⋂⋂=__________.26.已知函数()1lg11xf x x-=++,若()4f m =,则()f m -=______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥, 所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.2.C解析:C 【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C. 【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.3.C【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈,所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立, 所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞, 故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.4.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.5.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.6.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-,函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos2f x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.8.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.9.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩, 可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.10.D解析:D 【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解.【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D. 【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=; (2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-;减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-;(3)列不等式求解时需要注意定义域的问题.11.B解析:B 【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可. 【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥,∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥,∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-, 故选:B 【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.12.D解析:D【分析】 先利用已知条件构造函数()2(),01f m m m m +<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.13.A解析:A【分析】由函数的奇偶性排除B ;由0x >的函数值,排除C ;由当x →+∞时的函数值,确定答案.【详解】由题得函数的定义域为R , 因为3()()x xx f x f x e e ---==-+,所以函数是奇函数,所以排除B ; 当0x >时,()0f x >,所以排除C ; 当x →+∞时,()0f x →,所以选A .故选:A【点睛】方法点睛:根据函数的解析式找图象,一般先找图象的差异,再用解析式验证得解.14.C解析:C【分析】根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断.【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称,A .2111sin cos cos sin 2cos 2222y x x x x x =+=++111sin 224222y x π⎡-⎛⎫=++∈⎢ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合; B .()20,xy =∈∞+,值域不关于原点对称,故不符合; C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞,所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合; D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合, 故选:C.【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般. 15.B解析:B【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=. 故选:B .【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.二、填空题16.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T =,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-, 所以()f x 在[0,2]上单调递减,而()10f =,由偶函数得当(1,1)x ∈-时,()0f x >;又()()()4f x f x f x +=-=可得周期4T=,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >;于是()0f x >的解集为(2019,2021).故答案为:(2019,2021)【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解. 17.且【分析】令即可求出定义域【详解】令解得且所以函数定义域为且故答案为:且【点睛】本题考查了函数定义域的求解属于基础题 解析:{1x x ≥-且}2x ≠【分析】令1020x x +≥⎧⎨-≠⎩即可求出定义域. 【详解】令1020x x +≥⎧⎨-≠⎩,解得1x ≥-且2x ≠, 所以函数定义域为{1x x ≥-且}2x ≠故答案为: {1x x ≥-且}2x ≠.【点睛】本题考查了函数定义域的求解,属于基础题.18.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④.【详解】解:函数())f x a b c =<<<, 由于220a x -≥,整理得a x a -≤≤.则:()||||f x x b x c b c==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值a b c+,在x a =±处取得最小值0,故④正确. 故答案为:①④.【点睛】本题考查函数性质的应用,属于基础题. 19.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;② 解析:4【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解.【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数, 402a -∴≤,解得4a ≤,令()()4f x a x a x xh x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.20.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.21.【分析】根据已知构造新函数利用导数求得函数的单调性根据函数的单调性列出不等式即可求解【详解】因为函数是定义在上的可导函数且有即设函数则所以函数在上单调递增又因为即所以则即的即不等式的解集为故答案为: 解析:(2020,2022]【分析】根据已知构造新函数,利用导数求得函数的单调性,根据函数的单调性,列出不等式,即可求解.【详解】因为函数()f x 是定义在()0,∞+上的可导函数,且有()()2f x xf x x '+>,即()()222xf x x f x x '+> 设函数()()2g x x f x =,则()()()220g x xf x x f x '=+>, 所以函数()g x 在()0,∞+上单调递增,又因为()()()220202020420x f x f ---≤,即()()()222020202022x f x f --≤, 所以(2020)(2)g x g -≤,则2020020202x x ->⎧⎨-≤⎩,即的20202022x <≤, 即不等式的解集为(2020,2022].故答案为:(2020,2022].【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数,结合题设条件求得新函数的单调性,结合新函数的性质求解是解答的关键,着重考查构造思想,以及推理与运算能力.22.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.23.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的 解析:1【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果.【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数,且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=,故答案为:1.【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.24.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.25.【分析】求出二次函数的对称轴判断函数的最小值与最大值然后求解值域的交集即可【详解】函数的对称轴为开口向上所以函数的最小值为函数()的值域依次是它们的最小值都是函数值域中的最大值为:当即时此时所以值域 解析:2220190,1010⎡⎤⎢⎥⎣⎦【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可.【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =, 函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是 1232019,,,,A A A A ,它们的最小值都是0,函数值域中的最大值为:当12019111k k k +⎛⎫--=- ⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,212320************,1010A A A A A ⎡⎤==⎢⎥⎣⎦. 故答案为:2220190,1010⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.26.【分析】首先构造新的函数然后运用函数的奇偶性的定义判断函数的奇偶性用整体思想求解出【详解】令则又为上的奇函数又故答案为:【点睛】本题考查函数的奇偶性构造方法构造新的函数整体思想求出答案属于中档题 解析:2-【分析】首先构造新的函数,然后运用函数的奇偶性的定义判断函数的奇偶性,用整体思想求解出()()12f m g m -=-+=-.【详解】 令1()lg 1x g x x-=+ (11)x -<<,则()()1f x g x =+, 又11()lglg ()11x x g x g x x x+--==-=--+,()g x ∴为(1,1)-上 的奇函数, 又()4f m =,()()13g m f m ∴=-=,()()3g m g m ∴-=-=-,()()12f m g m ∴-=-+=-.故答案为:2-.【点睛】本题考查函数的奇偶性,构造方法构造新的函数,整体思想求出答案 ,属于中档题.。
第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第三章 函数的概念与性质(单元检测卷)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =-x 2+2x +3的定义域为( )A.[-3,1] B.[-1,3]C.(-∞,-3]∪[1,+∞)D.(-∞,-1]∪[3,+∞)2.已知函数y =f(x +1)定义域是[-2,3],则函数y =f(x -1)的定义域是( )A.[0,5] B.[-1,4]C.[-3,2]D.[-2,3]3.已知函数f(x)=Error!若f(-a)+f(a)≤0,则实数a 的取值范围是( )A.[-1,1] B.[-2,0]C.[0,2]D.[-2,2]4.设f(x)是定义域为R 的奇函数,且f(1+x)=f(-x).若f =13,则f =( )A.-53B.-13C.13D.535.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B.y =14x 2-1C .y =4x 2-16 D.y =-4x 2+166.拟定从甲地到乙地通话m min的话费(单位:元)符合f(m)={3.71,0<m ≤4,1.06×(0.5×[m]+2),m >4,其中[m]表示不超过m 的最大整数,从甲地到乙地通话5.2min 的话费是A.3.71元 B.4.24元C.4.77元D.7.95元7.若函数f(x)在R 上是减函数,则下列关系式一定成立的是( )A.f(a)>f(2a) B.f(a 2)<f(a)C.f(a 2+a)<f(a)D.f(a 2+1)<f(a 2)8.若函数f (x)是奇函数,且当x>0时,f (x)=x 3+x +1,则当x<0时,f (x)的解析式为( )A .f (x)=x 3+x -1B .f (x)=-x 3-x -11()3 5()3C .f (x)=x 3-x +1D .f (x)=-x 3-x +1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知f (2x -1)=4x 2,则下列结论正确的是( )A .f (3)=9 B.f (-3)=4C .f (x)=x 2D.f (x)=(x +1)210.函数f(x)的图象是折线段ABC ,如图所示,其中点A ,B ,C 的坐标分别为(-1,2),(1,0),(3,2),以下说法正确的是( )A.f(x)=Error!B.f(x -1)的定义域为[-1,3]C.f(x +1)为偶函数D.若f(x)在[m ,3]上单调递增,则m 的最小值为111.下列说法正确的是( )A.若幂函数的图象经过点,则该幂函数的解析式为y =x -3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y =x α(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=x ,则对于任意的x 1,x 2∈[0,+∞)有f(x 1)+f(x 2)2≤f 三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.设f(x)=11-x,则f(f(x))=__________13.已知二次函数f(x)=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.1(,2)845x-12x x ()2+15.(13分)已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.16.(14分)已知函数f(x)=Error!(1)求f(f(f(5)))的值;(2)画出函数的图象.17.(16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x-12x2,0≤x≤400,80 000,x>400,其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)18.(16分)已知函数f(x)=x21+x2+1,x∈R.1 () 2(1)判断并证明函数的奇偶性;(2)求f(x)+f 的值;(3)计算f(1)+f(2)+f(3)+f(4)+f +f +f .19.(18分)已知二次函数f(x)=x 2-2(a -1)x +4.(1)若a =2,求f(x)在[-2,3]上的最值;(2)若f(x)在区间(-∞,2]上单调单减,求实数a 的取值范围;(3)若x ∈[1,2],求函数f(x)的最小值.参考答案及解析:一、单选题1()x 1()21()31()41.B 解析:由题意,令-x 2+2x +3≥0,即x 2-2x -3≤0,解得-1≤x ≤3,所以函数的定义域为[-1,3].故选B .2.A 解析:由题意知-2≤x ≤3,所以-1≤x +1≤4,所以-1≤x -1≤4,得0≤x ≤5,即y =f(x -1)的定义域为[0,5].3.D 解析:依题意,可得Error!或Error!或Error!解得-2≤a ≤2.4.C 解析:由题意,f =f =f =-f =-f =-f =f =13.5.B 解析:把点(0,-1)代入四个选项可知,只有B 正确.故选B .6.C 解析:f(5.2)=1.06×(0.5×[5.2]+2)=1.06×(0.5×5+2)=4.77.7.D 解析:因为f(x)是R 上的减函数,且a 2+1>a 2,所以f(a 2+1)<f(a 2).故选D .8.A 解析:∵函数f (x)是奇函数,∴f (-x)=-f (x),当x<0时,-x>0,∵x>0时,f (x)=x 3+x +1,∴f (-x)=(-x)3-x +1=-x 3-x +1,∴-f (x)=-x 3-x +1,∴f (x)=x 3+x -1.即x<0时,f (x)=x 3+x -1.故选A .二、多选题9.BD 解析:令t =2x -1,则x =t +12,∴f (t)=4=(t +1)2.∴f (3)=16,f (-3)=4,f (x)=(x +1)2.故选BD .10.ACD 解析:由图可得当-1≤x <1时,图象过(1,0),(-1,2)两点,设f(x)=kx +b ,∴Error!解得Error!=-x +1,当1≤x ≤3时,根据图象过点(1,0),(3,2),同理可得f(x)=x -1,∴f(x)=Error!A 正确;由图可得f(x)的定义域为[-1,3],关于x =1对称,∴f(x -1)的定义域为[0,4],f(x +1)为偶函数,即B 错误,C 正确;当f(x)在[m ,3]上单调递增,则1≤m <3,故m 的最小值为1,D 正确.故选ACD .11.CD 解析:若幂函数的图象经过点,则该幂函数的解析式为y =,故A 错误;函数f(x)=是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),故C 正确;对任意的x 1,x 2∈[0,+∞),要证f(x 1)+f(x 2)2≤f ,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确.三、填空题5()32(1)3+2()3-2(31[1(3+-1()31()3-2t 1()2+1(,2)813x -45x -12x x ()2+12.答案:x -1x (x ≠0且x ≠1)解析:f(f(x))=11-11-x =11-x -11-x=x -1x .13.答案:-3或38解析:f(x)的对称轴为直线x =-1.当a >0时,f(x)max =f(2)=4,解得a =38;当a <0时,f(x)max =f(-1)=4,解得a =-3.综上所述,a =38或a =-3.14.答案:13,0解析:因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f(x)=13x 2+bx+b +1为二次函数,结合偶函数图象的特点,则-b2×73=0,易得b =0.四、解答题15.解:(1)由m 2-5m +7=1,得m =2或m =3.当m =2时,f(x)=x -3是奇函数,所以不满足题意,所以m =2舍去;当m =3时,f(x)=x -4,满足题意,所以f(x)=x -4.所以f ==16.(2)由f(x)=x -4为偶函数且f(2a +1)=f(a),得|2a +1|=|a|,即2a +1=a 或2a +1=-a ,解得a =-1或a =-13.16.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.1()241()217.解:(1)设月产量为x 台,则总成本为(20 000+100x)元,从而f(x)={-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f(x)=-12(x -300)2+25 000,所以当x =300时,f(x)max =25 000.当x >400时,f(x)=60 000-100x 单调递减,f(x)<60 000-100×400=20 000<25 000.所以当x =300时 ,f(x)max =25 000,即每月生产300台仪器时利润最大,最大利润为25 000元.18.解:(1)f(x)是偶函数,理由如下.f(x)的定义域为R ,关于y 轴对称.因为f(-x)=(-x)21+(-x)2+1=x 21+x 2+1=f(x),所以f(x)=x 21+x 2+1是偶函数.(2)因为f(x)=x 21+x 2+1,所以f =+1=1x 2+1+1,所以f(x)+f =3.(3)由(2)可知f(x)+f =3,又因为f(1)=32,所以f(1)+f(2)+f(3)+f(4)+ff +f +f =f(1)+=32+3×3=21219.解:(1)当a =2时,f(x)=x 2-2x +4,x ∈[-2,3],因为f(x)的对称轴为x =1,所以f(x)在[-2,1]上单调递减,在[1,3]上单调递增,所以当x =1时,f(x)取得最小值为f(1)=1-2+4=3,当x =-2时,f(x)取得最大值为f(-2)=22+4+4=12.1()x 221()x 11()x +1(x 1()x 1()21()31()4111[f (2)f ()][f (3)f ()][f (4)f ()]234+++++(2)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,f(x)在区间(-∞,2]单调递减,则a -1≥2,解得a≥3.所以实数a 的取值范围为[3,+∞).(3)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,当a -1≤1,则a≤2,此时f(x)在[1,2]上单调递增,所以f(x)min =f(1)=1-2(a -1)+4=7-2a .当1<a -1<2,则2<a <3,此时f(x)在[1,a -1]上单调递减,在[a -1,2]上单调递增,所以f(x)min =f(a -1)=(a -1)2-2(a -1)2+4=-a 2+2a +3.当a -1≥2,则a ≥3,此时f(x)在[1,2]上单调递减,所以f(x)min =f(2)=22-4(a -1)+4=12-4a .综上,f(x)min ={7-2a ,a ≤2,-a 2+2a +3,2<a <3,12-4a ,a ≥3.。
成都石室天府中学必修一第三单元《指数函数和对数函数》测试卷(包含答案解析)

一、选择题1.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.32.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减3.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>4.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<5.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( ) A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 6.已知函数()a f x x 满足(2)4f =,则函数()log (1)a g x x =+的图象大致为( )A .B .C .D .7.已知()243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,那么a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12,23⎡⎤⎢⎥⎣⎦D .2,13⎡⎫⎪⎢⎣⎭8.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c << B .a b c << C .a b c >> D .a c b << 10.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>11.函数2ln 8x y x =-的图象大致为( )A .B .C .D .12.计算log 916·log 881的值为( ) A .18B .118C .83D .38二、填空题13.若函数()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭,()0,1a a >≠没有最小值,则实数a 的取值范围是______.14.若3763,a b ==则21a b+的值为_______ 15.若函数()22log 3y x ax a =-+在[2,)+∞上是单调增函数,则a 的取值范围是____________.16.若()2lg 2lg lg x y x y -=+,则2x y=______.17.已知1122x x-+=22165x x x x --+-=+-______.18.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 19.7log 31lg 25lg 272++=________. 20.已知函数(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,则实数a 的取值范围是________. 三、解答题21.已知函数()lg(2)lg(2).f x x x =++-(1)记函数()()103,f x g x x =+求函数()g x 的值域; (2)若对任意()0,2m ∈,[]0,1x ∈,都有2()lg 25<--+f x m m a 恒成立,求实数a的取值范围.22.已知函数()2221log 2m x f x x -=-(0m >且1m ≠)(1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 23.已知2()log (1)f x x =-.(1)若00(1)(1)0f x f x ++-=,求0x 的值; (2)记()()(6)g x f x f x =+-,①求()g x 的定义域D ,并求()g x 的最大值m ; ②已知322224log 2log 2b aba ab b++=++-,试比较b 与ma 的大小并说明理由. 24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间. 25.已知函数210(),22,01xx ax a x f x a a x ⎧+--≤<=⎨-≤≤⎩,其中a >0且a ≠1. (1)当12a =时,求f (x )的值域;(2)函数y =f (x )能否成为定义域上的单调函数,如果能,则求出实数a 的范围;如果不能,则给出理由;(3)()2f x -在其定义域上恒成立,求实数a 的取值范围.26.已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并说明理由;(3)当2a =时,判断函数()()f x g x -的单调性,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.2.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.3.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.4.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,310110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<. 故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.5.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可. 【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22x xy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确;对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.6.C解析:C 【分析】由已知求出a ,得()g x 表达式,化简函数式后根据定义域和单调性可得正确选项. 【详解】由恬24a=,2a =,222log (1),10()log (1)log (1),0x x g x x x x -+-<<⎧=+=⎨+≥⎩,函数定义域是(1,)-+∞,在(1,0)-上递减,在(0,)+∞上递增. 故选:C . 【点睛】本题考查对数型复合函数的图象问题,解题方法是化简函数后,由定义域,单调性等判断.7.C解析:C 【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可. 【详解】解:243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩()满足对任意12x x ≠,都有()()12120f x f x x x --<成立, 所以分段函数是减函数,所以:0121442a a a a<<⎧⎪≥⎨⎪-≥⎩,解得12,23a ⎡⎤∈⎢⎥⎣⎦.故选C . 【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算能力.8.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.9.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.10.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=.所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.11.D解析:D 【分析】先根据偶函数性质排除B ,再考虑当0x >且0x →时,y →+∞,排除A.再用特殊值法排除C ,即可得答案. 【详解】解:令()2ln 8x f x y x ==-,则函数定义域为{}0x x ≠ ,且满足()()f x f x -=,故函数()f x f (x )为偶函数,排除选项B ; 当0x >且0x →时,y →+∞,排除选项A ;取特殊值x =1ln 1ln 0y e =-<-=,排除选项C. 故选:D. 【点睛】本题考查利用函数解析式选函数图象问题,考查函数的基本性质,是中档题.12.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.二、填空题13.【分析】讨论和两种情况结合对数函数的单调性可判断求解【详解】当时在单调递减没有最大值没有最小值符合题意;当时在单调递增则可得当有解时没有最小值解得综上的取值范围为故答案为:【点睛】关键点睛:结合对数 解析:(0,1)[4,)∞⋃+【分析】讨论01a <<和1a >两种情况结合对数函数的单调性可判断求解. 【详解】当01a <<时,log ay x =在(0,)+∞单调递减,212a y x x =-+没有最大值,()2log 12a a f x x x ⎛⎫∴=-+ ⎪⎝⎭没有最小值,符合题意;当1a >时,log ay x =在(0,)+∞单调递增,则可得当2102ax x -+≤有解时,()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭没有最小值,2402a ⎛⎫∴∆=--≥ ⎪⎝⎭,解得4a ≥,综上,a 的取值范围为(0,1)[4,)∞⋃+. 故答案为:(0,1)[4,)∞⋃+. 【点睛】关键点睛:结合对数函数的单调性进行讨论求解,将题目转化为2102ax x -+≤有解进行求解.14.1【分析】将指数式化为对数式得代入可得根据换底公式可求值【详解】由题意可得∵故答案为:1【点睛】本题主要考查对数与指数的互化对数的换底公式的应用考查基本运算求解能力解析:1 【分析】将指数式化为对数式得3log 63a =,7log 63b =,代入可得,372121log 63log 63a b +=+,根据换底公式可求值. 【详解】由题意可得,3log 63a =,7log 63b =, ∵6363363721212log 3log 7log 631log 63log 63a b +=+=+== 故答案为:1 【点睛】本题主要考查对数与指数的互化,对数的换底公式的应用,考查基本运算求解能力.15.【分析】利用复合函数单调性的判断方法分内层和外层分别判断解出的取值范围【详解】由题意得设根据对数函数及复合函数单调性可知:在上是单调增函数且所以所以故答案为:【点睛】本题考查复合函数单调性的应用考查 解析:(4,4]-【分析】利用复合函数单调性的判断方法,分内层和外层分别判断,解出a 的取值范围.【详解】由题意得,设2()3g x x ax a =-+,根据对数函数及复合函数单调性可知:()g x 在[)2,+∞上是单调增函数,且(2)0g >,所以2240aa ⎧≤⎪⎨⎪+>⎩,所以44a -<≤. 故答案为: (4,4]- 【点睛】本题考查复合函数单调性的应用,考查对数函数的性质,考查学生运算求解能力,属于中档题.16.16【分析】由通过对数运算得出由此再求的值要注意定义域【详解】∵∴解得∴故答案为:16【点睛】本题主要考查对数的运算还考查了运算求解能力属于基础题解析:16 【分析】由()2lg 2lg lg x y x y -=+,通过对数运算得出4x y =,由此再求2xy的值.要注意定义域. 【详解】∵()2lg 2lg lg x y x y -=+,∴2(2)2000x y xy x y x y ⎧-=⎪->⎪⎨>⎪⎪>⎩,解得4x y =,∴42216x y==.故答案为:16 【点睛】本题主要考查对数的运算,还考查了运算求解能力,属于基础题.17.【分析】对平方可得再平方可得即可求解【详解】两边同时平方得:所以对两边同时平方得:则故答案为:【点睛】此题考查指数式的化简求值进行整体变形处理利用平方关系得出等量关系解析:12- 【分析】对1122x x -+=13x x -+=,再平方可得227x x -+=,即可求解. 【详解】1122x x-+=125x x -++=,所以13x x -+=对13x x -+=两边同时平方得:2229x x -++=,227x x -+=则22167615352x x x x --+--==-+--. 故答案为:12- 【点睛】此题考查指数式的化简求值,进行整体变形处理,利用平方关系得出等量关系.18.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.19.4【分析】结合对数的基本运算化简求值即可【详解】解:故答案为:4【点睛】本题主要考查对数的基本运算性质熟记公式熟练运用对数的化简对数恒等式是最基本的要求属于基础题型解析:4 【分析】结合对数的基本运算化简求值即可. 【详解】解:7log 3211lg 25lg 27lg5lg 23lg5lg 23lg103422++=++=++=+=. 故答案为:4. 【点睛】本题主要考查对数的基本运算性质,熟记公式,熟练运用对数的化简、对数恒等式是最基本的要求,属于基础题型.20.【分析】根据的值域为可知需在单调递增且即可【详解】由题意知的值域为故要使的值域为则必有为增函数且所以且解得故答案为:【点睛】本题主要考查了已知分段函数值域求参数范围属于中档题解析:112⎡⎫-⎪⎢⎣⎭,【分析】根据()ln (1)f x x x =≥的值域为[0,)+∞,可知()(12)3(1)f x a x a x =-+<需在(,1)-∞单调递增且(1)0f ≥即可. 【详解】由题意知()ln (1)f x x x =≥的值域为[0,)+∞,故要使()f x 的值域为R , 则必有()(12)3f x a x a =-+为增函数,且1230a a -+≥, 所以120a ->,且1a ≥-,解得112a -≤<. 故答案为:112⎡⎫-⎪⎢⎣⎭, 【点睛】本题主要考查了已知分段函数值域求参数范围,属于中档题.三、解答题21.(1)256,4⎛⎤- ⎥⎝⎦;94a > 【分析】(1)由()()103f x g x x =+化简得()234g x x x =-++,再结合函数定义域和二次函数增减性即可求解;(2)2()lg 25<--+f x m m a 恒成立,即2max ()lg 25f x m m a <--+,求得max()f x 再分离参数a ,得22a m m >-++,即()2max 2a m m >-++恒成立,求得()2max 2m m -++即可求解a 的取值范围. 【详解】(1)()()()()2()lg 2lg 2lg 4,2,2f x x x x x =++-=-∈-,则()()2()10343,2,2f x g x x x x x =+=-+∈-,()g x 对称轴为32x =,当32,2x ⎛⎤∈- ⎥⎝⎦时,()g x 单增,当3,22x ⎛⎫∈⎪⎝⎭时,()g x 单减,故()max 32524g x g ⎛⎫== ⎪⎝⎭,当2x =-时,代入243x x -+得4466--=-,故()g x 的值域为256,4⎛⎤- ⎥⎝⎦; (2)对任意()0,2m ∈,[]0,1x ∈,都有2()lg 25<--+f x m m a 恒成立,即2max ()lg 25f x m m a <--+恒成立,当[]0,1x ∈时,()2()lg 4f x x=-单调递减,()()max02lg 2f x f ==,即22lg 2lg 25m m a <--+,化简得22a m m >-++恒成立,即()2max 2a m m >-++恒成立,当12m =时,()2max 11922424m m -++=-++=,即94a >【点睛】关键点睛:本题考查求复合函数的值域,由函数在定区间恒成立求参数取值范围,解题关键在于:(1)求复合函数值域除了正确化简表达式之外,还必须在定义域的基础之上求解对应最值;(2)恒成立问题求参数取值范围常采用分离参数法求解,关键在于能正确理解全称命题与存在命题的等价转化.22.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m mt t f t t t++==-+-, 所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由110x x -<<⎧⎨>⎩得01x <<,又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】 易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称; (2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件. 23.(1)12)①(1,5),2m =;②b ma >,理由见解析. 【分析】(1)根据对数的运算性质解得01x = (2)将322224log 2log 2baba ab b++=++-化为2222log (2)2a a a +-2222322log log 32log 2b b b b b b =+-+-<+-,利用22()2log x h x x x=+-为增函数可得(2)()h a h b <,2a b <,即ma b <.【详解】 (1)由已知得,2020log log (2)0x x +-=,[]200log (2)0x x -=,∴00(2)1x x -=,200210x x --=,∴01x =02x >,∴01x = (2)①22()log (1)log (5)g x x x =-+-,由1050x x ->⎧⎨->⎩,得15x <<,∴()g x 的定义域(1,5)D =.由于[]222()log (1)(5)log [(3)4]g x x x x =--=--+, ∴当3x =时,max 2()log 42m g x ===, ②由223224log 2log 2abb a a a b++=++-,得2222214log 2log log 322a b a b a b +-=+--+,即22222212log (2)2log log 3122ab a b a b +-=+--++22232log log 32b b b =+-+-,因为32222223log 3log 2log 3log log 02-=-=<,所以2222222322log (2)2log log 32log 22ab b a b b a b b+-=+-+-<+-, 考虑函数22()2log xh x x x=+-,所以(2)()h a h b <, 因2x ,2log x ,2x-都是增函数,所以()h x 为增函数,∴2a b <,∵2m =, 故始终有b ma >成立.【点睛】关键点点睛:令22()2log xh x x x=+-,转化为(2)()h a h b <,利用单调性求解是解题关键.24.(1)32x x ⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可;(2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可. 【详解】解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3xy =在R 上单调递增,所以()2221xx -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞,设245u x x =--,35log y u =,因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间,因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增, 所以函数()f x 的单调减区间为()5,+∞ 【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)()f x 的值域为9[16-,1];(2)能,a 的取值集合为{2};(3)232a -. 【分析】(1)由二次函数和指数函数的值域求法,可得()f x 的值域;(2)讨论1a >,01a <<,结合指数函数的单调性和二次函数的单调性,即可得到所求范围;(3)讨论x 的范围和a 的范围,结合参数分离和对勾函数的单调性、指数函数的单调性,计算可得所求范围. 【详解】(1)当10x -<时,21122y x x =+-,对称轴为1[14x =-∈-,0), 可得y 的最小值为916-,y 的最大值为0; 当01x 时,12?()1[02xy =-∈,1]; 综上()f x 的值域为9[16-,1]; (2)当1a >时,函数22xy a a =-在[0,1]递增,故二次函数2y x ax a =+-在[1-,0]也要递增,1222aa a⎧--⎪⎨⎪--⎩,故只有2a =符合要求; 当01a <<时,函数22xy a a =-在[0,1]递减, 故二次函数2y x ax a =+-在[1-,0]也要递减,0222aa a⎧-⎪⎨⎪--⎩,无解. 综上,a 的取值集合为{2};(3)①当[1x ∈-,0]时,22x ax a +--恒成立,即有2(1)2a x x ---,即221x a x+-,由221x y x+=-,令1t x =-,[1t ∈,2],可得32232y t t=+--,当且仅当t =时,取得等号, 可得232a -;②当[0x ∈,1]时,①当1a >时,22x y a a =-,222x a a --,即有222a -,求得2a ,故12a <; ②当01a <<时,成立, 综上可得a 的范围为232a -. 【点睛】本题考查分段函数的值域和单调性的判断和运用,考查分类讨论思想方法和化简运算能力,以及不等式恒成立问题解法,属于中档题.26.(1)(1,1)-;(2)是奇函数,理由见解析;(3)单调递增,证明见解析. 【分析】(1)由对数有意义的条件列出不等式组1010x x +>⎧⎨->⎩,解之即可;(2)由(1)知,函数()()f x g x -的定义域关于原点对称,再根据函数奇偶性的概念进行判断即可;(3)当2a =时,函数()()f x g x -单调递增.根据用定义证明函数单调性的“五步法”:任取、作差、变形、定号、下结论,即可得证. 【详解】 (1)10x +>,10x ->,11x ∴-<<,∴函数()()f x g x -的定义域为(1,1)-.(2)由(1)知,函数()()f x g x -的定义域关于原点对称,()()log (1)log (1)log (1)log (1)[()()]a a a a f x g x x x x x f x g x ---=-+-+=--+=--,∴函数()()f x g x -是奇函数.(3)当2a =时,函数()()f x g x -单调递增.理由如下: 当(1,1)x ∈-时,1()()log 1a x f x g x x+-=-, 设1211x x -<<<, 则2121211222112121211211111[()()][()()]log log log (?)log 11111aa a ax x x x x x x x f x g x f x g x x x x x x x x x +++-+-----=-==---+-+-,1211x x -<<<,2121x x x x ∴->-+,21122112110x x x x x x x x ∴+-->-+->,∴21122112111x x x x x x x x +-->-+-,即211221121log 01ax x x x x x x x +-->-+-, 2211()()()()f x g x f x g x ∴->-,故当2a =时,函数()()f x g x -单调递增.【点睛】本题考查函数的单调性与奇偶性的判断、对数的运算法则,熟练掌握用定义证明函数单调性和奇偶性的方法是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题.。
成都师大附中外国语学校学校必修第一册第三单元《函数概念与性质》测试题(有答案解析)

一、选择题1.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-2.函数2()1sin 12xf x x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ). A . B .C .D .3.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫ ⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>4.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+; ③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A .1B .2C .3D .45.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( )A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞6.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( ) A .单调递增,且最大值为()2f - B .单调递增,且最大值为()3f - C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -7.函数()32241x xx x y -=+的部分图像大致为( )A .B .C .D .8.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (ab ),有()()0f a f b a b -<-,则不等式()202f x x -<-的解集是( )A .()()1,12,-+∞B .()(),13,-∞-+∞C .()(),13,-∞+∞ D .()(),12,-∞-+∞9.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .10210.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±11.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0-B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦14.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( )A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.已知函数()()1502f x x x x =+->,则()f x 的递减区间是____. 18.已知函数()f x 是定义在R 上的单调函数,且对任意的实数x ,有()34xf f x ⎡⎤-=⎣⎦,则满足4()0f x x->的x 的取值范围为__________. 19.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________. 20.函数()f x =___________.21.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______.22.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件”(5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]23.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.24.已知函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞,则实数a 的取值范围是________.25.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________.26.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.2.B解析:B 【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xx f x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xx x x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题4.C解析:C 【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C. 【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.5.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8),所以1128n a -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =,由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.6.A解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<,因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.7.A解析:A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x xx x x x x xf x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.C解析:C 【分析】易知函数()f x 在()0,∞+上单调递减,令2t x =-,将不等式()0f t t<等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩,进一步求出答案. 【详解】∵对任意的正数a 、b (ab ),有()()0f a f b a b-<-,∴函数()f x 在()0,∞+上单调递减, ∴()f x 在(),0-∞上单调递减. 又∵()10f =,∴()()110f f -=-= 令2t x =-所以不等式()0f t t <等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩∴1t >或1t <-, ∴21x ->或21x -<-, ∴3x >或1x <,即不等式的解集为()(),13,-∞⋃+∞. 故选:C. 【点睛】本题考查抽象函数的单调性和奇偶性以及不等式的知识点,考查逻辑思维能力,属于基础题.9.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.10.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.11.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围.因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩, 当()212f x x ax a =+-在[)2,+∞上单调递增时,22a -≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a ≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确; ()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.B解析:B【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果.因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<, 所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤, 所以212k a -⎛⎫= ⎪⎝⎭,2log b k =, 所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭, 设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增,∴(2)()(4)g g x g <≤,即70()4g x <≤, ∴70,4b a ⎛⎤-∈ ⎥⎝⎦, 故选:B .【点睛】关键点点睛:根据分段函数的单调性以及()()()f a f b a b =<得到11,128a b ≤<≤≤,且122log 2b a +=是解题关键.属于中档题.14.C解析:C【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑.【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C.【点睛】 本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论. 15.B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意;对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对 解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.【分析】将绝对值函数化为分段函数形式判断单调性【详解】由题意当时函数单调递减;当时函数在上单调递增在上单调递减;当时函数单调递增;综上所述函数的单调递减区间为故答案为: 解析:()10,1,22⎛⎫ ⎪⎝⎭,将绝对值函数化为分段函数形式,判断单调性.【详解】由题意()151,02215151,222215,22x x x f x x x x x x x x x ⎧+-<<⎪⎪⎪=+-=--+<≤⎨⎪⎪++≥⎪⎩, 当102x <<时,函数15()2f x x x =+-单调递减; 当122x ≤<时,函数15()2f x x x =--+,在1(,1)2上单调递增,在(1,2)上单调递减; 当2x ≥时,函数15()2f x x x =+-单调递增; 综上所述,函数()152f x x x =+-的单调递减区间为()10,1,22⎛⎫ ⎪⎝⎭,, 故答案为:()10,1,22⎛⎫ ⎪⎝⎭,. 18.【分析】根据题意可得为定值设为c 根据题意可求得c 的值即可得的解析式根据的单调性及即可求得答案【详解】因为是定义在R 上的单调函数且所以对于任意x 为定值设为c 即所以又所以c=1即设因为与都为单调递增函数 解析:(1,)+∞【分析】根据题意可得()3xf x -为定值,设为c ,根据题意,可求得c 的值,即可得()f x 的解析式,根据()g x 的单调性及(1)0g =,即可求得答案.【详解】因为()f x 是定义在R 上的单调函数,且()34x f f x ⎡⎤-=⎣⎦,所以对于任意x ,()3x f x -为定值,设为c ,即()3xf x c -=, 所以()3()4x f f x f c ⎡⎤-==⎣⎦,又()34c f c c =+=,所以c=1,即()31xf x =+, 设44()1()3xg x f x x x +=-=-, 因为3x y =与4y x=-都为单调递增函数, 所以()g x 为单调递增函数,且(1)3140g =+-=,所以4()301x g x x+=->的取值范围为(1,)+∞, 故答案为:(1,)+∞【点睛】 解题的关键是根据单调性,得到()3xf x -为定值,求得()f x 的解析式,再解不等式,考查分析理解,计算求值的能力,属中档题.19.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a【详解】 当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a=-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-, 所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1,当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-, 当202x a <≤时,()222222124x a a f x x x a a ⎛⎫=-=--+ ⎪⎝⎭, 函数的()()22min 22f x f a a ==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:2a =±.故答案为:2±【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题.20.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.21.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维 解析:11【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】 解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<,∴ ()222log 10f -=->=∴ ()()()42116111f f f -==++=. 故答案为:11.【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.22.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5).【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误.【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确.故答案为(1)(2)(5).【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.23.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的 解析:1【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果.【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数,且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=,故答案为:1.该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.24.【分析】根据题意分析函数的单调性结合函数的最小值为可得出关于实数的不等式组由此可求得实数的取值范围【详解】由于函数的值域为则函数在区间上单调递减或为常值函数函数在区间上单调递增或为常值函数①若函数在 解析:[)1,0-【分析】根据题意分析函数()y f x =的单调性,结合函数()y f x =的最小值为2-可得出关于实数a 的不等式组,由此可求得实数a 的取值范围.【详解】由于函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞, 则函数()2f x ax =-在区间(],0-∞上单调递减或为常值函数,函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数.①若函数()2f x ax =-在区间(],0-∞上单调递减,则0a <,此时()()02f x f ≥=-, 且此时函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数, 则10a +≥,解得1a ≥-,当0x >时,()()22log 11log 10f x a x =++≥=⎡⎤⎣⎦, 即当10a -≤<时,函数()y f x =的值域为[)2,-+∞;②若函数()2f x ax =-在区间(],0-∞为常值函数,则0a =,当0x ≤时,()2f x =-,当0x >时,()()22log 1log 10f x x =+>=,即当0a =时,函数()y f x =的值域为{}()20,-+∞,不合乎题意.综上所述,实数a 的取值范围是[)1,0-.故答案为:[)1,0-.【点睛】本题考查利用分段函数的值域求参数,要结合题意分析函数的单调性,考查分析问题和解决问题的能力,属于中等题. 25.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 26.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--,解可得13 x>-,即不等式的解集为1(3-,)+∞.故答案为:1(3-,)+∞.【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x的奇偶性与单调性,属于中档题.。
成都石室中学(北湖校区)必修第一册第三单元《函数概念与性质》测试题(有答案解析)

一、选择题1.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.函数2()1sin 12xf x x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ). A . B .C .D .3.已知函数()x xf x e e -=-,则不等式()()2210f x f x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭4.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32D .525.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦6.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-7.已知函数()312xx f x x x e e=-+-+,其中e 是自然对数的底数,若()()2120f a f a -+≤则实数a 的取值范围是( )A .11,2⎡⎤-⎢⎥⎣⎦B .[]1,2-C .(]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭D .(][),21,-∞-+∞8.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( )A .(4)(0)(4)f f f -<<B .(0)(4)(4)f f f <-<C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-9.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 10.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (ab ),有()()0f a f b a b -<-,则不等式()202f x x -<-的解集是( )A .()()1,12,-+∞B .()(),13,-∞-+∞C .()(),13,-∞+∞ D .()(),12,-∞-+∞11.函数f (x )=12x -的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 12.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412313.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A.()f x =B .||()2x f x -= C .24()4x f x x =+D .()|1|||f x x x =+-14.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞15.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .3二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.已知函数()y f x =,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),且当[)0,1x ∈时,()2xf x =,则()2021f =___________.18.已知()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递减,则不等式()()221f x f x ->+的解集是_______.19.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________.20.设211()2,21xx f x x x=+-∈+R ,则使得(32)(2)f x f x -<成立的x 的取值范围为____________________.21.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______.22.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ .23.已知函数()y f x =是奇函数,当0x <时,2()(R)f x x ax a =+∈,(2)6f =,则a = .24.函数()ln f x x x x =+的单调递增区间是_______.25.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.26.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果. 【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.2.B解析:B 【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xxf x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xxx x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f xf x +--<化为()()()2211f x f x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.4.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.5.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦, 所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.6.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点:若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.7.C解析:C 【分析】求导判断函数()312xx f x x x e e=-+-+的单调性,再利用定义判断函数的奇偶性,根据单调性与奇偶性求解即可. 【详解】根据题意,()2132xxf x x e e '=-+--,因为当且仅当0x =时,()213220x x f x x e e -'=-+-≤-=,所以函数()f x 在R 上单调递减;又()3311()220x xx x f x f x x x e x x e e e---+=-++-+-+=,所以函数()f x 为奇函数,()()2120f a f a -+≤,则()()212f a f a -≤-,因为函数()f x 为奇函数,()()212f a f a -≤-,又因为函数()f x 在R 上单调递减,所以212a a -≥-,可得1a ≤-或12a ≥. 故选:C. 【点睛】对于求值或范围的问题,一般先利用导数得出区间上的单调性,再利用定义判断奇偶性,再利用其单调性脱去函数的符号“f ”,转化为解不等式组的问题,若()f x 为偶函数,则()()()f x f x f x -==.8.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-,所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.9.A解析:A 【分析】由图象知函数的定义域排除选项选项B 、D ,再根据()01f =-不成立排除选项C ,即可得正确选项. 【详解】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C , 故选:A 【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.10.C解析:C 【分析】易知函数()f x 在()0,∞+上单调递减,令2t x =-,将不等式()0f t t<等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩,进一步求出答案. 【详解】∵对任意的正数a 、b (ab ),有()()0f a f b a b-<-,∴函数()f x 在()0,∞+上单调递减, ∴()f x 在(),0-∞上单调递减. 又∵()10f =,∴()()110f f -=-= 令2t x =-所以不等式()0f t t <等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩∴1t >或1t <-, ∴21x ->或21x -<-, ∴3x >或1x <,即不等式的解集为()(),13,-∞⋃+∞. 故选:C. 【点睛】本题考查抽象函数的单调性和奇偶性以及不等式的知识点,考查逻辑思维能力,属于基础题.11.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.12.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=.【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.13.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.14.B解析:B 【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果 【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B .本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法15.D解析:D 【分析】当(1,1)x ∈-时,函数1()1xf x lgx-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③. 【详解】 解:1()1xf x lgx-=+,当(1,1)x ∈-时, 1111()()()101111x x x xf x f x lg lg lg lg x x x x+-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lglg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个 故选:D . 【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9 【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误. 【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=,故答案为:9. 【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.【分析】推导出函数是周期为的周期函数可得出再由可求得结果【详解】当时则对任意都有(为非零实数)则由可得所以函数是周期为的周期函数因此故答案为:【点睛】方法点睛:函数的三个性质:单调性奇偶性和周期性在 解析:a【分析】推导出函数()f x 是周期为2的周期函数,可得出()()20211f f =,再由()01f =可求得结果. 【详解】当[)0,1x ∈时,()2xf x =,则()0021f ==,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),则()()10f f a ⋅=,()1f a ∴=,由()()1f x f x a ⋅+=可得()()21f x f x a +⋅+=,()()2f x f x ∴+=, 所以,函数()f x 是周期为2的周期函数,因此,()()20211f f a ==. 故答案为:a . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度; (1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.18.【分析】利用偶函数关于轴对称又由在上单调递减将不等式转化为即可解得的解集【详解】函数是定义域为的偶函数可转化为又在上单调递减两边平方得:解得故的解集为故答案为:【点睛】关键点点睛:本题主要考查函数奇解析:133x x ⎧⎫<<⎨⎬⎩⎭∣ 【分析】利用偶函数关于y 轴对称,又由()f x 在[0,)+∞上单调递减,将不等式()()221f x f x ->+转化为22+1x x -< ,即可解得()()221f x f x ->+的解集.【详解】函数()y f x =是定义域为R 的偶函数,∴()()221f x f x ->+可转化为(22)(+1)f x f x ->,又()f x 在[0,)+∞上单调递减,∴ (22)(1)221f x f x x x ->+⇔-<+,两边平方得:231030x x -+< 解得133x << , 故()()221f x f x ->+的解集为133x x ⎧⎫<<⎨⎬⎩⎭∣. 故答案为:133xx ⎧⎫<<⎨⎬⎩⎭∣ 【点睛】关键点点睛:本题主要考查函数奇偶性与单调性的综合运用,根据函数奇偶性和单调之间的关系将不等式进行转化是解决本题的关键,即()()221f x f x ->+可转化为(22)(+1)f x f x ->,属于中档题.19.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差解析:6(2,)5-【分析】根据题意可得到131a d -<<-,把42S S 转化为关于()13,1at d=∈--的函数,即可求出范围. 【详解】由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131a d -<<-,令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a dS a d t S a d t a d ⨯+++===⨯+++,令()()463121t f t t t +=-<<-+,则()2(21)4422121t f t t t ++==+++,据此可知函数()f t 在()3,1--上单调递减,()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5- 【点睛】关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题.20.【分析】由已知可得为偶函数且在时单调递增结合函数性质可求【详解】解:因为则所以为偶函数当时单调递增由可得所以整理可得解可得故的取值范围故答案为:【点睛】本题解答的关键是判断函数的奇偶性与单调性利用函解析:2(,2)5【分析】由已知可得()f x 为偶函数且在0x >时单调递增,结合函数性质可求. 【详解】解:因为211()2,21xxf x x R x =+-∈+, 则()()f x f x -=,所以()f x 为偶函数, 当0x >时,()f x 单调递增,由(32)(2)f x f x -<可得|32||2|x x -<, 所以22(32)4x x -<, 整理可得,(52)(2)0x x --<, 解可得,225x <<,故x 的取值范围2(,2)5. 故答案为:2,25⎛⎫ ⎪⎝⎭【点睛】本题解答的关键是判断函数的奇偶性与单调性,利用函数的奇偶性、单调性将函数不等式转化为自变量的不等式,再解一元二次不等式即可;21.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;②解析:4 【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解. 【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数,402a -∴≤,解得4a ≤, 令()()4f x ax a xxh x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x 在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4 【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.22.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左 解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围.【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a; 综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.23.5【分析】先根据函数的奇偶性求出的值然后将代入小于0的解析式建立等量关系解之即可【详解】函数是奇函数而则将代入小于0的解析式得解得故答案为5解析:5 【分析】先根据函数的奇偶性求出(2)f -的值,然后将2x =-代入小于0的解析式,建立等量关系,解之即可. 【详解】∴函数()y f x =是奇函数,()()f x f x ∴-=-,而(2)6f =,则(2)(2)6f f -=-=-, 将2x =-代入小于0的解析式得(2)426f a -=-=-,解得5a =, 故答案为5.24.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间. 【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞.【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.25.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式. 【详解】根据题意此人运动的过程分为三个时段, 当0 2.5t ≤≤时,60s t =; 当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.26.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x -=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.。
成都石室双楠实验学校必修一第三单元《指数函数和对数函数》检测题(答案解析)

一、选择题1.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =2.已知函数()()3,<1log ,1aa x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭3.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,64.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减5.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>6.5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+⎪⎝⎭,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.按照香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为(参考数据:lg 20.3≈, 3.96109120≈)( )A .7596B .9119C .11584D .144697.若函数()()20.3log 54f x x x=+-在区间()1,1a a -+上单调递减,且lg 0.3=b ,0.32c =,则A .b a c <<B .b c a <<C .a b c <<D .c b a <<8.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>10.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ).A .b a c <<B .a b c <<C .a b c >>D .a c b << 11.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)二、填空题13.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.14.已知()()2log 1f x x =-,若()()f a f b =(ab ),则2a b +的最小值为________.15.已知函数f (x )=[log a (x +2)]+3的图象恒过定点(m ,n ),且函数g (x )=mx 2﹣2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.16.已知3(1)4,1()1,1aa x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________.17.函数()212log 2y x x =-的定义域是______,单调递减区间是______.18.已知27abm ==,1112a b +=,则m =_______. 19.若()34,0mnm n =≠,则4log 3=______.(用m n ,表示)20.设函数()f x 满足()22221x f x ax a =-+-,且()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.三、解答题21.已知函数1()log 1a mxf x x -=-(0a >且1a ≠)是奇函数. (1)求实数m 的值;(2)若关于x 的方程2()6(1)50f x kx x a -+--=对(1,)x ∈+∞恒有解,求k 的取值范围.22.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围. 23.已知函数()3lg3xf x x+=-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由. 24.已知函数()()()ln 1ln 1f x x x =+--. (1)判断并证明函数()f x 的奇偶性; (2)用定义法证明()f x 在定义域上是增函数; (3)求不等式()()2520f x f x -+-<的解集. 25.(1)若223a a -+=,求1a a --和33a a --的值;(2)计算33(lg 2)3lg 2lg 5(lg 5)+⋅+的值.26.已知函数()lg(3)f x ax =-的图像经过定点(2,0). (1)求a 的值;(2)设(3),(5)f m f n ==,求21log 63(用,m n 表示);【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.2.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->-所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A . 【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 3.D解析:D 【分析】转化条件为函数()f x 是周期为2的周期函数,且函数()g x 、()f x 的图象均关于1x =-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.4.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反, 在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.5.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x=的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.B解析:B 【分析】根据题设条件列出方程,计算即可. 【详解】由题可知 ()()()22log 119991+20%log 1W W λ+⨯=+,即()221.2log 2000log 1λ⨯=+,所以()lg 1lg 20001.2lg 2lg 2λ+⨯=,即()()lg 1 1.2lg2000 1.23lg2 3.96λ+=⨯=⨯+≈,所以 3.961109120λ+≈≈,所以9119λ≈. 故选:B 【点睛】本题主要考查对属于对数函数,考查学生的运算能力.7.A解析:A 【分析】求出原函数的定义域,再求出内函数二次函数的增区间,由题意列关于a 的不等式组,求得a 的范围,结合b=1g0.3<0,c=20.3>1得答案. 【详解】由5+4x-x 2>0,可得-1<x <5, 函数t=5+4x-x 2的增区间为(-1,2),要使f(x)=log 0.3(5+4x−x 2)在区间(a-1,a+1)上单调递减, 则1112a a -≥-⎧⎨+≤⎩ ,即0≤a≤1.而b=1g0.3<0,c=20.3>1, ∴b <a <c . 故选A . 【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.8.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.9.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .10.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.A解析:A 【解析】 试题分析:由()lg (21)fxx a=-+为奇函数,则()()f xf x-=-,可得1a =-,即()lg 11f x x x =+-,又()0f x<,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.二、填空题13.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp q p q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.14.【分析】根据求得之间的等量关系再利用均值不等式求得的最小值【详解】因为且不妨设则一定有且即即可得解得因为故可得当且仅当且即时取得最小值故的最小值为故答案为:【点睛】本题考查对数函数的性质以及对数运算解析:3【分析】根据()()f a f b =,求得,a b 之间的等量关系,再利用均值不等式求得2a b +的最小值. 【详解】因为()()2log 1f x x =-,且()()f a f b = 不妨设a b <,则一定有12a b <<<, 且()()22log 1log 1a b -=- 即()()22log 1log 1a b --=-, 即可得()()2log 110a b --=, 解得()()111a b --=. 因为10,10a b ->->故可得()()22113a b a b +=-+-+3≥3=当且仅当()211a b -=-,且()()111a b --=,即112a b =+=+.故2a b +的最小值为3.故答案为:3. 【点睛】本题考查对数函数的性质,以及对数运算,涉及均值不等式求最值的问题,属综合性困难题.15.【分析】先求出m=-1n=3再利用二次函数的图像和性质分析得解【详解】因为函数f (x )=loga (x+2)+3的图象恒过定点所以m=-1n=3所以g (x )=-x2﹣2bx+3因为g (x )=-x2﹣2 解析:[)1,-+∞【分析】先求出m =-1,n =3.再利用二次函数的图像和性质分析得解. 【详解】因为函数f (x )=[log a (x +2)]+3的图象恒过定点(1,3)-,所以m =-1,n =3,所以g (x )=-x 2﹣2bx +3,因为g (x )=-x 2﹣2bx +3在[1,+∞)上单调递减, 所以对称轴1x b =-≤, 解得1b ≥-, 故答案为:[)1,-+∞ 【点睛】关键点点睛:本题考查了对数型函数过定点,可求出,m n 的值,利用了二次函数的单调性与对称轴的关系求出b 的范围.16.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题. 【详解】因为3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩,解得317a ≤<, 故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题.17.【分析】由表达式可知解出对应即可求解定义域再结合复合函数同增异减性质可求函数单调减区间【详解】由题可知可看作在定义域内为减函数根据复合函数增减性当内层函数为增函数则在对应区间为减函数故函数的定义域是解析:()(),02,-∞+∞ ()2,+∞【分析】由表达式可知220x x ->,解出对应x ,即可求解定义域,再结合复合函数同增异减性质可求函数单调减区间 【详解】由题可知,()()220,02,x x x ->⇒∈-∞+∞,()212log 2y x x =-可看作12log y t =,22t x x =-,12log y t =在定义域内为减函数,根据复合函数增减性,当()2,x ∈+∞,内层函数为增函数,则()212log 2y x x =-在对应区间为减函数,故函数()212log 2y x x =-的定义域是()(),02,-∞+∞,单调递减区间是()2,+∞故答案为:()(),02,-∞+∞;()2,+∞【点睛】本题考查对数型函数具体定义域和对应增减区间,属于基础题18.196【分析】将指数式化成对数式再根据对数的运算及对数的性质计算可得;【详解】解:∵∴∵∴∴解得故答案为:【点睛】本题考查指数与对数的关系对数的运算及对数的性质的应用属于中档题解析:196 【分析】将指数式化成对数式,再根据对数的运算及对数的性质计算可得; 【详解】 解:∵27a b m ==,∴2log a m =,7log b m =,1log 2m a ∴=,1log 7m b =∵1112a b +=,∴1log 2log 7log 142m m m +==,∴14=,解得196m =故答案为:196 【点睛】本题考查指数与对数的关系,对数的运算及对数的性质的应用,属于中档题.19.【分析】利用换底公式化简即可【详解】设则故故答案为:【点睛】本题主要考查了指对数的互化以及换底公式的运用属于中档题 解析:nm【分析】利用换底公式化简即可. 【详解】设()34,0m na m n ==≠,则34log ,log m a n a ==,故344341log 3log log log 31log 4log log a a a a na m a====.故答案为:n m【点睛】本题主要考查了指对数的互化以及换底公式的运用,属于中档题.20.【分析】利用换元法可得然后采用等价转换的方法可得在的值域为最后根据二次函数的性质可得结果【详解】由令所以则令由在上的值域为等价为在的值域为的对称轴为且所以可得或所以故答案为:【点睛】本题主要考查函数解析:332,22⎡⎤⎡-+⋃⎢⎥⎢⎣⎦⎣⎦【分析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】 由()22221xf xax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+- 则令()2221g x x ax a =-+-由()f x 在21222,2a a a --+⎡⎤⎣⎦上的值域为[]1,0-等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+1a ≤≤或2a ≤≤所以332,22a ⎡⎤⎡∈⋃⎢⎥⎢⎣⎦⎣⎦故答案为:332,22⎡⎤⎡-⋃⎢⎥⎢⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.三、解答题21.(1)1m =-;(2)(0,7). 【分析】(1)由函数()f x 为奇函数,则()()f x f x -=-,可得()2210m x -=,从而求出m 的值.(2)由(1)即将原问题化为2610kx x --=对(1,)x ∈+∞恒有解,即216k x x=+,令1t x =,则26k t t =+,(0,1)t ∈有解,从而得出答案. 【详解】 解:(1)因为函数()f x 为奇函数,则()()f x f x -=-,即11log log 11a a mx mxx x +-=---- 化简得()2210m x-=,所以1m =±,当1m =时1101mx x +=-<--不成立,当1m =-时1111mx x x x +-=--+,经验证成立 所以1m =-.(2)由(1)知函数1()log 1ax f x x +=-,则方程可化为: 216(1)501x kx x x +-+--=-,即2610kx x --=对(1,)x ∈+∞恒有解 所以分离参数得216k x x=+,令1t x =,则26k t t =+,(0,1)t ∈有解 而2067t t <+<,故k 的取值范围为(0,7). 【点睛】关键点睛:本题考查根据函数为奇函数求参数和不等式有解求参数的范围,解答本题的关键是将问题转化为2610kx x --=对(1,)x ∈+∞恒有解,分离参数即216k x x=+在(1,)x ∈+∞恒有解,属于中档题.22.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞.【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足;当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦; (2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有0a >⎧⎨∆<⎩; 若函数的值域为R ,则有0a >⎧⎨∆≥⎩. 23.(1)()3,3-;(2)()f x 为奇函数,证明见解析. 【分析】(1)利用对数式的真数大于零求解出不等式的解集即为定义域;(2)先判断定义域是否关于原点对称,若定义域关于原点对称,分析()(),f x f x -之间的关系,由此判断出()f x 的奇偶性. 【详解】 (1)因为303xx+>-,所以()()330x x -+<, 所以{}33x x -<<,所以()f x 的定义域为()3,3-; (2)()f x 为奇函数,证明:因为()f x 的定义域为()3,3-关于原点对称,且()()1333lg lg lg 333x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭, 所以()()f x f x -=-,所以()f x 为奇函数. 【点睛】思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数. 24.(1)奇函数,证明见解析;(2)证明见解析;(3)}{23x x <<. 【分析】(1)求出函数定义域,求出()()()()ln 1ln 1f x x x f x -=--+=-即可得到奇偶性; (2)任取1211x x -<<<, 则()()12f x f x -122111ln 11x x x x ⎛⎫+-=⋅⎪+-⎝⎭,得出与0的大小关系即可证明; (3)根据奇偶性解()()()2522f x f x f x -<--=-,结合单调性和定义域列不等式组即可得解. 【详解】(1)由对数函数的定义得1010x x ->⎧⎨+>⎩,得11x x <⎧⎨>-⎩,即11x -<<所以函数()f x 的定义域为()1,1-.因为()()()()ln 1ln 1f x x x f x -=--+=-, 所以()f x 是定义上的奇函数. (2)设1211x x -<<<,则()()()()()()121122ln 1ln 1ln 1ln 1f x f x x x x x -=+---++-122111ln 11x x x x ⎛⎫+-=⋅ ⎪+-⎝⎭因为1211x x -<<<,所以12011x x <+<+,21011x x <-<-, 于是12211101,0111x x x x +-<<<<+-. 则1221110111x x x x +-<⋅<+-,所以122111ln 011x x x x ⎛⎫+-⋅< ⎪+-⎝⎭所以()()120f x f x -<,即()()12f x f x <,即函数()f x 是()1,1-上的增函数.(3)因为()f x 在()1,1-上是增函数且为奇函数.所以不等式()()2520f x f x -+-<可转化为()()()2522f x f x f x -<--=-所以1251121252x x x x -<-<⎧⎪-<-<⎨⎪-<-⎩,解得23x <<.所以不等式的解集为}{23x x <<.【点睛】此题考查判断函数的奇偶性和单调性,利用单调性解不等式,关键在于熟练掌握奇偶性和单调性的判断方法,解不等式需要注意考虑定义域. 25.(1)1,4±±;(2)1. 【分析】(1)利用完全平方公式和立方差公式计算. (2)由对数的运算法则计算. 【详解】(1)1222()2321a a a a ---=-+=-=,所以11a a --=±,33122()(1)1(31)4a a a a a a ----=-++=±⨯+=±;(2)lg 2lg5lg(25)1+=⨯=.3322(lg 2)3lg 2lg5(lg5)(lg 2lg5)(lg 2lg 2lg5lg 5)3lg 2lg5+⋅+=+-++ 2222lg 2lg 2lg5lg 53lg 2lg5lg 22lg 2lg5lg 5=-++=++2(lg 2lg 5)1=+=.【点睛】本题考查幂的运算法则和对数的运算法则,掌握幂与对数运算法则是解题基础. 26.(1)2a =;(2)2m nm n++ 【分析】(1)根据对数运算求a 的值;(2)利用换底公式化简求值. 【详解】(1)由已知得231a -=得:2a =(2)由(1)得()()lg 23f x x =-,则()()3lg3,5lg7f m f n ====, ∴21lg632lg3lg72log 63lg21lg3lg7m nm n++===++ 【点睛】本题考查对数换底公式,考查基本分析求解能力,属基础题.。
最新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(含答案解析)(2)

一、选择题1.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c <<2.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<3.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞4.下列函数中,是奇函数且在()0,∞+上单调递增的是( )A .y =B .2log y x =C .1y x x=+D .5y x =5.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间D .一定有单调区间6.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =7.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞ B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-8.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞ B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞9.函数()21x f x x-=的图象大致为( )A .B .C .D .10.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,211.函数24()x f x -=是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数12.下列各组函数表示同一函数的是( ) A .2()f x x =与2()()f x x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()21f x x =-与()11g x x x =+⋅- D .()1f x x 与2()1x g x x=-13.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( )A .B .C .D .14.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( )A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.17.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.18.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________19.已知函数()()()2223f x x x x ax b =--++是偶函数,则()f x 的值域是__________.20.函数()f x =___________.21.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______. 22.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.23.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 24.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.25.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____. 26.已知函数1()22x x f x =-,则满足()()2560f x x f -+>的实数x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.2.B解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果.【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.3.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.4.D解析:D 【分析】对四个选项一一一判断:A 、B 不是奇函数,C 是奇函数,但在()0,∞+上不单调. 【详解】对于A : y =()0,∞+上单调递增,但是非奇非偶,故A 错误;对于B :2log y x =为偶函数,故B 错误; 对于C :1y x x=+在(0,1)单减,在(1,+∞)单增,故C 错误; 对于D :5y x =既是奇函数也在()0,∞+上单调递增,符合题意. 故选:D 【点睛】四个选项互不相关的选择题,需要对各个选项一一验证.5.A解析:A 【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+ ⎪⎝⎭的例子,据此分析选项可得答案. 【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭, 则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A. 【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键.6.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.7.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.8.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.9.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.10.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.11.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()|3|3f x x =+-所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数;故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;12.B解析:B 【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解. 【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数; 对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数; 对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数. 故选:B. 【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.13.C解析:C 【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.14.C解析:C【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑.【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C.【点睛】 本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论. 15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T =,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-, 所以()f x 在[0,2]上单调递减,而()10f =,由偶函数得当(1,1)x ∈-时,()0f x >;又()()()4f x f x f x +=-=可得周期4T=,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >;于是()0f x >的解集为(2019,2021).故答案为:(2019,2021)【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解. 17.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=;又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4.故答案为:{}0,1,3,4【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解. 18.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函 解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立, 所以12ax +≤对任意[]1,2x ∈都成立,即212ax -≤+≤对任意[]1,2x ∈都成立, 变形可得31a x x-≤≤, 由函数3y x =-在[]1,2为增函数,1y x =在[]1,2上为减函数, 故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦. 故答案为:31,22⎡⎤-⎢⎥⎣⎦. 【点睛】 关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.19.【分析】利用偶函数性质赋值可求出函数解析式再求值域即可【详解】因为是偶函数所以有代入得:解得:所以故答案为:解析:[)16,-+∞【分析】利用偶函数性质,赋值可求出函数解析式,再求值域即可.【详解】因为()()()()()()2222331f x x x x ax b x x x ax b =--++=-+++是偶函数, 所以有()()()()330110f f f f ⎧-==⎪⎨=-=⎪⎩,代入得:93010a b a b -+=⎧⎨++=⎩,解得:2,3a b ==-. 所以()()()()()22222242223233410951616f x x x x x x x x x x =--+-=--=-+=--≥-,故答案为:[)16,-+∞. 20.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.21.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】 解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<,∴ ()222log 10f -=->=∴ ()()()42116111f f f -==++=. 故答案为:11.【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 22.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2- 【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2x y =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<, 所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232fx -<的解集为(()2,3,2-. 故答案为:(()2,3,2-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内 23.-1【解析】试题解析:-1试题因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以. 考点:函数的奇偶性. 24.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.25.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+,又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩, 所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由22576,x x x x -=-+得3,x =所以()3,6A -,由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式(1)()f x f x ->的解集为{23}xx -<<.故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.26.【分析】根据题意由奇函数的定义可得函数为奇函数由函数单调性的性质可得函数在上为减函数;据此可得解可得的取值范围即可得答案【详解】解:根据题意函数即函数为奇函数又由在上为减函数在上增函数与则函数在上为 解析:(2,3)【分析】根据题意,由奇函数的定义可得函数()f x 为奇函数,由函数单调性的性质可得函数()f x 在R 上为减函数;据此可得()()()22560(5)6f x x f f x x f -+>⇒->-22(5)(6)56f x x f x x ⇒->-⇒-<-,解可得x 的取值范围,即可得答案.【详解】解:根据题意,函数1()22x x f x =-,11()2(2)()22x x x x f x f x ---=-=--=-,即函数()f x为奇函数, 又由12x y =在R 上为减函数,2x y =-在R 上增函数与,则函数()f x 在R 上为减函数, 则()()2560f x x f -+> ()2(5)6f x x f ∴->-2(5)(6)f x x f ∴->-256x x ∴-<-,解可得:23x <<,即x 的取值范围为(2,3);故答案为:(2,3)【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于x 的不等式,属于基础题.。
最新人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(有答案解析)

一、选择题1.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f ex ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞2.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .()()(),21,02,-∞--+∞ B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞--3.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<4.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤5.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =6.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦7.函数()21x f x x-=的图象大致为( )A .B .C .D .8.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞9.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412310.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭11.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭12.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .13.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A .2()23f x x x =-++B .||()2x f x -= C .24()4xf x x =+D .()|1|||f x x x =+-14.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(3-∞D .)3,+∞二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.18.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.19.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.20.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.21.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________22.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.23.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ . 24.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.25.已知11()x x f x e e x --=-+,则不等式()(63)2f x f x +-≤的解集是________. 26.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-,所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.2.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =, 所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <, 又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-, 故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.3.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2f f f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.4.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.5.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.6.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦,所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<,所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.9.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.10.D解析:D 【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解. 【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D. 【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=;(2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-; 减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-; (3)列不等式求解时需要注意定义域的问题.11.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A12.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.13.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.14.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;15.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函 解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【详解】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增. ()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;18.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.19.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9 【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误. 【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=,故答案为:9. 【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.20.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4. 故答案为:{}0,1,3,4 【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解.21.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.22.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点解析:2{2 }3-, 【分析】根据k y x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】若(10)(0 1)x ∈-,,,且||k x x >,则幂函数ky x =的图象一定在y x =的上方,故ky x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,ky x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点.23.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左 解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a;综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.24.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.25.【分析】先构造函数得到关于对称且单调递增再结合对称性与单调性将不等式转化为即可求解【详解】构造函数那么是单调递增函数且向左移动一个单位得到的定义域为且所以为奇函数图象关于原点对称所以图象关于对称不等 解析:[2,)+∞【分析】先构造函数111()()1(1)x x g x f x e x e --=-=-+-,得到()g x 关于(1,0)对称,且单调递增,再结合对称性与单调性将不等式()(63)2f x f x +- 转化为34x x -即可求解. 【详解】构造函数111()()1(1)x x g x f x e x e --=-=-+-,那么()g x 是单调递增函数,且向左移动一个单位得到1()(1)xx h x g x e x e=+=-+, ()h x 的定义域为R ,且1()()x x h x e x h x e-=--=-, 所以()h x 为奇函数,图象关于原点对称,所以()g x 图象关于(1,0)对称. 不等式()(63)2f x f x +- 等价于()1(63)10f x f x -+--, 等价于()(63)0()[2(63)](34)g x g x g x g x g x +-∴--=-,结合()g x 单调递增可知342x x x -∴, 所以不等式()(63)2f x f x +- 的解集是[2,)+∞. 故答案为:[2,)+∞. 【点睛】本题主要考查函数的奇偶性和单调性的应用,考查函数的对称性的应用,意在考查学生对这些知识的理解掌握水平.26.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减解析:③④ 【分析】根据函数的周期性及对称性判断各个选项即可得解; 【详解】 解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确; (2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确.故答案为:③④. 【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题⋅=(a为大于0的常数)的点P的1.已知,A B是平面内两个定点,平面内满足PA PB a轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当-,(1,0),且1,A B坐标分别为(1,0)a=时,卡西尼卵形线大致为()A.B.C.D.2.已知函数()xxf x e e -=-,则不等式()()2210f xf x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭3.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭4.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =5.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .46.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞7.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .88.已知2()log (1)f x x =-,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .1515,22⎛⎫-+ ⎪⎪⎝⎭C .1515,01,22⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭D .(1,0)(1,2)-9.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭10.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞B .[3,)+∞C .(22,)+∞D .(3,)+∞11.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .12.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-13.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >> 14.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2yxC .2log y x =D .21y x =+15.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( )A .B .C .D .二、填空题16.若函数()21f x x a x =--是区间[0,)+∞上的严格增函数,则实数a 的取值范围是____.17.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x+≤成立的x 的取值范围是_________. 18.已知函数()242f x x a x =-++,[]4,4x ∈-.若()f x 的最大值是0,则实数a 的取值范围是______. 19.函数()40ay x a x=+>在[]1,2上的最小值为8,则实数a =______. 20.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.21.幂函数()223mm f x x --=在0,上单调递减且为偶函数,则整数m 的值是______.22.已知函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞,则实数a 的取值范围是________.23.2018年“平安夜”前后,某水果超市从12月15日至1月5日(共计22天,12月15日为第1天,12月16日为第2天,…,1月5日为第22天),某种苹果的销售量y 千克随时间第x 天变化的函数图象如图所示,则该超市在12月20日卖出了这种苹果_____千克.24.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________. 25.已知()f x 是奇函数,且当0x <时,2()32f x x x =++,若当[1x ∈,3]时,()n f x m 恒成立,则m n -的最小值为___.26.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设(,)P x y 1=,代0x =排除C 、D ,通过奇偶性排除B. 【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x 1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f x f x +--<化为()()()2211f xf x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.3.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168f g ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭,因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.4.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.5.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+==⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.6.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数. 7.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.8.C解析:C【分析】首先判断函数的单调性和定义域,再解抽象不等式. 【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >,并且在区间()1,+∞上,函数单调递增,且()22f =, 所以()()()2212012f x x f x x f -+-<⇔-+<,即221112x x x x ⎧-+>⎨-+<⎩,解得:1x <<0x <<.故选:C 【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.9.D解析:D 【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解. 【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D. 【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=;(2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-; 减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-; (3)列不等式求解时需要注意定义域的问题.10.D解析:D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【详解】 由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.11.B解析:B【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项.【详解】()22,12222,1x xx x f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.12.C解析:C根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断.【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称,A .2111sin cos cos sin 2cos 2222y x x x x x =+=++111sin 224222y x π⎡-⎛⎫=++∈⎢ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合; B .()20,xy =∈∞+,值域不关于原点对称,故不符合; C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞,所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合; D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合,故选:C.【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般. 13.B解析:B【分析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小.【详解】解:∵函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称;(2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =,而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>.故选:B.【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.14.D解析:D根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.15.C解析:C【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.二、填空题16.【分析】首先将函数写成分段函数的形式再分解函数的单调性列不等式求解【详解】要使函数在单调递增则在单调递增且在单调递增以及在分界点处即得解得:故答案为:【点睛】关键点点睛:本题的第一个关键是去绝对值第 解析:[]0,2【分析】首先将函数写成分段函数的形式,再分解函数的单调性,列不等式求解.【详解】()22,1,1x ax a x f x x ax a x ⎧-+≥=⎨+-<⎩,要使函数()f x 在[)0,+∞单调递增,则2y x ax a =-+在[)1,+∞单调递增,且2y x ax a =+-在[)0,1单调递增,以及在分界点处a a -≤,即得1202a a a a ⎧≤⎪⎪⎪-≤⎨⎪-≤⎪⎪⎩,解得:02a ≤≤. 故答案为:[]0,2【点睛】关键点点睛:本题的第一个关键是去绝对值,第二个关键是根据分段函数的单调性列不等式,每段都是增函数,以及在分界点处的不等式.17.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x +≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞故答案为:[)()2,00,-⋃+∞.【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.18.【分析】等价于再画出函数的图象求出函数的最小值即得解【详解】∵的最大值是0∴函数∴当时恒成立当时∴∴设其函数图象如图:由图象可知当时∴实数的取值范围为故答案为:【点睛】关键点睛:解答本题的关键是找到 解析:6a ≤-【分析】 等价于2a x ≤--,再画出函数2y x =--,[]4,4x ∈-的图象求出函数的最小值即得解. 【详解】∵()f x 的最大值是0,∴函数()()242220f x x a x x x a =-++=+-+≤, ∴当2x =-时,0f x恒成立,当2x ≠-时,∴20x a -+≤,∴2a x ≤--, 设2y x =--,[]4,4x ∈-,其函数图象如图:由图象可知,当4x =-时,min 426y =---=-,∴实数a 的取值范围为6a ≤-.故答案为:6a ≤-.【点睛】关键点睛:解答本题的关键是找到原命题的等价命题,由()()220f x x x a =+-+≤得到2a x ≤--在[]4,4x ∈-上恒成立.再画函数的图象求函数的最小值就自然而然了. 19.3【分析】由已知结合对勾函数的性质讨论已知函数在区间上单调性进而可求出结果【详解】令解得当时即函数在上单调递减则符合题意;当时即函数在上单减在上单增解得(舍);当时即函数在上单调递增解得(舍)综上得 解析:3【分析】由已知结合对勾函数的性质,讨论已知函数在区间[]1,2上单调性,进而可求出结果.【详解】令4a x x=,解得x =±2时,即1a ≥, 函数在[]1,2上单调递减,min 228y a =+=,则3a =,符合题意;当12<<时,即114a <<,函数在⎡⎣上单减,在2⎡⎤⎣⎦上单增,min 8y ==,解得4a =(舍);当1≤时,即14a ≤,函数在[]1,2上单调递增,min 148y a =+=,解得74a =(舍),综上得3a =. 故答案为:3.【点睛】本题主要考查了对勾函数单调性的应用,体现了分类讨论思想的应用,属于中档题. 20.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的 解析:1【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果.【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数,且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=,故答案为:1.【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.21.1【分析】根据幂函数的定义与性质列不等式求出的取值范围再验证是否满足条件即可【详解】幂函数在上单调递减所以的整数值为0或12;当时不是偶函数;当时是偶函数;当时不是偶函数;所以整数的值是1故答案为: 解析:1【分析】根据幂函数的定义与性质,列不等式求出m 的取值范围,再验证是否满足条件即可.【详解】幂函数223()m m f x x --=在(0,)+∞上单调递减,所以2230m m --<,13m -<<,m 的整数值为0或1,2;当0m =时,3()-=f x x 不是偶函数;当1m =时,4()f x x -=是偶函数;当2m =时,3()-=f x x 不是偶函数;所以整数m 的值是1.故答案为:1.【点睛】本题主要考查了幂函数的定义与性质的应用问题,意在考查学生对这些知识的理解掌握水平. 22.【分析】根据题意分析函数的单调性结合函数的最小值为可得出关于实数的不等式组由此可求得实数的取值范围【详解】由于函数的值域为则函数在区间上单调递减或为常值函数函数在区间上单调递增或为常值函数①若函数在 解析:[)1,0-【分析】根据题意分析函数()y f x =的单调性,结合函数()y f x =的最小值为2-可得出关于实数a 的不等式组,由此可求得实数a 的取值范围.【详解】由于函数()()22,0log 11,0ax x f x a x x -≤⎧⎪=⎨⎡⎤++>⎪⎣⎦⎩的值域为[)2,-+∞, 则函数()2f x ax =-在区间(],0-∞上单调递减或为常值函数,函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数.①若函数()2f x ax =-在区间(],0-∞上单调递减,则0a <,此时()()02f x f ≥=-, 且此时函数()()2log 11f x a x =++⎡⎤⎣⎦在区间()0,∞+上单调递增或为常值函数, 则10a +≥,解得1a ≥-,当0x >时,()()22log 11log 10f x a x =++≥=⎡⎤⎣⎦, 即当10a -≤<时,函数()y f x =的值域为[)2,-+∞;②若函数()2f x ax =-在区间(],0-∞为常值函数,则0a =,当0x ≤时,()2f x =-,当0x >时,()()22log 1log 10f x x =+>=,即当0a =时,函数()y f x =的值域为{}()20,-+∞,不合乎题意.综上所述,实数a 的取值范围是[)1,0-.故答案为:[)1,0-.【点睛】本题考查利用分段函数的值域求参数,要结合题意分析函数的单调性,考查分析问题和解决问题的能力,属于中等题.23.21【分析】计算得到直线方程为当时计算得到答案【详解】当时设直线方程为将点代入直线解得故当时故答案为:【点睛】本题考查了根据图像求解析式意在考查学生的应用能力解析:21.【分析】 计算得到直线方程为207099y x =+,当6x =时计算得到答案. 【详解】当110x ≤≤时,设直线方程为y kx b =+,将点()1,10,()10,30代入直线解得2070,99k b == ,故207099y x =+ 当6x =时,190219y =≈ 故答案为:21【点睛】本题考查了根据图像求解析式,意在考查学生的应用能力. 24.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 25.【分析】先利用二次函数的性质得到函数在区间上的最值然后根据是奇函数得到时的最值然后根据恒成立求解【详解】当时当时函数在上是减函数在上是增函数所以在上的最小值为最大值为所以当时又是奇函数当时即因为当时 解析:94【分析】先利用二次函数2()32f x x x =++的性质,得到函数在区间[3-,1]-上的最值,然后根据()f x 是奇函数,得到[1x ∈,3]时的最值,然后根据()n f x m 恒成立求解.【详解】当0x <时,2()32f x x x =++, ∴当[3x ∈-,1]-时,函数在[3-,3]2-上是减函数,在3[2-,1]-上是增函数, 所以()f x 在[3-,1]-上的最小值为23331()()322224f ⎛⎫-=-+⨯-+=- ⎪⎝⎭, 最大值为2(3)(3)3322f -=--⨯+=,所以当[3x ∈-,1]-时,1()24f x -又()y f x =是奇函数,∴当13x ,时1()()[,2]4f x f x -=-∈- 即12()4f x - 因为当[1x ∈,3]时,()n f x m 恒成立 所以区间[2-,1][4n ⊆,]m ,所以19(2)44m n---= 故答案为:94【点睛】本题主要考查函数的奇偶性、二次函数在闭区间上的最值和函数恒成立问题,还考查了运算求解的能力,属于中档题. 26.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x<2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).。