信息对抗技术专业毕业设计英文翻译说明

合集下载

计算机专业毕业设计说明书外文翻译(中英对照)

计算机专业毕业设计说明书外文翻译(中英对照)

Talking about security loopholesRichard S. Kraus reference to the core network security business objective is to protect the sustainability of the system and data security, This two of the main threats come from the worm outbreaks, hacking attacks, denial of service attacks, Trojan horse. Worms, hacker attacks problems and loopholes closely linked to, if there is major security loopholes have emerged, the entire Internet will be faced with a major challenge. While traditional Trojan and little security loopholes, but recently many Trojan are clever use of the IE loophole let you browse the website at unknowingly were on the move.Security loopholes in the definition of a lot, I have here is a popular saying: can be used to stem the "thought" can not do, and are safety-related deficiencies. This shortcoming can be a matter of design, code realization of the problem.Different perspective of security loo phole sIn the classification of a specific procedure is safe from the many loopholes in classification.1. Classification from the user groups:● Public loopholes in the software category. If the loopholes in Windows, IEloophole, and so on.● specialized software loophole. If Oracle loopholes, Apach e, etc. loopholes.2. Data from the perspective include :● could not reasonably be read and read data, including the memory of thedata, documents the data, Users input data, the data in the database, network,data transmission and so on.● designa ted can be written into the designated places (including the localpaper, memory, databases, etc.)● Input data can be implemented (including native implementation,according to Shell code execution, by SQL code execution, etc.)3. From the point of view of the scope of the role are :● Remote loopholes, an attacker could use the network and directly throughthe loopholes in the attack. Such loopholes great harm, an attacker can createa loophole through other people's computers operate. Such loopholes and caneasily lead to worm attacks on Windows.● Local loopholes, the attacker must have the machine premise accesspermissions can be launched to attack the loopholes. Typical of the local authority to upgrade loopholes, loopholes in the Unix system are widespread, allow ordinary users to access the highest administrator privileges.4. Trigger conditions from the point of view can be divided into:● Initiative trigger loopholes, an attacker can take the initiative to use the loopholes in the attack, If direct access to computers.● Passive trigger loopholes must be computer operators can be carried out attacks with the use of the loophole. For example, the attacker made to a mail administrator, with a special jpg image files, if the administrator to open image files will lead to a picture of the software loophole was triggered, thereby system attacks, but if managers do not look at the pictures will not be affected by attacks.5. On an operational perspective can be divided into:● File opera tion type, mainly for the operation of the target file path can be controlled (e.g., parameters, configuration files, environment variables, the symbolic link HEC), this may lead to the following two questions: ◇Content can be written into control, the contents of the documents can be forged. Upgrading or authority to directly alter the important data (such as revising the deposit and lending data), this has many loopholes. If history Oracle TNS LOG document can be designated loopholes, could lead to any person may control the operation of the Oracle computer services;◇information content can be output Print content has been contained to a screen to record readable log files can be generated by the core users reading papers, Such loopholes in the history of the Unix system crontab subsystem seen many times, ordinary users can read the shadow ofprotected documents;● Memory coverage, mainly for memory modules can be specified, writecontent may designate such persons will be able to attack to enforce the code (buffer overflow, format string loopholes, PTrace loopholes, Windows 2000 history of the hardware debugging registers users can write loopholes), or directly alter the memory of secrets data.● logic errors, such wide gaps exist, but very few changes, so it is difficult todiscern, can be broken down as follows : ◇loopholes competitive conditions (usually for the design, typical of Ptrace loopholes, The existence of widespread document timing of competition) ◇wrong tactic, usually in design. If the history of the FreeBSD Smart IO loopholes. ◇Algorithm (usually code or design to achieve), If the history of Microsoft Windows 95/98 sharing password can easily access loopholes. ◇Imperfections of the design, such as TCP / IP protocol of the three-step handshake SYN FLOOD led to a denial of service attack. ◇realize the mistakes (usually no problem for the design, but the presence of coding logic wrong, If history betting system pseudo-random algorithm)● External orders, Typical of external commands can be controlled (via the PATH variable, SHELL importation of special characters, etc.) and SQL injection issues.6. From time series can be divided into:● has long found loopholes: manufacturers already issued a patch or repairmethods many people know already. Such loopholes are usually a lot of people have had to repair macro perspective harm rather small.● recently discovered loophole: manufacturers just made patch or repairmethods, the people still do not know more. Compared to greater danger loopholes, if the worm appeared fool or the use of procedures, so will result in a large number of systems have been attacked.● 0day: not open the loophole in the private transactions. Usually such loopholes to the public will not have any impact, but it will allow an attacker to the targetby aiming precision attacks, harm is very great.Different perspective on the use of the loopholesIf a defect should not be used to stem the "original" can not do what the (safety-related), one would not be called security vulnerability, security loopholes and gaps inevitably closely linked to use.Perspective use of the loopholes is:● Data Perspective: visit had not visited the data, including reading and writing.This is usually an attacker's core purpose, but can cause very serious disaster (such as banking data can be written).● Competence Perspective: Major Powers to bypass or p ermissions. Permissionsare usually in order to obtain the desired data manipulation capabilities.● Usability perspective: access to certain services on the system of controlauthority, this may lead to some important services to stop attacks and lead to a denial of service attack.● Authentication bypass: usually use certification system and the loopholes willnot authorize to access. Authentication is usually bypassed for permissions or direct data access services.● Code execution perspective: mainly procedures for the importation of thecontents as to implement the code, obtain remote system access permissions or local system of higher authority. This angle is SQL injection, memory type games pointer loopholes (buffer overflow, format string, Plastic overflow etc.), the main driving. This angle is usually bypassing the authentication system, permissions, and data preparation for the reading.Loopholes explore methods mustFirst remove security vulnerabilities in software BUG in a subset, all software testing tools have security loopholes to explore practical. Now that the "hackers" used to explore the various loopholes that there are means available to the model are:● fuzz testing (black box testing), by constructing procedures may lead toproblems of structural input data for automatic testing.● FOSS audit (White Box), now have a series of tools that can assist in thedetection of the safety procedures BUG. The most simple is your hands the latest version of the C language compiler.● IDA anti-compilation of the audit (gray box testing), and above the sourceaudit are very similar. The only difference is that many times you can obtain software, but you can not get to the source code audit, But IDA is a very powerful anti-Series platform, let you based on the code (the source code is in fact equivalent) conducted a safety audit.● dynamic tracking, is the record of proceedings under different conditions andthe implementation of all security issues related to the operation (such as file operations), then sequence analysis of these operations if there are problems, it is competitive category loopholes found one of the major ways. Other tracking tainted spread also belongs to this category.● patch, the software manufacturers out of the question usually addressed in thepatch. By comparing the patch before and after the source document (or the anti-coding) to be aware of the specific details of loopholes.More tools with which both relate to a crucial point: Artificial need to find a comprehensive analysis of the flow path coverage. Analysis methods varied analysis and design documents, source code analysis, analysis of the anti-code compilation, dynamic debugging procedures.Grading loopholesloopholes in the inspection harm should close the loopholes and the use of the hazards related Often people are not aware of all the Buffer Overflow Vulnerability loopholes are high-risk. A long-distance loophole example and better delineation:●R emote access can be an OS, application procedures, version information.●open unnecessary or dangerous in the service, remote access to sensitiveinformation systems.● Remote can be restricted for the documents, data reading.●remotely important or res tricted documents, data reading.● may be limited for long-range document, data revisions.● Remote can be restricted for important documents, data changes.● Remote can be conducted without limitation in the important documents, datachanges, or for general service denial of service attacks.● Remotely as a normal user or executing orders for system and network-leveldenial of service attacks.● may be remote management of user identities to the enforcement of the order(limited, it is not easy to use).● can be remote management of user identities to the enforcement of the order(not restricted, accessible).Almost all local loopholes lead to code execution, classified above the 10 points system for:●initiative remote trigger code execution (such a s IE loophole).● passive trigger remote code execution (such as Word gaps / charting softwareloopholes).DEMOa firewall segregation (peacekeeping operation only allows the Department of visits) networks were operating a Unix server; operating systems only root users and users may oracle landing operating system running Apache (nobody authority), Oracle (oracle user rights) services.An attacker's purpose is to amend the Oracle database table billing data. Its possible attacks steps:● 1. Access pea cekeeping operation of the network. Access to a peacekeepingoperation of the IP address in order to visit through the firewall to protect the UNIX server.● 2. Apache services using a Remote Buffer Overflow Vulnerability direct accessto a nobody's competence hell visit.● 3. Using a certain operating system suid procedure of the loophole to upgradetheir competence to root privileges.● 4. Oracle sysdba landing into the database (local landing without a password).● 5. Revised target table data.Over five down for process analysis:●Step 1: Authentication bypass●Step 2: Remote loopholes code execution (native), Authentication bypassing ● Step 3: permissions, authentication bypass● Step 4: Authentication bypass● Step 5: write data安全漏洞杂谈Richard S. Kraus 网络安全的核心目标是保障业务系统的可持续性和数据的安全性,而这两点的主要威胁来自于蠕虫的暴发、黑客的攻击、拒绝服务攻击、木马。

计算机类毕业设计英文文献及翻译

计算机类毕业设计英文文献及翻译

外貌在环境面板上的共同标签部分包括光,云,太阳和月亮的控制器。

启用灯光--当设置后,环境面板被点亮并且物体的场景会在全天不断变化。

当此复选框被清除,在场景中所有对象不亮也不随着一天时间的变化而变化。

(该对象将仍然被视为未点亮时,他们将使用为他们定制的颜色,材料和正常的价值观)。

启用云--当设置后,一个云层的场景便设置其中。

道路工具将定出海拔类型和云层类型。

默认情况下,此值未设置。

启用太阳/月亮--当设置,太阳和月球环境的效果显示并且月亮环境的效果有助于现场场景内的任何物体的照明。

当此复选框被清除,太阳和月亮不会被显示并且月亮助手停止现场照明。

默认情况下,太阳和月亮是没有设置。

注:太阳和月亮在天空的位置和绘制使用星历模型。

太阳和月亮的位置是根据一天中的时间,日期,纬度和经度绘制的。

月亮的月球阶段也以同样的方式计算。

天空颜色在环境面板上的共同标签部分包括天空的颜色,云的颜色,周围的颜色,天气的控制,和雾。

注:彩色按钮旁边的天空,云,和环境(背景)显示你当前的颜色。

单击每个按钮来改变颜色。

云的颜色--这个颜色的按钮显示您的云层的颜色。

点击就显示颜色对话框,然后选择一个新的颜色,然后点击确定。

环境光颜色--这个颜色的彩色按钮显示您当前的周围灯光组件的颜色。

点击就显示颜色对话框,然后选择一个新的颜色,然后点击确定。

环境光元件有助于场景和物体的亮度;默认设置是应用一个小环境光线。

环境光照亮了现场或对象,当一天的时间设置为晚,对象将仍然由于环境光而可见。

环境光可以用来照亮一个带有黑暗纹理或者用IRIX电脑做出纹理的物体。

(IRIX电脑相对于WINDOWS电脑使用了不同的GAMMA设置,他使Irix计算机处理的纹理总是看上去黑暗,直到图像编辑程序纠正才能恢复正常。

)天气--此选项不使用这种版本的路径工具。

在今后的版本中,天气列表将包含环境设置预设模拟不同时间的天气事件,如日出,上午,傍晚,夜间,多云,雨,雪等。

本科毕业设计的英文资料与中文翻译

本科毕业设计的英文资料与中文翻译

英文资料与中文翻译IEEE 802.11 MEDIUM ACCESS CONTROLThe IEEE 802.11 MAC layer covers three functional areas:reliable data delivery, medium access control, and security. This section covers the first two topics.Reliable Data DeliveryAs with any wireless network, a wireless LAN using the IEEE 802.11 physical and MAC layers is subject to considerable unreliability. Noise, interference, and other propagation effects result in the loss of a significant number of frames. Even with error-correction codes, a number of MAC frames may not successfully be received. This situation can be dealt with by reliability mechanisms at a higher layer. such as TCP. However, timers used for retransmission at higher layers are typically on the order of seconds. It is therefore more efficient to deal with errors at the MAC level. For this purpose, IEEE 802.11 includes a frame exchange protocol. When a station receives a data frame from another station. It returns an acknowledgment (ACK) frame to the source station. This exchange is treated as an atomic unit, not to be interrupted by a transmission from any other station. If the source does not receive an ACK within a short period of time, either because its data frame was damaged or because the returning ACK was damaged, the source retransmits the frame.Thus, the basic data transfer mechanism in IEEE802.11 involves an exchange of two frames. To further enhance reliability, a four-frame exchange may be used. In this scheme, a source first issues a request to send (RTS) frame to the destination. The destination then responds with a clear to send (CTS). After receiving the CTS, the source transmits the data frame, and the destination responds with an ACK. The RTS alerts all stations that are within reception range of the source that an exchange is under way; these stations refrain from transmission in order to avoid a collision between two frames transmitted at the same time. Similarly, the CTS alerts all stations that are within reception range of the destination that an exchange is under way. The RTS/CTS portion of the exchange is a required function of the MAC but may be disabled.Medium Access ControlThe 802.11 working group considered two types of proposals for a MAC algorithm: distributed access protocols, which, like Ethernet, distribute the decision to transmit over all the nodes using a carrier-sense mechanism; and centralized access protocols, which involve regulation of transmission by a centralized decision maker. A distributed access protocol makes sense for an ad hoc network of peer workstations (typically an IBSS) and may also be attractive in other wireless LAN configurations that consist primarily of burst traffic. A centralized access protocol is natural for configurations in which a umber of wireless stations are interconnected with each other and some sort of base station that attaches to a backbone wired LAN: it is especially useful if some of the data is time sensitive or high priority.The end result for 802.11 is a MAC algorithm called DFWMAC (distributed foundation wireless MAC) that provides a distributed access control mechanism with an optional centralized control built on top of that. Figure 14.5 illustrates the architecture. The lower sub-layer of the MAC layer is the distributed coordination function (DCF). DCF uses a contention algorithm to provide access to all traffic. Ordinary asynchronous traffic directly uses DCE. The point coordination function (PCF) is a centralized MAC algorithm used to provide contention-free service. PCF is built on top of DCF and exploits features of DCF to assure access for its users. Let us consider these two sub-layers in turn.MAClayerFigure 14.5 IEEE 802.11 Protocol ArchitectureDistributed Coordination FunctionThe DCF sub-layer makes use of a simple CSMA (carrier sense multiple access) algorithm, which functions as follows. If a station has a MAC frame to transmit, it listens to the medium. If the medium is idle, the station may transmit; otherwise the station must wait until the current transmission is complete before transmitting. The DCF does not include a collision detection function (i.e. CSMA/CD) because collision detection is not practical on a wireless network. The dynamic range of the signals on the medium is very large, so that a transmitting station cannot effectively distinguish incoming weak signals from noise and the effects of its own transmission.To ensure the smooth and fair functioning of this algorithm, DCF includes a set of delays that amounts to a priority scheme. Let us start by considering a single delay known as an inter-frame space (IFS). In fact, there are three different IFS values, but the algorithm is best explained by initially ignoring this detail. Using an IFS, the rules for CSMA access are as follows (Figure 14.6):Figure 14.6 IEEE 802.11 Medium Access Control Logic1. A station with a frame to transmit senses the medium. If the medium is idle. It waits to see if the medium remains idle for a time equal to IFS. If so , the station may transmit immediately.2. If the medium is busy (either because the station initially finds the medium busy or because the medium becomes busy during the IFS idle time), the station defers transmission and continues to monitor the medium until the current transmission is over.3. Once the current transmission is over, the station delays another IFS. If the medium remains idle for this period, then the station backs off a random amount of time and again senses the medium. If the medium is still idle, the station may transmit. During the back-off time, if the medium becomes busy, the back-off timer is halted and resumes when the medium becomes idle.4. If the transmission is unsuccessful, which is determined by the absence of an acknowledgement, then it is assumed that a collision has occurred.To ensure that back-off maintains stability, a technique known as binary exponential back-off is used. A station will attempt to transmit repeatedly in the face of repeated collisions, but after each collision, the mean value of the random delay is doubled up to some maximum value. The binary exponential back-off provides a means of handling a heavy load. Repeated failed attempts to transmit result in longer and longer back-off times, which helps to smooth out the load. Without such a back-off, the following situation could occur. Two or more stations attempt to transmit at the same time, causing a collision. These stations then immediately attempt to retransmit, causing a new collision.The preceding scheme is refined for DCF to provide priority-based access by the simple expedient of using three values for IFS:●SIFS (short IFS):The shortest IFS, used for all immediate responseactions,as explained in the following discussion●PIFS (point coordination function IFS):A mid-length IFS, used by thecentralized controller in the PCF scheme when issuing polls●DIFS (distributed coordination function IFS): The longest IFS, used as aminimum delay for asynchronous frames contending for access Figure 14.7a illustrates the use of these time values. Consider first the SIFS.Any station using SIFS to determine transmission opportunity has, in effect, the highest priority, because it will always gain access in preference to a stationwaiting an amount of time equal to PIFS or DIFS. The SIFS is used in the following circumstances:●Acknowledgment (ACK): When a station receives a frame addressed onlyto itself (not multicast or broadcast) it responds with an ACK frame after, waiting on1y for an SIFS gap. This has two desirable effects. First, because collision detection IS not used, the likelihood of collisions is greater than with CSMA/CD, and the MAC-level ACK provides for efficient collision recovery. Second, the SIFS can be used to provide efficient delivery of an LLC protocol data unit (PDU) that requires multiple MAC frames. In this case, the following scenario occurs. A station with a multi-frame LLC PDU to transmit sends out the MAC frames one at a time. Each frame is acknowledged after SIFS by the recipient. When the source receives an ACK, it immediately (after SIFS) sends the next frame in the sequence. The result is that once a station has contended for the channel, it will maintain control of the channel until it has sent all of the fragments of an LLC PDU.●Clear to Send (CTS):A station can ensure that its data frame will getthrough by first issuing a small. Request to Send (RTS) frame. The station to which this frame is addressed should immediately respond with a CTS frame if it is ready to receive. All other stations receive the RTS and defer using the medium.●Poll response: This is explained in the following discussion of PCF.longer than DIFS(a) Basic access methodasynchronous trafficdefers(b) PCF super-frame constructionFigure 14.7 IEEE 802.11 MAC TimingThe next longest IFS interval is the: PIFS. This is used by the centralized controller in issuing polls and takes precedence over normal contention traffic. However, those frames transmitted using SIFS have precedence over a PCF poll.Finally, the DIFS interval is used for all ordinary asynchronous traffic.Point C00rdination Function PCF is an alternative access method implemented on top of the DCE. The operation consists of polling by the centralized polling master (point coordinator). The point coordinator makes use of PIFS when issuing polls. Because PI FS is smaller than DIFS, the point coordinator call seize the medium and lock out all asynchronous traffic while it issues polls and receives responses.As an extreme, consider the following possible scenario. A wireless network is configured so that a number of stations with time, sensitive traffic are controlled by the point coordinator while remaining traffic contends for access using CSMA. The point coordinator could issue polls in a round—robin fashion to all stations configured for polling. When a poll is issued, the polled station may respond using SIFS. If the point coordinator receives a response, it issues another poll using PIFS. If no response is received during the expected turnaround time, the coordinator issues a poll.If the discipline of the preceding paragraph were implemented, the point coordinator would lock out all asynchronous traffic by repeatedly issuing polls. To prevent this, an interval known as the super-frame is defined. During the first part of this interval, the point coordinator issues polls in a round, robin fashion to all stations configured for polling. The point coordinator then idles for the remainder of the super-frame, allowing a contention period for asynchronous access.Figure l4.7 b illustrates the use of the super-frame. At the beginning of a super-frame, the point coordinator may optionally seize control and issues polls for a give period of time. This interval varies because of the variable frame size issued by responding stations. The remainder of the super-frame is available for contention based access. At the end of the super-frame interval, the point coordinator contends for access to the medium using PIFS. If the medium is idle. the point coordinator gains immediate access and a full super-frame period follows. However, the medium may be busy at the end of a super-frame. In this case, the point coordinator must wait until the medium is idle to gain access: this result in a foreshortened super-frame period for the next cycle.OctetsFC=frame control SC=sequence controlD/I=duration/connection ID FCS=frame check sequence(a ) MAC frameBitsDS=distribution systemMD=more data MF=more fragmentsW=wired equivalent privacy RT=retryO=orderPM=power management (b) Frame control filedFigure 14.8 IEEE 802.11 MAC Frame FormatMAC FrameFigure 14.8a shows the 802.11 frame format when no security features are used. This general format is used for all data and control frames, but not all fields are used in all contexts. The fields are as follows:● Frame Control: Indicates the type of frame and provides contr01information, as explained presently.● Duration/Connection ID: If used as a duration field, indicates the time(in-microseconds) the channel will be allocated for successful transmission of a MAC frame. In some control frames, this field contains an association, or connection, identifier.●Addresses: The number and meaning of the 48-bit address fields dependon context. The transmitter address and receiver address are the MAC addresses of stations joined to the BSS that are transmitting and receiving frames over the wireless LAN. The service set ID (SSID) identifies the wireless LAN over which a frame is transmitted. For an IBSS, the SSID isa random number generated at the time the network is formed. For awireless LAN that is part of a larger configuration the SSID identifies the BSS over which the frame is transmitted: specifically, the SSID is the MAC-level address of the AP for this BSS (Figure 14.4). Finally the source address and destination address are the MAC addresses of stations, wireless or otherwise, that are the ultimate source and destination of this frame. The source address may be identical to the transmitter address and the destination address may be identical to the receiver address.●Sequence Control: Contains a 4-bit fragment number subfield used forfragmentation and reassembly, and a l2-bit sequence number used to number frames sent between a given transmitter and receiver.●Frame Body: Contains an MSDU or a fragment of an MSDU. The MSDUis a LLC protocol data unit or MAC control information.●Frame Check Sequence: A 32-bit cyclic redundancy check. The framecontrol filed, shown in Figure 14.8b, consists of the following fields.●Protocol Version: 802.11 version, current version 0.●Type: Identifies the frame as control, management, or data.●Subtype: Further identifies the function of frame. Table 14.4 defines thevalid combinations of type and subtype.●To DS: The MAC coordination sets this bit to 1 in a frame destined to thedistribution system.●From DS: The MAC coordination sets this bit to 1 in a frame leaving thedistribution system.●More Fragments: Set to 1 if more fragments follow this one.●Retry: Set to 1 if this is a retransmission of a previous frame.●Power Management: Set to]if the transmitting station is in a sleep mode.●More Data: Indicates that a station has additional data to send. Each blockof data may be sent as one frame or a group of fragments in multiple frames.●WEP:Set to 1 if the optional wired equivalent protocol is implemented.WEP is used in the exchange of encryption keys for secure data exchange.This bit also is set if the newer WPA security mechanism is employed, as described in Section 14.6.●Order:Set to 1 in any data frame sent using the Strictly Ordered service,which tells the receiving station that frames must be processed in order. We now look at the various MAC frame types.Control Frames Control frames assist in the reliable delivery of data frames. There are six control frame subtypes:●Power Save-Poll (PS-Poll): This frame is sent by any station to the stationthat includes the AP (access point). Its purpose is to request that the AP transmit a frame that has been buffered for this station while the station was in power saving mode.●Request to Send (RTS):This is the first frame in the four-way frameexchange discussed under the subsection on reliable data delivery at the beginning of Section 14.3.The station sending this message is alerting a potential destination, and all other stations within reception range, that it intends to send a data frame to that destination.●Clear to Send (CTS): This is the second frame in the four-way exchange.It is sent by the destination station to the source station to grant permission to send a data frame.●Acknowledgment:Provides an acknowledgment from the destination tothe source that the immediately preceding data, management, or PS-Poll frame was received correctly.●Contention-Free (CF)-End: Announces the end of a contention-freeperiod that is part of the point coordination function.●CF-End+CF-Ack:Acknowledges the CF-End. This frame ends thecontention-free period and releases stations from the restrictions associated with that period.Data Frames There are eight data frame subtypes, organized into two groups. The first four subtypes define frames that carry upper-level data from the source station to the destination station. The four data-carrying frames are as follows: ●Data: This is the simplest data frame. It may be used in both a contentionperiod and a contention-free period.●Data+CF-Ack: May only be sent during a contention-free period. Inaddition to carrying data, this frame acknowledges previously received data.●Data+CF-Poll: Used by a point coordinator to deliver data to a mobilestation and also to request that the mobile station send a data frame that it may have buffered.●Data+CF-Ack+CF-Poll: Combines the functions of the Data+CF-Ack andData+CF-Poll into a single frame.The remaining four subtypes of data frames do not in fact carry any user data. The Null Function data frame carries no data, polls, or acknowledgments. It is used only to carry the power management bit in the frame control field to the AP, to indicate that the station is changing to a low-power operating state. The remaining three frames (CF-Ack, CF-Poll,CF-Ack+CF-Poll) have the same functionality as the corresponding data frame subtypes in the preceding list (Data+CF-Ack, Data+CF-Poll, Data+CF-Ack+CF-Poll) but withotit the data. Management FramesManagement frames are used to manage communications between stations and APs. The following subtypes are included:●Association Request:Sent by a station to an AP to request an association,with this BSS. This frame includes capability information, such as whether encryption is to be used and whether this station is pollable.●Association Response:Returned by the AP to the station to indicatewhether it is accepting this association request.●Reassociation Request: Sent by a station when it moves from one BSS toanother and needs to make an association with tire AP in the new BSS. The station uses reassociation rather than simply association so that the new AP knows to negotiate with the old AP for the forwarding of data frames.●Reassociation Response:Returned by the AP to the station to indicatewhether it is accepting this reassociation request.●Probe Request: Used by a station to obtain information from anotherstation or AP. This frame is used to locate an IEEE 802.11 BSS.●Probe Response: Response to a probe request.●Beacon: Transmitted periodically to allow mobile stations to locate andidentify a BSS.●Announcement Traffic Indication Message: Sent by a mobile station toalert other mobile stations that may have been in low power mode that this station has frames buffered and waiting to be delivered to the station addressed in this frame.●Dissociation: Used by a station to terminate an association.●Authentication:Multiple authentication frames are used in an exchange toauthenticate one station to another.●Deauthentication:Sent by a station to another station or AP to indicatethat it is terminating secure communications.IEEE802.11 媒体接入控制IEEE 802.11 MAC层覆盖了三个功能区:可靠的数据传送、接入控制以及安全。

毕业设计论文中英文翻译要求

毕业设计论文中英文翻译要求

毕业设计论文中英文翻译要求Graduation Thesis Translation RequirementsEnglish translation of Graduation Thesis:1. Accuracy: The English translation of the Graduation Thesis should accurately reflect the content and meaning of the original Chinese text. It should convey the same ideas and arguments as presented in the original text.2. Clarity: The translation should be clear and easy to understand. The language used should be appropriate and the sentences should be well-structured.3. Grammar and Syntax: The translation should follow the rules of English grammar and syntax. There should be no grammatical errors or awkward sentence constructions.4. Vocabulary: The translation should make use of appropriate vocabulary that is relevant to the topic of the Graduation Thesis. Technical terms and concepts should be accurately translated.5. Style: The translation should maintain the academic style and tone of the original Chinese text. It should use formal language and avoid colloquial or informal expressions.6. References: If the Graduation Thesis includes citations or references, the English translation should accurately reflectthese citations and references. The formatting of citations and references should follow the appropriate style guide.7. Proofreading: The English translation should be thoroughly proofread to ensure there are no spelling or punctuation errors. It should also be reviewed for any inconsistencies or inaccuracies.Minimum word count: The English translation of the Graduation Thesis should be at least 1200 words. This requirement ensures that the translation adequately captures the main points and arguments of the original text.It is important to note that there may be specific guidelines or requirements provided by your academic institution or supervisor for the translation of your Graduation Thesis. Please consult these guidelines and follow them accordingly.。

电子信息工程毕业设计外文翻译

电子信息工程毕业设计外文翻译

xx大学毕业设计外文翻译系别职业技术教育学院专业电子信息工程班级电子Z091 学号 x姓名 x指导教师 x2013年5月16日MM420 inverter energy-saving measures in the water supply system-Nanjing Hangda Yihang Technology Co., Ltd.Because the frequency conversion velocity modulation does not need to construct the tradition for the aqueous system for the aqueous system top digit water tank, the water tank, avoided two times polluting and reducing the construction investment, moreover designed reasonably can achieve the good energy conservation effect.In gives in the aqueous system, the constant speed pump only then in its highly effective section movement can guarantee the system normal work also does not have the energy dissipation.In the design, (this time current capacity is generally biggest by the pipe network most unfavorable situation, must lift is also biggest) takes the choice water pump unit the main basis, but when the pipe network current capacity reduces, the energy waste is inevitable, when also possibly creates the low current capacity in pipeline overpressure question.The water pump basis system current capacity real-time change realization stepless speed regulation movement, is solves above problem well, achieves one of energy conservation goal ways.The water pump velocity modulation may through the very many way realization, in which frequency conversion velocity modulation be the present ideal one kind.The frequency conversion velocity modulation is through will give on the aqueous system pipe network the pressure transmitter to carry on the sampling to the pipe network hydraulic pressure, transforms the pressure signal into the electrical signal, and delivers to the PID regulator and the user establishment value of pressure it carries on the comparison and the operation, finally will transform for the frequency control signal delivers to the frequency changer.The frequency changer basis transmits frequency control signal adjustment water pump electrical machinery supply frequency, thus realizes adjusts the water pump the rotational speed.May divide into two kinds according to the customer in actual use request frequency conversion velocity modulation for the aqueous system: The live pressure variable gives the aqueous system for the aqueous system and the constant pressure variable.The live pressure variable establishes for the aqueous system pressure transmitter in the service pipe net terminal, the PID regulator setting value the service flood peakvalue which needs for the pipe network terminal user.The system causes the pipe network terminal hydraulic pressure maintenance through the automatic control to be constant, causes the pipeline characteristic curve and system static lifting is invariable, but the water pump water outlet pressure changes along with the volume of diversion change according to the pipeline characteristic curve, therefore theoretically realized “the system to need how many, the unit provided how many”, could not because the volume of diversion reduced has unnecessary static lifting, the energy conservation effect was satisfied.But this is only one kind of ideal situation, also in the system only has the frequency conversion pump alone to work.Because the frequency conversion equipment quite is expensive, large-scale often uses the frequency conversion pump and the constant speed pump parallel operation way water supply for the aqueous system.Presently establishes a frequency conversion pump and a power frequency pump and the combined transport behavior example by the system in.When the pipe network current capacity reduces, needs to lift reduces correspondingly, the frequency conversion pump may through the deceleration movement realization.But also must reduce correspondingly for guarantee parallel unit normal work power frequency pump lifting, this only can through increase the current capacity realization, thus creates the water volume the dropout, also possibly causes the power frequency pump to leave the highly effective section work, namely has not achieved the true energy conservation the goal.Meets has above situation, may take following measure to improve its energy conservation effect:①Gives the aqueous system regarding the small scale, may only suppose a frequency conversion pump, and causes the pump the highly effective area (its highly effective scope to move the time scope compared to power frequency pump to want as far as possible many including to appear the probability big operating point in a big way).②Uses the multi-Taiwan pump velocity modulation movement, certainly, quite is expensive as a result of the frequency conversion speeder price, should overall evaluation its economic agent decide.③When choice power frequency pump, should cause the system when the most disadvantageous spot work, the power frequency pump operating point approaches left side of as far as possible its highly effective area; If the most unfavorable situation appears the probability to be small, may enable it to deviate slightly the highlyeffective area, falls in the highly effective area left flank.Thus, when system lifting reduces, the power frequency pump still may in the highly effective area work.The constant pressure variable is located in the water pump unit water outlet for the aqueous system the pressure transmitter, is for the purpose of causing the water pump water outlet pressure maintenance to be constant, general hypothesis for most disadvantageous operating mode when the water pump water outlet needs the value of pressure.Still by a frequency conversion pump and a power frequency pump and combined transport behavior example.When the pipe network current capacity reduces, the frequency conversion pump through the deceleration movement, maintenance lifting invariable reduces the water discharge.Because the outlet pressure is invariable, the power frequency pumps out the water volume not to be able to change (i.e. movement operating mode invariably), still in highly effective area work, thus achieves the energy conservation goal.Needs to point out, the system needs when the current capacity changes small, the water pump water outlet pressure (still for the most unfavorable situation in system needs pressure) to be bigger than the pressure which the pipeline this time needs, thus still could cause static lifting to a certain extent the waste.Following two measures may improve its energy conservation effect:①Enlarges the pipe network suitably the caliber, causes the pipeline characteristic curve to hasten gently, but this can increase the pipe network the disposable investment, needs and the energy conservation effect makes the comprehensive economical comparison.②When choice power frequency pump causes each pump the operating point to fall as far as possible on the highly effective area.For aqueous system when water used trough (for example at night), in the system the water consumption is very small, even achieved the zero current capacity, is called “the micro current capacity”.In this case, if depends upon at the highly effective area great current capacity scope movement water pump maintains the system pressure, not only buckle water pump life, moreover the efficiency is low, cannot achieve the energy conservation the goal.Theoretically, the frequency conversion pump current capacity may approach in the highly effective scope in the zero, but in fact the water pump rotational speed not impossible unlimited to reduce, only depends on the frequency conversion pump to be competent the micro current capacity operating mode with difficulty toward the dealings.The actual project uses generally when the system additionally builds the small current capacity power frequency auxiliary pump,small current capacity facilities and so on frequency conversion auxiliary pump, barometric pressure pot maintain the micro current capacity the system pressure.To the different system micro current capacity question should the special details concrete analysis, and carries on the overall evaluation to the disposable investment and the long-term operating cost to be able to make the reasonable solution.In the frequency conversion velocity modulation for in the aqueous system design process, should choose the pump reasonably according to the service pipe net characteristic, achieved in satisfies the operation requirements under the premise, both saves the goal which the investment and conserves energy.MM420变频器在给水系统的几点节能措施-南京航大意航科技股份有限公司由于变频调速给水系统不需要建造传统给水系统的高位水箱、水塔,避免了二次污染并减少了土建投资,而且设计得合理能达到较好的节能效果。

毕业设计(论文)外文资料翻译〔含原文〕【范本模板】

毕业设计(论文)外文资料翻译〔含原文〕【范本模板】

南京理工大学毕业设计(论文)外文资料翻译教学点: 南京信息职业技术学院专业:电子信息工程姓名:陈洁学号:014910253034外文出处:《Pci System Architecture 》(用外文写)附件: 1.外文资料翻译译文;2。

外文原文。

附件1:外文资料翻译译文64位PCI扩展1.64位数据传送和64位寻址:独立的能力PCI规范给出了允许64位总线主设备与64位目标实现64位数据传送的机理。

在传送的开始,如果回应目标是一个64位或32位设备,64位总线设备会自动识别.如果它是64位设备,达到8个字节(一个4字)可以在每个数据段中传送。

假定是一串0等待状态数据段。

在33MHz总线速率上可以每秒264兆字节获取(8字节/传送*33百万传送字/秒),在66MHz总线上可以528M字节/秒获取.如果回应目标是32位设备,总线主设备会自动识别并且在下部4位数据通道上(AD[31::00])引导,所以数据指向或来自目标。

规范也定义了64位存储器寻址功能。

此功能只用于寻址驻留在4GB地址边界以上的存储器目标。

32位和64位总线主设备都可以实现64位寻址。

此外,对64位寻址反映的存储器目标(驻留在4GB地址边界上)可以看作32位或64位目标来实现。

注意64位寻址和64位数据传送功能是两种特性,各自独立并且严格区分开来是非常重要的。

一个设备可以支持一种、另一种、都支持或都不支持。

2.64位扩展信号为了支持64位数据传送功能,PCI总线另有39个引脚。

●REQ64#被64位总线主设备有效表明它想执行64位数据传送操作.REQ64#与FRAME#信号具有相同的时序和间隔。

REQ64#信号必须由系统主板上的上拉电阻来支持.当32位总线主设备进行传送时,REQ64#不能又漂移。

●ACK64#被目标有效以回应被主设备有效的REQ64#(如果目标支持64位数据传送),ACK64#与DEVSEL#具有相同的时序和间隔(但是直到REQ64#被主设备有效,ACK64#才可被有效).像REQ64#一样,ACK64#信号线也必须由系统主板上的上拉电阻来支持。

毕业设计(论文)外文资料及译文(模板

毕业设计(论文)外文资料及译文(模板

大连东软信息学院
毕业设计(论文)外文资料及译文
系所:
专业:
班级:
姓名:
学号:
大连东软信息学院
Dalian Neusoft University of Information
外文资料和译文格式要求
一、装订要求
1、外文资料原文(复印或打印)在前、译文在后、最后为指导教师评定成绩。

2、译文必须采用计算机输入、打印。

3、A4幅面打印,于左侧装订。

二、撰写要求
1、外文文献内容与所选课题相关。

2、本科学生译文汉字字数不少于4000字,高职学生译文汉字字数不少于2000字。

三、格式要求
1、译文字号:中文小四号宋体,英文小四号“Times New Roman”字型,全文统一,首行缩进2个中文字符,1.5倍行距。

2、译文页码:页码用阿拉伯数字连续编页,字体采用“Times New Roman”字体,字号小五,页底居中。

3、译文页眉:眉体使用单线,页眉说明五号宋体,居中“大连东软信息学院本科毕业设计(论文)译文”。

大连东软信息学院毕业设计(论文)译文
-1-。

毕业设计论文翻译(译文+原文)

毕业设计论文翻译(译文+原文)

Hacking tricks toward security on network environments Tzer-Shyong Chen1, Fuh-Gwo Jeng 2, and Yu-Chia Liu 11 Department of Information Management, Tunghai University, Taiwan2 Department of Applied Mathematics, National Chiayi University, TaiwanE-Mail:****************.edu.twAbstractMounting popularity of the Internet has led to the birth of Instant Messaging, an up-and-coming form of Internet communication. Instant Messaging is very popular with businesses and individuals since it has instant communication ability. As a result, Internet security has become a pressing and important topic for discussion. Therefore, in recent years, a lot of attention has been drawn towards Internet security and the various attacks carried out by hackers over the Internet. People today often handle affairs via the Internet. For instance, instead of the conventional letter, they communicate with others by e-mails; they chat with friends through an instant messenger; find information by browsing websites instead of going to the library; perform e-commerce transactions through the Internet, etc. Although the convenience of the Internet makes our life easier, it is also a threat to Internet security. For instance, a business email intercepted during its transmission may let slip business confidentiality; file transfers via instant messengers may also be intercepted, and then implanted with backdoor malwares; conversations via instant messengers could be eavesdropped. Furthermore, ID and password theft may lose us money when using Internet bank service. Attackers on the Internet use hacking tricks to damage systems while users are connected to the Internet. These threats along with possible careless disclosure of business information make Instant Messaging a very unsafe method of communication for businesses. The paper divides hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing or fraud via e-mails. (3) Fake Websites. Keywords:Hacking tricks, Trojan programs, Phishing, Firewall, Intrusion detection system.1. IntroductionIncreasingly more people are using instant messengers such as MSN Messenger, Yahoo! Messenger, ICQ, etc as the media of communication. These instant messengers transmit alphanumeric message as well as permit file sharing. During transfer, a file may be intercepted by a hacker and implanted with backdoor malware. Moreover, the e-mails users receive every day may include Spam, advertisements, and fraudulent mail intended to trick uninformed users. Fake websites too are prevalent. Websites which we often visit could be counterfeited by imitating the interface and the URL of the original, tricking users. The paper classifies hacking tricks into three categories which are explained in the following sections.2. Hacking TricksThe paper divides hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing (3) Fake Websites.2.1 Trojan programs that share files via instant messengerInstant messaging allows file-sharing on a computer [9]. All present popular instant messengers have file sharing abilities, or allow users to have the above functionality by installing patches or plug-ins; this is also a major threat to present information security. These communication softwares also makeit difficult for existing hack prevention methods to prevent and control information security. Therefore, we shall discuss how to control the flow of instant messages and how to identify dangerous user behavior.Hackers use instant communication capability to plant Trojan program into an unsuspected program; the planted program is a kind of remotely controlled hacking tool that can conceal itself and is unauthorized. The Trojan program is unknowingly executed, controlling the infected computer; it can read, delete, move and execute any file on the computer. The advantages of a hacker replacing remotely installed backdoor Trojan programs [1] with instant messengers to access files are:When the victim gets online, the hacker will be informed. Thus, a hacker can track and access the infected computer, and incessantly steal user information.A hacker need not open a new port to perform transmissions; he can perform his operations through the already opened instant messenger port.Even if a computer uses dynamic IP addresses, its screen name doesn’t change.Certain Trojan programs are designed especially for instant messengers. These Trojans can change group settings and share all files on the hard disk of the infected computer. They can also destroy or modify data, causing data disarray. This kind of program allows a hacker access to all files on an infected computer, and thus poses a great threat to users. The Trojan program takes up a large amount of the resources of the computer causing it to become very slow and often crashes without a reason.Trojan programs that access a user computer through an instant messenger are probably harder to detect than classic Trojan horse programs. Although classic Trojan intrudes a computer by opening a listening or outgoing port which is used to connect toa remote computer, a desktop firewall can effectively block such Trojans. Alternatively, since it is very difficult for the server’s firewall to spot intrusion by controlling an instant messenger’s flow, it is extremely susceptible to intrusion.Present Trojan programs have already successfully implemented instant messengers. Some Trojan programs are Backdoor Trojan, AIMVision, and Backdoor. Sparta.C. Backdoor Trojans use ICQ pager to send messages to its writer. AIMVision steals AIM related information stored in the Windows registry, enabling a hacker to setup an AIM user id. Backdoor. Sparta.C uses ICQ to communicate with its writer and opens a port on an infected host and send its IP Address to the hacker, and at the same time attempts to terminate the antivirus program or firewall of the host.2.1.1 Hijacking and ImpersonationThere are various ways through which a hacker can impersonate other users [7]. The most commonly used method is eavesdropping on unsuspecting users to retrieve user accounts, passwords and other user related information.The theft of user account number and related information is a very serious problem in any instant messenger. For instance, a hacker after stealing a user’s information impersonate the user; the user’s contacts not knowing that the user’s account has been hacked believe that the person they’re talking to is the user, and are persuaded to execute certain programs or reveal confidential information. Hence, theft of user identity not only endangers a user but also surrounding users. Guarding against Internet security problems is presently the focus of future research; because without good protection, a computer can be easily attacked, causing major losses.Hackers wishing to obtain user accounts may do so with the help of Trojans designed to steal passwords. If an instant messenger client stores his/her password on his/her computer, then a hacker can send a Trojan program to the unsuspecting user. When the user executes the program, the program shall search for the user’s password and send it to the hacker. There are several ways through which a Trojan program can send messages back to the hacker. The methods include instant messenger, IRC, e-mails, etc.Current four most popular instant messengers are AIM, Yahoo! Messenger, ICQ, and MSN Messenger, none of which encrypts its flow. Therefore, a hackercan use a man-in-the-middle attack to hijack a connection, then impersonate the hijacked user and participate in a chat-session. Although difficult, a hacker can use the man-in-the-middle attack to hijack the connection entirely. For example, a user may receive an offline message that resembles that sent by the server, but this message could have been sent by the hacker. All at once, the user could also get disconnected to the server. Furthermore, hackers may also use a Denial of Service (DoS) tool or other unrelated exploits to break the user’s connection. However, the server keeps the connection open, and does not know that the user has been disconnected; thus allowing the hacker to impersonate the user. Moreover, since the data flow is unencrypted and unauthenticated, a hacker can use man-in-the-middle attacks that are similar to that of ARP fraud to achieve its purpose.2.1.2 Denial of Service (DoS)There are many ways through which a hacker can launch a denial of service (DoS) attack [2] on an instant messenger user. A Partial DoS attack will cause a user end to hang, or use up a large portion of CPU resources causing the system to become unstable.Another commonly seen attack is the flooding of messages to a particular user. Most instant messengers allow the blocking of a particular user to prevent flood attacks. However, a hacker can use tools that allow him to log in using several different identities at the same time, or automatically create a large number of new user ids, thus enabling a flood attack. Once a flood attack begins, even if the user realizes that his/her computer has been infected, the computer will not be able to respond. Thus, the problem cannot be solved by putting a hacker’s user id on the ignore list of your instant messenger.A DoS attack on an instant messenger client is only a common hacking tool. The difficulty of taking precautions against it could turn this hacking tool into dangerous DoS type attacks. Moreover, some hacking tools do not just cause an instant messenger client to hang, but also cause the user end to consume large amount of CPU time, causing the computer to crash.2.1.3 Information DisclosureRetrieving system information through instant messenger users is currently the most commonly used hacking tool [4]. It can effortlessly collect user network information like, current IP, port, etc. IP address retriever is an example. IP address retrievers can be used to many purposes; for instance, a Trojan when integrated with an IP address retriever allows a hacker to receive all information related to the infected computer’s IP address as soon as the infected computer connects to the internet. Therefore, even if the user uses a dynamic IP address, hackers can still retrieve the IP address.IP address retrievers and other similar tools can also be used by hackers to send data and Trojans to unsuspecting users. Hackers may also persuade unsuspecting users to execute files through social engineering or other unrelated exploits. These files when executed search for information on the user’s computer and sends them back to the hacker through the instant messenger network.Different Trojan programs were designed for different instant messaging clients. For example, with a user accounts and password stealing Trojans a hacker can have full control of the account once the user logs out. The hacker can thus perform various tasks like changing the password and sending the Trojan program to all of the user’s contacts.Moreover, Trojans is not the only way through which a hacker can cause information disclosure. Since data sent through instant messengers are unencrypted, hackers can sniff and monitor entire instant messaging transmissions. Suppose an employee of an enterprise sends confidential information of the enterprise through the instant messenger; a hacker monitoring the instant messaging session can retrieve the data sent by the enterprise employee. Thus, we must face up to the severity of the problem.2.2 PhishingThe word “Phishing” first appeared in 1996. It is a variant of ‘fishing’, and formed by replacing the ‘f’ in ‘fishing’ with ‘ph’ from phone. It means tricking users of their money through e-mails.Based on the statistics of the Internet Crime Complaint Center, loss due to internet scam was as high as $1.256 million USD in 2004. The Internet Crime Complaint Center has listed the above Nigerian internet scam as one of the ten major internet scams.Based on the latest report of Anti-Phishing Working Group (APWG) [8], there has been a 28% growth of Phishing scams in the past 4 months, mostly in the US and in Asia. Through social engineering and Trojans, it is very difficult for a common user to detect the infection.To avoid exploitation of your compassion, the following should be noted:(1)When you need to enter confidentialinformation, first make sure that theinformation is entered via an entirely secureand official webpage. There are two ways todetermine the security of the webpage:a.The address displayed on the browserbegins with https://, and not http://. Payattention to if the letter ‘s’ exists.b.There is a security lock sign on the lowerright corner of the webpage, and whenyour mouse points to the sign, a securitycertification sign shall appear.(2)Consider installing a browser security softwarelike SpoofStick which can detect fake websites.(3)If you suspect the received e-mail is a Phishinge-mail, do not open attachments attached to theemail. Opening an unknown attachment couldinstall malicious programs onto your computer.(4)Do not click on links attached to your emails. Itis always safer to visit the website through theofficial link or to first confirm the authenticityof the link. Never follow or click on suspiciouslinks in an e-mail. It is advisable to enter theURL at the address bar of the web browser,and not follow the given link.Generally speaking, Phishing [3] [5] is a method that exploits people’s sympathy in the form of aid-seeking e-mails; the e-mail act as bait. These e-mails usually request their readers to visit a link that seemingly links to some charitable organization’s website; but in truth links the readers to a website that will install a Trojan program into the reader’s computer. Therefore, users should not forward unauthenticated charity mails, or click on unfamiliar links in an e-mail. Sometimes, the link could be a very familiar link or an often frequented website, but still, it would be safer if you’d type in the address yourself so as to avoid being linked to a fraudulent website. Phisher deludes people by using similar e-mails mailed by well-known enterprises or banks; these e-mails often asks users to provide personal information, or result in losing their personal rights; they usually contain a counterfeit URL which links to a website where the users can fillin the required information. People are often trapped by phishing due to inattentionBesides, you must also be careful when using a search engine to search for donations and charitable organizations.2.3 Fake WebsitesFake bank websites stealing account numbers and passwords have become increasingly common with the growth of online financial transactions. Hence, when using online banking, we should take precautions like using a secure encrypted customer’s certificate, surf the net following the correct procedure, etc.There are countless kinds of phishing baits, for instance, messages that say data expired, data invalid, please update data, or identity verification intended to steal account ID and matching password. This typeof online scam is difficult for users to identify. As scam methods become finer, e-mails and forged websites created by the impostor resemble their original, and tremendous losses arise from the illegal transactions.The following are methods commonly used by fake websites. First, the scammers create a similar website homepage; then they send out e-mails withenticing messages to attract visitors. They may also use fake links to link internet surfers to their website. Next, the fake website tricks the visitors into entering their personal information, credit card information or online banking account number and passwords. After obtaining a user’s information, the scammers can use the information to drain the bank accounts, shop online or create fake credit cards and other similar crimes. Usually, there will be a quick search option on these fake websites, luring users to enter their account number and password. When a user enters their account number and password, the website will respond with a message stating that the server is under maintenance. Hence, we must observe the following when using online banking:(1)Observe the correct procedure for entering abanking website. Do not use links resultingfrom searches or links on other websites.(2)Online banking certifications are currently themost effective security safeguard measure. (3)Do not easily trust e-mails, phone calls, andshort messages, etc. that asks for your accountnumber and passwords.Phishers often impost a well-known enterprise while sending their e-mails, by changing the sender’s e-mail address to that of the well known enterprise, in order to gain people’s trust. The ‘From’ column of an e-mail is set by the mail software and can be easily changed by the web administrator. Then, the Phisher creates a fake information input website, and send out e-mails containing a link to this fake website to lure e-mail recipients into visiting his fake website.Most Phishers create imitations of well known enterprises websites to lure users into using their fake websites. Even so, a user can easily notice that the URL of the website they’re entering has no relation to the intended enterprise. Hence, Phishers may use different methods to impersonate enterprises and other people. A commonly used method is hiding the URL. This can easily be done with the help of JavaScript.Another way is to exploit the loopholes in an internet browser, for instance, displaying a fake URL in the browser’s address bar. The security loophole causing the address bar of a browser to display a fake URL is a commonly used trick and has often been used in the past. For example, an e-mail in HTML format may hold the URL of a website of a well-known enterprise, but in reality, the link connects to a fake website.The key to successfully use a URL similar to that of the intended website is to trick the visual senses. For example, the sender’s address could be disguised as that of Nikkei BP, and the link set to http://www.nikeibp.co.jp/ which has one k less than the correct URL which is http://www.nikkeibp.co.jp/. The two URLs look very similar, and the difference barely noticeable. Hence people are easily tricked into clicking the link.Besides the above, there are many more scams that exploit the trickery of visual senses. Therefore, you should not easily trust the given sender’s name and a website’s appearance. Never click on unfamiliar and suspicious URLs on a webpage. Also, never enter personal information into a website without careful scrutiny.3. ConclusionsBusiness strategy is the most effective form of defense and also the easiest to carry out. Therefore, they should be the first line of defense, and not last. First, determine if instant messaging is essential in the business; then weigh its pros and cons. Rules and norms must be set on user ends if it is decided that the business cannot do without instant messaging functionality. The end server should be able to support functions like centralized logging and encryption. If not, then strict rules must be drawn, and carried out by the users. Especially, business discussions must not be done over an instant messenger.The paper categorized hacking tricks into three categories: (1) Trojan programs that share files via instant messenger. (2) Phishing (3) Fake Websites. Hacking tricks when successfully carried out could cause considerable loss and damage to users. The first category of hacking tricks can be divided into three types: (1) Hijacking and Impersonation; (2) Denial of Service; (3) Information Disclosure.Acknowledgement:This work was supported by the National Science Council, Taiwan, under contract No. NSC 95-2221-E-029-024.References[1] B. Schneier, “The trojan horse race,”Communications of ACM, Vol. 42, 1999, pp.128.[2] C. L. Schuba, “Analysis of a denial of serviceattack on TCP,” IEEE Security and PrivacyConference, 1997, pp. 208-223.[3] E. Schultz, “Phishing is becoming moresophisticated,” Computer and Security, Vol.24(3), 2005, pp. 184-185.[4]G. Miklau, D. Suciu, “A formal analysis ofinformation disclosure in data exchange,”International Conference on Management ofData, 2004, pp. 575-586.[5]J. Hoyle, “'Phishing' for trouble,” Journal ofthe American Detal Association, Vol. 134(9),2003, pp. 1182-1182.[6]J. Scambray, S. McClure, G. Kurtz, Hackingexposed: network security secrets and solutions,McGraw-Hill, 2001.[7]T. Tsuji and A. Shimizu, “An impersonationattack on one-time password authenticationprotocol OSPA,” to appear in IEICE Trans.Commun, Vol. E86-B, No.7, 2003.[8]Anti-Phishing Working Group,.[9]/region/tw/enterprise/article/icq_threat.html.有关网络环境安全的黑客技术摘要:现在人们往往通过互联网处理事务。

毕业设计外文资料及译文(模板

毕业设计外文资料及译文(模板
因为初次建设必然涉及信息基础设施的建设,它是应用系统的基础,应尽可能一步到位,并具有可扩展性。应用系统则可根据业务需求确定建设的优先级,要求重点突出、以点带面逐步推进信息化建设。
一般来说,应选择业务价值贡献大、最容易让企业所有员工都能使用的信息系统作为优先建设的系统,如供销存系统、财务系统和办公自动化系统等。员工体会到信息系统价值贡献,就会主动推进下阶段的信息化建设。
2.怎么选?
以业务战略为指针,避免盲目选型。
信息化不是一个简单的技术问题,它的核心在于,适应和支持业务发展战略而进行的管理模式变革和业务流程优化。因此,企业信息化选型应以业务战略为指导。例如,如果企业战略核心是国际化,那就应优先选择具有国际最佳实践经验的产品。总之,业务战略匹配是信息化选型中最先考虑的因素。
同样,用户与IT厂商的沟通也应当分工明确,业务人员应与IT厂商的业务需求分析人员进行沟通,IT人员与IT厂商的设计和实施人员进行沟通。
5.权衡好一步到位和分步实施的关系
很多企业把信息化理解成为一次性的工程,因而觉得一步建设到位有利于长远发展,但事实上,制造企业信息化的复杂性是不能仅靠一次性投入就到位的,信息系统需要随着商业环境的变化不断进行调整和更新,因此,是一个持续的过程,决不可能一蹴而就,一步到位。当然,初次建设中加大投资力度是可行的。
以业务需求为主导,避免被动选型
制造企业多属于传统产业,对IT技术较为陌生,因此早期的信息化工程基本上是被技术主导的。企业信息化选型始终处于一种被动的地位,这直接导致了很多企业CIMS和ERP应用示范工程的失败。信息化规划和选型应当以业务需求为导向,要选择最能满足业务需求的产品。有些产品尽管技术水平领先、功能完备,但如果它不能很好地满足业务需求,就不能作为首选的对象。

计算机专业毕业设计外文翻译

计算机专业毕业设计外文翻译

外文翻译Birth of the NetThe Internet has had a relatively brief, but explosive history so far. It grew out of an experiment begun in the 1960's by the U.S. Department of Defense. The DoD wanted to create a computer network that would continue to function in the event of a disaster, such as a nuclear war. If part of the network were damaged or destroyed, the rest of the system still had to work. That network was ARPANET, which linked U.S. scientific and academic researchers. It was the forerunner of today's Internet.In 1985, the National Science Foundation (NSF) created NSFNET, a series of networks for research and education communication. Based on ARPANET protocols, the NSFNET created a national backbone service, provided free to any U.S. research and educational institution. At the same time, regional networks were created to link individual institutions with the national backbone service.NSFNET grew rapidly as people discovered its potential, and as new software applications were created to make access easier. Corporations such as Sprint and MCI began to build their own networks, which they linked to NSFNET. As commercial firms and other regional network providers have taken over the operation of the major Internet arteries, NSF has withdrawn from the backbone business.NSF also coordinated a service called InterNIC, which registered all addresses on the Internet so that data could be routed to the right system. This service has now been taken over by Network Solutions, Inc., in cooperation with NSF.How the Web WorksThe World Wide Web, the graphical portion of the Internet, is the most popular part of the Internet by far. Once you spend time on the Web,you will begin to feel like there is no limit to what you can discover. The Web allows rich and diverse communication by displaying text, graphics, animation, photos, sound and video.So just what is this miraculous creation? The Web physically consists of your personal computer, web browser software, a connection to an Internet service provider, computers called servers that host digital data and routers and switches to direct the flow of information.The Web is known as a client-server system. Your computer is the client; the remote computers that store electronic files are the servers. Here's how it works:Let's say you want to pay a visit to the the Louvre museum website. First you enter the address or URL of the website in your web browser (more about this shortly). Then your browser requests the web page from the web server that hosts the Louvre's site. The Louvre's server sends the data over the Internet to your computer. Your web browser interprets the data, displaying it on your computer screen.The Louvre's website also has links to the sites of other museums, such as the Vatican Museum. When you click your mouse on a link, you access the web server for the Vatican Museum.The "glue" that holds the Web together is called hypertext and hyperlinks. This feature allow electronic files on the Web to be linked so you can easily jump between them. On the Web, you navigate through pages of information based on what interests you at that particular moment, commonly known as browsing or surfing the Net.To access the Web you need web browser software, such as Netscape Navigator or Microsoft Internet Explorer. How does your web browser distinguish between web pages and other files on the Internet? Web pages are written in a computer language called Hypertext Markup Language or HTML.Some Web HistoryThe World Wide Web (WWW) was originally developed in 1990 at CERN, the European Laboratory for Particle Physics. It is now managed by The World Wide Web Consortium, also known as the World Wide Web Initiative.The WWW Consortium is funded by a large number of corporate members, including AT&T, Adobe Systems, Inc., Microsoft Corporation and Sun Microsystems, Inc. Its purpose is to promote the growth of the Web by developing technical specifications and reference software that will be freely available to everyone. The Consortium is run by MIT with INRIA (The French National Institute for Research in Computer Science) acting as European host, in collaboration with CERN.The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, was instrumental in the development of early graphical software utilizing the World Wide Web features created by CERN. NCSA focuses on improving the productivity of researchers by providing software for scientific modeling, analysis, and visualization. The World Wide Web was an obvious way to fulfill that mission. NCSA Mosaic, one of the earliest web browsers, was distributed free to the public. It led directly to the phenomenal growth of the World Wide Web.Understanding Web AddressesYou can think of the World Wide Web as a network of electronic files stored on computers all around the world. Hypertext links these resources together. Uniform Resource Locators or URLs are the addresses used to locate thesefiles. The information contained in a URL gives you the ability to jump from one web page to another with just a click of your mouse. When you type a URL into your browser or click on a hypertext link, your browser is sending a request to a remote computer to download a file.What does a typical URL look like? Here are some examples:/The home page for study english.ftp:///pub/A directory of files at MIT* available for downloading.news:rec.gardens.rosesA newsgroup on rose gardening.The first part of a URL (before the two slashes* tells you the type of resource or method of access at that address. For example:•http - a hypertext document or directory•gopher - a gopher document or menu•ftp - a file available for downloading or a directory of such files•news - a newsgroup•telnet - a computer system that you can log into over the Internet•WAIS* - a database or document in a Wide Area Information Search database•file - a file located on a local drive (your hard drive)The second part is typically the address of the computer where the data or service is located. Additional parts may specify the names of files, the port to connect to, or the text to search for in a database.You can enter the URL of a site by typing it into the Location bar of your web browser, just under the toolbar.Most browsers record URLs that you want to use again, by adding them to a special menu. In Netscape Navigator, it's called Bookmarks. In Microsoft Explorer, it's called Favorites. Once you add a URL to your list, you can return to that web page simply by clicking on the name in your list, instead of retyping the entire URL.Most of the URLs you will be using start with http which stands for Hypertext Transfer Protocol*. http is the method by which HTML files are transferred over the Web. Here are some other important things to know about URLs:• A URL usually has no spaces.• A URL always uses forward slashes (//).If you enter a URL incorrectly, your browser will not be able to locate the site or resource you want. Should you get an error message or the wrong site, make sure you typed the address correctly.You can find the URL behind any link by passing your mouse cursor over the link. The pointer will turn into a hand and the URL will appear in the browser's status ba r, usually located at the bottom of your screen.Domain NamesWhen you think of the Internet, you probably think of ".com." Just what do those three letters at the end of a World Wide Web address mean?Every computer that hosts data on the Internet has a unique numerical address. For example, the numerical address for the White House is198.137.240.100. But since few people want to remember long strings of numbers, the Domain Name System (DNS)* was developed. DNS, a critical part of the Internet's technical infrastructure*, correlates* a numerical address to a word. To access the White House website, you could type its number into the address box of your web browser. But most people prefer to use "." In this case, the domain name is . In general, the three-letter domain name suffix* is known as a generictop-level domai n and describes the type of organization. In the last few years, the lines have somewhat blurred* between these categories..com - business (commercial).edu - educational.org - non-profit.mil - military.net - network provider.gov - governmentA domain name always has two or more parts separated by dots and typically consists of some form of an organization's name and the three-letter suffix. For example, the domain name for IBM is ""; the United Nations is "."If a domain name is available, and provided it does not infringe* on an existing trademark, anyone can register the name for $35 a year through Network Solutions, Inc., which is authorized to register .com, .net and .org domains. You can use the box below to see if a name is a available. Don't be surprised ifthe .com name you want is already taken, however. Of the over 8 million domain names, 85% are .com domains.ICANN, the Internet Corporation for Assigned Names and Numbers, manages the Domain Name System. As of this writing, there are plans to add additional top-level domains, such as .web and .store. When that will actually happen is anybody's guess.To check for, or register a domain name, type it into the search box.It should take this form: In addition to the generic top-level domains, 244 national top-level domains were established for countries and territories*, for example:.au - Australia.ca - Canada.fr - France.de - Germany.uk - United KingdomFor US $275 per name, you can also register an international domain name with Net Names. Be aware that some countries have restrictions for registering names.If you plan to register your own domain name, whether it's a .com or not, keep these tips in mind:The shorter the name, the better. (But it should reflect your family name, interest or business.)The name should be easy to remember.It should be easy to type without making mistakes.Remember, the Internet is global. Ideally, a domain name will "read" in a language other than English.Telephone lines were designed to carry the human voice, not electronic data from a computer. Modems were invented to convert digital computer signals into a form that allows them to travel over the phone lines. Those are the scratchy sounds you hear from a modem's speaker. A modem on theother end of the line can understand it and convert the sounds back into digital information that the computer can understand. By the way, the word modem stands for MOdulator/DEModulator.Buying and using a modem used to be relatively easy. Not too long ago, almost all modems transferred data at a rate of 2400 Bps (bits per second). Today, modems not only run faster, they are also loaded with features like error control and data compression. So, in addition to converting and interpreting signals, modems also act like traffic cops, monitoring and regulating the flow of information. That way, one computer doesn't send information until the receiving computer is ready for it. Each of these features, modulation, error control, and data compression, requires a separate kind of protocol and that's what some of those terms you see like V.32, V.32bis, V.42bis and MNP5 refer to.If your computer didn't come with an internal modem, consider buying an external one, because it is much easier to install and operate. For example, when your modem gets stuck (not an unusual occurrence), you need to turn it off and on to get it working properly. With an internal modem, that means restarting your computer--a waste of time. With an external modem it's as easy as flipping a switch.Here's a tip for you: in most areas, if you have Call Waiting, you can disable it by inserting *70 in front of the number you dial to connect to the Internet (or any online service). This will prevent an incoming call from accidentally kicking you off the line.This table illustrates the relative difference in data transmission speeds for different types of files. A modem's speed is measured in bits per second (bps). A 14.4 modem sends data at 14,400 bits per second. A 28.8 modem is twice as fast, sending and receiving data at a rate of 28,800 bits per second.Until nearly the end of 1995, the conventional wisdom was that 28.8 Kbps was about the fastest speed you could squeeze out of a regular copper telephoneline. Today, you can buy 33.6 Kbps modems, and modems that are capable of 56 Kbps. The key question for you, is knowing what speed modems your Internet service provider (ISP) has. If your ISP has only 28.8 Kbps modems on its end of the line, you could have the fastest modem in the world, and only be able to connect at 28.8 Kbps. Before you invest in a 33.6 Kbps or a 56 Kbps modem, make sure your ISP supports them.Speed It UpThere are faster ways to transmit data by using an ISDN or leased line. In many parts of the U.S., phone companies are offering home ISDN at less than $30 a month. ISDN requires a so-called ISDN adapter instead of a modem, and a phone line with a special connection that allows it to send and receive digital signals. You have to arrange with your phone company to have this equipment installed. For more about ISDN, visit Dan Kegel's ISDN Page.An ISDN line has a data transfer rate of between 57,600 bits per second and 128,000 bits per second, which is at least double the rate of a 28.8 Kbps modem. Leased lines come in two configurations: T1 and T3. A T1 line offers a data transfer rate of 1.54 million bits per second. Unlike ISDN, a T-1 line is a dedicated connection, meaning that it is permanently connected to the Internet. This is useful for web servers or other computers that need to be connected to the Internet all the time. It is possible to lease only a portion of a T-1 line using one of two systems: fractional T-1 or Frame Relay. You can lease them in blocks ranging from 128 Kbps to 1.5 Mbps. The differences are not worth going into in detail, but fractional T-1 will be more expensive at the slower available speeds and Frame Relay will be slightly more expensive as you approach the full T-1 speed of 1.5 Mbps. A T-3 line is significantly faster, at 45 million bits per second. The backbone of the Internet consists of T-3 lines. Leased lines are very expensive and are generally only used by companies whose business is built around the Internet or need to transfer massiveamounts of data. ISDN, on the other hand, is available in some cities for a very reasonable price. Not all phone companies offer residential ISDN service. Check with your local phone company for availability in your area.Cable ModemsA relatively new development is a device that provides high-speed Internet access via a cable TV network. With speeds of up to 36 Mbps, cable modems can download data in seconds that might take fifty times longer with a dial-up connection. Because it works with your TV cable, it doesn't tie up a telephone line. Best of all, it's always on, so there is no need to connect--no more busy signals! This service is now available in some cities in the United States and Europe.The download times in the table above are relative and are meant to give you a general idea of how long it would take to download different sized files at different connection speeds, under the best of circumstances. Many things can interfere with the speed of your file transfer. These can range from excessive line noise on your telephone line and the speed of the web server from which you are downloading files, to the number of other people who are simultaneously trying to access the same file or other files in the same directory.DSLDSL (Digital Subscriber Line) is another high-speed technology that is becoming increasingly popular. DSL lines are always connected to the Internet, so you don't need to dial-up. Typically, data can be transferred at rates up to 1.544 Mbps downstream and about 128 Kbps upstream over ordinary telephone lines. Since a DSL line carries both voice and data, you don't have to install another phone line. You can use your existing line to establish DSLservice, provided service is available in your area and you are within the specified distance from the telephone company's central switching office.DSL service requires a special modem. Prices for equipment, DSL installation and monthly service can vary considerably, so check with your local phone company and Internet service provider. The good news is that prices are coming down as competition heats up.Anatomy of a Web PageA web page is an electronic document written in a computer language called HTML, short for Hypertext Markup Language. Each web page has a unique address, called a URL* or Uniform Resource Locator, which identifies its location on the network.A website has one or more related web pages, depending on how it's designed. Web pages on a site are linked together through a system of hyperlinks* , enabling you to jump between them by clicking on a link. On the Web, you navigate through pages of information according to your interests.Home Sweet Home PageWhen you browse the World Wide Web you'll see the term home page often. Think of a home page as the starting point of a website. Like the table of contents of a book or magazine, the home page usually provides an overview of what you'll find at the website. A site can have one page, many pages or a few long ones, depending on how it's designed. If there isn't a lot of information, the home page may be the only page. But usually you will find at least a few other pages.Web pages vary wildly in design and content, but most use a traditional magazine format. At the top of the page is a masthead* or banner graphic*, then a list of items, such as articles, often with a brief description. The items in the list usually link to other pages on the website, or to other sites. Sometimes these links are highlighted* words in the body of the text, or are arranged in a list, like an index. They can also be a combination* of both. A web page can also have images that link to other content.How can you tell which text are links? Text links appear in a different color from the rest of the text--typically in blue and underlined. When you move yourcursor over a text link or over a graphic link, it will change from an arrow to a hand. The hypertext words often hint* at what you will link to.When you return to a page with a link you've already visited, the hypertext words will often be in a different color, so you know you've already been there. But you can certainly go there again. Don't be surprised though, if the next time you visit a site, the page looks different and the information has changed. The Web is a dynamic* medium. To encourage visitors to return to a site, some web publishers change pages often. That's what makes browsing the Web so excitingA Home (Page) of Your OwnIn the 60s, people asked about your astrological* sign. In the 90s, they want to know your URL. These days, having a web address is almost as important as a street address. Your website is an electronic meeting place for your family, friends and potentially*, millions of people around the world. Building your digital domain can be easier than you may think. Best of all, you may not have to spend a cent. The Web brims with all kinds of free services, from tools to help you build your site, to free graphics, animation and site hosting. All it takes is some time and creativity.Think of your home page as the starting point of your website. Like the table of contents of a book or magazine, the home page is the front door. Your site can have one or more pages, depending on how you design it. If there isn't a lot of information just yet, your site will most likely have only a home page. But the site is sure to grow over time.While web pages vary dramatically* in their design and content, most use a traditional magazine layout. At the top of the page is a banner graphic. Next comes a greeting and a short description of the site. Pictures, text, and links to other websites follow.If the site has more than one page, there's typically a list of items--similar to an index--often with a brief description. The items in the list link to other pages on the website. Sometimes these links are highlighted words in the body of the text. It can also be a combination of both. Additionally, a web page may have images that link to other content.Before you start building your site, do some planning. Think about whom the site is for and what you want to say. Next, gather up the material that you wantto put on the site: write the copy, scan the photos, design or find the graphics. Draw a rough layout on a sheet of paper.While there are no rules you have to follow, there are a few things to keep in mind:•Start simply. If you are too ambitious at the beginning, you may never get the site off the ground. You can always add to your site.•Less is better. Most people don't like to read a lot of text online. Break it into small chunks.•Use restraint. Although you can use wild colors and images for the background of your pages, make sure your visitors will be able to readthe text easily.•Smaller is better. Most people connect to the Internet with a modem.Since it can take a long time to download large image files, keep the file sizes small.•Have the rights. Don't put any material on your site unless you are sure you can do it legally. Read Learn the Net's copyright article for moreabout this.Stake Your ClaimNow it's time to roll up your sleeves and start building. Learn the Net Communities provides tools to help you build your site, free web hosting, and a community of other homesteaders.Your Internet service provider may include free web hosting services with an account, one alternative to consider.Decoding Error MessagesAs you surf the Net, you will undoubtedly find that at times you can't access certain websites. Why, you make wonder? Error messages attempt to explain the reason. Unfortunately, these cryptic* messages baffle* most people.We've deciphered* the most common ones you may encounter.400 - Bad RequestProblem: There's something wrong with the address you entered. You may not be authorized* to access the web page, or maybe it no longer exists.Solution: Check the address carefully, especially if the address is long. Make sure that the slashes are correct (they should be forward slashes) and that all the names are properly spelled. Web addresses are case sensitive, socheck that the names are capitalized in your entry as they are in the original reference to the website.401 - UnauthorizedProblem: You can't access a website, because you're not on the guest list, your password is invalid or you have entered your password incorrectly.Solution: If you think you have authorization, try typing your password again. Remember that passwords are case sensitive.403 - ForbiddenProblem: Essentially the same as a 401.Solution: Try entering your password again or move on to another site.404 - Not FoundProblem: Either the web page no longer exists on the server or it is nowhere to be found.Solution: Check the address carefully and try entering it again. You might also see if the site has a search engine and if so, use it to hunt for the document. (It's not uncommon for pages to change their addresses when a website is redesigned.) To get to the home page of the site, delete everything after the domain name and hit the Enter or Return key.503 - Service unavailableProblem: Your Internet service provider (ISP) or your company's Internet connection may be down.Solution: Take a stretch, wait a few minutes and try again. If you still have no luck, phone your ISP or system administrator.Bad file requestProblem: Your web browser may not be able to decipher the online form you want to access. There may also be a technical error in the form.Solution: Consider sending a message to the site's webmaster, providing any technical information you can, such as the browser and version you use.Connection refused by hostProblem: You don't have permission to access the page or your password is incorrect.Solution: Try typing your password again if you think you should have access.Failed DNS lookupProblem: DNS stands for the Domain Name System, which is the system that looks up the name of a website, finds a corresponding number (similar to a phone number), then directs your request to the appropriate web server on theInternet. When the lookup fails, the host server can't be located.Solution: Try clicking on the Reload or Refresh button on your browser toolbar. If this doesn't work, check the address and enter it again. If all else fails, try again later.File contains no dataProblem: The site has no web pages on it.Solution: Check the address and enter it again. If you get the same error message, try again later.Host unavailableProblem: The web server is down.Solution: Try clicking on the Reload or Refresh button. If this doesn't work, try again later.Host unknownProblem: The web server is down, the site may have moved, or you've been disconnected from the Net.Solution: Try clicking on the Reload or Refresh button and check to see that you are still online. If this fails, try using a search engine to find the site. It may have a new address.Network connection refused by the serverProblem: The web server is busy.Solution: Try again in a while.Unable to locate hostProblem: The web server is down or you've been disconnected from the Net.Solution: Try clicking on the Reload or Refresh button and check to see that you are still online.Unable to locate serverProblem: The web server is out-of-business or you may have entered the address incorrectly.Solution: Check the address and try typing it again.Web BrowsersA web browser is the software program you use to access the World Wide Web, the graphical portion of the Internet. The first browser, called NCSA Mosaic, was developed at the National Center for Supercomputing Applications in the early '90s. The easy-to-use point-and-click interface*helped popularize the Web, although few then could imagine the explosive growth that would soon occur.Although many different browsers are available, Microsoft Internet Explorer* and Netscape Navigator* are the two most popular ones. Netscape and Microsoft have put so much money into their browsers that the competition can't keep up. The pitched battle* between the two companies to dominate* the market has lead to continual improvements to the software. Version 4.0 and later releases of either browser are excellent choices. (By the way, both are based on NCSA Mosaic.) You can download Explorer and Navigator for free from each company's website. If you have one browser already, you can test out the other. Also note that there are slight differences between the Windows and MacIntosh* versions.You can surf to your heart's content, but it's easy to get lost in this electronic web. That's where your browser can really help. Browsers come loaded with all sorts of handy features. Fortunately, you can learn the basics in just a few minutes, then take the time to explore the advanced functions.Both Explorer and Navigator have more similarities than differences, so we'll primarily cover those. For the most up-to-date information about the browsers, and a complete tutorial, check the online handbook under the Help menu or go to the websites of the respective* software companies.Browser AnatomyWhen you first launch your web browser, usually by double-clicking on the icon on your desktop, a predefined web page, your home page, will appear. With Netscape Navigator for instance, you will be taken to Netscape's NetCenter.•The Toolbar (工具栏)The row of buttons at the top of your web browser, known as the toolbar, helps you travel through the web of possibilities, even keeping track ofwhere you've been. Since the toolbars for Navigator and Explorer differ slightly, we'll first describe what the buttons in common do:o The Back button returns you the previous page you've visited.o Use the Forward button to return to the page you just came from.o Home takes you to whichever home page you've chosen. (If you haven't selected one, it will return you to the default home page,usually the Microsoft or Netscape website.)。

毕业设计外文文献翻译

毕业设计外文文献翻译

毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。

计算机专业毕业设计英文翻译7

计算机专业毕业设计英文翻译7

clicking on hot spots, it can show the hot spot's specific information. One can also type into the query information based on his need, and get some relevant information. In addition, one can choose to check the three dimensional maps and satellite maps through clicking the mouse. Major functions: User information management: Check the user name and password, set level certification depending on the permissions, allow users of different permissions to login the system via the Internet. The inquiry of Location information: System can provide users with fuzzy inquires and quick location. Map management: Implement loading maps, map inquires, layer management, and other common operations such as distance measurement, and maps zoom, eagle eye, labels, printing, and more. Roam the map: Use the up and down keys to roam any area of the map, or drag-and-drop directly.

毕业设计英文翻译,3

毕业设计英文翻译,3

英文资料GENERAL DESCRIPTIONThe Winbond®ISD1700 ChipCorder®Series is a high quality, fully integrated, single-chip multi-message voice record and playback device ideally suited to a variety of electronic systems. The message duration is user selectable in ranges from 26 seconds to 120 seconds, depending on the specific device. The sampling frequency of each device can also be adjusted from 4 kHz to 12 kHz with an external resistor, giving the user greater flexibility in duration versus recording quality for each application. Operating voltage spans a range from 2.4 V to 5.5 V to ensure that the ISD1700 devices are optimized for a wide range of battery or line-powered applications.The ISD1700 is designed for operation in either standalone or microcontroller (SPI) mode. The device incorporates a proprietary message management system that allows the chip to self-manage address locations for multiple messages. This unique feature provides sophisticated messaging flexibility in a simple push-button environment. The devices include an on-chip oscillator (with external resistor control), microphone preamplifier with Automatic Gain Control (AGC), an auxiliary analog input, anti-aliasing filter, Multi-Level Storage (MLS) array, smoothing filter, volume control, Pulse Width Modulation (PWM) Class D speaker driver, and current/voltage output.The ISD1700 devices also support an optional “vAlert” (voiceAlert) feature that can be used as a new message indicator. With vAlert, the device flashes an external LED to indicate that a new message is present. Besides, four special sound effects are reserved for audio confirmation of operations, such as “Start Record”, “Stop Record”, “Erase”, “Forward”, “Global Erase”, and etc.Recordings are stored into on-chip Flash memory, providing zero-power message storage. This unique single-chip solution is made possible through Winbond’s patented Multi-Level Storage (MLS) technology. Audio data are stored directly in solid-state memory without digital compression, providing superior quality voice and music reproduction.Voice signals can be fed into the chip through two independent paths: a differential microphone input and a single-ended analog input. For outputs, the ISD1700 provides a Pulse Width Modulation (PWM) Class D speaker driver and a separate analog output simultaneously. The PWM can directly drive a standard 8Ω speaker or typical buzzer, while the separate analog output can be configured as a single-ended current or voltage output to drive an external amplifier.While in Standalone mode, the ISD1700 devices automatically enter into power down mode for power conservation after an operation is completed.In the SPI mode, the user has full control via the serial interface in operating the device. This includes random access to any location inside the memory array by specifying the start address and end address of operations. SPI mode also allows access to the Analog Path Configuration (APC) register. This register allows flexible configuration of audio paths, inputs, outputs and mixing. The APC default configuration for standalone mode can also be modified by storing the APC data into a non-volatile register (NVCFG) that is loaded at initialization. Utilizing the capabilities of ISD1700 Series, designers have the control and flexibility to implement voice functionality into the high-end products.FEATURES1、Integrated message management systems for single-chip, push-button applicationsREC: level-trigger for recordingPLAY: edge-trigger for individual message or level-trigger for looping playback sequentiallyERASE: edge-triggered erase for first or last message or level-triggered erase for all messagesFWD: edge-trigger to advance to the next message or fast message scan during the playbackVOL: 8 levels output volume controlRDY/INT: ready or busy status indicationRESET: return to the default stateAutomatic power-down after each operation cycle2、Selectable sampling frequency controlled by an external oscillator resistor3、Selectable message durationA wide range selection from 30 secs to 240 secs at 8 kHz sampling frequency4、Message and operation indicatorsFour customizable Sound Effects (SEs) for audible indicationOptional vAlert (voiceAlert) to indicate the presence of new messagesLED: stay on during recording, blink during playback, forward and erase operations5、Dual operating modesStandalone mode:(1)Integrated message management techniques(2)Automatic power-down after each operation cycleSPI mode:Fully user selectable and controllable options via APC register and various SPI commands6、Two individual input channelsMIC+/MIC-: differential microphone inputs with AGC (Automatic Gain Control)AnaIn: single-ended auxiliary analog input for recording or feed-through7、Dual output channelsDifferential PWM Class D speaker outputs directly drives an 8Ω speaker or a typical buzzerConfigurable AUD (current) or AUX (voltage) single-ended output drives external audio amplifier8、ChipCorder standard featuresHigh-quality, natural voice and audio reproduction2.4V to 5.5V operating voltage9、Packaging types: available in die, PDIP, SOIC and TSOPFUNCTIONAL DESCRIPTION1、DETAILED DESCRIPTION(1)Audio QualityWinbond’s patented ChipCorder® Multi-Level Storage (MLS) technology provides a natural, high-quality record and playback solution on a single chip. The input voice signals are stored directly in the Flash memory and are reproduced in their natural form without any of the compression artifacts caused by digital speech solutions.(2)Message DurationThe ISD1700 Series offer record and playback duration from 20 seconds to 480 seconds. Sampling frequency and message duration, T Dur, are determined by an external resistor connected to the R OSC pin.(3)Flash StorageThe ISD1700 devices utilize embedded Flash memory to provide non-volatile storage.A message can be retained for a minimum of 100 years without power. Additionally, each device can be re-recorded over 100,000 times (typical).2、MEMORY ARRAY ARCHITECTUREThe memory array provides storage of four special Sound Effects (SEs) as well as the voice data. The memory array is addressed by rows. A row is the minimum storage resolution by which the memory can be addressed. The memory assignment isautomatically handled by the internal message management system in standalone mode. While in SPI mode, one has the full access to the entire memory via the eleven address bits.The four sound effects (SE) occupy the first sixteen rows in the memory array with four rows for each SE. That means from address 0x000 to address 0x00F. The remaining memory is dedicated to voice data storage. Hence, the address of voice message storage will start from 0x010 to the end of memory array.3、MODES OF OPERATIONSThe ISD1700 Series can operate in either Standalone (Push-Button) or microcontroller (SPI) mode.(1)Standalone (Push-Button) ModeStandalone operation entails use of the REC, PLAY, FT, FWD, ERASE, VOL and RESET pins to trigger operations. The internal state machine automatically configures the audio path according to the desired operation. In this mode, the internal state machine takes full control on message management. This allows the user to record, playback, erase, and forward messages without the needs to know the exact addresses of the messages s tored inside the memory.(2)SPI ModeIn SPI mode, control of the device is achieved through the 4-wire serial interface. Commands similar to the push button controls, such as REC, PLAY, FT, FWD, ERASE, VOL and RESET, can be executed through the SPI interface. In addition, there are commands that allow the modification of the analog path configuration, as well as commands that direct access the memory address of the array, plus others. The SPI mode allows full control of the device and the ability to perform complex message management rather than conform to the circular memory architecture as push-button mode.In addition, it is suggested that both the microcontroller and the ISD1700 device have the same power supply level for design simplicity.In either mode, it is strongly recommended that any unused pins, no matter input or output, must be left floated or unconnected. Otherwise, it will cause the device becoming malfunction.ANALOG PATH CONFIGURATION (APC)The analog path of the ISD1700 can be configured to accommodate a wide variety of signal path possibilities. This includes the source of recording signals, mixing of input signals, mixing the playback signal with an input signal to the outputs, feed-through signalto the outputs and which outputs being activated.The active analog path configuration is determined by a combination of the internal state of the device, i.e. desired operation (record or playback), the status of the FT and the contents of the APC register. The APC register is initialized by the internal non-volatile configuration (NVCFG) bits upon power-on-reset or reset function. The APC register can be read and loaded using SPI commands.The factory default of NVCFG bits, <D11:D0>, is 0100 0100 0000 = 0x440. This configures the device with recording through the MIC inputs, FT via AnaIn input, playback from MLS, SE editing feature enabled, maximum volume level, active PWM driver and AUD current outputs. One can use SPI commands to modify the APC register and store it permanently into the NVCFG bits.The device can be in power-down, power-up, recording, playback and/or feed-through state depending upon the operation requested by the push-buttons or related SPI commands. The active path in each of these states is determined by D3 and D4 of the APC register, as well as either D6 of the APC register in SPI mode or the FT status in standalone mode. In addition, D7~D9 of the APC register determine which output drivers are activated.STANDALONE (PUSH-BUTTON) OPERATIONSOne can utilize the REC, PLAY, FT, FWD, ERASE, VOL or RESET control to initiate a desired operation. As completed, the device automatically enters into the power-down state. An unique message management system is executed under this mode, which links to an optional special Sound Effect (SE) feature to review certain operating status of the device. Hence, it is benefit to understand how SE functions first.1、SOUNDEFFECT(SE)MODESE mode can be manipulated by several control pins as described below. There are four special sound effects (SE1, SE2, SE3, and SE4). Audio clips can be programmed into the SEs as various indications. Each SE occupies four designated memory rows and the first sixteen memory rows are reserved for these four SEs evenly and sequentially.(1)Sound Effect (SE) FeaturesThe functions of SEs are used to indicate the status of the following operations:SE1: Beginning of recording, forward or global erase warningSE2: End of recording, single erase or forward from last messageSE3: Invalid erase operationSE4: Successful global eraseIn general, the LED flashes once for SE1, twice for SE2, and so forth. It is crucial torecognize that the LED flashes accordingly regardless the SEs are programmed or not. When none of them is programmed, the blinking periods of SE1, SE2, SE3 and SE4 are defined as TLS1, TLS2, TLS3 and TLS4, respectively. Once they are programmed, during operation, the device flashes LED and plays the related SE simultaneously. Nevertheless, the period of blinking LED, under this condition, is limited by the duration of the recorded SE. In addition, they are defined as TSE1, TSE2, TSE3 and TSE4, respectively. These timing parameters also apply to the conditions elaborated in the following related sections.(2)Entering SE ModeFirst press and hold FWD Low for 3 seconds or more roughly. This action on FWD will usually blink LED once (and play SE1 simultaneously if SE1 is recorded). However, if playback pointer is at the last message or memory is empty, the chip will blink the LED twice (and play SE2 simultaneously if SE2 is recorded).While holding FWD Low, press and hold the REC Low until the LED blinks once.The LED flashing once again indicates that the device is now in SE mode. Once entering into SE mode, the SE1 is always the first one to be accessible.(3)SE EditingAfter into SE editing mode, one can perform record, play, or erase operation on each SE by pressing the appropriate buttons. For example, to record SE, simply press and hold REC. Similarly for play or erase function, pulse PLAY or ERASE, respectively. Record source can be either Mic+/- or AnaIn.A subsequent FWD operation moves the record and playback pointers to the next SE sequentially. The LED will also blink one to four times after such operation to indicate which SE is active. If FWD is pressed while in SE4, the LED will flash once to indicate that SE1 is again active.While the LED is blinking, the device will ignore any input commands. One must wait patiently until the LED stops blinking completely before any record, play, erase or forward input should be sent.(4)Exiting SE ModeThe required steps are the same as Entering SE mode. First press and hold FWD until the LED stops blinking (and related SE is played if SEs are programmed). Then, simultaneously press and hold the REC Low until the LED blinks twice (and device will play SE2 if SE2 is programmed). The device now exits the SE editing mode.2、OPERATION OVERVIEWAfter power is applied or power-on-reset (POR), the device is in the factory defaultstate and two internal record and playback pointers are initialized. (These two pointers are discussed later.) Then the active analog path is determined by the state of the FT, the status of the APC register and the desired operation.Up to four optional sound effects (SE1~SE4) can be programmed into the device to provide audible feedback to alert the user about the operating status. Simultaneously, the LED output provides visual indication about the operating status. During the active state of LED output, no new command will be accepted.An unique message management technique is implemented. Under this mode, the recorded messages are stored sequentially into the embedded memory from the beginning to the end in a circular fashion automatically.Two internal pointers, the record pointer and playback pointer, determine the location where an operation starts. After POR, these pointers are initialized as follows: If no messages are present, both point to the beginning of memory.If messages are present, the record pointer points to the next available memory row following the last message and the playback pointer points to the beginning of the last recorded message.The playback pointer is affected either by the FWD or REC operation. The record pointer is updated to the next available memory row after each REC operation.(1)Record OperationThe REC controls recording operation. Once setting this pin Low, the device starts recording from the next available row in memory and continues recording until either the REC returns to High or the memory is full. The source of recording is from either MIC+/- or AnaIn, whereas the active analog configuration path is determined by the desired operation and the state of the FT. The REC is debounced internally. After recording, the record pointer will move to the next available row from the last recorded message and the playback pointer will position at the beginning of the newly recorded message.However, it is important to perform an Erase operation on the desired location before any recording proceeds. In addition, the power supply must remain On during the entire recording process. If power is interrupted during recording process, the circular memory architecture will be destroyed. As a result, next time when a push button operation starts, the LED will blink seven times, which indicates that something unusual has occurred, and the device will fail to perform the requested operation. Under such scenario, the only way to recover the chip to a proper state is to perform a Global Erase operation.Message recording indicators:The built-in message management technique associates special Sound Effects, SE1 and SE2, within the recording process.A、When REC goes Low:If SE1 is not programmed, then the LED turns On immediately to indicate that a recording is in progress.If SE1 is programmed, device plays SE1 and blinks LED simultaneously. Then LED turns On to show recording is in process. The LED blinking period of SE1 is determined by the recorded duration of SE1 (TSE1).B、When REC goes High or when the memory is full:If SE2 is not programmed, then the LED turns Off immediately to indicate that the recording halts.If SE2 is programmed, device plays SE2 and flashes LED simultaneously. Then LED turns Off to show recording stops. The LED blinking period of SE2 is determined by the recorded duration of SE2 (TSE2).Triggering of REC during a play, erase or forward operation is an illegal operation and will be ignored.(2)Playback OperationTwo playback modes can be executed by PLAY, which is internally debounced.A、Edge-trigger mode: Pulsing PLAY Low once initiates a playback operation of the current message. Playback automatically stops at the end of the message. Pulsing PLAY again will re-play the message. During playback, the LED flashes and goes Off when the playback completes. Pulsing PLAY to Low again during playback stops the playback operation. Under these circumstances, the playback pointer remains at the start of the played message after the operation is completed.B、Looping Playback mode: As PLAY is held Low constantly, the device plays all messages sequentially from the current message to its previous message and loops the playback action. During the entire playback process, the LED flashes non-stop. Meanwhile, the looping playback mechanism is implemented in the following sequence: start playback from current message; as playback is over, perform a forward operation; start playback of new message; once playback completes, perform another forward action; start playback of new message, and so on. This looping pattern continues until PLAY is released. As PLAY is released, device will continue to playback the current message until completion. When playback stops, the playback pointer is set at the start of the halted message.If no SE1 and SE2 are programmed, after playing a message, except the last one,device flashes LED once with blinking period T LS1due to forward action. As after the last message, device flashes LED twice with blinking period T LS2.If both SE1 and SE2 are programmed, after playing a message, except the last one, device plays SE1 and flashes LED simultaneously due to forward action. Then device keeps on the playback of new message. Alternatively, after playing the last message, device plays SE2 and flashes LED simultaneously due to forward action. Then device maintains the playback of the first message. The LED blinking period of SE1 and SE2 are determined by the recorded durations of SE1 and SE2, respectively.Triggering PLAY during a record, erase, or forward operation is an illegal operation and will be ignored.(3)Forward OperationThe FWD allows the device to advance the playback pointer to the next message in a forward direction. When the pointer reaches the last message, it will jump back to the first message. Hence, the movement is alike a circular fashion among the messages. The FWD is debounced internally. The effect of a Low-going pulse on the FWD depends on the current state of the device:A、If the device is in power-down state and the playback pointer does not point to the last message, then:The playback pointer will advance to the next message.If SE1 is not recorded, device will flash LED once with blinking period T LS1.However, if SE1 is recorded, device plays SE1 and blinks the LED once simultaneously. The LED blinking period is determined by the recorded duration, T SE1, of SE1.B、If the device is in power-down state and the playback pointer points to the last message, then:The playback pointer will advance to the first message.If SE2 is not recorded, device will flash LED twice with blinking period T LS2.However, if SE2 is recorded, device plays SE2 and blinks the LED twice simultaneously. The LED blinking period is determined by the recorded duration, T SE2, of SE2.C、If the device is currently playing a message that is not the last one, then the device:Halts the playback operation.Advances the playback pointer to the next message.If SE1 is not recorded, device will flash LED once with blinking period T LS1.However, if SE1 is recorded, device plays SE1 and blinks the LED once simultaneously. The LED blinking period is determined by the recorded duration, T SE1, of SE1.Playback the new message.The LED flashes during this entire process.D、If the device is currently playing the last message, then the device:Halts the playback operation.Advances the playback pointer to the first message.If SE2 is not recorded, device will flash LED twice with blinking period T LS2.However, if SE2 is recorded, device simultaneously plays SE2 and blinks the LED twice. The LED blinking period is determined by the recorded duration, T SE2, of SE2.Playback the first message.The LED flashes during this entire process.Triggering of the FWD operation during an erase or record operation is an illegal operation and will be ignored.中文翻译概述华邦公司生产的ISD1700系列录放芯片是一种高性能,高集成度,单芯片多段的语音录放芯片,适合多种电子化系统。

信息技术专业毕业英语作文

信息技术专业毕业英语作文

信息技术专业毕业英语作文Title: The Significance of Majoring in Information Technology。

In the rapidly evolving landscape of the 21st century, the importance of information technology (IT) cannot be overstated. From revolutionizing industries to transforming everyday life, IT plays a pivotal role in shaping our world. As a graduate in Information Technology, I am keenly awareof the profound impact this field has and the endless opportunities it presents. In this essay, I will explorethe significance of majoring in Information Technology, touching upon its relevance in various aspects of society.First and foremost, Information Technology serves asthe backbone of modern businesses. In today's digital age, companies rely heavily on IT infrastructure to streamline operations, enhance productivity, and gain a competitive edge. From managing databases to developing innovative software solutions, IT professionals are instrumental indriving business growth and innovation. By majoring in Information Technology, individuals acquire the skills and expertise necessary to navigate the complex digital landscape and contribute meaningfully to the success of organizations.Furthermore, Information Technology plays a crucialrole in advancing scientific research and technological innovation. Whether it's analyzing big data to uncover insights or developing cutting-edge algorithms forartificial intelligence, IT empowers researchers and scientists to push the boundaries of knowledge and discovery. As a graduate in Information Technology, one has the opportunity to be at the forefront of groundbreaking research initiatives, contributing to advancements infields such as healthcare, renewable energy, and space exploration.Moreover, Information Technology has a profound impact on society as a whole, shaping how we communicate, learn, and interact with the world around us. The proliferation of smartphones, social media platforms, and online serviceshas transformed the way we connect and share information. By majoring in Information Technology, individuals gain the expertise to develop innovative digital solutions that address societal challenges and improve quality of life. Whether it's designing user-friendly interfaces for mobile applications or implementing cybersecurity measures to protect sensitive data, IT professionals play a vital role in shaping the digital experiences of millions worldwide.In addition to its practical applications, Information Technology offers immense career opportunities andfinancial rewards. With the demand for IT professionals continuing to soar, graduates in this field are well-positioned to secure lucrative employment opportunities in diverse industries. Whether it's working for multinational corporations, startups, or government agencies, the skills and knowledge acquired through a degree in Information Technology are highly sought after in today's job market. Furthermore, the dynamic nature of the IT industry ensures that opportunities for career advancement and professional growth are plentiful, allowing individuals to chart their own path to success.In conclusion, majoring in Information Technology opens doors to a world of endless possibilities. From driving business innovation to advancing scientific research and shaping societal interactions, IT plays a pivotal role in shaping the future of our world. As a graduate in Information Technology, one has the opportunity to make a meaningful impact, contribute to positive change, and embark on a rewarding and fulfilling career journey. With its relevance in today's digital age only continuing to grow, there has never been a better time to pursue a degree in Information Technology.。

毕业设计中英文翻译(信息类)

毕业设计中英文翻译(信息类)

外文资料原High-Speed Packet Access Evolution in3GPP Release 7ABSTRACTHigh-speed packet access (HSPA) was included in Third Generation Partnership Project(3GPP) releases 5 and 6 for downlink and for uplink. The 3GPP release 7 offers a number of HSPA enhancements, providing major improvements to the end-user performance and to net-work efficiency. The release 7 features are introduced in this paper. Release 7 also is known as HSPA evolution or HSPA+.The HSPA+ downlink peak bit rate can be increased to 28.8 Mbps with a multiple input multiple output (MIMO) antenna solution, andthe uplink rate can be increased to 11.5 Mbps with higher order modulation in release 7. The higher peak rates are facilitated by the layer 2 optimization in downlink. In addition, the terminal power consumption can be reduced considerably for packet applications.The downlink cell capacity will be enhanced with new types of terminal requirements for a two-antenna equalizer and with MIMO. Altogether, release 7 features nearly double the cell capacity compared to release 6 with emphasis on the capacity of voice-over-IP (VoIP) service.3GPP release 7 enables the simplification of the network architecture. The number of net-work elements for the user plane can be reducedfrom four in release 6 to two in release 7. The HSPA flat architecture in release 7 is similar to the architecture agreed upon for 3GPP long-term evolution (LTE), thus enabling the later ,smooth evolution from HSPA to LTE.LTE will be specified as part of release 8 and further push the radio capabilities higher with larger bandwidth and lower latency. The LTEperformance target is to provide two-to-four times the performance of the HSPA release 6 reference case [1]. 3GPP release 7 and 8 solutions for the HSPA evolution will be worked in parallel together with the LTE development, and some aspects of the LTE work are expected to reflect on the HSPA evolution as well.3GPP release 7 was completed in June 2007 ,with some work remaining on the1页performance requirements. Commercial deployment anddevices are expected by 2009.INTRODUCTIONThe Third Generation Partnership Program(3GPP) specifications included major improvements in downlink data rates and capacity in release 5 with the introduction of high-speed downlink packet access (HSDPA) in 2002. Similar technical solutions were applied to the uplink direction as part of the release 6 with high-speed uplink packet access (HSUPA) at the end of2004. HSDPA and HSUPA technologies are described in [2]. 3GPP release 7 in June 2007 completed a number of additional and substantial enhancements to the end-user performance, to the cell throughput, and to the network architecture. The detailed 3GPP release 7 solutions and their performance benefits are summarized in this paper.CONSUMPTION REDUCTION WITHCONTINUOUS PACKET CONNECTIVITYThe technology evolution, in general, helps to decrease the mobile terminal power consumption. Also, the fast and accurate power control inwide-band code division multiple access(WCDMA) helps to minimize the tran smitted power levels. The challenge in 3GPP fromrelease 99 to release 6 is still the continuous reception and transmission when the mobile terminal is using HSDPA/HSUPA. 3GPP release 7 introduces a few improvements to HSDPA/HSUPA that help to reduce the power consumption for packet services like browsing and voice-over-IP (VoIP).3GPP release 6 mobile terminal keeps transmitting the physical control channel even if there is no data channel transmission. Release 7 mobile terminal cuts off the control channel transmission when there is no datachannel transmission, allowing it to shut down the transmitter completely. This solution is called discontinuous uplink transmission, and it brings clear savings in transmitter power consumption.A similar concept also is introduced in the downlink, where the terminal must wake up only occasionally to check if the downlink datatransmission is starting again. The terminal can use the power-saving mode during2页other parts of the frame if there was no data to be received.This solution is called downlink discontinuous reception. The discontinuous transmission concept is illustrated in Fig. 1 for Web browsing. As soon as the Web page is downloaded, the connection enters discontinuous transmission and reception.The estimated savings in mobile terminal power consumption are shown in [3]. The power consumption of the radio modem ideally can bereduced by more than 50 percent when the user is reading the Web page. The difference in the actual operation times will be smaller becausethere are other components —such as display and application processor —taking some power, but there will still be major benefits in the mobileterminal operation times.PEAK DATA RATE INCREASE WITHMIMO AND HIGHER ORDERMODULATIONThe downlink peak data rate with release 6 HSDPA is 10.8 Mbps, with 3/4 coding and 14.4 Mbps, without any channel coding. In theory,there are a number of ways to push the peak data rate higher: larger bandwidth, higher order modulation, or multi-antenna transmission withmultiple input multiple output (MIMO). MIMO and higher order modulation are included into HSPA evolution in release 7. 3GPP long term evolution (LTE) also enables larger bandwidth, up to 20 MHz. The 3GPP MIMO concept, for HSDPA operation in release 7, employs two transmit antennas in the base station and two receive antennas in the terminal and uses a closed loop feedback from the terminal foradjusting the transmit antenna weighting. The diagram of the MIMO transmission is shown in Fig. 2.Higher order modulation enables higher peak bit rate without increasing the transmission bandwidth. Release 6 supported quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (QAM) transmission in the downlink and dual-binary phase shift keying (BPSK) in the uplink. Dual-channel BPSK modulation is similar to QPSK. The release 7 introduces 64 QAM transmission for the downlink and 16 QAM for3页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The ultrasonic wave propagation in composite materialand its characteristic evaluationJunjie Chang, Changliang Zheng, Qing-Qing Ni1. IntroductionFRP composite materials were applied to various fields, such as aircraft and space structures, because of the excellent characteristics, e.g., light-weight, high ratio of relative intensity and high ratio of relative rigidity. Despite FRP having such outstanding characteristic, cracks in the matrix and fractures of the fiber make de bonding such kind of damage easy to occur between the fiber and the matrix, or the multi-layers. These damages are difficult to be detected directly by visual inspection from the sample surface, causing trouble to ensure the reliability and safety of the composite material and structures. Meanwhile, health monitoring technologies of materials are indispensable. Among them, the ultrasonic health monitoring technology attracts lots of attentions in recent years. Simulations by finite element method have been performed for the development of apparatus for ultrasonic damage-detection, such as ultrasonic picture inspection and ultrasonic laser, and for the verification of their safety and validity. Researches and calculations on the propagation analysis of the ultrasonic wave in fiber strengthening composite materials have been well conducted and reported [1–8].On the solid interface, two kinds of boundaries can be considered. One is liquid contact in which thin lubricant is placed, and only power and position movement perpendicular to the interface are transmitted. The other one is complete solid combination, which power and position movement both perpendicular to and parallel to the interface are transmitted. Fiber strengthening composite material, the interface between the fiber and the matrix can be considered to be solid contact. In the case of ,debonding existing between the matrix and the fiber, few literatures were found, since the conversions of the transmitted wave mode, reflection wave mode and reflection pulse phase (waveform) make the analysis very complicated. Provided this problem to be solved, the quality of the materials, to some extent, can be estimated from the sound impedance of the reflector and the transmission object, and the optimal damage-detection method can be also assumed in a simulation.In this research, in the simulation of the technique monitoring the health by an ultrasonic wave method, the ultrasonic wave distribution pattern was analyzed with the basic theory for wave propagation by using the model for fiber strengthening composite material. Namely, it aims at obtaining the amplitude of the reflection wave and the amplitude of a transmitted wave, when the longitudinal wave has unit amplitude incidence in model compound material. In the case of an ultrasonic wave propagation inside a model media, the rates of the reflective longitudinal, reflective traverse wave, transmission longitudinal wave and a transmission traverse wave generated at a general incidence angle in the interface (a fiber and exfoliation) were analyzed and reflective coefficient and a transmission coefficient were gotten, respectively. Visualized studies separating into a longitudinal wave and a traverse wave were carried out, and the mechanisms of a longitudinal wave distribution and a traverse-wave distribution were elucidated when the ultrasonic wave propagated inside a composite material.2. Ultrasonic wave equationsConsider a single fiber composite, i.e., a single fiber is embedded in a matrix. Two dimensions analysis is conducted as shown in Fig. 2. In this case, when an ultrasonic wave propagates in this solid media, from Hooke’s law, the stress–strain relationship for two-dimensional plane strain in an isotropic media is written as follows [2]:c σε= (1)202000c λμλλλμμ+⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦(2)T xx yy xy σσσσ⎡⎤=⎣⎦ (3)Txx yy xy εεεε⎡⎤=⎣⎦ (4) Where k and l are Lame′ constants, and the T superscript denotes the transposition.The ultrasonic wave equations of motion for two dimensional plane strain in an isotropic media are as follows:2222xy xx x yyxyyu x y tu y x t σσρσσρ∂∂∂+=∂∂∂∂∂∂+=∂∂∂ (5)Where, the first term on the left-hand side of Eq. (5) corresponds to a longitudinal wave, and the second term corresponds to a transverse wave. ρ is density. If the longitudinal wave velocity L c and transverse wave velocity T c are introduced the ultrasonic wave equations of motion for two-dimensional plane strain can be rewritten by()()2222222222222222222222y x x x L T L T y y y x L T L T u u u u c c c c x y x y t u u u u c c c c t y x x y ⎧⎫∂∂∂⎧⎫∂++-⎪⎪⎪⎪∂∂∂∂⎪⎪⎪⎪∂=⎨⎬⎨⎬∂∂∂∂⎪⎪⎪⎪++-⎪⎪⎪⎪∂⎩⎭∂∂∂∂⎩⎭ (6) In the case of a plane advancing wave, the following formula is used to calculate for the oscillating energy generated by the ultrasonic wave per unit time:2p I cρ= (7) 3. Results of analysis and simulation3.1. Transmission energy in different interface shapesWhen an incident vertical wave is obliquely irradiated, four waves as shown in Fig. 3, i.e., reflected longitudinal wave, reflected transverse wave, transmitted longitudinal wave and transmitted transverse wave, would appear on the interface. In other words, the shape of the interface between epoxy and glass may influence the propagation of the ultrasonic wave. For this reason, the model with different interface shapes as shown in Fig. 1 was used to investigate the influence of interface shape on wave propagation behavior. The volume fraction proportion of both materials is 1:1, despite of the different interface shapes of the three models. That is to say, the glass-volume-percentage of all the models is 50%. The properties of each medium used in the analysis are shown in Table 1. As a boundary condition of the model, absorption is considered on the right and left edge, while it is symmetrical (the roller) on the up and down direction. The analytic condition and the input parameters were shown in Table 1.Fig. 2 shows the transmission energy of the ultrasonic wave propagation for these four models shown in Fig. 1.Fig. 1. Four different interface shapes between epoxy and glass.Here the transmission energy was defined by the average energy per unit area, lJ/mm2, at the receiver edge. As seen, in Model 1, the incident ultrasonic wave is perpendicular to the plane interface, and transmitted wave occurs along whole plane, so that the transmission energy is far larger than that in the other models. The full-reflection takes place in part of interface in both Model 2 and Model 3 when the incidence angle is larger than the critical angle because the ultrasonic wave radiates obliquely on a convex or concave interface. About one third of the incident wave experiences full-reflection in Model 2 and Model 3. However, the transmission energy of Model 3 is larger than that of Model 2. A second peak appears in the transmission curve of Model 3. Peak 1 is a reflected wave that propagates as a secondary wave source near the up-down-ward interface (in the glass region), while peak 2 is a transmitted wave in the central part of the glass region. The reason might be that near the interface, a refractive index distribution occurs, resulting in the appearance of the scattered waves, including refraction and reflection waves.The full-reflection takes place in interface of Model 4 (incidence angle is 45_). All primary incident waves were reflected, and the very small transmission energy that shows as figure is because the dispersion wave and the reflected wave penetrated the part as secondary wave source from the vertical neighborhood.3.2. Influence of different fiber conditionsRefractive index distribution occurs near the second phase boundary due to the second phase compounding, resulting in the appearance of the scattered waves, including refraction and reflection in the composite materials strengthened by fibers. In the next, the scattering of the ultrasonic wave shown in Fig. 1 will be taken into consideration. The scatters occur due to fibers embedded in composite materials. The incident wave ()i ψ, propagating in matrix region, is a sinusoidal wave. When the incident wave reaches the fiber, some is transmitted into the fiber, and the other is reflected on the fiber/matrix interface, and becomes a secondary wave source. According to the overlapping principle of wave functions, the whole wave function ()t ψ can be expressed as a sum of the incident wave ()i ψ and the scattered wave ()s ψ.()()()t i s ψψψ=+ (8) Where the scattered wave ()s ψ includes all the waves scattering components generated due to the interface from the known wave ()i ψ.The model figure of the composite materials for the investigation of the scatters was designed as what shown in Fig. 3, where three fibers with different shapes were embedded in the matrix. The size of the model was 1515λλ⨯. The board-shaped glass fiber with thickness 3h λ= was embedded in the center of the matrix of epoxy in Model 1, and was obliquely embedded in Model2. A column shaped glass fiber with a diameter 4.36h λ= was embedded in the center of matrix in Model3. The above three models had a common fiber percentage of 20. The analytic condition and the input parameters were shown in Table 1.For the models in Fig. 3, when the incident wave on the left-hand side of the glass region arrived at the first interface between the epoxy and glass, the transmitted wave and the reflected wave arose. Then the reflected wave propagated to the incidence side, while the transmitted wave propagated to the receiver side and arrived at the second interface of the glass and epoxy through the glass region.The second transmitted wave and the second reflected wave arose at the second interface, and a multiplex reflection occurred in the glass region. For the board-shaped fiber (plane fiber) and the column-shaped fiber (cylindrical fiber), Fig. 4 shows the comparisons of the analytic results in the cases of Model 1 (fiber thickness 3h λ=), Model 2 (fiber thickness 3h λ=, 22θ= _) and Model 3 (fiber diameter 4.36h λ=) in Fig. 3, with an equivalent fiber volume fraction but with a different shape. As seen from the figure, the transmission energy of the Model1 is far larger than that Model2 and Model 3.From Fig. 4, which embedded the board-shaped fiber, two energy peaks were clearly observed by transmission energy curve in Model 1 and Model 3. In Model 1, the strong peaks correspond to the first transmitted wave, and four weak peaks are ascribed to the first reflected wave by the glass fiber. In Model 3, the first energy peak resulted from a transmitted wave through the glass fiber region, while the second energy peak was due to the wave propagating through the upper and lower regions of the epoxy. Consequently, it can be understood why the transmission energy for the board-shaped fiber is larger than that of the column-shaped fiber, when the fiber volume fraction was the same.4. Behavior of wave propagation in composite material4.1. Analysis model and ultrasonic propagation simulationMost of fiber reinforced composites material may be considered as an inhomogeneous body microscopically, and a homogeneous one macroscopically. For the composites with fibers, the fiber array model will be useful to take into account of the reflection and/or transmission of multi interfaces. In order to evaluate the macroscopic characteristic of such a composite material, a two-dimension domain with different fiber arrays was proposed as shown in Fig. 5. In this model, circular glass fibers were embedded with hexagonal in the interior of the epoxy matrix. The size of the model was 2420λλ⨯; the fiber diameter is d. An incident wave of 100 MHz was used. The model for analysis was divided into 14401200⨯ elements (1,72,80,000 total elements). In order to account for the loss of load carrying capacity of the failed elements, the stiffness of such elements are reduced by the use of next method.Fig. 6 shows the series of stress dispersion patterns during the ultrasonic wave propagation for model of fiber reinforced composites in Fig. 5 (fiber diameter 4.36dλ=, without attenuation). When the ultrasonic wave was propagated out reached the fiber, the reflected wave, the transmitted wave, and dispersion wave were appeared clearly (Fig. 6(a)). If a wave motion arrived at the interface between the fiber and the matrix, part of the wave was reflected as asecondary source wave, and at the same time a dispersion wave was generated around the fiber.The other part of the wave was transmitted fiber and propagated to receiver side. The multiplex reflection took place interior of the fiber (Fig. 6(b)). Moreover, the wave which spreads the circumference of the fiber interferes each other among fibers, the propagation situation of the ultrasonic wave become further complicates than that of before (Fig. 6(c)–(e)). From these results, the influence of fiber on propagation and dispersion of an ultrasonic wave in a composite material could be visualized and understood.4.2. Influence of fiber-volume-percentage and with attenuation in matrixWhen diameter of fiber is changed by2,3,4,5=and attenuation with/withoutdλλλλattenuation in matrix, which investigates how the propagation action of the ultrasonic wave in a distributed composite material model. Figs. 7 and 8 have shown the time history curve of reflection energy with/without attenuation in epoxy matrix, that during the ultrasonic wave propagation for model of fiber reinforced composites in Fig. 5, respectively. Fig. 9 has shown the time history curve of transmitted energy with attenuation in epoxy matrix. Fig. 10 has shown that comparison of transmission energy ratio with and/or without attenuation during the ultrasonic wave propagation for model of fiber-reinforced composites in Fig. 5, respectively. A figure in case without attenuation in epoxy matrix is omitted.If the with/without attenuation in epoxy matrix is compared, the peak value of reflected energy curve (in the case of fiber diameter 5=) with attenuation in epoxy matrix (attenuationdλcoefficient 120dB/m/MHz) is smaller about 30% than that without attenuation in epoxy matrix. Moreover, although the reflected energy curve in the figure is displayed only to two peaks, the 2nd peak value is larger than the 1st peak value. The 1st peak value is the energy of the reflected wave from a fiber 3, and the 2nd peak value is the energy of the reflected wave from fibers 1 and 6 (Fig. 5). Disorder arose on the subsequent reflective energy curve, and regularity was lost. Moreover, it follows on the increase in fibers diameter (fiber content) that the energy of a reflected wave increases irrespective of with/without attenuation in epoxy matrix.In the case with attenuation in epoxy matrix, at for the transmitted energy history curve, and the peak value (in the case of fiber diameter d = 2k) in the transmitted energy curve is about half of that without attenuation, and the grade of influence by attenuation in epoxy matrix show up. It becomes clearer from the relation with the existence of energy transmitted and with/without attenuation in epoxy matrix and fiber volume content, which are shown in Fig. 10. As seen this figure, irrespective of with/without attenuation in epoxy matrix, energy transmitted decreases greatly follow increase of fiber volume content. At concurrent, the difference of transmitted energy ratio becomes small by the with/without attenuation in epoxy matrix. It is considered that if the diameter of a fiber increases, since the fiber volume content in a composite material model will also increase, this is because transmitted energy became small.5. ConclusionIn this paper, ultrasonic wave propagation and influence on a received waveform were investigated in model cases of composite materials made of fibers and a matrix with the numerical simulation method. It clarified that propagation mechanism of the complicated ultrasonic wave consisting of reflected wave, transmitted wave and dispersion at the interface from matrix and fiber, and the change interface form of glass fiber and epoxy matrix and the distributed composite material by examining the ultrasonic propagation behaviors. Especially, it was understand that the transmitted energy of an ultrasonic wave was changing largely with change of interface form. Moreover, the influences on the ultrasonic transmitted energy ratio by attenuation of matrix and fiber content, and multiplex reflection of the ultrasonic wave by arrangement of fibers, and the propagation situations of the interference wave generating in thecircumference of fibers and so on were clarified by visualization.。

相关文档
最新文档