八年级数学分式的乘除法同步练习含答案

合集下载

华师大版八年级数学下《16.2.1分式的乘除》课时练习含答案解析

华师大版八年级数学下《16.2.1分式的乘除》课时练习含答案解析

八年级下册第十六章第2.1节分式的乘除课时练习一、选择题(共15小题)1.下列运算错误的是( )A . 0)21(=1 B . x 2+x 2=2x 4 C . |a |=|﹣a | D . 632)(ab a b = 答案:B解答:解:A .原式=1,正确;B .原式=2x 2,错误;C .|a |=|﹣a |,正确;D .原式=63ab ,正确, 故选:B分析:A .原式利用零指数幂法则计算得到结果,即可做出判断;B .原式合并同类项得到结果,即可做出判断;C .原式利用绝对值的代数意义判断即可;D .原式利用乘方的意义计算得到结果,即可做出判断.2.下列运算正确的是( )A . (2a 2)3=6a 6B . ﹣a 2b 2•3ab 3=﹣3a 2b 5C . .12a a -•11+a =﹣1D .b a b - +ab a -=﹣1 答案:D解答:解:A .原式=8a 6,错误;B .原式=﹣3a 3b 5,错误;C .原式=.12aa -,错误; D .原式=b a a b --=ba b a ---)(=﹣1,正确; 故选:D .分析:A .原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;B .原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C .原式约分得到结果,即可做出判断;D .原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.3.计算a •a ﹣1的结果为( )A . ﹣1B . 0C . 1D . ﹣a答案:C解答:解:a •a ﹣1=a 0=1.故选:C .分析:利用同底数幂的乘法,零指数幂的计算法则计算即可得到结果. 4.化简12122++-a a a ÷a a 1-的结果是( ) A . 21 B . 1+a a C .a a 1+ D .21++a a 答案:B 解答:解:原式=1)1()1)(1(2-⨯++-a a a a a =1+a a . 故选:B .分析:首先将能分解因式的进行分解因式,进而化简求出即可.5.计算 a ÷b a •ab 的结果是( ) A . a B . a 2 C .21aD . a b 2 答案:D解答:解:原式=a •a b •ab =ab 2. 故选:D .分析:原式利用除法法则变形,计算即可得到结果.6.计算2m n -÷32m n ÷2nm 的结果为( ) A .22n m B .32n m - C .4mn - D . ﹣n 答案:D解答:解:原式=﹣2mn ×23n m ×m n 2 =﹣n .故选D .分析:本题考查的是分式的除法,在解答此类问题时要注意约分的灵活应用.7.计算11-x ÷12-x x 的结果是( ) A . 1 B . x +1 C . x x 1+ D .11-x 答案:C 解答:解:11-x ÷12-x x =11-x ×x x x )1)(1(-+=x x 1+; 故选:C . 分析:先把12-x x 化成)1)(1(-+x x x ,再根据除以一个数等于乘以这个数的倒数,然后约分即可. 8.化简m m 1-÷21mm -的结果是( ) A . m B .π1 C . m ﹣1 D .11-m 答案:A解答:解:原式=m m 1-•12-m m =m .故选:A .分析:原式利用除法法则变形,约分即可得到结果.9.31--y a ÷922--y a a 化简结果为( ) A . a y 3- B .ay 3+ C . )3()3()1(22+--y y a a D .)3()3()1(2+--y y a a 答案:B解答:解:原式=31--y a •)1()3)(3(--+a a y y =ay 3-. 故选:B .分析:原式利用除法法则变形,约分即可得到结果.10.下列计算正确的是( )A . b a ÷d c =bd acB .b x a x + =abx 2C .x 21﹣x 31=x 61D . a 2•a 3=x61 答案:C解答:解:A .b a ÷dc =b a •cd =bcad ,故本选项错误; B .b x a x +=ab bx +abax =ab x b a )(+,故本选项错误; C .x 21﹣x 31=x 63﹣x 62=x61,故本选项正确; D .a 2•a 3=26a ,故本选项错误. 故选:C .分析:根据分式的加减乘除运算法则进行计算.11.计算)(2y x +÷y x x x y x +•+22的结果是( ) A . yx x +22B . x 2+yC . y 1D . y x +1 答案:A解答:解:原式=y x x y x x y x x y x +=+•+•+22222)(, 故选:A分析:原式利用除法法则变形,约分即可得到结果.12.化简441622++-a a a ÷42424++•+-a a a a ,其结果是( ) A . 2)2(2+-a B . 2 C . ﹣2 D .2)2(2+a 答案:C解答:解:原式=2424)2(2)2()4)(4(2-=++•-+•+-+-a a a a a a a , 故选:C .分析:原式利用除法法则变形,约分即可得到结果.13.化简m m 1-÷21m m -的结果是( ) A . m ﹣1 B . m C .π1 D .11-m答案:B解答:解:原式=mm 1-•12-m m =m . 故选:B .分析:原式利用除法法则变形,约分即可得到结果.14.下列计算正确的是( )A . 25232)2(a b a b = B . 22249)23(ab a b -=- C .333278)32(x y x y -=- D .22229)3(a x x a x x -=- 答案:C解答:C .(333278)32xy x y -=-,本选项正确; 所以计算结果正确的是C .故选:C .分析:把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.15.化简a 1÷11-a 的结果是( ) A . a +1 B .11-a C .a a 1- D . a ﹣1 答案:C解答:解:原式=a 1•(a ﹣1)=aa 1-. 故选:C分析:原式利用除法法则变形,计算即可得到结果.二、填空题(共5小题)16.计算:yx x -•x y x 22-= . 答案:x +y解答:解:原式=y x x -•xy x y x ))((-+ =x +y .故答案为:x +y .分析; 原式变形后,约分即可得到结果.17.化简122-x ÷11-x 的结果是 . 答案:12+x 解答:解:122-x ÷11-x =)1(122-•-x x =)1()1)(1(2-•-+x x x =12+x . 故答案为:12+x . 分析: 根据分式的除法法则:分式除以分式,把除式的分子.分母颠倒位置后,与被除式相乘,计算即可.18.化简:y x y x 2--÷222244y xy x y x +--的结果是 . 答案:yx y x +-2 解答:解:原式=y x y x 2--×))(()2(2y x y x y x +--=yx y x +-2. 故答案为:yx y x +-2. 分析:首先将分子与分母能分解因式的进行分解因式进而约分求出即可. 19.化简:13-x ÷222-+x x = . 答案:26+x 解答:解:原式=13-x •2)1(2+-x x =26+x . 故答案为:26+x . 分析:原式利用除法法则变形,约分即可得到结果.20.计算b a 22÷ba 的结果是 . 答案:2a 解答:解:b a 22÷b a =a b b a •22=2a . 故答案为:2a . 分析:利用分式的乘除法求解即可.三、解答题(共5小题)21.计算:12122+--x x x ÷12-+x x x . 答案:解答:1121222-+÷+--x x x x x x =12122+--x x x •)1(1+-x x x =x1. 分析:将每个分式的分子.分母分解因式后将除法变为乘法后约分即可.22.化简:32+-x x •44922+--x x x . 答案:解:原式=32+-x x •2)2()3)(3(-+-x x x =)2()3(--x x 分析:先把分子分母分解因式,进一步约分计算得出答案即可.23.化简:2)())((b a b a b a ++-÷ba b a +-22. 答案:原式=21)(2)())((2=-+•++-b a b a b a b a b a . 分析:原式利用除法法则变形,约分即可得到结果.24.计算:232)2()(aba b •-. 答案:54a b-解答:原式=22364ba ab •- =54ab - 分析:原式先计算乘方运算,再计算乘法运算即可得到结果.25.计算:(1)32232)()2(y x xy -- 答案:361274yx x y + 解答:原式=36127366444y x x y y x x y +=+; (2)xx x x x x +-÷-+-2221112. 答案:x解答:原式=x x x x x x x =-+•+--1)1()1)(1()1(2. 分析:(1)原式先计算乘方运算,再计算加法运算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.。

(完整版)分式的乘除测试题及答案,推荐文档

(完整版)分式的乘除测试题及答案,推荐文档

分式的乘除测试题满分100分 时间45分钟一、填空题。

3x10=30分1.计算:23b 3ab _________2a -÷=。

2.若代数式x 1x 2x 1x 2+-÷-+有意义,则x _______________。

3.计算:2n 13b ()_____________2a +⎡⎤=⎢⎥⎣⎦。

4.22m 3m 2__________m 2m 3-+=+-。

5.当a 3=时,22a 2a 1___________a a 2-+=--+。

6.计算:22x 2x 4__________x 3x 6x 9--÷=--+。

7、当13+=x 时,代数式()()13113-++•++x x x x x 的值等于 8、÷-)(2a a 1-a a = 。

9、若4y -3x=0 ,则(x+y):y=10、342y y ___________x x ⎛⎫-⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭二、选择题4x4=16分11、下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 12、计算:)2()2()2(232x y x y yx -÷⋅-的结果是( ) A 、638yx - B 、638y x C 、5216y x - D 、5216y x 13、下列式子(1)y x y x y x -=--122;(2)c a b a a c a b --=--;(3)1-=--b a ab ;(4)yx y x y x y x +-=--+-中正确的是( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个14、下列分式中,最简分式是( )A 、)1(21+-x xB 、2242y x y x --C 、24212+++x x x D 、223x x x + 15、计算:6x5=30分(1)yx x x y xy x 22+⋅+ (2) 222)11(11-+⋅-÷--a a a a a a a(3)262--x x ÷ 4432+--x x x (4)⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-÷-223224)2(y x x y xy(5)232x 4(64a b)().24a x --⋅ (6)23224x 4xy+y (4x y ).2x-y --÷16、7分化简求值: 3222232b a ab 2a b b a ,a b b ab b +--⋅÷-+其中2a=,b 3.3=-17、7分计算:222x 2x 1x x 2x 1.2x 8x 8x+1+++-÷+⋅++()18、7分 若532z y x ==,且3x+2y -z=14,求x, y , z.19、观察下面一列有规律的数:3分31,82,153,244,355,486,…… 根据规律可知第n 个数应是 (n 为正整数)【答案】1、33; 2、(a-1)2;3、37; 4、A ;5、C ;6、D ;7、B ;8、(1)21y ,(2)aa -+11,(3)2(x-2),(4)25y x -; 9、)2(+n n n 10、解:令532z y x ===a 则有x=2a , y=3a , z=5a3x+2y -z=14即6a+6a-5a=14∴a=2∴x=4,y=6,z=10.一、1.(1)22a b - (2)2xy -2.解:要使x 1x 2x-1x 2+-÷+有意义,必须x 1≠,且x 2,x -2≠≠。

人教版数学八年级下册同步练习(含答案)

人教版数学八年级下册同步练习(含答案)

16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。

分式乘除法计算练习题及答案

分式乘除法计算练习题及答案

分式乘除法计算练习题及答案x?2x2?6x?93xy28z2问题1 计算:.; 2x?3x?44zy名师指导这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范3xy28z224xy2z2解:6xy;z2y4yz2x?2x2?6x?9x?222x?3. 2x?3x?4x?3x?2归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开. a2b?2axa?2a2?4??问题计算:;. a?3a2?6a?93cd6cd名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范a2b?2axa2b6cd6a2bcdab;解:3cd6cd3cd2ax6acdxxa?2a2?4a?222a?3. ?2a?3a?6a?9a?3a?2a3b?a2b2a2?ab?2问题已知:a?2b?2?2的值.2a?2ab?ba?b名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,a3b?a2b2a2?ab?222a?2ab?ba?ba2b ?2aa2b2 ?2aab.把a?2b?2ab,所以原式?·2xy. x?y2y22.计算:?3xy?.x33.计算:?9ab____. b3x2yxy?..计算:a3am2?4m?3?25.若m等于它的倒数,则分式的值为m?2m?3mA.-1B.3C.-1或D.?6.计算?21 x?y的结果是 xA.2B.x2?yC.x2D.x7.计算32的结果是A.3a2-1 B.3a2-C.3a2+6a+ D.a2+2a+1 8.已知x等于它的倒数,则x2?x?6x?3x?3x2?5x?6的值是A.- B.-C.-1 D.09.计算a2?1a2?aa2?2a?1÷a?1.10.观察下列各式:x?1x2?x?1x3?x2?x?1x4?x3?x2?x?1你能得到一般情况下?的结果吗?根据这一结果计算:1?2?22?23??22006?22007.) xn?1?n?2?x?1,22008ax??17.B.A分数乘除法计算题专项练习1一、直接写出得数57?34=79?97=5?43=7?152=?354=1= 191591120?38= 10?32==7×1= 1+17= 1953×0=?778=3?9= 134?5 =4÷34=10÷10%= 12÷23=1.8×15926=?10?5= 1715×60=二、看谁算得又对又快58?167?141135248?6?351926?3855?511 12?35?32533545×4÷×48?3+8?458÷71521÷ 10 ÷×姓名:6÷310-310÷ 13353×4÷[523713133-]÷314÷ 16718×14+34×7114×57÷14×5 736× ×9+2312×3.2+5.6×0.5+1.2×50%211?3?2?5955711[2-]×12三、解方程78x=218239x?4=15x+215x=23 56x=308x-113=6x+5×4.4=40÷x =5122x+215x=20四、求下面各比的比值1052:8467:46.7106345:0.610:140 19:12五、化简下面各比65:1 123: 1.1:114.9:0.152:15:0.12六、列式计算1.4个131的和除以8,商是多少?.112减去2乘23的积,差是多少?3.一个数的比它的34多,求这个数。

(完整版)八年级数学上15.2分式的乘除计算题精选(含答案)

(完整版)八年级数学上15.2分式的乘除计算题精选(含答案)

分式的乘除计算题精选(含答案)一.解答题(共21小题)1.•.2.÷.3..4..5..7..8.9.10.11.(ab3)2•.12.××.13..14.÷•.15..16..17..18..19.(1);(2).20..21.÷•.分式的乘除计算题精选(含答案)参考答案与试题解析一.解答题(共21小题)1.(2014•淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.2.(2014•长春一模)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.3.(2012•漳州)化简:.考点:分式的乘除法.专题:计算题.=•,然后约分即可.解答:解:原式=•=x.点评:本题考查了分式得乘除法:先把各分式的分子或分母因式分解,再把除法运算转化为乘法运算,然后进行约分得到最简分式或整式.4.(2012•南昌)化简:.考点:分式的乘除法.专题:计算题.分析:根据分式的乘法与除法法先把各分式的分子因式分解,再把分式的除法变为乘法进行计算即可.解答:解:原式=÷=×=﹣1.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.5.(2012•大连二模)计算:.考点:分式的乘除法.分析:首先将除法运算化为乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式=y(x﹣y)÷=y(x﹣y)•=y.点评:此题考查了分式的除法.此题难度不大,注意把分子分母中能够分解因式的部分首先因式分解,然后约分,化为最简分式.考点:分式的乘除法.专题:计算题.分析:本题考查的是分式的乘除法运算,按运算顺序,先算括号里面的,再做乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式=÷(2分)=•(5分)=(6分)点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有括号的先算括号里面的.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后把除法转化成乘法,再约去.7.(2010•密云县)化简:.考点:分式的乘除法.分析:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.然后将各分式的分子、分母分解因式,进而可通过约分、化简得出结果.解答:解:原式==.点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.8.(2010•从化市一模)化简:考点:分式的乘除法.分析:本题考查的是分式的乘法运算,做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:(3分)=(6分)=.(9分)点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式,然后找到其中的公因式约去.9.(2009•清远)化简:考点:分式的乘除法.专题:计算题.分析:本题可先将分式的除法运算转化为乘法运算,然后将各分式的分子、分母分解因式,进而可通过约分、化简得出结果.解答:解:原式==.点评:分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.分式的乘除运算实际就是分式的约分.10.(2007•双柏县)化简:考点:分式的乘除法.分析:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.解答:解:原式=÷=•=x.11.(2002•汕头)计算:(ab3)2•.考点:分式的乘除法.专题:计算题.分析:根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算即可得出结果.解答:解:原式=a2b6•=﹣b5.点评:本题考查积的乘方的性质,熟练掌握性质是解题的关键,难度适中.12.化简:××.考点:分式的乘除法.分析:直接利用分式的乘法运算法则化简求出即可.解答:解:××=.点评:此题主要考查了分式的乘法运算,正确化简求出是解题关键.13.计算:.考点:分式的乘除法.专题:计算题.分析:将原式的第一项的分子分母分解因式,且分子提取﹣1,第三项利用分式的乘方法则:给分式的分子分母分别平方,并把结果相除,然后根据除以一个数等于乘以这个数的倒数把原式化为积的形式,约分后即可得到结果.解答:解:原式===.点评:此题考查了分式的乘除法以及分式的乘方运算.学生在做此类题若出现多项式时,一般将14.计算:÷•.考点:分式的乘除法.专题:计算题.分析:原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=÷•=••=.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.15.计算题:.考点:分式的乘除法.专题:计算题.分析:把除法运算转化为乘法运算和把25x2﹣9因式分解得到原式=••,然后约分即可.解答:解:原式=••=x2.点评:本题考查了分式的乘除法:先把分子或分母因式分解,再把除法运算转化为乘法运算,然后进行约分得到最简分式或整式.16.计算:.考点:分式的乘除法.注意除以一个分式等于乘以这个分式的倒数.解答:解:原式==.点评:本题考查分式的乘除法运算,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.17.化简:.考点:分式的乘除法.分析:首先把分子、分母能因式分解的先分解,然后约分即可.解答:解:原式=•,=.点评:此题主要考查了分式的乘法,应先将分子、分母中能够分解因式的部分进行分解因式,然后找到其中的公因式约去.18.化简:.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣••=﹣.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.分式化简,(1);(2).考点:分式的乘除法.专题:计算题.分析:先把幂去掉,再把除号变成乘号,约去同类项得出结果.解答:解:(1)原式=﹣×==.(2)原式==.点评:根据分式的性质分母分子分别相乘约去同类项,特别注意负号.20..考点:分式的乘除法.分析:先把分式的分子和分母用平方差公式和完全平方公式进行因式分解,再约去公因式,然后把除法运算转化为乘法运算,化简即可得出结果.解答:解:原式==•(x+3)(x﹣3)=3x+9.点评:本题考查分式的乘除法,由于式子比较复杂,同学们在解答的时候要细心.21.计算:÷•.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=••=﹣=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.。

华师大版 八年级数学下册 分式的乘除试题 一课一练(含答案)

华师大版 八年级数学下册 分式的乘除试题 一课一练(含答案)

16.2.1分式的乘除第一课时1.填空题:(1)分式乘以分式,用 做,用 做;分式除以分式,把 颠倒位置后,与被除式 。

(2)计算:22+-m m m ÷2324m m m --= 。

(3)当x= 时,234++x x =231+--x x 。

(4)当x=2时,分式)6)(()34)(2(2222-+++--x x x x x x x x = 。

2 选择题:(1)下列计算中,正确的是 ( )A .232cd b a ·322b a dc =32db ac B .2c ab ÷32c a =43c b a C .22b a ÷22a b =1 D .22b a ÷22a b =44b a(2)与a ÷b ÷dc的运算结果相同的是 ( ) A .a ÷b ÷c ÷d B .a ÷b ·(c ÷d) C .a ÷b ÷d ·c D .a ÷b ·(d ÷c) 3.计算;(1)(xy 2-2xy +x)·y y y -+331 (2)449322+-++x x x x ÷63273--x x ÷912-x(3)13332++x x x ÷1124+-x x ·x x x 122+-(4)ab a ac ab a --+22·2222222b ab a ab c b a ++--+÷222222b a c b bc a ---+4.计算:1922--x x ÷[656522-++-x x x x ·(656522--++x x x x ÷12242--x x )]。

5.若2x -3y +z=0,3x -2y -6z=0,xyz ≠0时,求2222222z y x z y x -+++的值。

人教版八年级数学上册 15.2 分式的运算(含答案)

人教版八年级数学上册 15.2 分式的运算(含答案)

15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nna a -=。

2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。

北师大版八下数学《分式的乘除法》典型例题2(含答案)

北师大版八下数学《分式的乘除法》典型例题2(含答案)

《分式的乘除法》典型例题例1 选择题: 若将分式abb a +(a 、b 均为正数)中的字母a 、b 的值扩大为原来的2倍,则分式的值()A .扩大为原来的2倍B .缩小为原来的21 C .不变 D .缩小为原来的41例2 若1)1)(3()3(-=---x x x a x a 成立,则a 应取何值,为什么?例3 下列各式从左到右的变形是否正确?(1)n m m n m m --=--; (2)m n m n m m --=--)( (3)11111=⋅⋅=y yx x y x ; (4)11++=++b a x b x a例 4 设a 、b 是实数,要使分式ba b a +-2的值等于零,a 、b 应满足怎样的条件?例5 有m 个人去完成某项工作,需要a 天可以完成,那么)(n m +个人去做这项工作,需要多少天才能完成?例6.化简:232211a a a a a +-+--例7.求值已知0199852=--x x ,求代数式21)1()2(23-+---x x x 的值.例8.求值 已知zy x 432==求代数式2222232z xy x z yz x --+-的值.参考答案例1 分析 将原式中的a 、b 分别换成a 2,b 2,则原分式变为abb a ab b a b a b a +⋅=+=⋅+214)(22222, 故选B.说明 此题属于利用分式基本性质设计的选择题,主要考查对性质的灵活掌握程度,只要有整体代换的思想便容易解答.代换过程中a 、b 分别换成a 2,b 2,其写法不能写为ba b a ab b a 2222⋅+=+,而应如分析中的写法,将a 、b 分别换为a 2,b 2时,原分式变为b a b a 2222⋅+. 例2 分析 )1)(3()3()3)(1()3()1(1x a x a a x a x x x x x ---=----=--=- 从上看出,由)1)(3()3(x a x a ---变为1-x x 是利用分式的基本性质,把分子、分母都乘以非零整式3-a 得到的,在这个恒等变形过程中,只需03≠-a ,所以3≠a 即可.解 a 为不等于3的数.因为当3=a 时,03=-a ,此等式无意义.例3 分析 (1)错.因为误把分母中项“m -”的符号当作分母整体的符号:(2)错.不符合分式的变号法则;(3)错.不符合分式的基本性质;(4)错,因为分子、分母都除以x 时,只除含x 的项,没除其他项.解 (1)nm m n m m n m m +-=+-=--)( (2)nm m n m m --=--)( (3)xy xy yxy x y x =⋅⋅=1111 (4)11++=++xb x a x b x a (0≠x ) 说明 此题变形反映了运用分式基本性质解题时易犯的错误,应在今后变形过程中加以避免.例4 分析 最直观的想法是,要使02=+-ba b a ,只要b a 2=即可,而仅有此条件显然是片面的,因为分式为零,应要求分子为零,且分母不为零,所以本题对a 、b 的限制条件是:b a 2=,且b a 2≠,且b a -≠.分析到此,条件虽然找到,但“b a 2=,且b a -≠”,是不是最本质,最简练的表达,还不一定.解决一个数学问题,应该追求其形式尽量简洁,刻画尽量深刻.解 要使02=+-ba b a ,必须有02=-b a 且b a -≠,而当b a 2=时,b a -≠,即.0,03,2≠≠-≠b b b b 由此,要使ba b a +-2的值为0,a 、b 应满足的条件是b a 2=且0≠b . 说明 其实“b a 2=且b a -≠”与“b a 2=且0≠b ”的本质完全一致,但后者的刻画简单明了,这也是数学追求的形式.数学作为一种科学的语言,它能够也应该追求深入、科学、简明地刻画各种关系.同时提示我们.学习数学也要学习数学的思想方法,而不只是学习一些数学事实、掌握一些数学运算或推理技巧而已.例5 分析 解决此题的关键在于求出每人每天的工作量,这只要从m 人a 天可以完成的工作就可推导出来.解 因为m 人a 天可以完成某项工作,所以每人完成的工作量是am 1,所以)(n m +人一天可以完成amn m +工作量,由工作的总量1=工作时间×工作效率,得到)(n m +人完成该项工作需要nm am +天. 例6.解:当0≥a 且1≠a 时, 原式22232)1()1()1(211a a a a a a a a a ----=+-+--= 222)1()1)(1)(1()1()1)(1(a a a a a a a --+-=---= a +=1当0<a 且1-≠a 时原式2222)1()1)(1(21)1()1(a a a a a a a a +--=++---= 2)1()1)(1)(1(a a a a +-+-=aa +-=1)1(2说明 分式约分是在整式除法,因式分解等知识的基础上进行的,但有时也与绝对值等知识联系起来.例7.解:21)1()2(23-+---x x x 2112)2(22-+-+-+-=x x x x 2)2(442---+-=x x x x x 454422+-=-+-=x x x x x当0199852=--x x即200241998452=+=+-x x说明 对于代数式求值,一般情况要先化简再求值.例8.解:设z y x 432==k1=(0≠k ) 则.4,3,2k z k y k x === ∴原式212412161241636822222222=--=--+-=k k k k k k k k 说明 遇到分式的求值时,一般要根据条件灵活变形再求值.。

北师大版八年级数学下:5.2《分式的乘除法》同步练习(含答案)

北师大版八年级数学下:5.2《分式的乘除法》同步练习(含答案)

5.2分式的乘除法一、选择题1.下列变形错误的是( )A .46323224y y x y x -=-B .1)()(33-=--x y y x C .9)(4)(27)(12323b a x b a b a x -=--D .y xa xy a y x 3)1(9)1(32222-=-- 2.计算2322nmm n m n ÷÷-的结果为( )A .22n m B .32n m -C .4m n -D .n -3.已知x 为整数,且分式2221x x +-的值为整数,则x 可取的值有( ) A .1个 B .2个 C .3个 D .4个4.下列各式成立的是( ) A.22ab a b = B.ca cb a b ++=C. 222)(b a b a b a b a +-=+-D.ba ab a a +=+22 5.下列计算结果正确的有( )①x x x x x1332=∙;②8a 2b 2⎪⎭⎫ ⎝⎛-243b a =-6a 3;③111222-=+÷-a a a a a a ;④a ÷b ·b 1=a ⑤ab b a a b b a 12222=÷⎪⎪⎭⎫ ⎝⎛-∙⎪⎪⎭⎫⎝⎛-. A.1个 B.2个C.3个D.4个6.下列各式的计算结果中,是分式的是( )①a b y x ∙;②xy y x ∙③xx 26∙④ba b a 32∙.A. ①B.①④C. ②④D.①③7.化简422222()()a a b a a b b a b b a-+÷∙-的结果是( ) A. b a a -2 B.b a a +2C.ba b +4D. ba b -48.已知y x M yx x -=÷-1222,则M 等于( )A.yx x +2B.x y x 2+ C.yx x-2 D.xyx 2- 9.化简xx x +÷⎪⎭⎫⎝⎛-211的结果是 ( ) A.-x -1B.-x +1C.-11+xD.11+x 二、填空题10.计算:(1)c b a a b 2242⋅=________;(2)x y 62÷231x = .11.若代数式1324x x x x ++÷++有意义,则x 的取值范围是__________. 12.计算()341815ax abx ÷= .13.若5=b a,则ab b a 22+= .三、计算与解答 14.计算.(1) xyab b a y x 5195417322-∙;(2) 14912432)41(22-++∙+-x x x x x ; (3)(4x 2-y 2)÷yx y xy x -+-24422.15.化简下列各式.(1);24-∙⎪⎭⎫ ⎝⎛-x x x x(2))4(2442222y x yx y xy x -÷-+-.16.先化简,再求值:22(5)(1)()5a a a a a a-+÷+-,其中a = -3117.已知|a-4|+09=-b ,计算22bab a +·222ba ab a --的值.18.计算:(1)xy y x x xy -÷-)2( (2) 43222)()()(abc ab c c b a ÷-⋅-(3)24244422223-+-÷+-+-x x x x x x x x (4)222)11(11-+⋅-÷--m m m m m m m19.先化简,再求值.(1)x x x x x x x 39396922322-+⋅++-,其中x =31-.(2)xx x x x x x +-÷++223122,其中x=-2.(3)x x x x x 144421422++÷--,其中41-=x .(4)若21<<x ,化简xxx x x x +-----1122.20.求下列各式的值.(1)已知x a =2,求x b =6,x ≠0,求x 3a -2b 的值;(2)若xy= -2,求22222367x xy y x xy y ----的值.21.光明机械厂生产一批新产品,由一班、二班合作,原计划6天完成,但是,他们合作了4天后,二班被调走了,一班对做了6天才全部做完,那么一班、二班单独做各需要几天完成?参考答案1.D ;2.D ;3.C 4.C 5.C 6.A 7.D 8.A 9.A10.⑴bc a 2,⑵22xy ;11.2-≠x 且3-≠x 且4-≠x ;12.ba x 265;13.515;;14.(1)-axb 182. (2)8x 2+10x -3. (3)2x+y . 15.(1)x +2. (2) yx +21.16.解:原式=)5()1)(5(-+-a a a a ·)1(1+a a =21a,当a = -31时,原式=2311⎪⎭⎫ ⎝⎛-=9.17.解:∵|a-4|+09=-b ,∴a -4=0,b -9=0,∴a =4,b =9,∴原式=2)(b b a a +·()()()a a b a b a b -+-=22b a =2294=8116. 18.⑴y x 2-,⑵55b a -,⑶2-x x ,⑷11-+-m m ;19.⑴-1,⑵34-,⑶41.四.1. 20.(1)92. (2)95.21.解:设一班单独做需要x 天完成,则一班的工作效率为x1,二班的工作效率为⎪⎭⎫⎝⎛-x 161,依题意得161461=⨯+⨯x ,∴x =18,经检验知当x =18时,符合题意.∴x1611-=9,答:一班单独完成需要18天,二班单独完成需要9天.。

数学八上10.3《分式的乘除法》练习题

数学八上10.3《分式的乘除法》练习题

10.3 分式的乘除法基础能力训练◆分式的乘除运算1.计算:=+-•-+aa a a a 22222_______. 2.d d c cb b a 1112⨯÷⨯÷⨯÷等于( ) A.2a B.2222d cb a C.bcd a 2 D.其他结果 3.计算dd c c b b a 111•÷•÷•÷.4.计算41441222--÷+--a a a a a . 5.计算123)1(212232+++•+÷-+-x x x x x x x x . ◆分式的乘方运算 6.3)32(ba . 7.332)2(cb a -. ◆分式的乘除、乘方混合运算 8.43222)()()(xy x y y x -÷-•-. 9.)()(632c b acb -÷. 10.42232)()()(abc ab c c b a ÷-•-. 11.2222)()()(ba mnb a n m ÷•. 综合创新训练◆综合运用12.已知a =1,b =1 001,求ba ab a b a b a ab a -÷-+•+-22)(的值.13.已知31=+x x ,求221x x +的值.14.已知a x =3,则x x xx a a a a ----22的值是多少?15.已知2x -3y+z =0且3x -2y -6z =0,求2222222z y x z y x -+++的值.参考答案1答案:a 1解析:原式aa a a a a a a a a a 1)2)(2()2)(2()2(222=+--+=+-•-+=. 2答案:B 解析:同级运算应遵循从左到右的顺序进行. 3答案:解析:原式222111111d cb a d dc c b b a =••••••=. 4答案:解析:原式)2)(1(2)1)(1()2)(2()2(12-++=-+-+•--=a a a a a a a a a . 5答案:解析:原式xx x x x x x x x x 11)2)(1()1(1)1)(2()1)(1(=+++•+•-+-+=. 6答案:解析:333278)32(b a b a =. 7答案:解析:9363328)2(cb ac b a -=-. 8答案:解析:原式5443624x yx x y y x -=••-=. 9答案:解析:原式63363411b a c b c a c=-⋅=-. 10答案:解析:原式338444224336cb ac b a b a c c b a -=••-= 11答案:解析:原式44222222224ab m a b n m b a n m =••=. 12答案:解析:2222()()()()a ab a b a a a b a b a b a b a b a b a b a b a b a-+-+-⋅÷=⋅⋅=++--+- ∵a=1,b =1 001,∴原式=1+1 001=1 002. 13答案:解析:∵31=+x x ∴9)1(2=+x x , 即71,9212222=+∴=++x x x x . 14答案:解析:∵x x x x x x x x x x a a a a a a a a aa 1112222+=--=----.∵a x =3,∴311=x a , ∴原式310313=+=.15答案:解析:由⎩⎨⎧=--=+-0623032z y x z y x 得⎩⎨⎧==z y z x 34,所以,原式2013)3()4(2)3()4(222222=-+++=z z z z z z。

北师大版八年级下册5.2分式的乘除法(含答案)

北师大版八年级下册5.2分式的乘除法(含答案)

5.2分式的乘除法(含答案)一.选择题:(四个选项中只有一个是正确的, 选出正确选项填在题π的括号内)21l∙计算歹r 的结果为(α3 b A 、一a2・计算二•导的结果为 5b 2Sa 2 3A 、—— 4ab 3aB 、一 4b3.计算— -- 的结果为( aC 6a bSC A 、一IaC 、 3b 2 4•计算ɪ-(-ɪ)的结果为 6b A 、 1 ~a ^bD 、 1 abC、 C、 C 、 5c2? b4a D 、 D 、 D 、 1 ~ab 3c_ 2α1-∖ 5.化∣'rij---------- T-m A 、m 畔的结果是m 1 B 、一 m C 、 m-↑D 、 ,z ,^a I ^ab 6.化简 ----- 的结果是a-ba-b A 、Cr B 、--- a-bD 、 a+b~~b~7.下列计算正确的是(Aa 2 /2α、 A 、(^b )=a 2-b 2B 、4 mC ʌ—nn 4_m m 3nD 、8•计算(-⅛2√--)3的结果为()X3yA 、 y3x B、 y3x C 、 _xy 3 D 、 X y 39.计算α迸+的结果为( C、D、 b216-α10.计算 •/+4α+42a+4的结果为(A 、2B 、 C、 2 (α+2)2 D 、 2 (α+2)2二.填空题:(将正确答案填在题目的横线上) 11. Z 、5c 3cιb⑴计算莎兀 L 2 ;(2)计算(a 2b)2∙- a12. 化简:⑴ʌɪx ÷1 X 13. 化简χ2+lγ+ι X Y ʌ的结果为 x+1 14. 化简: 兀+3 7 .X2+3x -2x+l*(X-I)2 X 2—1x~—2.x +1 ⑵x÷l 2X-X三. 15. 解答题: 计算: (写出必要的说明过程,解答步骤) (1)⅛ by 22/、XX+X(2)-ʒ--•—T -X 2-IX 2 16.计算:(2)3xy 2÷^- Xa-∖O L -1-? ------ •—ɔa-4α+4a-417.先化简,再求值:字』.其中皑X2+6x+9X2-3x 3⑵其中2&尸6;X-yX+y18-先化简’再求值:≡∙⅛T÷⅛=其中。

北师大版八下数学《分式的乘除法》同步练习1(含答案)

北师大版八下数学《分式的乘除法》同步练习1(含答案)

5.2分式的乘除法题型1:分式的乘法运算1.(技能题)222384xy z z y ⎛⎫⋅- ⎪⎝⎭等于( ) A .6xyz B .23384xy z yz -- C .6xyz - D .26x yz2.(技能题)计算:2226934x x x x x +-+⋅--题型2:分式的除法运算3.(技能题)2324ab axcd cd -÷等于( )A .223b xB .232b xC .223b x -D .222238a b xc d -4.(技能题)计算:2224369a a a a a --÷+++.课后系统练基础能力题5.36a ab b ⎛⎫-÷ ⎪⎝⎭的结果是( )A .28a -B .2a b -C .218a b -D .212b -6.2233y xy x -÷的值等于( )A .292x y -B .22y -C .229yx - D .222x y -7.若x 等于它的倒数,则2263356x x x x x x ---÷--+的值是( )A .3-B .2-C .1-D .08.计算:2()xyxy x x y -⋅=-________.9.将分式22x x x +化简得1xx +,则x 应满足的条件是________.10.下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y -- 11.计算2(1)(2)5(1)(1)(2)a a a a a -+⋅+++的结果是( ) A .251a - B .255a - C .25105a a ++ D .221a a ++12.(2005·南京市)计算2221211a a a a a a --÷+++.13.已知111m n m n +=+,则n m m n+等于( ) A .1 B .1- C .0 D .2拓展创新题14.(巧解题)已知2519970x x --=,则代数式32(2)(1)12x x x ---+-的值是( ) A .1999 B .2000 C .2001 D .200215.(学科综合题)使代数式3234x x x x ++÷--有意义的x 的值是( ) A .3x ≠且2x -≠ B .3x ≠且4x ≠C .3x ≠且3x -≠D .2x -≠且3x ≠且4x ≠16.(数学与生活)王强到超市买了a 千克香蕉,用了m 元钱,又买了b 千克鲜橙,•也用了m 元钱,若他要买3千克香蕉2千克鲜橙,共需多少钱?(列代数式表示).参考答案1.C 2.32x x -- •3.C 4.32a a ++ 5.D 6.A 7.A 8.2x y - 9.0x ≠ 10.C 11.B 12.1a 13.B 14.•C •15.D 16.32m m ab ⎛⎫+ ⎪⎝⎭元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档