24。1圆的基本性质

合集下载

人教版九年级数学上第24章24.1圆的基本性质教案

人教版九年级数学上第24章24.1圆的基本性质教案

圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。

九年级数学上册(人教版)24.1.1圆教学设计

九年级数学上册(人教版)24.1.1圆教学设计
3.引入新课:通过讨论和思考,引出本节课的学习内容——圆的定义、性质及计算方法。
(二)讲授新知
1.圆的定义:讲解圆的基本概念,强调圆是由一条曲线组成,所有点到圆心的距离相等。
2.圆的性质:讲解圆的半径、直径、周长、面积等基本性质,以及圆的对称性、轴对称性等。
3.圆的周长和面积计算:介绍圆周长和面积的公式,并结合实例进行讲解。
九年级数学上册(人教版)24.1.1圆教学设计
一、教学目标
(一)知识与技能
1.理解圆的定义,掌握圆的基本性质,如半径相等、直径是半径的2倍等。
2.学会使用圆规画圆,掌握圆的对称性质,并能运用到实际中。
3.掌握圆的周长和面积的计算公式,并能灵活运用解决相关问题。
4.了解圆的位置关系,如相离、相切、相交等,并能判断圆与圆、圆与直线之间的位置关系。
3.教学评价:
a.采用形成性评价和终结性评价相结合的方式,全面了解学生的学习过程和结果。
b.重视学生在课堂上的表现,如发言、讨论、练习等,及时给予鼓励和指导。
c.定期进行单元测试,检测学生对圆的知识掌握程度,为下一步教学提供依据。
4.教学拓展:
a.介绍圆在生活中的应用,如建筑、艺术、科技等领域,激发学生的学习兴趣。
b.计算给定圆的周长和面积,要求使用两种不同的方法计算,并比较结果。
c.画出两个相交、相切和相离的圆,并简要说明判断依据。
2.实践应用题:
a.利用圆的性质,设计一个圆形花园,要求给出花园的半径和面积。
b.在一张白纸上画出一个圆,然后剪下这个圆,测量并计算它的周长和面积。
c.结合生活实例,说明圆在实际应用中的优势。
c.如果一个圆的半径增加了两倍,那么它的周长和面积会发生怎样的变化?

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿
2.生生互动:组织学生进行小组讨论,让他们相互分享解题思路和方法,提高合作能力。此外,设计一些小组竞赛活动,激发学生的学习积极性,培养他们的团队精神。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。

24.1 圆的基本性质复习上课用

24.1 圆的基本性质复习上课用



E A
B
圆的B= COD

AB=CD AB=CD OE=OF (OE⊥AB于E OF⊥ CD于F)
推论
圆周角定理: 在同圆或等圆中,同弧或 等弧所对的圆周角相等,都等于这条弧所 对的圆心角的一半。
C C B A O
A
O
B
推论:
半圆(或直径)所对的圆周角是直角, 90圆周角所对的弦是直径。
练习1
3.如图所示,弦AB的长等于⊙O 的半径,点C在AmB上,则 ∠C= 30° 。
4.A、B、C是⊙O上三个点,连 接弧AB和弧AC的中点D、E的 弦交弦AB、AC于F、G,试判 断△AFG的形状.
练习2
在足球比赛场上,甲、乙两名对员互相配合向对方 球门MN进攻,当甲带球攻到球门前处时,乙已跟随 冲到B点.这里甲是选择自己攻门好,还是迅速将球 M 解: 传给乙,让乙射门?
. O
同心圆:圆心相同,半径不相等的圆。
D A E O C B
AB是直径 AB CD 圆的轴对称性: 推论1:CE=DE AC=AD (BC=BD)
A C
B D

E
垂径定理:AB是直径 AC=AD AB CD CD=DB


CE=DE


AB CD AB 是直径 推论2: CE=DE AC=AD ⌒ ⌒ AC=BD AB∥CD
3、A、C、D、E是⊙ O上的点,AD为⊙ O直径, 则∠A+∠E+∠D= ___
A
C
E O
P B D O A A O O O C


课时训练
1.半径为1的圆中有一条弦,如果它的长为 3 ,那么 这条弦所对的圆周角为 ( D ) A.60° B.120° C.45° D.60°或120° 2 . 过圆O内一点M的最大弦长为4厘米,最短弦长 为2厘米,则OM的长度为____. 3 . 等边三角形ABC的三个顶点在圆O上,D在A C弧上,则∠ADC=____. 4 . 在圆O中弦BC平行半径OA, AC、OB交于M,∠C=20° OM A C 则∠AMB=——。 B

九年级 圆24.1圆周角,圆心角

九年级 圆24.1圆周角,圆心角

24.1 圆(一)知识点归纳一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

巩固练习一、选择题(每题3分,共27分)1.下列说法不正确的是()A.顶点在圆心上的角叫做圆心角B.圆的对称中心是圆心C.相等的圆心角所对的弧相等D.圆既是中心对称图形,又是轴对称图形2. 如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=︒,则ACB ∠的度数是( )A .18°B .30°C .36°D .72° 3. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB =10cm ,CD =6cm ,则AC 长为( )A.0.5cmB.1cmC.1.5cmD.2cm4.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧; (4)经过圆心的每一条直线都是圆的对称轴。

圆的基本性质

圆的基本性质

圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。

在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。

通过了解这些基本性质,我们可以更好地理解和运用圆形。

1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。

这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。

圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。

2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。

圆的直径是通过圆心,并且两个端点都在圆上的线段。

圆的直径是半径的两倍,也是圆的最长线段。

3. 圆心和弧圆心是圆的中心点。

圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。

圆的弧可以被度量为角度,弧度或弧长。

4. 圆的面积圆的面积是圆内部所包围的空间。

圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。

这个公式表明,圆的面积正比于半径的平方。

5. 圆的周长圆的周长是圆上所有点之间的距离总和。

圆的周长也被称为圆周长或圆的周长。

圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。

6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。

切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。

7. 圆的弦圆上的任意两个点之间的线段被称为弦。

最长的弦是圆的直径。

8. 圆的弧度弧度是一种用于度量圆上弧长的单位。

一个圆的弧长等于半径的弧度数乘以圆心角的弧度。

总结:在几何学中,圆拥有许多独特的性质和特征。

通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。

圆在许多领域中都有广泛的应用,如工程、建筑、数学等。

掌握圆的基本性质对于解决与圆相关的问题非常重要。

通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。

24.1.1 圆

24.1.1 圆

半圆是特殊的弧
劣弧
半圆
优弧
同心圆
等圆
同圆
等弧
能够互相重合的两段弧
Thanks
圆的有关概念的应用
解:(1)连接OA,OD,证明Rt∆ABO≌Rt∆DCO
解得:

CD为⊙O的直径,∠EOD=84°,AE交⊙O于B,且AB=OC,则∠A=_______.
28°
解析:∵OB=OC,AB=CO,∴AB=OB,∴∠A=∠BOA.又∵OB=OE,∴∠E=∠EBO,∵∠EBO=2∠A,∴∠E=2∠A,又∵∠EOD=∠E+∠A,∴3∠A=∠EOD,∵∠EOD=84°,∴∠A=28°
确定一个圆的要素
圆可以看成到定点距离等于定长的所有点组成的.
满足什么条件的?
有间隙吗?
圆也可以看成是由多个点组成的
到定点的距离等于定长的点都在同一个圆上吗?
(1)圆上各点到定点(圆心O)的距离都等于 .(2)到定点的距离等于定长的点都在 .
圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.
10cm或4cm
3.判断下列说法的正误,并说明理由或举反例.
(1)弦是直径;
(2)半圆是弧;
(3)过圆心的线段是直径;
(4)过圆心的直线是直径;
(5)半圆是最长的弧;
(6)直径是最长的弦;
(7)长度相等的弧是等弧.
一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
骑车运动
看了此画,你有何想法?
【思考】车轮为什么做成圆形?做成三角形、正方形可以吗?
1
知识点
圆的定义
问 题
我们在小学已经对圆有了初步认识,如图,观察画圆的过程,你能说出圆是如何画出来的吗?

数学人教版九年级上册24.1.2《垂直于弦的直径》教案

数学人教版九年级上册24.1.2《垂直于弦的直径》教案
三、教学难点与重点
1.教学重点
-理解垂直于弦的直径的定义:通过直观演示和实际操作,让学生明确什么样的直径是垂直于弦的,并能够准确地描述这一概念。
-掌握垂直于弦的直径的性质:分析并理解垂直于弦的直径所具有的性质,如平分弦、垂直平分弦等,并能够运用这些性质解决具体问题。
-应用垂直于弦的直径解决实际问题:培养学生将理论知识应用于解决实际问题的能力,如通过垂直于弦的直径的性质来求解圆的相关问题。
-与其他圆的性质的综合应用:在综合问题中,学生需要将垂直于弦的直径的性质与其他圆的性质结合起来,这对于学生来说是一个挑战。
举例:在讲解垂直于弦的直径的证明过程时,教师可以使用直观的动画或模型,逐步引导学生通过观察和思考,理解证明过程中的每一步。对于难点内容,如灵活运用性质,教师可以通过以下方法帮助学生突破:
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观:通过观察、操作、推理等过程,使学生理解并掌握圆的基本性质,提高对圆的认识,发展空间想象力。
2.提升学生的逻辑推理能力:在学习垂直于弦的直径定义和性质的过程中,引导学生运用逻辑思维进行推理和证明,增强分析解决问题的能力。
举例:讲解垂直于弦的直径定义时,教师可以借助图形,如一个圆和一条弦,通过动画或实物演示,让学生观察并总结出垂直于弦的直径的特点。
2.教学难点
-理解垂直于弦的直径的证明过程:学生往往难以理解为什么垂直于弦的直径会具有平分弦的性质,以及如何通过几何证明来证实这一点。
-灵活运用垂直于弦的直径的性质:在解决具体问题时,学生可能难以迅速找到垂直于弦的直径,并有效地利用其性质来简化问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是经过圆中心并且垂直于弦的线段。它在圆的性质中占有重要地位,因为它可以平分弦,并在几何图形中起到关键作用。

人教版九年级数学24.1.2:垂径定理优秀教学案例

人教版九年级数学24.1.2:垂径定理优秀教学案例
3.教学反馈:根据学生的课堂表现、作业完成情况及评价结果,教师应及时给予反馈,针对性地指导学生改进学习方法,提高学习效率。
4.成长记录:鼓励学生建立数学学习成长记录,记录学习过程中的点滴进步,培养他们的自主学习能力和反思能力。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一幅圆形花园的图片,提问:“同学们,你们知道圆形花园中隐藏的数学秘密吗?”激发学生的好奇心。
三、教学策略
(一)情景创设
为了让学生更好地理解垂径定理,我们将从生活实际出发,创设富有启发性的教学情境。通过展示实际生活中含有垂径定理元素的场景,如古建筑中的拱桥、圆形花园的布局等,引导学生感受数学与生活的紧密联系。同时,利用多媒体手段,如动画、图片等,形象地呈现垂径定理的基本原理,激发学生的学习兴趣和探究欲望。
1.教学反思:在教学过程中,教师需密切关注学生的学习状态,及时发现并解决学生在学习过程中遇到的问题。课后,教师应认真反思教学设计、教学方法和教学效果,不断调整教学策略,以提高教学质量和效果。
2.学生评价:采用多元化的评价方式,包括自评、互评、小组评价和教师评价。评价内容涵盖知识掌握、技能运用、合作态度等方面。通过评价,激发学生的学习积极性,培养他们的自信心和自我认知能力。
3.小组交流:各小组分享自己的探究过程和结果,互相学习、借鉴,提高解决问题的能力。
(四)总结归纳
1.教师总结:对本节课的重点知识进行梳理,强调垂径定理的原理、证明方法及其应用。
2.学生总结:鼓励学生发表自己对垂径定理的理解和感悟,提高他们的概括和表达能力。
3.知识体系:将垂径定理与圆的其他性质相结合,构建完整的知识体系,为后续学习打下基础。
人教版九年级数学24.1.2:垂径定理优秀教学案例

人教版数学九年级上册课件19-第二十四章24.1.1圆

人教版数学九年级上册课件19-第二十四章24.1.1圆

2.如图,

AD
是以等边三角形ABC一边AB为半径的四分之一圆周,P为

AD
上任意一
点,若AC=5,则四边形ACBP周长的最大值是 ( )
A.15
B.20
C.15+5 2 D.15+5 5
答案 C 连接AD,由已知得AC=CB=BP=5,∠DBA=90°,要使四边形ACBP的周长
最大,只要AP取最大值即可.当点P与点D重合时,AP取最大值,为5 2 ,此时四边形
7.(2019浙江宁波鄞州期末)已知AB是半径为5的圆的一条弦,则AB的长不可能是
()
A.4
B.8
C.10
D.12
答案 D 因为圆中最长的弦为直径,所以弦长l≤10.故选D.
8.(2020独家原创试题)下面能用来说明“直径是圆中最长的弦”的图形是 ( )
答案 B 选项A中,AC是弦,AB是直径,在此图中AC<AB,但不能说明其他情况;选 项B中,CD是弦,AB是直径,CD<OD+OC=AB,能用来说明“直径是圆中最长的弦”; 选项C中,AC不是弦,不能用来说明“直径是圆中最长的弦”;选项D中,CD是弦,AB 是直径,在此图中CD<AB,但不能说明其他情况.故选B.
重点解读
(1)直径是圆中最长的弦,但弦不一定是直径; (2)半圆是弧,但弧不一定是半圆; (3)长度相等的弧不一定是等弧
例2 下列说法错误的是 ( ) A.直径是圆中最长的弦 B.长度相等的两条弧是等弧 C.面积相等的两个圆是等圆 D.半径相等的两个半圆是等弧
解析 分析如下:
选项
分析
判断
A
直径是圆中最长的弦
是大于半圆的弧,是优弧,故C说法正确;CO的端点O为圆心,端点C为圆上一点,所以

圆的性质知识点总结

圆的性质知识点总结

圆的性质知识点总结圆是我们日常生活中常见的一种几何形状。

它具有一些独特的性质,我们通过下面的总结来了解圆的性质。

一、圆的定义和要素圆可以定义为平面上任意点到固定点的距离保持不变的集合。

这个固定点称为圆心,到圆心的距离称为半径。

圆中的任意一条线段,它的两个端点都在圆上,称为弦。

经过圆心的弦称为直径,直径是弦中最大的一段。

二、圆的基本性质1. 圆的半径相等性质:圆上任意两点到圆心的距离相等。

2. 弧的定义:在圆上,由两个点所确定的部分称为弧。

圆上一段既非弦也非整个圆的弧称为弧段。

3. 圆心角:圆上以圆心为顶点的角。

圆心角所对的弧长是该角度的两倍。

4. 弦的性质:等长的弦所对的圆心角相等,且直径是圆上最长的弦。

5. 弧长的比例:相等弧所对的圆心角相等,弧长和圆周长之间存在比例关系。

三、圆的周长和面积公式1. 周长:圆的周长等于圆周上一整条弧的长度。

周长的计算公式为C=2πr,其中C表示周长,r表示半径,π是一个常数,约等于3.14159。

2. 面积:圆的面积是指圆内部的所有点组成的部分所占据的平面面积。

面积的计算公式为S=πr^2,其中S表示面积,r表示半径。

四、圆的判定定理1. 弦切定理:如果一个弦和它所对的圆心角相等,那么这个弦被平分。

2. 弦心定理:如果两个弦的两个端点分别在另一个弦上,那么这两个弦的长度乘积等于它们所决定的弧的长度乘积。

3. 切线性质:从一个点外切圆上的切线和这条切线上这个点到圆心的线段垂直。

五、圆的相关定理1. 相交弦定理:如果两个弦相交,那么它们所对的圆心角相等。

2. 弦切角定理:相交的两条弦所对的弧所决定的角相等。

3. 弦切切定理:切线和弦的交角等于它所对的弧所决定的角。

六、圆的应用1. 圆的运动:物体在圆周上做匀速圆周运动时,物体的速度大小恒定,但方向不断改变。

2. 圆锥曲线:圆可以通过用直线旋转一条线段得到,例如圆锥曲线中的椭圆、抛物线和双曲线。

3. 圆的几何画法:使用圆规、尺子等几何工具可以进行圆的画法,如确定一个圆的圆心、半径等。

人教版九年级上册 24.1 圆的有关性质

人教版九年级上册 24.1 圆的有关性质

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1 垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB. (2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿

人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。

这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。

这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。

但是,对于圆的性质和概念的理解还需要进一步的引导和培养。

此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。

三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。

2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。

四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。

2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。

通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。

2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。

六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。

2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。

通过示例和练习,帮助学生理解和掌握圆的性质。

圆的有关性质-经典教学教辅文档

圆的有关性质-经典教学教辅文档

24.1 圆的有关性质初中数学人教2011课标版1教学目标1.知识与技能(D理解圆的定义和圆的有关概念;(2)理解圆心角、弧、弦、弦心距之间的关系,并能运用它们之间的关系解决有关成绩;(3)理解垂径定理及其运用。

(4)理解圆周角和圆心角的关系。

2.过程与方法(D帮助先生掌握本单元知识内容,并对各个知识点进行纵横向联系和比较,构建知识网络;(2)培养先生分析成绩、解决成绩的能力,加强对探求性成绩的顺应性。

3.情感、态度与价值观(1)经过解题的过程,鼓励先生自主找寻方法解决成绩,加强先生的自决心,培养先生自动探求和独立解决成绩的性情;(2)经过解题后的归纳小结,培养先生育成反思的学习习气,使不同层次的先生都能学有所获。

2重点难点(1) 复习重点:圆的有关性质的运用。

(2) 复习难点:能灵活综合运用圆的有关性质解决相关成绩。

3教学过程 3.1 第一学时教学活动活动1【活动】教学过程1.课前预习提早一天布置先生复习本节课的相关知识点,并对知识进行梳理。

2.知识回顾(1)先生对照课本的章节目录,和教师一同画出全章的知识框架图。

(2)先生以小组竟赛的方式回顾知识点,重点回顾圆的基本性质这一部分的知识点,教师根据先生的回顾将次要知识点罗列在框架图后。

①圆的有关概念:圆的定义、弦、直径、弧、半圆、优弧、劣弧、圆心角、圆周角。

②圆的对称性:轴对称性―――垂径定理及推论。

旋转不变性――圆心角、弧、弦、弦心距之间的关系。

③圆心角与圆周角的性质:一条弧所对的圆周角等于它所对的圆心角的一半;同弧或等弧所对的圆周角相等;同圆或等圆中相等的圆周角所对的弧相等;半圆(或直径)所对的圆周角是苴角;90°圆周角所对的弦是直径。

圆的基本性质知识点总结

圆的基本性质知识点总结

圆的基本性质知识点总结圆是平面上的一个几何图形,是由距离一个固定点的距离始终相等的所有点组成。

圆的基本性质有以下几个方面:1.圆的定义:圆是由平面上到一个固定点的距离都相等的点组成的图形。

2.圆的元素:圆由圆心、半径、直径、弦、弧等几个元素组成。

-圆心:圆的中心点,通常表示为O。

-半径:从圆心到圆周上的任意一点的距离,通常表示为r。

-直径:通过圆心的一条直线,两端点在圆上,直径是半径的两倍,通常表示为d。

-弦:在圆上连接两点的线段。

-弧:圆上的一段曲线,是由弦所确定的。

3.圆的唯一性:在平面上,给定圆心和半径,唯一确定一个圆。

4.圆的周长和面积:-周长:圆的周长也叫做“圆周长”或“周长”,是圆的边界的长度。

周长C等于直径d乘以圆周率π,即C=πd。

-面积:圆的面积是圆内部的部分,通常表示为A。

面积A等于圆的半径r的平方乘以π,即A=πr²。

5.圆与直线的关系:-圆的直角:圆的半径是以任意点与与之相切的直线垂直相交。

-切线:如果直线刚好和圆相切,那么它是圆的切线。

切线与半径的夹角是直角。

-弦的性质:圆上的弦,如果经过圆心,那么它是圆的直径。

否则,弦将分割圆周上的两个弧。

并且,同一圆上的等长弦所对的弧相等,且同等弧所对的弦相等。

6.圆的相似性:-圆的相似性质:如果两个圆的半径之比相等,那么这两个圆是相似的。

相似的圆形状相同,但可能有不同的大小。

7.圆的相关定理:-弧的定理:两条弦所对圆心角相等,那么这两条弦所对的弧相等。

-弧与弦的定理:如果一条弦上的两个弧所对圆心角相等,那么这两个弧也相等。

-弧与切线的定理:如果一个圆的一条切线与圆上的一条弦相交,那么两条切线所对的弧相等。

以上是圆的基本性质的总结,掌握这些知识点可以帮助我们理解圆的特性和运用这些性质解决与圆相关的几何问题。

24.1《圆的基本性质》复习(用)PPT课件

24.1《圆的基本性质》复习(用)PPT课件
22
最新课件
5. 如图,在直径为AB的半圆中,O为圆心,C、D 为半圆上的两点,∠COD=50°,则
∠CAD=_2_5__°__;
6、在⊙O中,一条弧所对的圆心角和圆周角分别为
(2x+100)°和(5x-30)°,则x=_20°_;
23
例1
已知,如图,PA、PB是⊙O的两条切线,A、B为切点.直线 OP 交 ⊙O 于点 D、E,交 AB 于 C.
19
课本 练 习
3.求证:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形.(提示:作出以这条边为直径的圆.)
最新课件
已知:△ABC 中,CO为AB边上的中线,且CO= 1 AB 2
求证: △ABC 为直角三角形.
C
证明: 以AB为直径作⊙O,
1
∵AO=BO, CO= 2 AB,
A O
C
∠BAC=
1 ∠BOC
2
B
10
圆周角的性质(2)
在同圆或等圆中,同弧或等弧所对的所有 的圆周角相等.相等的圆周角所对的弧相等.
最新课件
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
11
圆周角的性质:
性质 3:半圆或直径所对的圆周角都相等, 都等于 900(直角) 。 性质4: 900的圆周角所对的弦是圆的 直径..
一条弦所对的圆心角只有一个,但所对的 圆周角却有两类,是互补的。
最新课件
与圆有关的角度计算
1.一条弦把圆分成1:3两部分,则劣弧所对的圆心角

度。
2.⊙O中,一条弦的长度等于半径,则它所对的劣弧

人教版九年级数学上册教案_24.1圆的基本性质

人教版九年级数学上册教案_24.1圆的基本性质
(4)弦的性质:直径是圆中最长的弦,且平分弦;
(5)弧的性质:等弧对等弦,等弦对等弧;
3.圆与三角形的关系:圆的半径、直径与三角形的三边关系;
4.圆的周长与面积公式及其应用。
二、核心素养目标
1.培养学生的空间观念与几何直观:通过学习圆的基本性质,使学生能够理解圆的几何特征,建立清晰的圆的概念,提高对平面图形的认识和理解;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与一个固定点(圆心)距离相等的点的集合。圆是几何图形中最特殊的图形之一,它在日常生活和科学技术中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,比如圆轮的平稳滚动,以及它如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对圆的基本性质有了初步的认识,但确实存在一些理解和掌握上的难点。在导入新课的时候,通过日常生活中的圆形物体为例,成功引起了学生们的兴趣,这是一个不错的开始。
课堂上,当我解释圆的对称性和圆周角定理时,我发现部分学生看起来有些困惑。我意识到,仅仅通过理论讲解可能还不够,下次我可以尝试使用更多的教具或实物来直观展示,比如通过折叠圆纸片来让学生更直观地感受圆的轴对称和中心对称。
在新课讲授的过程中,我尽量用简单明了的语言解释概念,并通过案例分析让学生们看到圆在实际中的应用。但在讲解重点难点时,我觉得还可以做得更好。可能需要设计一些更有针对性的问题,引导学生逐步思考,帮助他们更好地理解和消化这些知识点。

天津市宝坻区牛道口镇牛道口初级中学人教版九年级数学上册教案:24.1圆

天津市宝坻区牛道口镇牛道口初级中学人教版九年级数学上册教案:24.1圆
五、教学反思
在今天的课程中,我发现学生们对圆的定义和基本性质掌握得还不错,但圆周率的概念和圆心角与对应圆弧的关系这两个难点部分,他们似乎还存在一些困惑。在接下来的教学过程中,我需要针对这些难点进行更有针对性的讲解和练习。
首先,我意识到圆周率的概念对于学生来说较为抽象,他们不太容易理解其背后的意义。在今后的教学中,我可以尝试结合实际例子,如测量硬币的周长和直径,让学生亲自计算圆周率,从而增强他们对圆周率的理解。
同学们,今天我们将要学习的是《圆》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过圆形物体?”(比如硬币、圆桌等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上到定点的距离等于定长的所有点组成的图形。圆在日常生活和几何学中具有重要意义,如轮子的设计、地球的形状等。
突破方法:通过实例演示,让学生区分圆、圆弧和弦,明确它们之间的关系。
(2)圆周率的计算:圆周率的计算涉及到除法和近似值的概念,对于部分学生来说可能存在难度。
突破方法:采用实际测量和计算相结合的方式,引导学生理解圆周率的求法,并掌握近似计算的方法。
(3)圆心角与对应圆弧的关系:理解圆心角与对应圆弧成正比的关系,对于学生来说是难点。
天津市宝坻区牛道口镇牛道口初级中学人教版九年级数学上册教案:24.1圆
一、教学内容
本节课依据人教版九年级数学上册第24章“圆”的第一小节内容展开,主要包括以下教学内容:圆的定义与基本性质,圆的直径与半径的关系,圆周率的含义,圆弧和弦的概念,以及圆心角的特点。具体内容列举如下:
1.圆的定义:平面上到定点的距离等于定长的所有点组成的图形。

人教版2017-2018学年九年级上24.1圆的基本性质练习题课

人教版2017-2018学年九年级上24.1圆的基本性质练习题课

圆的基本性质习题课:1、如图,AB 是⊙O 的直径,CD 为弦,DC ⊥AB 于E ,则下列结论不一定正确的是( )(垂径定理)A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、AD=AC2、如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD=100°,则∠DCE 的度数为( )A 、40° B 、60° C 、50° D 、80°(圆内接四边形定理与推论)3、如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,则∠BPC 的度数是( )A 、45°B 、60°C 、75°D 、90°(同弧或等弧所对 )4、如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC=30°,则∠DAC 等于( )(直径所对圆周角为 )A 、30°B 、40°C 、50°D 、60°5、如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5°,OC=4,CD 的长为( )(垂径定理)A 、B 、4C 、D 、8第1题 第2题 第3题 第4题 第5题 第6题6、如图,是一个隧道的横截面,若它的形状是以O 为圆心的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA=( )A 、4 B 、5 C 、6 D 、7 (垂径定理)7. 如图,Rt △ABC ,∠C=90°,AC=3cm ,BC=4cm ,则它的外心与顶点C 的距离为( )(外心定义与尺规作图)A .2.5B .2.5cmC .3cmD .4cm8. 点P 为△ABC 的外心,∠A =75°,则∠BPC = .(自己作图) (外心)9. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C = °(外心)10.如图,△ABC 在网格坐标系中,A 、B 、C 为格点,则△ABC 外接圆的圆心的坐标是 ,外接圆的半径 (外心).11、如图,是△ABC 的外接圆中直径AD=,∠B =∠DAC ,则AC 的长为__________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1《圆的基本性质》复习题
24.1.1圆的基本概念
1. _________确定圆的位置,________确定圆的大小.
2.已知圆外一点和圆周的最短距离为2,最长距离为8,则该圆的半径是( )
A 、5
B 、4
C 、3
D 、2
3.如图所示,AB 和CD 是⊙O 的直径,图中有几条优弧?几条劣弧?把它们表示出来。

4.如图所示,以平行四边形的一边AB 为直径的⊙O 经过点C ,若∠BOC=50°,求∠BAD 的度数。

24.1.2垂直于弦的直径
1.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )
A 、A
B ⊥CD B 、∠AOB=4∠ACD
C 、A
D ⌒=BD ⌒
D 、PO=PD
2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A 、4
B 、6
C 、7
D 、8
3.如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )
O B C A D 第4题
D A B O C 第3题
B
A
C
P O 第1题材 B
A
O
M
第2题材 第3题材
O A
B
P 第4题

A
B
O
A
、43cm B 、23cm C 、3cm D 、2cm
4.如图所示,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一动点,则OP 长的取值范围是________________.
5.如图,在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm.求:⊙O 的半径.
6.某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图3所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm ,则修理人员应准备多少cm 内径的管道(内径指内部直径)?
24.1.3弧、弦、圆心角
1.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( )
A 、4个
B 、3个
C 、2个
D 、1个
2.如图,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______.(只需写一个正确的结论)
3. 在⊙O 中,AB ⌒=AC ⌒,且∠A=80°则∠B=__________.
B
C
E
D
O
F
P
O
D
C
B
A
第3题
4.如图,AB 是⊙O 的直径,BC ⌒= CD ⌒ = DE ⌒,∠COD=35°,求∠AOE 的度数.
5.如图,已知AB 和CD 是⊙O 的两条弦,AD ⌒=BC ⌒ ,求证:AB=CD.
24.1.4圆周角
1.如图,点A B C ,,都在⊙O 上,若34C =∠,则AOB ∠的度数为( ) A 、34 B 、56 C 、60 D 、68
2.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A 、80° B 、50° C 、40° D 、20°
3.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是( )
A 、45°
B 、60°
C 、75°
D 、90°
4.如图,AB 是⊙O 的直径,点C D ,是圆上两点,100AOC ∠=,则D ∠=_______.
D
C
O
O
C
B A
第1题
O C
F
G
D
E
第2题
A
O
B
D
第4题
A
D
B
O C
第5题
5.如图,ABC △内接于⊙O,AD 是⊙O 的直径,30ABC ∠=,则
CAD ∠=______.
5.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?
6.如图,AB 为⊙O 的直径,AB AC BC =,交⊙O 于点D ,AC 交⊙O 于点
45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.。

相关文档
最新文档