数字信号习题7
数字信号处理习题集
《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。
4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。
6、δ(n)的z变换是。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。
8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。
9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。
11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。
13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。
14.线性移不变系统的性质有、和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。
16.无限长单位冲激响应滤波器的基本结构有型,型和。
17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。
18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
采样(T)()n h ()n x ()t x ()n y D/A理想低通Tc πω=()t y解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π由于最后一级的低通滤波器的截止频率为Tπ,因此对T 8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
数字信号处理习题及答案
习题及答案 4一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理习题集
一、单项选择题1.数字信号的特征是( )A.时间离散、幅值连续B.时间离散、幅值量化C.时间连续、幅值量化D.时间连续、幅值连续2.若一线性移不变系统当输入为x(n)=δ(n)时,输出为y(n)=R 2(n),则当输入为u(n)-u(n-2)时,输出为( )A.R 2(n)-R 2(n-2)B.R 2(n)+R 2(n-2)C.R 2(n)-R 2(n-1)D.R 2(n)+R 2(n-1)3.下列序列中z 变换收敛域包括|z|=∞的是( )A.u(n+1)-u(n)B.u(n)-u(n-1)C.u(n)-u(n+1)D.u(n)+u(n+1)4.下列对离散傅里叶变换(DFT )的性质论述中错误的是( )A.DFT 是一种线性变换B.DFT 具有隐含周期性C.DFT 可以看作是序列z 变换在单位圆上的抽样D.利用DFT 可以对连续信号频谱进行精确分析5.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )A.N ≥MB.N ≤MC.N ≥M/2D.N ≤M/2 6.基-2 FFT 算法的基本运算单元为( )A.蝶形运算B.卷积运算C.相关运算D.延时运算7.以下对有限长单位冲激响应(FIR )滤波器特点的论述中错误的是( )A.FIR 滤波器容易设计成线性相位特性B.FIR 滤波器的单位冲激抽样响应h(n)在有限个n 值处不为零C.系统函数H(z)的极点都在z=0处D.实现结构只能是非递归结构8.下列结构中不属于IIR 滤波器基本结构的是( )A.直接型B.级联型C.并联型D.频率抽样型9.下列关于用冲激响应不变法设计IIR 滤波器的说法中错误的是( )A.数字频率与模拟频率之间呈线性关系B.能将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是s 平面到z 平面的多值映射D.可以用于设计低通、高通和带阻等各类滤波器10.离散时间序列x (n )=cos(n 73π-8π)的周期是( ) A.7 B.14/3 C.14 D.非周期 11.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。
数字信号处理习题及答案
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理教程课后习题及答案
6.试判断:
是否是线性系统?并判断(2),(3)是否是移不变系统?
分析:利用定义来证明线性:满足可加性和比例性, T [a1 x1 (n ) + a 2 x2 (n )] = a1T [ x1 (n )] + a2T [ x2 (n )] 移不变性:输入与输出的移位应相同 T[x(n-m)]=y(n-m)。
,
(2)x(n) = R3(n)
,
(3)x(n) = δ (n − 2) ,
(4)x(n) = 2n u(−n − 1) ,
h(n) = R5(n) h(n) = R4 (n) h(n) = 0.5n R3(n) h(n) = 0.5n u(n)
分析:
①如果是因果序列 y (n ) 可表示成 y (n ) ={ y (0) , y(1) , y(2) ……},例如小题(2)为
y1 (1) = ay1 (0) + x1 (1) = 0 y1 (2) = ay1 (1) + x1 (2) = 0
┇
8
y1(n) = ay1(n − 1) + x1(n) = 0 ∴ y1 (n) = 0 , n ≥ 0 ii) 向 n < 0 处递推,将原方程加以变换
y1(n + 1) = ay1(n) + x1(n + 1)
结果 y (n ) 中变量是 n ,
∞
∞
∑ ∑ y (n ) =
x ( m )h (n − m ) =
h(m)x(n − m) ;
m = −∞
m = −∞
②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,
《数字信号处理》(2-7章)习题解答
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
(完整版)数字信号处理习题集(5-7章)
第五章 数字滤波器一、数字滤波器结构填空题:1.FIR 滤波器是否一定为线性相位系统?( ).解:不一定计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。
试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。
解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e )(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj e H 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=作图题:3.有人设计了一只数字滤波器,得到其系统函数为:2112113699.00691.111455.11428.26949.02971.114466.02871.0)(------+-+-++--=z z z z z z z H 2112570.09972.016303.08557.1---+--+z z z请采用并联型结构实现该系统。
数字信号处理习题解答
数字信号处理习题(xítí)解答第1-2章:1. 判断下列(xiàliè)信号是否为周期信号,若是,确定其周期。
若不是,说明(shuōmíng)理由(1)f1(t) = sin2t + cos3t(2)f2(t) = cos2t + sinπt2、判断下列序列是否为周期(zhōuqī)信号,若是,确定其周期。
若不是(bùshi),说明理由(1)f1(k) = sin(3πk/4) + cos(0.5πk)(2)f2(k) = sin(2k)(3)若正弦序列x(n)=cos(3πn /13)是周期的, 则周期是N=3、判断下列信号是否为周期信号,若是,确定其周期; 若不是,说明理由(1)f(k) = sin(πk/4) + cos(0.5πk)(2)f2(k) = sin(3πk/4) + cos(0.5πk)解1、解β1 = π/4 rad,β2 = 0.5π rad 由于2π/ β1 = 8 N1 =8,N2 = 4,故f(k) 为周期序列,其周期为N1和N2的最小公倍数8。
(2)β1 = 3π/4 rad,β2 = 0.5π rad由于2π/ β1 = 8/3 N1 =8, N2 = 4,故f1(k) 为周期序列,其周期为N1和N2的最小公倍数8。
4、画出下列函数的波形(1).(2).解5、画出下列函数的波形x(n)=3δ(n+3)+δ(n+1)-3δ(n-1)+2δ(n-2)6. 离散线性时不变系统单位阶跃响应,则单位响应=?7、已知信号(xìnhào),则奈奎斯特取样(qǔyàng)频率为( 200 )Hz。
8、在已知信号(xìnhào)的最高频率为100Hz(即谱分析范围(fànwéi))时,为了避免频率(pínlǜ)混叠现象,采样频率最少要200 Hz:9. 若信号的最高频率为20KHz,则对该信号取样,为使频谱不混叠,最低取样频率是40KHz10、连续信号:用采样频率采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期解:,11、连续信号:用采样频率100s f Hz = 采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期长度。
数字信号处理 重点习题(1-5章)
数字信号处理 重点习题(1-5章)第一章5.设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性非时变的。
(6)y(n)=x(n2)(7)y(n)= (8)y(n)=x(n)sin(ωn)6.给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。
(3) y(n)= x(k) (5) y(n)=e x(n)13.有一连续信号x a(t)=cos(2πft+),式中,f =20 Hz,=π/2。
(1)求出x a(t)的周期;(2)用采样间隔T=0.02 s对x a(t)进行采样,试写出采样信号 的表达式;(3) 画出对应 的时域离散信号(序列)x(n)的波形, 并求出x(n)的周期。
14. 已知滑动平均滤波器的差分方程为(1)求出该滤波器的单位脉冲响应;(2)如果输入信号波形如题14图所示,试求出y(n)并画出它的波形。
第二章3.线性时不变系统的频率响应(频率响应函数)H(e jω)=|H(e jω)|e jθ(ω), 如果单位脉冲响应h(n)为实序列,试证明输入x(n)=A cos(ω0n+)的稳态响应为10.若序列h(n)是实因果序列, 其傅里叶变换的实部如下式:H R(e jω)=1+cosω,求序列h(n)及其傅里叶变换H(e jω)。
18.已知,分别求:(1) 收敛域0.5<|z|<2对应的原序列x(n);(2)收敛域|z|>2对应的原序列x(n)。
24.已知线性因果网络用下面差分方程描述: y(n)=0.9y(n-1)+x(n)+0.9x(n-1),(1)求网络的系统函数H(z)及单位脉冲响应h(n);(2) 写出网络频率响应函数H(e jω)的表达式, 并定性画出其幅频特性曲线; (3) 设输入x(n)=e jω0n, 求输出y(n)。
28.若序列h(n)是因果序列, 其傅里叶变换的实部如下式:,求序列h(n)及其傅里叶变换H(e jω).29.若序列h(n)是因果序列, h(0)=1, 其傅里叶变换的虚部为,求序列h(n)及其傅里叶变换H(e jω)。
数字信号处理课后习题答案(全)1-7章
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2
故
第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
数字信号处理经典习题(北理工826必备)(附答案)
数字信号处理经典习题(北理工826必备)(附答案)第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称位“抗折叠”滤波器。
在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理 计算题:18c 因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T 8π没有影响,故整个系统的截止频率由)(ωj eH 决定,是625Hz 。
(b )采用同样的方法求得kHz T 201=,整个系统的截止频率为Hz Tf c 1250161==二、离散时间信号与系统频域分析 计算题:1( 2(2))(*n x (共轭) 解:DTFT )(**])([)(*)(*ωωωj n n jn jn e X e n x en x n x -∞-∞=∞-∞=-===∑∑2.计算下列各信号的傅里叶变换。
(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ (d )nn )21(解:(a )∑∑-∞=--∞-∞==-=2][2)(n nj n nj n ne en u X ωωωωnj e 11)1(==∞( ((X =3 (1))(*n x - (2))](Re[n x (3) )(n nx解: (1))(*])([)(*)(*jw n n jw n jwne X en x en x=-=-∑∑∞-∞=--∞-∞=-(2)∑∑∞-∞=-*-*∞-∞=-+=+=n jw jw jwn n jwne X e X e n xn x en x )]()([21)]()([21)](Re[(3)dw e dX j e n x dw d j dw e n dx j en nx jw n jwnn jwn n jwn)()()(1)(==-=∑∑∑∞-∞=-∞-∞=-∞-∞=- 4.序列)(n x 的傅里叶变换为)(jwe X ,求下列各序列的傅里叶变换。
数字信号处理习题答案西安电子第7章
解: 对FIR数字滤波器, 其系统函数为
N 1
H (z) h(n)Z n
1
(1 0.9z 1 2.1z 2
0.9z 3 z 4 )
n0
10
第6章 有限脉冲响应(FIR)数字滤波器的设计
所以其单位脉冲响应为
h(n) 1 1, 0, 9, 2.1, 0.9, 1
所以FIR滤波器具有B类线性相位特性:
() π N 1 π 3
2
2
2
由于7为奇数(情况3), 所以幅度特性关于ω=0, π, 2π三点奇对
称。
第6章 有限脉冲响应(FIR)数字滤波器的设计
2. 已知第一类线性相位FIR滤波器的单位脉冲响应长度 为16, 其16个频域幅度采样值中的前9个为:
H2 (e j )
H (e j(0 ) )
2
H (e j(0 ) )
第6章 有限脉冲响应(FIR)数字滤波器的设计
因为低通滤波器H(ejω)通带中心位于ω=2kπ, 且H2(ejω)为 H(ejω)左右平移ω0, 所以H2(ejω)的通带中心位于ω=2kπ±ω0处, 所以h2(n)具有带通特性。 这一结论又为我们提供了一种设计 带通滤波器的方法。
10
由h(n)的取值可知h(n)满足: h(n)=h(N-1-n) N=5
所以, 该FIR滤波器具有第一类线性相位特性。 频率响应函 数H(ejω)为
第6章 有限脉冲响应(FIR)数字滤波器的设计
N 1
H (e j ) H g ()e j () h(n)e jm n0 1 [1 0.9ej 2.1ej2 0.9ej3 ej4 ] 10
1 2π
数字信号处理2013习题集
数字信号处理习题集第一章习题1、已知一个5点有限长序列,如图所示,h (n )=R 5(n )。
(1)用()n δ写出()x n 的函数表达式;(2)求线性卷积()y n =()x n *()h n 。
2、已知x (n )=(2n +1)[u (n +2)-u (n -4)],画出x (n )的波形,并画出x (-n )和x (2n )的波形。
3、判断信号3()sin 73x n n ππ⎛⎫=+⎪⎝⎭是否为周期信号,若是求它的周期。
4、判断下列系统是否为线性的,时不变的,因果的,稳定的? (1)2()(3)y n x n =-,(2)0()()cos()y n x n n ω= 5、已知连续信号()2sin(2),3002a x t ft f Hz ππ=+=。
(1)求信号()a x t 的周期。
(2)用采样间隔T=0.001s 对()a x t 进行采样,写出采样信号ˆ()a x t 的表达式。
(3)写出对应于ˆ()a xt 的时域离散信号()x n 的表达式,并求周期。
6、画出模拟信号数字处理的框图,并说明其中滤波器的作用。
第二章习题1、求下列序列的傅立叶变换。
(1)11()333nx n n ⎛⎫=-≤ ⎪⎝⎭,(2)[]2()()()n x n a u n u n N =--2、已知理想低通滤波器的频率响应函数为:000(),0j n j e H e n ωωωωωωπ-⎧≤≤⎪=⎨<≤⎪⎩c c 为整数,求所对应的单位脉冲响应h (n )。
3、已知理想高通滤波器的频率响应函数为:00()1j H e ωωωωωπ⎧≤≤⎪=⎨<≤⎪⎩cc ,求所对应的单位脉冲响应h (n )。
4、已知周期信号的周期为5,主值区间的函数值=()(1)n n δδ+-,求该周期信号的离散傅里叶级数和傅里叶变换.5、已知信号()x n 的傅立叶变换为()j X e ω,求下列信号的傅立叶变换。
数字信号处理训练题
第一章习题一. 判断题1. 周期分别为N1,N2的两离散序列,在进行周期卷积后,其结果也是周期序列。
对2. FFT可用来计算IIR滤波器,以减少运算量。
错3. 相同的Z变换表达式一定对应相同的时间序列。
正确答案是: 错4. 频率采样法设计FIR滤波器,增加过渡带采样点可增加过渡带衰减。
正确答案是: 对二、选择题1. 采样率过低时,______。
A 量化误差增加 b. 必须增加信号频率c. 产生混叠2. 滤波器的单位脉冲响应的DTFT给出了滤波器的_____。
a. 频率响应b. 幅度c. 相位3. 滤波器的单位脉冲响应的DTFT给出了滤波器的_____。
a. 频率响应b. 幅度c. 相位4. ____序列的收敛域在Z平面上是一环状的。
a. 右边序列b. 双边序列c. 有限长序列5. 稳定系统的收敛域应当_______。
a. 包含单位圆b. 不包含单位圆c. 可以包含单位圆6. A/D 是_____的缩写a. asynchronous digitalb. analog to digitac. analog to discrete7. 连续信号的理想采样值是_____。
a. 连续的b. 离散的c. 时间上连续的8. 一个离散系统,a. 若因果必稳定b. 若稳定必因果c. 稳定与因果无关9. 下列哪一个不是信号的实例a. 语音b. 音乐c. 调制解调器10. 若输出不超前于输入,该系统称为______。
a. 线性b. 非线性c. 因果11. 抗混叠滤波器的目的是a. 去掉模拟信号混叠b. 等效一个高通滤波器c. 将高于采样率一半的频率分量去掉12. 抽样可以表述为______。
a. 将数字信号转化为模拟信号b. 将模拟信号转化为数字信号c. 获得模拟信号的幅度值13. 下面哪个表达式是将x(n)左移三位得到_______a. 3x(n)b. x(3n)c. x(n+3)14. 下面哪个表达式是将x(n)右移三位得到_______a. 3x(n)b. x(3+n)c. x(n-3)15. 关于线性系统的描述正确的是_____a. 遵从叠加原理b. 非时变c. 因果16. D/A变换的第一步是a. 零阶保持 b . 低通抗混叠滤波 c. 将数字代码转换为相应的模拟电平级三、计算题1. 和表示一个序列及其傅氏变换,并且为实因果序列,利用求下列各序列的傅氏变换:解:注意:当t为偶数时[ .] =2x(2n),当t为奇数时[ .] =0分析:以频率为400Hz的正弦信号为例,分别以2000Hz和1000Hz进行采样,序列长分别为2048点和1024点,对应的频谱如图1、图2所示。
数字信号处理练习题
数字信号处理练习题一、填空题1)离散时间系统是指系统输入、输出都是___________的系统。
2)在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T与信号最高截止频率fm应满足关系3)因果系统的H(z)z,则H(z)的收敛域为2zz64)因果稳定离散系统的系统函数H(z)的全部极点都落在Z平面的__________________。
5)如果序列某[k]的长度为M,则只有当时,才可由频域采样某[m]恢复原序列,否则产生现象。
6)设序列某[k]长度N=16,按DIT-FFT做基2FFT运算,则其运算流图有级碟形,每一级由个碟形运算构成。
7)实现数字滤波器的基本运算单元是:_______、________、________。
8)线性相位FIR数字滤波器的第一类线性相位表达式为,满足第一类线性相位的充分必要条件是:h[k]是且9)判断y[k]=k某[k]+b 所代表的系统的线性和时不变性。
.10)有限长序列某[k]的离散傅立叶变换某[m]与其离散时间傅立叶变换某(ej)的关系是二、判断题(正确的在题后括号内打“√”,错的打“某”。
)1)常系数线性差分方程描述的系统一定是线性时不变系统。
()2)两序列的z变换形式相同则这两序列也必相同。
()3)离散傅里叶变换的特点是离散时间、离散频率。
()4)双线性变换法是非线性变换,所以用它设计IIR滤波器不能克服频率响应混叠效应。
()5)当且仅当单位冲击响应满足:h(n)0,n0时,那么线性时不变系统将是一个因果性的系统。
()6)任意序列某[k]都存在傅立叶变换。
()7)有限长序列某[k],n1nn2;如果n10,那么z=0不在收敛域内。
()8)长度为N点的序列某[k],它的DFT也是一个长度为N的序列。
()9)FIR滤波器过渡带的宽度与窗函数旁瓣的宽度密切相关。
()10)III型线性相位滤波器能用于高通滤波的设计。
()三、选择题(注:Z指Z变换)n1.Z[(1)u(n)]______________________。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
现代数字信号处理课后习题解答
习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。