概率论中几种具有可加性的分布及其关系

合集下载

概率中的 cumulants

概率中的 cumulants

概率中的 cumulants在概率论和统计学中,cumulants 是描述随机变量分布的重要特征之一。

它们提供了有关随机变量的重要信息,例如其中心和分散度。

在本文中,我将探讨概率中的 cumulants 的概念、性质和应用,并共享我对这个主题的个人观点和理解。

1. 概念概率中的 cumulants 是描述随机变量分布的统计量,用于衡量随机变量的偏移和分散度。

与矩相比,cumulants 具有一些特殊的性质,使它们在描述分布时更加灵活和方便。

cumulants 能够提供有关随机变量的高阶统计信息,进而帮助我们更好地理解和分析概率分布。

2. 性质在实际应用中,cumulants 具有多种有用的性质。

它们可以通过计算中心矩的方式来获取,这使得我们可以在实际计算中更加方便地处理。

cumulants 具有可加性,在组合多个随机变量时具有一定的灵活性。

另外,cumulants 还能够帮助我们判断随机变量的相关性和独立性,这在实际应用中具有重要意义。

3. 应用在统计学和概率论中,cumulants 具有广泛的应用。

例如在时间序列分析中,我们可以利用 cumulants 来描述时间序列的分布特征,并进一步进行预测和分析。

在金融领域中,cumulants 也被广泛应用于风险管理和投资组合优化等方面。

通过对 cumulants 的应用,我们可以更全面、深入地理解和分析概率分布,从而为实际问题的解决提供有力支持。

4. 个人观点和理解在我看来,cumulants 在概率中的作用和意义不言而喻。

它们不仅能够提供关于随机变量分布的丰富信息,还能够帮助我们更加深入地理解概率分布的特性和规律。

在实际应用中,cumulants 的灵活性和便利性也使得我们能够更加方便地处理复杂的概率分布,并进行更精确的分析和预测。

我认为对 cumulants 的深入理解和应用对于统计学和概率论领域具有重要意义,也能够为其他领域的研究和应用提供有益启示。

概率论中几种具有可加性的分布及其关系

概率论中几种具有可加性的分布及其关系

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k (1-p )kn -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑m n k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(2121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u ut π1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证.对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2exp(),2exp(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212nX X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ 卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证!2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n k n k n kn n k n n k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nnn nnnn nnn.1)1(lim =--+∞→k nn nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π 证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt n n nn ⎰∞--∞→=⎪⎪⎭⎫ ⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值范围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212nX X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 李贤平,沈崇生,陈子毅.概率论与数理统计[M].上海:复旦大学出版社,2003.5:221-231. [3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].安徽建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].北京:北京师范大学出版社,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].北京:人民大学出版社,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]魏宗舒等.概率论与数理统计教程[M].北京:高等教育出版社,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].信阳农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].邯郸学院学报,2008年第18卷第3期:52-56.。

概率论与数理统计总复习

概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。

随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。

2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。

6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。

例:从甲、乙两班各选一个代表。

②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。

统计学概率基本概念

统计学概率基本概念
统计学概率基本概念
目录
Contents
• 概率的定义与性质 • 概率的基本计算 • 概率分布 • 随机变量与期望值 • 大数定律与中心极限定理 • 统计推断与参数估计
01
概率的定义与性质
概率的定义
01
概率是描述随机事件发生可能性的数学工具,通常用
P 表示。
02
概率值范围在0到1之间,其中0表示事件不可能发生
性质
随机变量具有可测量性,即可以通过 实验或观测得到其具体数值;同时, 随机变量具有概率性,其取值结果具 有不确定性。
期望值的定义与性质
定义
期望值是随机变量所有可能取值的概率加权和,通常用E表示。
性质
期望值具有线性性质,即对于两个随机变量X和Y,有E(X+Y)=E(X)+E(Y);期望值具有可加性,即对于常 数a和b,有E(aX+b)=aE(X)+b。
06
统计推断与参数估计
参数估计的基本概念
点估计
用单一的数值来估计未知参数的值,如样本均值的计算。
01
区间估计
用一定的置信水平确定的区间来估计未 知参数的范围,如样本均值的95%置信 区间。
02
03
估计量的评价标准
无偏性、有效性和一致性,用于评估 估计量的优劣。
点估计与区间估计
点估计的优缺点
优点是简单直观,缺点是精度不够, 可能存在较大的误差。
,1表示事件一定会发生。
03
概率可以通过长期实验或观测来估计,也可以通过逻
辑推理或主观判断来得出。
概率的性质
概率具有可加性
如果事件A和B是互斥的(即 两者不能同时发生),则P(A 或B) = P(A) + P(B)。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

数的概率分布

数的概率分布

数的概率分布概率分布是概率论中重要的概念之一,用于描述一个随机变量取值的可能性。

在数学和统计学领域里,数的概率分布研究了在特定情况下数值出现的概率。

本文将介绍数的概率分布的基本含义、常见的概率分布类型以及其在实际应用中的重要性。

一、概率分布的基本定义概率分布是随机变量的可能取值及其对应概率的描述。

随机变量可以是离散型变量或连续型变量。

离散型变量的取值有限且可数,如掷骰子的点数;连续型变量的取值为无限个且不可数,如人的身高。

概率分布描述了随机变量每个取值的概率。

二、常见的概率分布类型1. 离散型概率分布离散型概率分布用于描述随机变量为离散型的情况。

以下是几种常见的离散型概率分布:(1)伯努利分布伯努利分布是一种简单的离散型分布,常用于描述试验只有两个可能结果的情况,如硬币的正反面。

(2)二项分布二项分布是描述n次成功失败试验的离散型分布,例如n次掷硬币中正面朝上的次数。

(3)泊松分布泊松分布用于描述单位时间内随机事件发生的次数,如单位时间内电话呼叫次数、交通事故发生次数等。

2. 连续型概率分布连续型概率分布用于描述随机变量为连续型的情况。

以下是几种常见的连续型概率分布:(1)均匀分布均匀分布描述了在一个区间内随机取值时,每个取值的概率相等,如抛硬币的落点在一个平面上的坐标。

(2)正态分布正态分布是最常见的连续型概率分布之一,也称为高斯分布。

它以钟形曲线为特征,广泛应用于自然和社会科学领域,如身高、体重等。

(3)指数分布指数分布用于描述事件发生的时间间隔或等待时间,如设备故障发生的时间间隔、用户等待的响应时间等。

三、概率分布在实际应用中的重要性概率分布在实际应用中具有重要的作用,主要体现在以下几个方面:1. 预测和决策通过分析和建模某个事件或现象的概率分布,可以对未来可能的结果进行预测。

例如,在金融领域中,通过对股票收益率的概率分析,可以帮助投资者做出决策。

2. 风险评估概率分布可以用于评估风险。

在保险行业中,通过对保险索赔次数或大小的概率分析,可以估算保险公司的风险,并确定合理的保费。

数理统计中几种分布之间的关系

数理统计中几种分布之间的关系

数理统计中有几种常见的概率分布,包括正态分布、泊松分布和指数分布。

这些分布在实际应用中有着重要的意义,它们之间的关系也是数理统计中的一个重要内容。

1. 正态分布正态分布是自然界和社会现象中最常见的分布之一,也被称为高斯分布。

它具有钟形曲线,呈现出中间高、两端低的特点。

正态分布有着许多重要的性质,比如均值和标准差能够完全描述一个正态分布。

在实际应用中,正态分布可以用来描述许多自然现象,比如身高、体重等。

另外,中心极限定理告诉我们,大量独立同分布的随机变量之和的分布趋于正态分布。

2. 泊松分布泊松分布是描述单位时间内随机事件发生次数的概率分布。

它适用于描述少量成功事件在长时间内发生的情况。

泊松分布的参数是平均发生率λ,它决定了事件发生的概率。

泊松分布在实际应用中被广泛运用,比如描述单位时间内接到的通信方式数、一段时间内发生的交通事故数等。

3. 指数分布指数分布是描述事件发生间隔时间的概率分布,它是泊松分布的补充。

指数分布的参数是事件发生率λ,它与泊松分布的参数相互关联。

指数分布常用来描述无记忆性的随机变量,比如设备的寿命、服务时间间隔等。

数理统计中,这三种分布之间存在着密切的联系。

正态分布和泊松分布在一定条件下可以近似互相转化。

当事件发生率λ趋向无穷大时,泊松分布将近似于正态分布。

而在一些特殊情况下,指数分布也可以退化为泊松分布。

这三种分布之间并不是孤立存在的,它们在一定条件下是相互联系、相互激发的。

在我的理解中,这三种概率分布之间的关系可以帮助我们更好地理解和应用概率统计的相关知识。

通过对它们之间关系的深入了解,我们可以更准确地选择合适的分布来描述实际问题,从而提高统计分析的准确性和实用性。

总结起来,正态分布、泊松分布和指数分布是数理统计中常见的概率分布,它们之间存在着密切的联系。

深入理解它们之间的关系有助于我们更好地应用统计学知识,提高数据分析的准确性和实用性。

希望通过本篇文章的阐述,能为读者带来一些启发和帮助。

卡方分布的可加性

卡方分布的可加性

卡方分布的可加性
卡方分布的可加性
卡方分布是一种概率分布,可以用来描述一组随机变量之间的关系。

它可以用来描述不同变量之间的联系,并且可以用来检验某种假设。

它的可加性是指,当多个随机变量之间都具有某种联系时,它们的总
体分布可以由多个基本的卡方分布加起来得到。

卡方分布的可加性可以用来说明一个重要的统计原理,即“多变量的
分布是由多个独立的单变量分布的叠加而成的”。

这就提示我们,当
构建多变量分布时,可以将多个单变量分布进行叠加,而不是分别构
建每个变量的独立分布,这样可以大大简化分析过程。

此外,卡方分布也可以用来检验某些统计假设。

例如,如果我们想检
验某个统计假设,可以构建一个卡方分布,来表示检验假设的背景。

如果检验结果显示,该假设与背景分布不一致,那么就可以得出结论,该假设是不正确的。

总之,卡方分布的可加性是一种重要的统计原理,可以帮助我们构建
多变量分布,也可以帮助我们检验统计假设。

概率论知识点总结

概率论知识点总结

概率论知识点总结概率论知识点总结「篇一」概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。

其次,做游戏是学习数学最好的方法之一,根据课的内容的特点,教师设计了转盘游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性,在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理,在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式。

再次,我们教师在上课的时候要理解频率和概率的关系,教材中概率的概念是通过频率建立的,即频率的稳定值及概率,也就是用频率值估计概率的大小。

通过实验,让学生经历“猜测结果一进行实验一分析实验结果”的过程,建立概率的含义。

要建立学生正确的概率含义,必须让他们亲自经历对随机现象的探索过程,引导他们亲自动手实验收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,真正树立正确的概率含义。

第四,我们努力让学生在具体情景中体会概率的意义。

由于初中学生的知识水平和理解能力,初中阶段概率教学的基本原则是:从学生熟悉的生活实例出发,创设情境,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作,在知识的主动建构过程中,促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历会使他们终身受益,在具体情境中体验概率的意义。

概率论与数理统计第3章第5节

概率论与数理统计第3章第5节

40
=1/2
10
0
15
45
x
三、M=max(X,Y)及N=min(X,Y)的分布 分布函数分别为FX(x)和FY(y), 设X,Y相互独立,
M=max(X,Y) 及N=min(X,Y)的分布函数:
1) FM(z)=P(M≤z) =P(X≤z,Y≤z) 即 FM(z)= FX(z)FY(z) =P(X≤z)P(Y≤z)
例 三个火车站每天上午各自独立地发出一列火车 去同一煤矿,设每列火车到达时间服从上午八点 到下午八点均匀分布,求 (1)第一列火车到达时刻的概率密度 (2)某天第一列火车在上午九点以后到达的概率
1.设随机变量(X,Y)的联合概率密度为 k (6 x y ), 0 x 2,0 y 4; f ( x, y) 其它 0, P P 求:(1)常数 k (2) ( X 1.5) (3) ( X Y 4) 的概率分布为 2.设二维随机变量 ( X ,Y )
(B)
0y 0x e s t dsdt, x 0, y 0 , F ( x, y) 0, 其他.
y x F ( x , y ) e s t dsdt
(C)
(D)
e x y , x 0, y 0 , F ( x, y) 其他. 0,
(X和Y 相互独立)
2) FN(z)=P(N≤z) =1-P(N>z) =1-P(X>z,Y>z) =1- P(X>z)P(Y>z) 即 FN(z)= 1-[1-FX(z)][1-FY(z)]
设X1,…,Xn相互独立, 分布函数分别为 FX ( x ) i M=max(X1,…,Xn)的分布函数为: (i =0,1,…, n)

概率论与数理统计:常用统计分布

概率论与数理统计:常用统计分布

0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-

y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<

概率论中的伽马分布与

概率论中的伽马分布与

伽马分布的性质
概率密度函数: 具有特定形状的 分布函数
参数:具有特定 的数学意义
随机变量:可以 取正值或负值
数学期望和方差 :具有特定的计 算公式
伽马分布的应用
在统计学中的应用
参数估计:利用伽马分布对未知参数进行估计
假设检验:通过比较实际数据与伽马分布的拟合程度,对假设进行 检验 模型选择:在多种分布模型中选择最适合的模型时,可以考虑伽马分 布
伽马分布的扩展与推广
广义伽马分布
定义:当形状参数α为非负整数时,广义伽马分布就是常见的伽马分布。 性质:具有可加性,即两个广义伽马随机变量的和仍然是广义伽马随机变量。 扩展:通过引入形状参数α的连续取值,广义伽马分布可以扩展到形状参数α为任意实数的情形。 应用:在统计学、信号处理、机器学习等领域有广泛的应用。
伽马分布的拟合优度检验
卡方检验
定义:卡方检验 是一种统计方法, 用于检验观测频 数与期望频数之 间的差异是否显 著。
原理:基于卡方 分布,通过计算 卡方值和自由度, 比较实际观测频 数与期望频数的 差异程度。
步骤:选择适当 的卡方分布和自 由度,计算卡方 值和概率P,根 据概率P的大小 判断拟合优度。
特性:具有偏斜性和厚尾性,常 常用于描述金融数据等复杂数据 集
添加标题
添加标题
添加标题
添加标题
参数:具有两个参数,形状参数 和尺度参数,用于描述分布的形 状和尺度
比较:与正态分布、指数分布等 其他常见分布相比,伽马分布具 有不同的特性,适用于不同的场 景
THANK YOU

汇报人:XX
汇报时间:20XX/XX/XX
在机器学习中的应用
图像识别:用于目标检测和 图像分割

数理统计2:为什么是正态分布,正态分布均值与方差的估计,卡方分布

数理统计2:为什么是正态分布,正态分布均值与方差的估计,卡方分布

数理统计2:为什么是正态分布,正态分布均值与⽅差的估计,卡⽅分布上⼀篇⽂章提到了⼀⼤堆的统计量,但是没有说到它们的⽤处。

今天,我们就会接触到部分估计量,进⼊到数理统计的第⼀⼤范畴——参数估计,同时也会开始使⽤R 语⾔进⾏模拟。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:为什么是正态分布为什么要突然提到正态分布的参数估计?原因有以下⼏个。

⾸先,正态分布是⽣活中最常见的分布,许多随机事件的分布可以⽤正态分布来概括。

林德贝格勒维中⼼极限定理告诉我们,⼆阶矩存在的独⽴同分布随机变量列{ξn },记它们的和为S n ,E(ξ1)=µ,D(ξn )=σ2,则S n −nµ√n σd→N (0,1).刚刚学完概率论的同学应该对这个结论不陌⽣。

⽽中⼼极限定理的条件实际上并不需要这么强,林德贝格费勒定理去除了同分布的约束,只要{ξn }满⾜∀τ>0,1∑nk =1D(ξk )n∑k =1∫|x +E(ξk )|≥τ∑n k =1D(ξk )(x −E(ξk ))2d F k (x )→0,就有∑nk =1(ξk −E(ξk ))∑nk =1D(ξk )d→N (0,1).这说明⾃然界中微⼩随机项的累积效应普遍服从中⼼极限定理。

另外,正态分布的信息完全由两个参数所决定:期望和⽅差,即前两阶矩。

因此,如果我们假定总体是服从正态分布的,就只需要对其两个参数作估计,这给问题的讨论带来⽅便。

最后就是正态分布在实⽤上的意义了,两个独⽴正态分布的和、差甚⾄乘积都是正态分布,这在实⽤上也很⽅便,所以许多时候即使总体不服从正态分布,也近似认为服从正态分布。

Part 2:正态分布均值估计既然正态分布完全由两个参数所决定,那么只要知道出这两个参数的值(或者范围),就能确定总体的全部信息。

然⽽,在实际⽣活中要获得绝对正确的正态分布参数是不可能的,因为⽣活中的总体情况总是未知,要认识总体,我们只能从总体中抽取⼀系列样本,再通过样本性质来估计总体。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

概率论知识点总结归纳

概率论知识点总结归纳

欢迎共阅概率论知识点总结第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差互斥事件对立事件=⋂B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC(4)对偶律(摩根律):B A B A ⋂=⋃B A B A ⋃=⋂第二节事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A的概率为2落在区域把μ. ,,则称A 、总结:1.3.第二章一维随机变量及其分布第二节分布函数分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。

如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F第三节离散型随机变量离散型随机变量的分布律:设k x (k=1,2,…)是离散型随机变量X 所取的一切可能值,称k k p x X P ==}{为离散型随机变量X 的分布律,也称概率分布.当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。

6.2数理统计中几种常用的分布.

6.2数理统计中几种常用的分布.

性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ

P ( n)
2 2



2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.

i 1 n i 1
n
EX i2 n.
2 DX i
D D(



2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.

卡方分布及其它分布

卡方分布及其它分布

卡方分布一、 卡方分布的定义:若n 个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n 个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其分布规律称为χ2(n)分布(chi-square distribution ),其中参数 n 称为自由度。

二、 卡方分布的性质::(1) (可加性) 设i Y ~且相互独立,则,,,1,,2k i ii n =λχ这里.,∑∑==i in n λλ(2),)(2,λχλ+=n E n .42)(2,λχλ+=n V a r n证明 (1)根据定义易得。

(2)设则依定义,,~2,λχn Y可表示为Y 其中且相互独立,于是),1,(~,1,,1),1,0(~λN X n i N X n i -=因为代入(1),第一条结论可得证。

直接计算可得 于是 代入(2)便证明了第二条结论。

三、 卡方分布的概率密度函数:其中Dx 为n 维x 空间内由不等式z x x n 221+所定的区域。

即,Dz 为n 维x 空间内以坐标原点为球心、z 为半径的球面所围成的区域(边界不在内)可以利用极坐标来计算这积分。

令 与这变换相应的函数行列式为:其中括号和Φ都表示1,,1-n θθ 的函数。

因此。

当z>0时, C 是常数。

为了定出C,在上述等式的两端令,∝+→r 得到 从而,在分母内的积分中令μ=221r ,即,用212μ=r 作代换,那么,这个积分等于⎪⎭⎫ ⎝⎛Γ==∙-∝+------∝+⎰⎰222212212012122121021-n n d d nn n n n μθμμμθμμ因此,()⎪⎭⎫ ⎝⎛Γ=-222122n C nn π从而,当z>0时,即,2χ的密度函数为称这个密度函数所定的分布为自由度为n 的2χ分布,记作2)(n χ。

它的图像如下:图(一)2χ分布密度函数图四、卡方分布的累积分布函数为:()()()22,2k x k x F k Γ=γ,其中γ(k,z)为不完全Gamma 函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k(1-p )k n -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑mn k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型.1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示:2,1,0,!)(===-k e k k P k λλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k e e k k E k k k k 110)!1(!)(. 又因,λλλλλ-+∞=-+∞=∑∑-==e k k e k k E k k k k 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(20121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u utπ1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证. 对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π 因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2ex p(),2ex p(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ 0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212n X X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证! 2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n kn kn kn n k nn k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nn n n nn n n n n .1)1(lim =--+∞→k n n nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p k kn n k n n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫ ⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt nn nn ⎰∞--∞→=⎪⎪⎭⎫⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值范围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212n X X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 李贤平,沈崇生,陈子毅.概率论与数理统计[M].上海:复旦大学出版社,2003.5:221-231. [3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].安徽建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].北京:北京师范大学出版社,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].北京:人民大学出版社,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]魏宗舒等.概率论与数理统计教程[M].北京:高等教育出版社,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].信阳农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].邯郸学院学报,2008年第18卷第3期:52-56.。

相关文档
最新文档