(精品)小学奥数7-6-1 计数之归纳法.专项练习

合集下载

小学奥数计数问题练习与答案【三篇】

小学奥数计数问题练习与答案【三篇】

【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。

以下是⽆忧考为⼤家整理的《⼩学奥数计数问题练习与答案【三篇】》供您查阅。

【第⼀篇:整体法经典练习题】经典例题展⽰1:有⼀类各位数字各不相同的五位数M,它的千位数字⽐左右两个数字⼤,⼗位数字也⽐左右两个数字⼤;另有⼀类各位数字各不相同的五位数W,它的千位数字⽐左右两个数字⼩,⼗位数字也⽐左右两个数字⼩。

请问符合要求的数M和W,哪⼀类的个数多?多多少? 经典例题展⽰2:游乐园的门票1元1张,每⼈限购1张。

现在有10个⼩朋友排队购票,其中5个⼩朋友只有1元的钞票,另外5个⼩朋友只有2元的钞票,售票员没有准备零钱。

问有多少种排队⽅法,使售票员总能找得开零钱?【第⼆篇:递推⽅法的概述及解题技巧】在不少计数问题中,要很快求出结果是⽐较困难的,有时可先从简单情况⼊⼿,然后从某⼀种特殊情况逐渐推出与以后⽐较复杂情况之间的关系,找出规律逐步解决问题,这样的⽅法叫递推⽅法。

线段AB上共有10个点(包括两个端点),那么这条线段上⼀共有多少条不同的线段? 分析与解答:从简单情况研究起: AB上共有2个点,有线段:1条 AB上共有3个点,有线段:1+2=3(条) AB上共有4个点,有线段:1+2+3=6(条) AB上共有5个点,有线段:1+2+3+4=10(条) …… AB上共有10个点,有线段:1+2+3+4+…+9=45(条) ⼀般地,AB上共有n个点,有线段: 1+2+3+4+…+(n-1)=n×(n-1)÷2 即:线段数=点数×(点数-1)÷2【第三篇:计数习题标数法和加法原理的综合应⽤】★★★★)有20个相同的棋⼦,⼀个⼈分若⼲次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋⼦数不是3或4的倍数,有()种不同的⽅法取完这堆棋⼦. 【分析】把20、0和20以内不是3或4的倍数的数写成⼀串,⽤标号法把所有的⽅法数写出来: 考点说明:本题主要考察学⽣对于归纳递推思想的理解,具体来说就是列表标数法的使⽤,难度⼀般,只要发现了题⽬中的限制条件,写出符合条件的剩余棋⼦数,然后进⾏递推就可以了。

奥数讲义计数专题:归纳与递推

奥数讲义计数专题:归纳与递推

华杯赛计数专题: 归纳与递推基础知识:1.递推的基本思想: 从简单情况出发寻找规律, 逐步找到复杂问题的解法。

2.基本类型: 上楼梯问题、直线分平面问题、传球法、圆周连线问题。

3.递推分析的常用思路: 直接累加、增量分析、从复杂化归简单。

例题:例1.一个楼梯共有10级台阶, 规定每步可以迈一级台阶或二级台阶.走完这10级台阶, 一共可以有多少种不同的走法?【答案】89种【解答】设n级台阶有an种走法, 则an=an-1+an-21级有1种走法;2级有(1+1和2)2种走法;3级有(1+1+1、2+1和1+2)3种走法;4级有3+2=5种走法;5级有3+5=8种走法;6级有5+8=13种走法;7级有8+13=21种走法;8级有13+21=34种走法;9级有21+34=55种走法;10级有34+55=89种走法例2.小悦买了10块巧克力, 她每天最少吃一块, 最多吃3块, 直到吃完, 共有多少种吃法?【答案】274种【解答】通过枚举法和递推法: 设n块糖有an种走法, 则an=an-1+an-2+ an-31块糖有1种吃法;2块糖有2种吃法; 3块糖有4种吃法; 4块糖有1+2+4=7种吃法; 5块糖有2+4+7=13种吃法; 6块糖有4+7+13=24种吃法; 7块糖有7+13+24=44种吃法; 8块糖有13+24+44=81种吃法;9块糖有24+44+81=149种吃法;10块糖有44+81+149=274种吃法。

例3.用 1×2的小方格覆盖 2×7的长方形, 共有多少种不同的覆盖方法?【答案】21种【解答】2×1的方格有1种盖法;2×2的方格有2种盖法;2×3的方格有2+1=3种盖法;2×4的方格有3+2=5种盖法;2×5的方格有3+5=8种盖法;2×6的方格有5+8=13种盖法;2×7的方格有8+13=21种盖法。

小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.【答案】144【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以十年后树上有89条树枝.【答案】89【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答例题精讲教学目标7-6-4.计数之递推法【解析】 登 1级 2级 3级 4级 ...... 10级1种方法 2种 3种 5种 ...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.【答案】89【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 登 1级 2级 3级 4级 5级 ...... 10级1种方法 1种 2种 3种 4种...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.【答案】28【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法. 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 如果用12⨯的长方形盖2n ⨯的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个12⨯的,也可能横放2个12⨯的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,覆盖210⨯的长方形一共有89种.【例 5】 用13⨯的小长方形覆盖38⨯的方格网,共有多少种不同的盖法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果用13⨯的长方形盖3n ⨯的长方形,设种数为n a ,则11a =,21a =,32a =,对于4n ≥,左边可能竖放1个13⨯的,也可能横放3个13⨯的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这【答案】13【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种【答案】927【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种【答案】81【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种. 则21a =,31a =,41a =.由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.即当有10枚棋子时,共有7种不同的拿法. (法2)分类讨论.由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次. 若为0次,则相当于2枚拿了5次,此时有1种拿法;若为2次,则2枚也拿了2次,共拿了4次,所以此时有246C =种拿法. 根据加法原理,共有167+=种不同的拿法.【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答BA AB 1357946821235813213455891【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.【答案】89【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B 房间有多少种方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 斐波那契数列第八项.21种.【答案】21【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有296种不同的回家方法.【答案】296【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:2410131112514302831643215167683421其中经1次操作变为1的1个,即2, 经2次操作变为1的1个,即4, 经3次操作变为1的2个,是一奇一偶,以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个. 另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多. 而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.【答案】34【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数) 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.【答案】25【考点】计数之递推法 【难度】5星 【题型】填空【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:【答案】54【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有11333333n n --⨯⨯⨯=()个…(种)传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有11133333n n n n a a ---+=⨯⨯⨯=(个…).由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =.利用递推关系可以得到:2303a =-=,33336a =⨯-=,4333621a =⨯⨯-=,533332160a =⨯⨯⨯-=.这说明经过5次传球后,球仍回到甲手中的传球方法有60种. 本题也可以列表求解.由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.【答案】60【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共有多少种传球方式? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.【答案】52点A出发恰好跳10次后落到E的方法总数为种.【考点】计数之递推法【难度】5星【题型】填空【关键词】清华附中【解析】可以使用递推法.回到A跳到B或H跳到C或G跳到D或F停在E 1步 12步 2 13步 3 14步 6 4 25步10 46步20 14 87步34 148步68 48 289步116 48其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.所以,青蛙第10步跳到E有48296⨯=种方法.【答案】96【巩固】在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.青蛙在6次之内(含6次)跳到D点有种不同跳法.【考点】计数之递推法【难度】5星【题型】填空ABEC D【解析】采用递推的方法.列表如下:跳到A跳到B跳到C停在D跳到E1步 1 12步 2 1 13步 3 1 24步 5 3 25步8 3 56步13 8 5其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.所以,每一步跳到A的跳法数等于上一步跳到B和E的跳法数之和,每一步跳到B的跳法数等于上一步跳到A和C的跳法数之和,每一步跳到C的跳法数等于上一步跳到B的跳法数,每一步跳到E的跳法数等于上一步跳到A的跳法数,每一步跳到D的跳法数等于上一步跳到C或跳到E的跳法数.【答案】12【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种. 【考点】计数之递推法 【难度】5星 【题型】填空 【关键词】迎春杯,中年级组,决赛【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”的方法有两种情况:⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙. ⑵1,2号箱的钥匙都不在1,2号箱中.对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248⨯=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216⨯=(种)放法.不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216⨯⨯=(种). 所以,第⑴种情况有“好”的方法16696⨯=(种).对于⑵,从3~6号箱的钥匙中选2把放入1,2号箱,有4312⨯=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224⨯=种放法;如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212⨯=种放法;同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑵种情况有“好”的放法()1242222144⨯++++=(种). 所以“好”的方法共有96144240+=(种).(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,6542554543225!240a a a a ==⨯==⨯⨯⨯=⨯=,即好的方法总数为240种.【答案】240开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,109829989876543229!=725760a a a a ==⨯==⨯⨯⨯⨯⨯⨯⨯=⨯,即好的方法总数为725760种.【答案】725760。

奥数:7-6计数方法与技巧综合

奥数:7-6计数方法与技巧综合

7 计数综合7-6 计数方法与技巧综合 7-6-1归纳法7-6-2整体法7-6-3对应法7-6-3-1图形中的对应关系 7-6-3-2数字问题中的对应关系 7-6-3-3对应与阶梯型标数法 7-6-3-4不完全对应关系7-6-4递推法前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.模块一、归纳法从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系. 【例 1】 (难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n=()12n n ++1个部分. 方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k 条直线最多将平面分成:1+1+2+…+k=()12k k ++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标计数方法与技巧综合【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【例 3】 10个三角形最多将平面分成几个部分?【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯.…… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n =+⨯+⨯++-⨯=++++-⨯=-+⎡⎤⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【例 4】 (难度等级※※)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【例 5】 (难度等级※※)在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【例 6】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()n-,所以2121n-段,也就是说新增加的切割线使瓜皮数量增加了()在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【例 7】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.模块二、整体法解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.【例8】(难度等级※※※)一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【解析】 方法一:归纳法如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n 个点时,可以剪成2n +2个三角形,需剪3n+l 刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:整体法.我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n 个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.【巩固】在三角形ABC 内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【解析】 整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成()360100180180201⨯+÷=个小三角形.【例 9】 在一个六边形纸片内有60个点,以这60个点和六变形的6个顶点为顶点的三角形,最多能剪出_______个.【解析】 设正六边形内有n 个点,当1n =时有6个三角形,每增加一个点,就增加2个三角形,n 个点最多能剪出()()62122n n ++=+个三角形.60n =时,可剪出124个三角形.注:设最多能剪出x 个小三角形,则这些小三角形的内角和为180x ︒.换一个角度看,汇聚到正六边形六个顶点处各角之和为4180⨯︒,故这些小三角形的内角总和为603604180⨯︒+⨯︒.于是180603604180x ︒=⨯︒+⨯︒,解得124x =.模块三、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.一、图形中的对应关系【例 10】 (难度等级 ※※※)在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【例11】(难度等级※※※)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方68296形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【巩固】(难度等级※※)用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【例12】(难度等级※※)图中可数出的三角形的个数为.【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C=个三角形.【例 13】如图所示,在直线AB上有7个点,直线CD上有9个点.以AB上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB与CD之间的交点数.C D【解析】常规的思路是这样的:直线AB上的7个点,每个点可以与直线CD上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB上的任意两点M、N与直线CD上的任意两点P、Q都可以构成一个四边形MNQP,而这个四边形的两条对角线MQ、NP的交点恰好是我们要计数的点,同时,对于任意四点(AB与CD上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB与CD中有多少个满足条件的四边形MNQP就可以了!从而把问题转化为:在直线AB上有7个点,直线CD上有9个点.四边形MNQP有多少个?其中点M、N位于直线AB 上,点P、Q位于直线CD上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN有2721C=种选择方式,线段PQ有2936C=种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB与CD 之间共有756个交点.二、数字问题中的对应关系【例 14】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【巩固】 (难度等级 ※※※)三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【例 15】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【例 16】 (2019年国际小学数学竞赛)请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.三、对应与阶梯型标数法【例 17】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【例 18】 (2008年第一届“学而思杯”五年级试题)学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【解析】 我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿的碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法.421A【例 19】 (第七届走美试题)一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有种不同排法.【解析】 首先,将8人的身高从低到高依次编号为12345678、、、、、、、,现在就相当于要将这8个数填到一个42 的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将12345678、、、、、、、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方法就相当于从A 走到B 的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:.最后,用“标数法”得出从A 到B 的最短路径有14种,如下图:【巩固】将1~12这12个数填入到2行6列的方格表中,使得每行右边比左边的大,每一列上面比下面的大,共有多少种填法?【解析】 根据对应关系,再运用阶梯型标数法画图如下:13242141455211111111329048422820149654321共有132种填法.四、不完全对应关系【例 20】 圆周上有12个点,其中一个点涂红,还有一个点涂了蓝色,其余10个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这12个点为顶点的所有凸多边形(边数可以从三角形到12边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个?【解析】 从任意一个双色的N 边形出发(5N ≥时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的2N -边形;另一方面,对于一个任意的无色的M 边形,如果加上红色顶点和蓝色顶点,就得到一个双色的2M +边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有10个,双色四边形有21045C =个,所以双色多边形比无色多边形多104555+=个.【例 21】 有一类各位数字各不相同的五位数M ,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数W ,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数M 与W ,哪一类的个数多?多多少?【解析】 M 与W 都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数M ABCDE =(A 不为0),那么就有一个与之相反并对应的五位数(9)(9)(9)(9)(9)A B C D E -----必属于W 类,比如13254为M 类,则与之对应的86754为W 类. 所以对于M 类的每一个数,W 类都有一个数与之对应.但是两类数的个数不是一样多,因为M 类中0不能做首位,而W 类中9可以做首位.所以W 类的数比M 类的数要多,多的就是就是首位为9的符合要求的数.计算首位为9的W 类的数的个数,首先要确定另外四个数,因为要求各不相同,从除9外的其它9个数字中选出4个,有49126C =种选法.对于每一种选法选出来的4个数,假设其大小关系为4321A A A A >>>,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有2类:①千位、十位排1A 、2A ,有两种方法,百位、十位排3A 、4A ,也有两种方法,故此时共有4种;②千位、十位排1A 、3A ,只能是千位3A ,百位4A ,十位1A ,个位2A ,只有1种方法.根据乘法原理,首位为9的W 类的数有()12641630⨯+=个.故W 类的数比M 类的数多630个.【例 22】 用1元,2元,5元,10元四种面值的纸币若干张(不一定要求每种都有),组成99元有P 种方法,组成101元有Q 种方法,则Q P -= .【解析】 由于101992-=,所以对于组成99元的每一种方法,只要再加上一张2元的,即可组成101元;而对于组成101元的方法,如果其中包含有一张2元的,那么去掉这张2元的,即可得到一种组成99元的方法.可见组成99元的方法与组成101元的某些方法之间存在一一对应的关系,组成101元的所有方法中,除去这些与组成99元的方法对应的方法,剩下的都是不包含有2元纸币的组成方法.所以Q 比P 多的就是用1元,5元,10元这三种面值的纸币组成101元的方法的总数. 假设用x 张1元的,y 张5元的,z 张10元的可以组成101元,则510101x y z ++=. 由于10101z ≤,所以10z ≤.即10元的可以有0~10张. 如果10元的张数确定了,那么有()()5101101010152021x y z z z +=-=-+=-+,那么y 的值可以为0到()202z -,也就是对每一个z 的值,y 都可以有2021212z z -+=-种可能,相应地5元纸币的张数也有212z -种取法.而当10元和5元的张数都确定了以后,1元纸币的张数也就确定了,这样也就确定了组成101元的方法.所以只需要看取10元和5元的共有多少种取法.如果10元的取0张,即0z =,则21221z -=,即5元的有21种取法; 如果10元的取1张,即1z =,则21219z -=,即5元的有19种取法; 如果10元的取2张,即2z =,则21217z -=,即5元的有17种取法; ……如果10元的取10张,即10z =,则2121z -=,即5元的有1种取法; 所以总数为2211917111121++++==. 那么121Q P -=.。

小学尖子生训练之-计数之归纳法 模块练习(含答案)

小学尖子生训练之-计数之归纳法 模块练习(含答案)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.【例 1】 如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过 个方格。

【考点】计数之归纳法 【难度】2星 【题型】填空【关键词】希望杯,四年级,复赛,第14题,6分 【解析】 边长每多1,穿过的方格多2,那么5×5的最多穿过3+2+2+2=9个方格 【答案】9【例 2】 一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【考点】计数之归纳法 【难度】3星 【题型】解答 【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n =()12n n ++1个部分.方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k +1段,每一段将原有的部分分成两个部分,所以至多增加k +1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k 条直线最多将平面分成:1+1+2+…+k =()12k k ++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标7-6-1.计数之归纳法【答案】16【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分? 【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【答案】5051部分【例 3】 平面上10个两两相交的圆最多能将平面分割成多少个区域? 【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,……可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【答案】92【例 4】 10个三角形最多将平面分成几个部分?【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯. …… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n ⎡⎤=+⨯+⨯++-⨯=++++-⨯=-+⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【答案】272【例 5】 一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分? 【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【答案】26【例 6】 在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【考点】计数之归纳法 【难度】5星 【题型】解答 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【答案】32【例7】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【考点】计数之归纳法【难度】4星【题型】解答【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()21n-,所以n-段,也就是说新增加的切割线使瓜皮数量增加了()21在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【答案】32【例8】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【考点】计数之归纳法【难度】5星【题型】解答【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.【答案】42。

小学奥数计数之归纳法练习题【五篇】

小学奥数计数之归纳法练习题【五篇】

小学奥数计数之归纳法练习题【五篇】导读:本文小学奥数计数之归纳法练习题【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】对于比较复杂的问题,可以先观察其简单情况,归纳出其中带规律性的东西,然后再来解决较复杂的问题。

习题1:10个三角形最多将平面分成几个部分? 解:设n个三角形最多将平面分成an个部分。

n=1时,a1=2; n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。

这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。

n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:a3=2+2×3+4×3。

……一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故an=2+2×3+4×3+…+2(n-1)×3 =2+[2+4+…+2(n-1)]×3=2+3n(n-1)=3n2-3n+2。

特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。

【第二篇】(一)选择题在验证n=1成立时,左边所得的项为[ ] A.1 B.1+a C.1+a+a2 D.1+a+a2+a3 2.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…(2n-1)(n∈N)时,从"n=k→n=k+1"两边同乘以一个代数式,它是[ ] (二)填空题 1.用数学归纳法证明等式1+ 2+ 3+…+(2n+1)=(n+1)(2n+1)时,当n=1左边所得的项是______;从"k→k+1"需增添的项是______. 2.用数学归纳法证明当n∈N时1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为______,从k→k+1时需增添的项是______. 答案:(一)选择题 1.C 2.D(二)填空题 1.1+2+3,(2k+2)+(2k+3);2.1+2+22+23+24,25k+25k+1+25k+2+25k+3+25k+4. 【第三篇】解答题 2.用数学归纳法证明:自然数m,n对任何的3≤m≤n均有差数列.3.求证:当n为正奇数时7n+1能被8整除.自然数n,f(n)>n. a3,a4,并推测出{an}的通项公式,用数学归纳法加以证明. 求a2,a3,a4,并推测an的表达式,用数学归纳法证明所得结论. 答案:成立.时,多了一个顶点,该顶点与原k边形中的(k-2)个顶点可连成(k-2)条对角线,而原来的一条边也变成对角线,故(k+1)边形比k边形增多了(k-1)条对角线说明本题也可用排列组合的方法证明4(a1-a2)(a2-a3)=(a1-a3)2即(a1+a3-2a2)2=0 ∴a1+a3=2a2 ∴命题成立; ②假设n=k(k≥3)时命题成立,即对于任何a1,a2,…,an成等差数列则当n=k+1时,由归纳假设a1,a2,…,ak成等差数列,设公差为d 令ak+1-ak=m 去分母化简得m2+d2-2dm=0 于是m=d 即ak+1-ak=d ∴a1,a2,a3,…,ak,ak+1成等差数列故对任何n∈N命题成立. 3.(1)n=1时,71+1=8能被8整除; (2)假设n=k(k为正奇数)时7k+1能被8整除(设7k+1=8M,M∈N)则当n=k+1时7k+2+1=72·7k+72-72+1=72(7k+1)-48 =49×8m-8×6=8(49M-6) ∵49M-6∈N ∴命题成立. 4.(1)当n=2时, (2)假设n=k(k≥2)不等式成立因此f(k+1)> f(k)+1> k+1. (2)假设n=k时,不等式成立∴ n=k+1时不等式亦成立由(1),(2)可知对一切n∈N不等式都成立. 证明(1)当n=1时,等式成立。

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案10计数问题(二)

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案10计数问题(二)

年级六年级学科奥数版本通用版课程标题计数问题(二)几何图形计数问题还必须灵活地运用几何图形的有关基本概念和基本知识,根据几何图形的特征,合理分类,巧妙计算,就能达到正确、简便的目的。

用分类方法解答小学数学中某些智力性思考题或竞赛题时,能巧妙地找到正确答案,而小学生在运用这种方法时往往出现思路不清,层次不明,逻辑思维不严密等情况,计算时容易产生重复和遗漏的错误。

因此,用分类方法解题时必须注意几个问题。

(1)分类必须有明确的标准。

在解题前必须根据题目要求确定分类的标准,即根据什么来分类的原则。

(2)分类要注意层次。

比较复杂的题目可以先分成大类,然后再将每个大类分成若干小类,分层次进行。

(3)分类计数时应防止重复或遗漏。

分类时应注意要做到既不重复又不遗漏,这是使所得结果准确无误的保证。

合理的分类是解题的关键,而分类不重复又不遗漏是使所得结论准确的保证,同时也是检验分类是否正确的一种方法。

几种一般图形的计数方法:(1)数长方形长边上有多少条线段:4+3+2+1=10(条)。

宽边上有多少条线段:3+2+1=6(条)。

长方形总数:10×6=60(个)。

(2)数平行四边形方法与数长方形相同,总数为:(4+3+2+1)×(3+2+1)=60(个)。

(3)数正方形边长为1的正方形:7×4=28(个)。

边长为2的正方形:6×3=18(个)。

边长为3的正方形:5×2=10(个)。

边长为4的正方形:4×1=4(个)。

正方形的总数:28+18+10+4=60(个)。

例1 数一数下图中共有多少个长方形?分析与解:为了方便计数,我们将图中每个小长方形标上数字,以“块”分类、进行计数。

①②③④⑤⑥⑦由1块组成的长方形:7个。

由2块组成的长方形:[①②]、[②③]、[④⑤]、[⑤⑥]、[⑥⑦]、[②⑥]、[③⑦],共7个。

由3块组成的长方形:[①②③]、[④⑤⑥]、[⑤⑥⑦]、[①④⑤],共4个。

(小学奥数)计数之归纳法

(小学奥数)计数之归纳法

7-6-1.計數之歸納法教學目標前面在講加法原理、乘法原理、排列組合時已經穿插講解了計數中的一些常用的方法,比如枚舉法、樹狀圖法、標數法、捆綁法、排除法、插板法等等,這裏再集中學習一下計數中其他常見的方法,主要有歸納法、整體法、對應法、遞推法.對這些計數方法與技巧要做到靈活運用.例題精講從條件值較小的數開始,找出其中規律,或找出其中的遞推數量關係,歸納出一般情況下的數量關係.【例 1】如圖所示,在2×2方格中,畫一條直線最多穿過3個方格;在3×3方格中,畫一條直線最多穿過5個方可知;那麼在5×5方格中,畫一條直線,最多穿過個方格。

【考點】計數之歸納法【難度】2星【題型】填空【關鍵字】希望杯,四年級,復賽,第14題,6分【解析】邊長每多1,穿過的方格多2,那麼5×5的最多穿過3+2+2+2=9個方格【答案】9【例 2】一條直線分一個平面為兩部分.兩條直線最多分這個平面為四部分.問5條直線最多分這個平面為多少部分?【考點】計數之歸納法【難度】3星【題型】解答【解析】方法一:我們可以在紙上試著畫出1條直線,2條直線,3條直線,……時的情形,於是得到下表:由上表已知5條直線最多可將這個平面分成16個部分,並且不難知曉,n n++1個部當有n條直線時,最多可將平面分成2+2+3+4+…+n=()12分.方法二:如果已有k條直線,再增加一條直線,這條直線與前k條直線的交點至多k個,因而至多被分成k+1段,每一段將原有的部分分成兩個部分,所以至多增加k+1個部分.於是3條直線至多將平面分為4+3=7個部分,4條直線至多將平面分為7+4=11個部分,5條直線至多將平面分為11+5=16個部分.k k++1個部分,所一般的有k條直線最多將平面分成:1+1+2+…+k=()12以五條直線可以分平面為16個部分.【答案】16【鞏固】平面上5條直線最多能把圓的內部分成幾部分?平面上100條直線最多能把圓的內部分成幾部分?【考點】計數之歸納法【難度】4星【題型】解答【解析】假設用a k表示k條直線最多能把圓的內部分成的部分數,這裏k=0,1,2,……a0=1a1=a0+1=2a2=a1+2=4a3=a2+3=7a4=a3+4=11……故5條直線可以把圓分成16部分,100條直線可以把圓分成5051部分【答案】5051部分【例 3】 平面上10個兩兩相交的圓最多能將平面分割成多少個區域?【考點】計數之歸納法 【難度】4星 【題型】解答【解析】 先考慮最簡單的情形.為了敘述方便,設平面上k 個圓最多能將平面分割成k a 個部分.141312111098765432187652134431221從圖中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,……可以發現k a 滿足下列關係式:()121k k a a k -=+-.實際上,當平面上的(1k -)個圓把平面分成1k a -個區域時,如果再在平面上出現第k 個圓,為了保證劃分平面的區域盡可能多,新添的第k 個圓不能通過平面上前()1k -個圓之間的交點.這樣,第k 個圓與前面()1k -個圓共產生2(1)k ⨯-個交點,如下圖:這2(1)k ⨯-個交點把第k 個圓分成了2(1)k ⨯-段圓弧,而這2(1)k ⨯-段圓弧中的每一段都將所在的區域一分為二,所以也就是整個平面的區域數增加了2(1)k ⨯-個部分.所以,()121k k a a k -=+-.那麼,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯()2212...78992=+⨯+++++=.故10個圓最多能將平面分成92部分.【答案】92【例 4】 10個三角形最多將平面分成幾個部分?【考點】計數之歸納法 【難度】4星 【題型】解答【解析】 設n 個三角形最多將平面分成n a 個部分.1n =時,12a =;2n =時,第二個三角形的每一條邊與第一個三角形最多有2個交點,三條邊與第一個三角形最多有236⨯=(個)交點.這6個交點將第二個三角形的周邊分成了6段,這6段中的每一段都將原來的每一個部分分成2個部分,從而平面也增加了6個部分,即2223a =+⨯.3n =時,第三個三角形與前面兩個三角形最多有4312⨯=(個)交點,從而平面也增加了12個部分,即:322343a =+⨯+⨯.……一般地,第n 個三角形與前面()1n -個三角形最多有()213n -⨯個交點,從而平面也增加()213n -⨯個部分,故()()222343213224213332n a n n n n ⎡⎤=+⨯+⨯++-⨯=++++-⨯=-+⎣⎦;特別地,當10n =時,2103103102272a =⨯+⨯+=,即10個三角形最多把平面分成272個部分.【答案】272【例 5】 一個長方形把平面分成兩部分,那麼3個長方形最多把平面分成多少部分?【考點】計數之歸納法 【難度】4星 【題型】解答【解析】 一個長方形把平面分成兩部分.第二個長方形的每一條邊至多把第一個長方形的內部分成2部分,這樣第一個長方形的內部至多被第二個長方形分成五部分.同理,第二個長方形的內部至少被第一個長方形分成五部分.這兩個長方形有公共部分(如下圖,標有數字9的部分).還有一個區域位於兩個長方形外面,所以兩個長方形至多把平面分成10部分.第三個長方形的每一條邊至多與前兩個長方形中的每一個的兩條邊相交,故第一條邊被隔成五條小線段,其中間的三條小線段中的每一條線段都把前兩個長方形內部的某一部分一分為二,所以至多增加3×4=12個部分.而第三個長方形的4個頂點都在前兩個長方形的外面,至多能增加4個部分.所以三個長方形最多能將平面分成10+12+4=26.【小結】n個圖形最多可把平面分成部分數:直線:()112n n⨯+ +;圓:()21n n+⨯-;三角形:()231n n+⨯⨯-;長方形:()241n n+⨯⨯-.【答案】26【例 6】在平面上畫5個圓和1條直線,最多可把平面分成多少部分?【考點】計數之歸納法【難度】5星【題型】解答【解析】先考慮圓.1個圓將平面分成2個部分.這時增加1個圓,這個圓與原有的1個圓最多有兩個交點,成為2條弧,每條弧將平面的一部分一分為二,增加了2個部分,所以2個圓最多將平面分成4個部分.當有3個圓時,第3個圓與原有的2個產生4個交點而增加4個部分,所以3個圓最多將平面分成8個部分.同樣的道理,5個圓最多將平面分成22個部分.再考慮直線.直線與每個圓最多有2個交點,這樣與5個圓最多有10個交點.它們將直線分成11條線段或射線,而每條線段又將平面的一部分一分為二,2條射線增加了一部分,因此5個圓和1條直線最多可將平面分成32個部分.【答案】32【例 7】在一個西瓜上切6刀,最多能將瓜皮切成多少片?【考點】計數之歸納法【難度】4星【題型】解答【解析】將西瓜看做一個球體,球體上任意一個切割面都是圓形,所以球面上的切割線是封閉的圓周,考慮每一次切割能增加多少瓜皮片.當切1刀時,瓜皮被切成兩份,當切第2刀時,由於切割線相交,所以瓜皮被切成4分,……,切第n次時,新增加的切割線與原來的切割線最多有()21n-個交點.這些交點將第n條切割線分成()21n-段,也就是說新增加的切割線使瓜皮數量增加了()21n-,所以在西瓜上切6刀,最多能將瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【答案】32【例 8】在一大塊麵包上切6刀最多能將麵包切成多少塊.(注:麵包是一個立體幾何圖形,切面可以是任何方向)【考點】計數之歸納法【難度】5星【題型】解答【解析】題目相當於6個平面能將空間劃分為多少個部分.通過找規律來尋找遞推關係,顯然的1個平面能將空間劃分成2塊,2個平面能將空間劃分成4塊,3個平面能將空間劃分成8個平面,當增加到第四個平面時,第四個平面這能將原來空間中的8個部分中的其中幾個劃分.如圖:注意到第四個平面與其他三個平面相交形成3條直線,這三條直線將第四個平面分割成7個部分,而每一部分將原來三個平面劃分的8個空間中的7個劃分成兩份,所以4個平面能將空間劃分成8715+=個部分.同樣的第五個平面與前四個平面分別相交成4條直線,這四條直線能將第5個平面分割成1123411++++=個部分,每一部分都劃分原空間中的某一區域,所以第五個平面能使空間中的區域增加到151126+==個部分.當增加到6個平面時,第六個平面共被劃分成11234516+++++=個部分,所以第6個平面能將空間中的區塊數增加到261642+=個部分.所以6刀能將麵包切成42塊.【答案】42。

小学生六年级奥数(计数问题)题及答案

小学生六年级奥数(计数问题)题及答案

小学生六年级奥数(计数问题)题及答案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
小编小学生频道为网友整理的【小学生六年级奥数(计数问题)题及答案-苹果】,供大家参考学习。

相关年级最新信息:小学英语小学奥数一年级二年级三年级四年级五年级六年级
一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法?
【答案解析】
取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种数等于取到前三个苹果所有情况之和,以此类推,参照上题列表如下:
取完这堆苹果一共有81种方法.
小学生六年级奥数(计数问题)题及答案-苹果.到电脑,方便收藏和打印:。

小学奥数:几何计数(一).专项练习及答案解析[汇编]

小学奥数:几何计数(一).专项练习及答案解析[汇编]

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2nnn……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、简单的几何计数【例 1】七个同样的圆如右图放置,它有_______条对称轴.教学目标例题精讲知识要点7-8-1几何计数(一)【考点】简单的几何计数【难度】1星【题型】填空【关键词】迎春杯,六年级,初赛,试题【解析】如图:6条.【答案】6条【例 2】下面的表情图片中:,没有对称轴的个数为()(A) 3 (B) 4 (C) 5 (D) 6【考点】简单的几何计数【难度】2星【题型】选择【关键词】华杯赛,初赛,第1题【解析】通过观察可知,第1,2,5这三张图片是有对称轴的,其他的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

小学六年级奥数:“计数综合”解题技巧及例题详解

小学六年级奥数:“计数综合”解题技巧及例题详解

小学六年级奥数:“计数综合”解题技巧及例题详解内容概述将关键的已知数据看作变量,得到一类结构相同的计数问题,通过建立这些问题的结果所构成数列的递推关系,逐步地求得原问题的答案.与分数、几何等相关联的计数综合题.典型例题1.一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【分析与解】一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分.所以三个长方形最多能将平面分成10+12+4=26.2.一个楼梯共有10级台阶,规定每步可以迈1级台阶或2级台阶,最多可以迈3级台阶.从地面到最上面1级台阶,一共可以有多少种不同的走法?【分析与解】我们知道最后一步可以迈1级台阶、2级台阶或3级台阶,也就是说可以从倒数第1、2或3级台阶直接迈入最后一级台阶.即最后一级台阶的走法等于倒数第1、2和3级台阶的走法和.而倒数第l级台阶的走法等于倒数第2、3和4级台阶的走法和,……如果将1、2、3……级台阶的走法依次排成一个数列,那么从第4项开始,每一项等于前3项的和.有1,2,3级台阶的走法有1,2,4种走法,所以4,5,6,7,8,9,10级台阶的走法有7,13,24,44,81,149,274种走法.3.一个圆上有12个点A1,A2,A3,…,A11,A12.以它们为顶点连三角形,使每个点恰好是一个三角形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?【分析与解】我们采用递推的方法.I如果圆上只有3个点,那么只有一种连法.Ⅱ如果圆上有6个点,除A1点所在三角形的三顶点外,剩下的三个点一定只能在A1所在三角形的一条边所对应的圆弧上,表1给出这时有可能的连法.Ⅲ如果圆上有9个点,考虑A1所在的三角形.此时,其余的6个点可能分布在:①A1所在三角形的一个边所对的弧上;②也可能三个点在一个边所对应的弧上,另三个点在另一边所对的弧上.在表2中用“+”号表示它们分布在不同的边所对的弧.如果是情形①,则由Ⅱ,这六个点有三种连法;如果是情形②,则由①,每三个点都只能有一种连法.共有12种连法.Ⅳ最后考虑圆周上有12个点.同样考虑A1所在三角形,剩下9个点的分布有三种可能:①9个点都在同一段弧上:②有6个点是在一段弧上,另三点在另一段弧上;③每三个点在A1所在三角形的一条边对应的弧上.得到表3.共有12×3+3×6+1=55种.所以当圆周上有12个点时,满足题意的连法有55种.4.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮.用链条连接不同搭配的齿轮,通过不同的传动比获得若干挡不同的车速.“希望牌”变速自行车主动轴上有3个齿轮,齿数分别是48,36,24;后轴上有4个齿轮,齿数分别是36,24,16,12.问:这种变速车一共有多少挡不同的车速?【分析与解】算出全部的传动比,并列成表:,2,3,将重复的传动比去这里有4对传动比是相同的:1,32掉,剩下8个不同的比,所以共有8挡不同的车速.5.分子小于6,分母小于60的不可约真分数有多少个?【分析与解】分子的取值范围是从1到5.当分子为1时,分母可从2到59,共有58个真分数,它们当然都是不可约分数.由于2,3,5都是质数,因此当分子分别为2,3,5时,分母必须而且只需适合下列两个条件:①分母大于分子且小于60.⑦分母不是分子的倍数.易知:当分子为2时,适合条件的分母有29个;当分子为3时,适合条件的分母有38个:当分子为5时,适合条件的分母有44个;最后来看分子为4的情形,与分子为2基本相同,分母不能为偶数,此外分母不能为3.所以共有28(=29—1)个.总之,符合要求的分数共有58+29+38+44+28=197个.6.一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【分析与解】方法一:如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n个点时,可以剪成2n+2个三角形,需剪3n+l刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.7.如图15—3,某城市的街道由5条东西与7条南北向马路组成.现在要从西南角的A处沿最短路线走到东北角的B处,由于修路十字路口C不能通过,那么共有多少种不同走法?【分析与解】因为每个路口(点)只能由西边相邻点、南边相邻点走过来,所以达到每个点的走法为西边相邻点、南边相邻点的走法之和,并且最南方一排、最西方一排的所有点均只有1种走法.因为C点不能通过,所以C处所标的数字为0.如下图所示:所以,从A到B满足条件的走法共有120种8.经理将要打印的信件交给秘书,每次给一封,且放在信封的最上面,秘书一有空就从最上面拿一封信来打.有一天共有9封信打,经理按第1封,第2封,…,第9封的顺序交给秘书.午饭时,秘书告诉同事,已把第8封信打印好了,但未透露上午工作的其他情况,这个同事很想知道是按什么顺序来打印.根据以上信息,下午打印的信的顺序有多少种可能?(没有要打的信也是一种可能)【分析与解】我们根据最后一封信来计数:(1)第9封信在上午送给秘书;于是,T={1,2,3,4,5,6,7,9}则下午打印的每种可能都是T的一个子集,因为秘书可以把不在子集中的信件上午一送来就打完了,而未打别的信.集T有8个元素,故有28=256个不同子集(包括空集).(2)第9封信在午后才送给秘书.令S={1,2,3,4,5,6,7},则上午未打印的信的号码是S的一个子集.若将9排在子集之后,则与⑴中的情形相同,故只有子集中至少有一封信已把号码9放在该子集的非最后的位置上.对于有k个元素的子集,号码9有k个位置可放,即可放在第i一1个元素之后和i个元素之前,i=1,2,…,k.于是不同的顺序总数为:0×C07+1×C17+2×C27+…+7×C77=7×27÷2=7×26=448即下午有448种可能的打印顺序.所以,下午共有256+448=704种打印的方法.。

小学奥数7-9-1 概率.专项练习(精品)

小学奥数7-9-1 概率.专项练习(精品)

“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,兼有应用性和趣味性,其内容及延伸贯穿于初等数学到高等数学,因此成为小学数学中新增内容.1.能准确判断事件发生的等可能性以及游戏规则的公平性问题.2.运用排列组合知识和枚举等计数方法求解概率问题.3.理解和运用概率性质进行概率的运算.一、概率的古典定义如果一个试验满足两条:⑴试验只有有限个基本结果;⑵试验的每个基本结果出现的可能性是一样的.这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()m P A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中所涉及的概率都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件如果事件A 和B 为对立事件(互斥事件),那么A 或B 中之一发生的概率等于事件A 发生的概率与事件B 发生的概率之和,为1,即:()()1P A P B +=.三、相互独立事件事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即:()()()P A B P A P B⋅=⋅.模块一、概率的意义【例 1】 气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是________.①本市明天将有80%的地区降水. ②本市明天将有80%的时间降水.教学目标例题精讲 知识要点7-9-1.概率③明天肯定下雨.④明天降水的可能性比较大.【考点】概率的意义【难度】1星【题型】填空【关键词】希望杯,决赛【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.【答案】④【例 2】约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否则记0分.若汤姆连续两次掷得的结果中至少有1次硬币的正面向上,则记1分,否则记0分.谁先记满10分谁就赢.赢的可能性较大(请填汤姆或约翰).【考点】概率的意义【难度】2星【题型】填空【关键词】走美杯,5年级,决赛,第7题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。

小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.【答案】144【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以十年后树上有89条树枝.【答案】89【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答例题精讲教学目标7-6-4.计数之递推法【解析】 登 1级 2级 3级 4级 ...... 10级1种方法 2种 3种 5种 ...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.【答案】89【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 登 1级 2级 3级 4级 5级 ...... 10级1种方法 1种 2种 3种 4种...... ?我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.【答案】28【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法. 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 如果用12⨯的长方形盖2n ⨯的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个12⨯的,也可能横放2个12⨯的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,覆盖210⨯的长方形一共有89种.【例 5】 用13⨯的小长方形覆盖38⨯的方格网,共有多少种不同的盖法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果用13⨯的长方形盖3n ⨯的长方形,设种数为n a ,则11a =,21a =,32a =,对于4n ≥,左边可能竖放1个13⨯的,也可能横放3个13⨯的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这【答案】13【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种【答案】927【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种【答案】81【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种. 则21a =,31a =,41a =.由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.即当有10枚棋子时,共有7种不同的拿法. (法2)分类讨论.由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次. 若为0次,则相当于2枚拿了5次,此时有1种拿法;若为2次,则2枚也拿了2次,共拿了4次,所以此时有246C =种拿法. 根据加法原理,共有167+=种不同的拿法.【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答BA AB 1357946821235813213455891【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.【答案】89【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B 房间有多少种方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 斐波那契数列第八项.21种.【答案】21【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有296种不同的回家方法.【答案】296【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1操作停止.问经过9次操作变为1的数有多少个? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:2410131112514302831643215167683421其中经1次操作变为1的1个,即2, 经2次操作变为1的1个,即4, 经3次操作变为1的2个,是一奇一偶,以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个. 另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多. 而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.【答案】34【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数) 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.【答案】25【考点】计数之递推法 【难度】5星 【题型】填空【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:【答案】54【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有11333333n n --⨯⨯⨯=()个…(种)传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有11133333n n n n a a ---+=⨯⨯⨯=(个…).由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =.利用递推关系可以得到:2303a =-=,33336a =⨯-=,4333621a =⨯⨯-=,533332160a =⨯⨯⨯-=.这说明经过5次传球后,球仍回到甲手中的传球方法有60种. 本题也可以列表求解.由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.【答案】60【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共有多少种传球方式? 【考点】计数之递推法 【难度】5星 【题型】解答【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.【答案】52点A出发恰好跳10次后落到E的方法总数为种.【考点】计数之递推法【难度】5星【题型】填空【关键词】清华附中【解析】可以使用递推法.回到A跳到B或H跳到C或G跳到D或F停在E 1步 12步 2 13步 3 14步 6 4 25步10 46步20 14 87步34 148步68 48 289步116 48其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.所以,青蛙第10步跳到E有48296⨯=种方法.【答案】96【巩固】在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.青蛙在6次之内(含6次)跳到D点有种不同跳法.【考点】计数之递推法【难度】5星【题型】填空ABEC D【解析】采用递推的方法.列表如下:跳到A跳到B跳到C停在D跳到E1步 1 12步 2 1 13步 3 1 24步 5 3 25步8 3 56步13 8 5其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.所以,每一步跳到A的跳法数等于上一步跳到B和E的跳法数之和,每一步跳到B的跳法数等于上一步跳到A和C的跳法数之和,每一步跳到C的跳法数等于上一步跳到B的跳法数,每一步跳到E的跳法数等于上一步跳到A的跳法数,每一步跳到D的跳法数等于上一步跳到C或跳到E的跳法数.【答案】12【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种. 【考点】计数之递推法 【难度】5星 【题型】填空 【关键词】迎春杯,中年级组,决赛【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”的方法有两种情况:⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙. ⑵1,2号箱的钥匙都不在1,2号箱中.对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248⨯=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216⨯=(种)放法.不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216⨯⨯=(种). 所以,第⑴种情况有“好”的方法16696⨯=(种).对于⑵,从3~6号箱的钥匙中选2把放入1,2号箱,有4312⨯=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224⨯=种放法;如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212⨯=种放法;同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑵种情况有“好”的放法()1242222144⨯++++=(种). 所以“好”的方法共有96144240+=(种).(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,6542554543225!240a a a a ==⨯==⨯⨯⨯=⨯=,即好的方法总数为240种.【答案】240开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.【考点】计数之递推法 【难度】5星 【题型】填空【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .当2n =时,显然22a =(11k =,22k =或12k =,21k =).当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,109829989876543229!=725760a a a a ==⨯==⨯⨯⨯⨯⨯⨯⨯=⨯,即好的方法总数为725760种.【答案】725760。

小学数学竞赛7-6-计数方法与技巧综合

小学数学竞赛7-6-计数方法与技巧综合

知识框架图7计数综合7-6计数方法与技巧综合7-6-1归纳法7-6-2整体法7-6-3对应法7-6-3-1图形中的对应关系7-6-3-2数字问题中的对应关系7-6-3-3对应与阶梯型标数法7-6-3-4不完全对应关系7-6-4递推法前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.模块一、归纳法从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.【例 1】(难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【解析】方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n条直线时,最多可将平面分成2+2+3+4+…+n=()12n n++1个部分.方法二:如果已有k条直线,再增加一条直线,这条直线与前k条直线的交点至多k个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k条直线最多将平面分成:1+1+2+…+k=()12k k++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标计数方法与技巧综合【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯ =12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【例 3】 10个三角形最多将平面分成几个部分? 【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯.…… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n =+⨯+⨯++-⨯=++++-⨯=-+⎡⎤⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【例 4】 (难度等级※※)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【例 5】 (难度等级※※)在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【例 6】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()21n-,所以n-段,也就是说新增加的切割线使瓜皮数量增加了()21在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【例 7】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.模块二、整体法解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.【例 8】 (难度等级 ※※※)一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【解析】 方法一:归纳法如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n 个点时,可以剪成2n +2个三角形,需剪3n+l 刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:整体法.我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n 个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.【巩固】在三角形ABC 内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【解析】 整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成()360100180180201⨯+÷=个小三角形.【例 9】 在一个六边形纸片内有60个点,以这60个点和六变形的6个顶点为顶点的三角形,最多能剪出_______个.【解析】 设正六边形内有n 个点,当1n =时有6个三角形,每增加一个点,就增加2个三角形,n 个点最多能剪出()()62122n n ++=+个三角形.60n =时,可剪出124个三角形.注:设最多能剪出x 个小三角形,则这些小三角形的内角和为180x ︒.换一个角度看,汇聚到正六边形六个顶点处各角之和为4180⨯︒,故这些小三角形的内角总和为603604180⨯︒+⨯︒.于是180603604180x ︒=⨯︒+⨯︒,解得124x =.模块三、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.一、图形中的对应关系【例 10】 (难度等级 ※※※)在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【例 11】(难度等级※※※)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方68296形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【巩固】(难度等级※※)用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种. 所以,纸片共有641680+=种不同的放置方法.【例 12】 (难度等级 ※※)图中可数出的三角形的个数为 . 【解析】 这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C =个三角形.【例 13】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.CDBA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为: 在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【例 14】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【巩固】 (难度等级 ※※※)三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【例 15】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【例 16】 (2008年国际小学数学竞赛)请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.三、对应与阶梯型标数法【例 17】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【例 18】(2008年第一届“学而思杯”五年级试题)学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有种不同的摞法.【解析】我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿的碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法.242422814141495554321111BA【例 19】(第七届走美试题)一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有种不同排法.【解析】首先,将8人的身高从低到高依次编号为12345678、、、、、、、,现在就相当于要将这8个数填到一个42⨯的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将12345678、、、、、、、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:法就相当于从A走到B的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:.最后,用“标数法”得出从A到B的最短路径有14种,如下图:【巩固】将1~12这12个数填入到2行6列的方格表中,使得每行右边比左边的大,每一列上面比下面的大,共有多少种填法?【解析】根据对应关系,再运用阶梯型标数法画图如下:13242141455211111111329048422820149654321共有132种填法.四、不完全对应关系【例 20】 圆周上有12个点,其中一个点涂红,还有一个点涂了蓝色,其余10个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这12个点为顶点的所有凸多边形(边数可以从三角形到12边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个?【解析】 从任意一个双色的N 边形出发(5N ≥时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的2N -边形;另一方面,对于一个任意的无色的M 边形,如果加上红色顶点和蓝色顶点,就得到一个双色的2M +边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有10个,双色四边形有21045C =个,所以双色多边形比无色多边形多104555+=个.【例 21】 有一类各位数字各不相同的五位数M ,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数W ,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数M 与W ,哪一类的个数多?多多少?【解析】 M 与W 都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数M ABCDE =(A 不为0),那么就有一个与之相反并对应的五位数(9)(9)(9)(9)(9)A B C D E -----必属于W 类,比如13254为M 类,则与之对应的86754为W 类. 所以对于M 类的每一个数,W 类都有一个数与之对应.但是两类数的个数不是一样多,因为M 类中0不能做首位,而W 类中9可以做首位.所以W 类的数比M 类的数要多,多的就是就是首位为9的符合要求的数.计算首位为9的W 类的数的个数,首先要确定另外四个数,因为要求各不相同,从除9外的其它9个数字中选出4个,有49126C =种选法.对于每一种选法选出来的4个数,假设其大小关系为4321A A A A >>>,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有2类:①千位、十位排1A 、2A ,有两种方法,百位、十位排3A 、4A ,也有两种方法,故此时共有4种;②千位、十位排1A 、3A ,只能是千位3A ,百位4A ,十位1A ,个位2A ,只有1种方法.根据乘法原理,首位为9的W 类的数有()12641630⨯+=个.故W 类的数比M 类的数多630个.【例 22】 用1元,2元,5元,10元四种面值的纸币若干张(不一定要求每种都有),组成99元有P 种方法,组成101元有Q 种方法,则Q P -= .【解析】 由于101992-=,所以对于组成99元的每一种方法,只要再加上一张2元的,即可组成101元;而对于组成101元的方法,如果其中包含有一张2元的,那么去掉这张2元的,即可得到一种组成99元的方法.可见组成99元的方法与组成101元的某些方法之间存在一一对应的关系,组成101元的所有方法中,除去这些与组成99元的方法对应的方法,剩下的都是不包含有2元纸币的组成方法.所以Q 比P 多的就是用1元,5元,10元这三种面值的纸币组成101元的方法的总数. 假设用x 张1元的,y 张5元的,z 张10元的可以组成101元,则510101x y z ++=. 由于10101z ≤,所以10z ≤.即10元的可以有0~10张. 如果10元的张数确定了,那么有()()5101101010152021x y z z z +=-=-+=-+,那么y 的值可以为0到()202z -,也就是对每一个z 的值,y 都可以有2021212z z -+=-种可能,相应地5元纸币的张数也有212z -种取法.而当10元和5元的张数都确定了以后,1元纸币的张数也就确定了,这样也就确定了组成101元的方法.所以只需要看取10元和5元的共有多少种取法.如果10元的取0张,即0z =,则21221z -=,即5元的有21种取法; 如果10元的取1张,即1z =,则21219z -=,即5元的有19种取法; 如果10元的取2张,即2z =,则21217z -=,即5元的有17种取法; ……如果10元的取10张,即10z =,则2121z -=,即5元的有1种取法;。

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案9计数问题(一)

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案9计数问题(一)

年级六年级学科奥数版本通用版课程标题计数问题(一)在数学竞赛试题中,经常出现一些几何计数问题,所谓几何计数是指计算满足一定条件的图形的个数。

它的内容比较新颖有趣,为了准确计数,必须要有一套计数的方法,否则越数头绪越杂乱,很难得出准确的结果。

图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧。

实际上,图形计数问题,通常采用一种简单原始的计数方法——枚举法。

具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、无一遗漏,然后计算其总和。

正确地解答较复杂的图形计数问题,有助于培养同学们思维的有序性和良好的学习习惯。

几种一般图形的计数方法:数线段A B C D E F基本线段:AB、BC、CD、DE、EF,共5条。

线段的总数:除了5条基本线段外,由2条基本线段组成的线段有4条,由3条基本线段组成的线段有3条,由4条基本线段组成的线段有2条,由5条基本线段组成的线段有1条。

所以共有5+4+3+2+1=15(条)。

(1)数角基本角:∠AOB、∠BOC、∠COD、∠DOE,共4个。

角的总数:4+3+2+1=10(个)。

(3)数三角形BC边上有多少条线段,图中就有多少个三角形。

因此可将数三角形问题转化为数线段问题。

顶点A处有多少个角,图中就有多少个三角形,因此也可将数三角形问题转化为数角问题。

三角形的总数:4+3+2+1=10(个)。

例1数一数下图中共有多少条线段?共有多少个三角形?分析与解:①要数有多少条线段,先看线段AB、AD、AE、AF、AC上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段。

所以图中共有线段:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)。

②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成的基本小三角形有4个。

所以在△AGH中共有三角形4+3+2+1=10(个)。

小学奥数7-6-1 计数之归纳法.专项练习

小学奥数7-6-1 计数之归纳法.专项练习

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.【例 1】 如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过 个方格。

【考点】计数之归纳法 【难度】2星 【题型】填空【关键词】希望杯,四年级,复赛,第14题,6分【解析】 边长每多1,穿过的方格多2,那么5×5的最多穿过3+2+2+2=9个方格【答案】9【例 2】 一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【考点】计数之归纳法 【难度】3星 【题型】解答【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n =()12n n ++1个部分. 方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k +1段,每一段将原有的部分分成两个部分,所以至多增加k +1个部分.于是例题精讲 教学目标7-6-1.计数之归纳法3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k条直线最多将平面分成:1+1+2+…+k=()12 k k++1个部分,所以五条直线可以分平面为16个部分.【答案】16【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【考点】计数之归纳法【难度】4星【题型】解答【解析】假设用a k表示k条直线最多能把圆的内部分成的部分数,这里k=0,1,2,……a0=1a1=a0+1=2a2=a1+2=4a3=a2+3=7a4=a3+4=11……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【答案】5051部分【例 3】平面上10个两两相交的圆最多能将平面分割成多少个区域?【考点】计数之归纳法【难度】4星【题型】解答【解析】先考虑最简单的情形.为了叙述方便,设平面上k个圆最多能将平面分割成ka个部分.141312111098765432187652134431221从图中可以看出,12a=,24221a==+⨯,38422a==+⨯,414823a==+⨯,……可以发现ka满足下列关系式:()121k ka a k-=+-.实际上,当平面上的(1k-)个圆把平面分成1ka-个区域时,如果再在平面上出现第k个圆,为了保证划分平面的区域尽可能多,新添的第k个圆不能通过平面上前()1k-个圆之间的交点.这样,第k个圆与前面()1k-个圆共产生2(1)k⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-.那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【答案】92【例 4】 10个三角形最多将平面分成几个部分?【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯. 3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯.……一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n ⎡⎤=+⨯+⨯++-⨯=++++-⨯=-+⎣⎦; 特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【答案】272【例 5】 一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分.所以三个长方形最多能将平面分成10+12+4=26.【小结】n个图形最多可把平面分成部分数:直线:()112n n⨯+ +;圆:()21n n+⨯-;三角形:()231n n+⨯⨯-;长方形:()241n n+⨯⨯-.【答案】26【例 6】在平面上画5个圆和1条直线,最多可把平面分成多少部分?【考点】计数之归纳法【难度】5星【题型】解答【解析】先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【答案】32【例 7】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【考点】计数之归纳法【难度】4星【题型】解答【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()21n-个交点.这些交点将第n条切割线分成()21n-段,也就是说新增加的切割线使瓜皮数量增加了()21n-,所以在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【答案】32【例 8】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【考点】计数之归纳法【难度】5星【题型】解答【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成8715+=个部分.同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空1123411间中的区域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.【答案】42。

小学一年级奥数7数数与计数

小学一年级奥数7数数与计数

小学一年级奥数7数数与计数快乐学习、健康成长、学而优择校学而优教育小营路:小学一年级奥数:数数与计数1.一队男生8人老师要求在2名男生中间插进1名女生,问可插进多少女生?2.小冬用12张纸订成一个本子从头数起,每隔3纸夹进一片树叶,问这个本子内共放进多少片树叶?3.在一条20米长的小路两旁种小松树,如果每隔5米种一棵,而且两头都种树,问这段小路上共种多少棵?4.一根钢管长6米,每分钟锯下1米,几分钟锯完?5.一根木头锯成4段,要付锯工费1元如果要把这根木头锯成13段,要付锯工费多少元?6.小明与爸爸一同上楼小明上得快、爸爸上得慢,小明上2层,爸爸上1层问小明上到五楼时,爸爸上到几楼?7.沿着跑道插着11面旗,旗与旗离得一样远,第一面旗插在起点运动员从起点起跑经过6秒钟到达第6面旗,问运动员到达第11面旗时,需要跑11秒钟吗?8.三点钟时,挂钟打响三下,用了12秒到六点钟时,挂钟打响六下,要用几秒钟?解答1.解:方法1:按老师要求,在2名男生中间插进1名女生后,写出队伍的排外情况是:男女男女男女男女男女男女男女男数一数,可知插进的女生共7人方法2:也可以这样想:这道题中,把男生看成“树”,把女生看成“间隔”,就能按植树问题的公式解这道题因为两头都是男生,就像两头都有树一样,女生数应等于男生数减1,即8-1=7 2.解:画示意图如下:快乐学习、健康成长、学而优择校学而优教育小营路:可以这样想:把每3张纸粘在一起成为一张“厚纸”,12张纸共粘成4张厚纸按题目要求,相当于每两张厚纸之间放入一片树叶,可知共放入3片树叶 3.解:画示意图如下:由图可见,每5米为一段,20米长的路可分为4段,由于路两端都要种树,所以种的棵树等于段数加1,即一旁种树4+1=5,两旁共种5+5=104.解:画示意图如下:由图可见,把6米长的钢管锯成1米长的6段,只需锯6-1=5,题中说,每分钟锯下1米,就是说锯1次需要1分钟,所以锯5次需5分钟即5分钟把钢管锯完5.解:把一根木头锯成4段只需锯4-1=3次,按题意付锯工费1元当把这根木头锯成13段时只需锯13-1=12次,每锯3次付费1元,锯12次应付锯工费4元6.解:见右图当小明跑五楼时,实际上跑过了4层楼梯,所以爸爸此时只走过了2层楼梯,即走到了三楼快乐学习、健康成长、学而优择校学而优教育小营路:7.解:画出示意图:在起点插着第一面旗,但在起点运动员起跑时,时间是从0秒开始计时的运动员跑到第六面旗时,实际上是跑了5段间隔,这时他用了6秒钟的时间;当他跑到第11面旗时,实际上又跑了5段间隔,所以又用了6秒钟,总起来共用了12秒钟,而不是11秒钟8.解:“当—当—当”钟打响了三下,三响之间的间隔是两次,两个时间间隔用12秒,一个时间间隔就是12÷2=6如果钟打六下,六响之间的间隔是5次,因而钟打六下要6×5=30。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

小学奥数 计数之对应法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  计数之对应法 精选练习例题 含答案解析(附知识点拨及考点)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点, 第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3 856C=个三角形.【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数. 【考点】计数之图形中的对应关系 【难度】4星 【题型】解答CD【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答 【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱? 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法. 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答 【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】
【例 8】在一大块面包上切 刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)
【考点】计数之归纳法【难度】5星【题型】解答
【解析】题目相当于 个平面能将空间划分为多少个部分.
通过找规律来寻找递推关系,显然的 个平面能将空间划分成 块, 个平面能将空间划分成 块, 个平面能将空间划分成 个平面,当增加到第四个平面时,第四个平面这能将原来空间中的 个部分中的其中几个划分.如图:
……
故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分
【答案】 部分
【例 3】平面上10个两两相交的圆最多能将平面分割成多少个区域?
【考点】计数之归纳法【难度】4星【题型】解答
【解析】先考虑最简单的情形.为了叙述方便,设平面上 个圆最多能将平面分割成 个部分.
从图中可以看出, , , , ,……
方法二:如果已有k条直线,再增加一条直线,这条直线与前k条直线的交点至多k个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.
一般的有k条直线最多将平面分成:1+1+2+…+k= +1个部分,所以五条直线可以分平面为16个部分.
那么,

故10个圆最多能将平面分成92部分.
【答案】
【例 4】 个三角形最多将平面分成几个部分?
【考点】计数之归纳法【难度】4星【题型】解答
【解析】设 个三角形最多将平面分成 个部分.
时, ;
时,第二个三角形的每一条边与第一个三角形最多有 个交点,三条边与第一个三角形最多有 (个)交点.这 个交点将第二个三角形的周边分成了 段,这 段中的每一段都将原来的每一个部分分成 个部分,从而平面也增加了 个部分,即 .
时,第三个三角形与前面两个三角形最多有 (个)交点,从而平面也增加了 个部分,即: .
……
一般地,第 个三角形与前面 个三角形最多有 个交点,从而平面也增加 个部分,故 ;
特别地,当 时, ,即 个三角形最多把平面分成 个部分.
【答案】
【例 5】一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?
当增加到 个平面时,第六个平面共被划分成 个部分,所以第 个平面能将空间中的区块数增加到 个部分.
所以 刀能将面包切成 块.
【答案】
【答案】
【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?
【考点】计数之归纳法【难度】4星【题型】解答
1【解析】假设用ak表示k条直线最多能把圆的内部分成的部分数,这里k=0,1,2,……
a0=1
a1=a0+1=2
a2=a1+2=4
a3=a2+3=7
a4=a3+4=11
同样的道理,5个圆最多将平面分成22个部分.
再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.多能将瓜皮切成多少片?
注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成 个部分,而每一部分将原来三个平面划分的 个空间中的 个划分成两份,所以 个平面能将空间划分成 个部分.
同样的第五个平面与前四个平面分别相交成 条直线,这四条直线能将第 个平面分割成 个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区域增加到 个部分.
【答案】
【例 2】一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?
【考点】计数之归纳法【难度】3星【题型】解答
【解析】方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:
由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n条直线时,最多可将平面分成2+2+3+4+…+n= +1个部分.
【小结】 个图形最多可把平面分成部分数:
直线: ;
圆: ;
三角形: ;
长方形: .
【答案】
【例 6】在平面上画5个圆和1条直线,最多可把平面分成多少部分?
【考点】计数之归纳法【难度】5星【题型】解答
【解析】先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.
【考点】计数之归纳法【难度】4星【题型】解答
1【解析】一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.
同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.
从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.
【考点】计数之归纳法【难度】4星【题型】解答
【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切 刀时,瓜皮被切成两份,当切第 刀时,由于切割线相交,所以瓜皮被切成 分,……,切第 次时,新增加的切割线与原来的切割线最多有 个交点.这些交点将第 条切割线分成 段,也就是说新增加的切割线使瓜皮数量增加了 ,所以在西瓜上切 刀,最多能将瓜皮切成 片.
第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分.
所以三个长方形最多能将平面分成10+12+4=26.
可以发现 满足下列关系式: .
实际上,当平面上的( )个圆把平面分成 个区域时,如果再在平面上出现第 个圆,为了保证划分平面的区域尽可能多,新添的第 个圆不能通过平面上前 个圆之间的交点.这样,第 个圆与前面 个圆共产生 个交点,如下图:
这 个交点把第 个圆分成了 段圆弧,而这 段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了 个部分.所以, .
【例 1】如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过个方格。
【考点】计数之归纳法【难度】2星【题型】填空
【关键词】希望杯,四年级,复赛,第14题,6分
【解析】边长每多1,穿过的方格多2,那么5×5的最多穿过3+2+2+2=9个方格
相关文档
最新文档