小学奥数奥数计数问题
小学奥数计数问题练习与答案【三篇】
【导语】成功根本没有秘诀可⾔,如果有的话,就有两个:第⼀个就是坚持到底,永不⾔弃;第⼆个就是当你想放弃的时候,回过头来看看第⼀个秘诀,坚持到底,永不⾔弃,学习也是⼀样需要多做练习。
以下是⽆忧考为⼤家整理的《⼩学奥数计数问题练习与答案【三篇】》供您查阅。
【第⼀篇:整体法经典练习题】经典例题展⽰1:有⼀类各位数字各不相同的五位数M,它的千位数字⽐左右两个数字⼤,⼗位数字也⽐左右两个数字⼤;另有⼀类各位数字各不相同的五位数W,它的千位数字⽐左右两个数字⼩,⼗位数字也⽐左右两个数字⼩。
请问符合要求的数M和W,哪⼀类的个数多?多多少? 经典例题展⽰2:游乐园的门票1元1张,每⼈限购1张。
现在有10个⼩朋友排队购票,其中5个⼩朋友只有1元的钞票,另外5个⼩朋友只有2元的钞票,售票员没有准备零钱。
问有多少种排队⽅法,使售票员总能找得开零钱?【第⼆篇:递推⽅法的概述及解题技巧】在不少计数问题中,要很快求出结果是⽐较困难的,有时可先从简单情况⼊⼿,然后从某⼀种特殊情况逐渐推出与以后⽐较复杂情况之间的关系,找出规律逐步解决问题,这样的⽅法叫递推⽅法。
线段AB上共有10个点(包括两个端点),那么这条线段上⼀共有多少条不同的线段? 分析与解答:从简单情况研究起: AB上共有2个点,有线段:1条 AB上共有3个点,有线段:1+2=3(条) AB上共有4个点,有线段:1+2+3=6(条) AB上共有5个点,有线段:1+2+3+4=10(条) …… AB上共有10个点,有线段:1+2+3+4+…+9=45(条) ⼀般地,AB上共有n个点,有线段: 1+2+3+4+…+(n-1)=n×(n-1)÷2 即:线段数=点数×(点数-1)÷2【第三篇:计数习题标数法和加法原理的综合应⽤】★★★★)有20个相同的棋⼦,⼀个⼈分若⼲次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋⼦数不是3或4的倍数,有()种不同的⽅法取完这堆棋⼦. 【分析】把20、0和20以内不是3或4的倍数的数写成⼀串,⽤标号法把所有的⽅法数写出来: 考点说明:本题主要考察学⽣对于归纳递推思想的理解,具体来说就是列表标数法的使⽤,难度⼀般,只要发现了题⽬中的限制条件,写出符合条件的剩余棋⼦数,然后进⾏递推就可以了。
8 小学奥数——计数问题 试题及解析
小学奥数——计数问题一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.62.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.1743.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个4.从城堡到幸福岛有()种不同的走法.A.2B.3C.45.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.66.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.28.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.129.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.2710.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.712.一个盒子里装有标号为124的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.1513.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.2914.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.615.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.716.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.3617.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.418.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.1319.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.2620.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.2321.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.2522.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.1823.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.524.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.626.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.827.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.828.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.1629.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.930.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.731.从19这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.432.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.2833.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.1736.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.2037.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.1538.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.3039.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.8040.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.141.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.5442.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.3043.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.1544.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35参考答案与试题解析一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.6【解析】根据分析可得336+=(次)答:他最少要试6次,才能确保打开箱子.故选:D.2.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.174【解析】因为每淘汰1名选手就要有一场比赛,所以只剩最后第一名,需要淘汰5121511-=名,答:这次乒乓球比赛一共要比赛511场.故选:B.3.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个【解析】四个数字不重复的有:432124⨯⨯⨯=(个)3做千位的有:3216⨯⨯=(个)4做千位的有:3216⨯⨯=(个)5做千位的有:3216⨯⨯=(个)6做千位的有:3216⨯⨯=(个)而6做千位的有(从小到大):6345,6354,6435,6453,6534,6543,⨯+=(个)63119答:可以组成24个没有重复数字的四位数,把它们排起来,从小到大6345是第19个数.故选:D.4.从城堡到幸福岛有()种不同的走法.A.2B.3C.4【解析】224⨯=(种);答:从城堡到幸运岛共有4种不同的走法.故选:C.5.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.6【解析】根据分析可得:⨯=(条)4624答:那么从甲地经乙地到丙地共有24条不同的路.故选:B.6.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中【解析】=根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有54321120⨯⨯⨯⨯=种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120524÷=种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共有⨯⨯⨯⨯=种2222232综合两步,就有2432768⨯=种.故选:A.7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.2【解析】248⨯=(条).即从甲地经乙地去丙地有8条不同的路可走.故选:A.8.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.12【解析】根据分析可得,⨯⨯=(种)3216答:一共有6种考试时间安排.故选:A.9.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.27【解析】33327⨯⨯=(种)答:有27种不同的放球方法.故选:D.10.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种【解析】54321120⨯⨯⨯⨯=有两个l所以120260÷=原来有一种正确的,所以60159-=;故选:C.11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.7【解析】从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即617+=(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.12.一个盒子里装有标号为124-的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.15【解析】将这24张卡片分成这样的两组:第一组:1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,只要在第一组中加入一个第二组的数,或在第二组中加入第一组的一个数,都能保证有两张卡片的标号之差为4.13.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.29【解析】根据题干分析可得,可以这样取牌:大小王、16-全取、1个7(或大小王、1个7、813-全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27128+=张.故选:C.14.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.6【解析】6502427÷≈,也就是说平均每排坐大约27人;我们这样安排,24 25 26 27 28 29 30,重复三遍这样坐,坐的人数:(24252627282930)3567++++++⨯=(人),还剩下:68056783-=(人),分别是26、28、29.这样相同的人数至少4排.答:至少有4排坐的人数同样多;故选:B.15.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.7【解析】因为一共有3种颜色的球,所以最差的情况是,摸出6个球,红、白、黑颜色的球各2个,只要再摸出1个球,就能保证摸出的球中至少有3个球同色,所以摸出球的个数至多为:+=(个)617答:要保证摸出的球中至少有3个球同色,摸出球的个数至多为7个.故选:D.16.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.36【解析】根据题干分析可得:++=(张)1520136答:至少需要取36张.故选:D.17.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.4【解析】55212++=(个)答:至少要摸出12个才能保证摸出2个红球.故选:B.18.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.13【解析】11112+=(次),答:至少要掷12次.故选:B.19.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.26【解析】415+=(张);故选:C.20.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.23【解析】根据点数特点可以分别看做13个抽屉,分别是:1、2、3、K⋯,考虑最差情况:先摸出2张王牌,然后每个抽屉又都摸出了3张牌,共摸出313241⨯+=张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有4张牌在同一个抽屉,即4张牌点数相同,即:41142+=(张),答:至少抽出42张,才能保证其中必会有4张牌的点数相同.故选:B.21.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.25【解析】810119++=(个)答:我们摸出19个球能保证其中一定有一个黄球.故选:A.22.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.18【解析】32943669÷=(人)答:3294个人中,最少能找到9人同一天生日.故选:B.23.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.5【解析】根据分析可得,314+=(个);答:每次至少拿4个才能保证有2个相同颜色的球.故选:A.24.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球【解析】5319++=摸出黄球的可能性是:5 599÷=摸出白球的可能性是3 399÷=摸出篮球的可能性是1 199÷=答:摸出黄球的可能性最大.故选:A.25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.6【解析】把0,1,2,3这四个数字看作4个抽屉,把15名学生看作“物体个数”,15433÷=⋯(人)314+=(人)答:至少有4个学生写的数相同.故选:B.26.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.8【解析】红、黄、蓝共有红蓝、红黄、蓝黄三种组合.3317++=(个)答:那么至少要有7位学生借球,就可以保证必有两位学生借的球的颜色完全一致.故选:C.27.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.8【解析】根据题干分析可得,买书情况一共有3317++=(种),把这7种情况看成7个抽屉,要保证有两位买书的类型相同,因此买书的人数要大于7,+=(人)718答:至少要去8位学生才能保证一定有两位同学买到相同的书.故选:C.28.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.16【解析】25111⨯+=(颗),答:一次至少要取11颗珠子,才能保证其中一定有三颗颜色相同.故选:B.29.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.9【解析】根据题干,只参加一个学习班的有3种情况,参加两个学习班的有朗读与音乐、朗读与书法,书法与音乐3种情况,参加3个兴趣小组的有1种情况,共有3317++=种情况,将这7种情况当做7个抽屉,⋯名学生,÷=名15077+=(名),718答:班级中至少有8个学生参加的项目完全相同.故选:C.30.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.7【解析】因为一共有3种颜色的袜子,所以4只袜子必有1双,剩下2只不同色的袜子,最差的情况是,再摸出一只袜子,和剩下的2只袜子的颜色都不同,只要再摸出一只袜子,一定可以配成1双,所以再增加2只袜子,才可以配成1双,所以要能配成2双(只要两只袜子同色,即为一双),至多摸出:+=(只)426答:要能配成2双(只要两只袜子同色,即为一双),至多摸出6只.故选:C.31.从19-这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.4【解析】在19-中,奇数有1、3、5、7、9,偶数有2、4、6、8,因为奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数,从最极端情况考虑:假设抽出了2张,一张奇数,一张偶数,这样再取出一张,一定保证有两张卡片上的数字之和是偶数,所以取出3张即可保证;故选:B.32.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.28【解析】(1)在3道题中,每道都有4个选项,其中有且仅有1个选项是正确的,只选对其中一道,这样的选项组合情况为:①第一道选对,第二、三道全选错的情况数位1339⨯⨯=.②第二道选对,第一、三道全选错的情况数为3139⨯⨯=.③第三道选对,第一、二道全选错的情况数为3319⨯⨯=总计99927++=(2)将这27种情况看做是27个抽屉,学生看做是放到抽屉的物体,至少有1抽屉放了2个物体.根据抽屉原理二得:物体数27(21)128=⨯-+=.所以参加这次测验的同学至少有28人.故选:D.33.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个【解析】181216÷=⋯,112+=(个),答:18个小朋友中,至少有2个小朋友在一个月出生.故选:B.34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个【解析】根据题干分析可得:344112+++=(个),答:从袋中一次取出球的个数至少是12个;故选:C.35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.17【解析】根据分析可得:⨯+=(个);44117答:一次至少取出17个,才能保证其中至少有5个球的颜色相同.故选:D.36.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.20【解析】按照百分制计分,那么得分情况有101种:即0分,1分,2分,3分,100⋯分;把这101种得分情况看做101个抽屉,因为2201012⋯(人),÷=(人)18所以没有三名以上的学生得分相同,所以恰有三名同学得分相同的分数最少有18个;故选:B.37.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.15【解析】56215⨯÷=(场);故选:D.38.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.30【解析】56215⨯÷=(场);答:一共要举行15场比赛.故选:B.39.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.80【解析】40139-=(场)故选:B.40.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.1【解析】每人都要和另外4个人握一次手,已知a握了4次,则a与b、c、d、e各握了一次;b握了3次,由于此时d只握了1次,是和a握的,则b与a、c、e握的,此时c已握了2次,即和a,b握的;所以e此时也握了两次,即和a、b握的.故选:C.41.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.54【解析】5137-+=(人)7642⨯=(人)故选:A.42.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.30【解析】要使煎5张饼的时间最短,应首先煎2张饼,然后再煎3张饼.煎前2张饼需要的时间:236⨯=(分钟);煎最后3张饼时,应先往锅中放入两张饼,先煎熟一面后拿出一张,再放入另一张,当再煎熟一面时把熟的一张拿出来,再放入早拿出的那张饼,使两张同时熟,所以一共需要339⨯=分钟;+=(分钟)6915故选:A.43.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.15【解析】根据题干分析可得:先洗锅,需要2分钟→洗鱼需要2分钟(同时烧热锅节约2分钟)→切鱼需要2分钟、切葱花、姜片需要1分钟(同时烧热油节约3分钟)→煎鱼需要5分钟,这样花费的时间最少是2212512++++=(分钟),答:最少需要12分钟.故选:A.44.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35【解析】5101025++=(分钟)8时25-分7=时35分即小芳起床最晚是7时35分.故选:C.。
小学三年级奥数100题及答案
小学三年级奥数100题及答案01、 40 个梨分给3 个班,分给一班20 个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下 40-20=20 个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10 个。
02、 7 年前,妈妈年龄是儿子的 6 倍,儿子今年12 岁,妈妈今年( )岁。
【解析】年龄问题, 7 年前,儿子年龄为12-7=5 岁,而妈妈年龄是儿子的 6 倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37 岁。
03、同学们进展播送操比赛,全班正好排成相等的 6 行。
小红排在第二行,从头数,她站在第5 个位置,从后数她站在第 3 个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5 个位置,说明她前面有5-1=4 个人,从后数她站在第 3 个位置,说明她后面有3-1=2 人,所以这一行的人数为4+2+1=7 人,所以这个班的人数为7×6=42 人。
04、有一串彩珠,按“2 红3 绿4 黄” 的顺序依次排列。
第 600 颗是( )颜色。
【解析】周期循环问题,以 2+3+4=9 个一循环,600÷9=66. . . . 6,余数为6,所以第 600 颗是黄颜色。
05、用一根绳子绕树三圈余30 厘米,假如绕树四圈那么差40 厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30 厘米,绕树四圈那么差40 厘米,所以树的周长为30+40=70 厘米,绳子长为3×70+30=240 厘米。
06、一只蜗牛在12 米深的井底向上爬,每小时爬上3 米后要滑下2 米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3 米后要滑下 2 米,相当于每小时向上爬了 1 米,那么 7 小时后,蜗牛向上爬了 7 米,离井口还差3 米,所以只需要再1 小时,蜗牛就可爬出井口,因此需要的总时间为8 小时。
小学一年级奥数题:图形计数练习题【五篇】
小学一年级奥数题:图形计数练习题【五篇】2.小敏到商店买文具用品。
她用所带钱的一半买了1支铅笔,剩下的一半买了1支圆珠笔,还剩下1元钱。
小敏原来有多少钱?3.有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?4.小明从家到学校跑步来回要10分钟,如果去时步行,回来时跑步一共需要12分钟,那么小明来回都是步行需要几分钟?5.小红和小绿都有10块橡皮,小兰给小绿2块后,现在小绿比小兰多几块橡皮?【第二篇】1.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?2.妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。
这次妈妈上班一共走了多少千米?3.像18+81这样十位数字与个位数字顺序颠倒的一对两位数是好朋友,它们相加和是99,请问像这样的相加和是99的好朋友有几对?4.桌子上有三盘桃子,第一盘比第三盘多3只,第三盘比第二盘少5只。
问:哪盘桃子最少?5.13个小朋友玩"老鹰抓小鸡"的游戏,已经抓住了5只"小鸡",还有几只没抓住?6.修花坛要用94块砖,第一次搬来36块,第二次搬来38块,还要搬多少块?(用两种方法计算)7.海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他孩子放回了家。
问强盗放多少个孩子回家?8.懒羊羊一次买来了30个苹果,它第一天吃了一些,第二天又吃了一些,这时还剩下12个苹果,懒羊羊两天一共吃了多少个苹果?9.5只兔子和4只猫一样重,那么一只兔重还是一只猫重?10.一只井底的蜗牛,白天能够爬2米,晚上下滑1米,已知井深5米,蜗牛多久能够爬到井外?【第三篇】1.小明把一根木棍锯成2段需要2分钟,那么依照这样的速度,把一根木棍据成3段需要多少分钟?2.一个猴子吃3个桃子多出一个,一个猴子吃4个桃子就少2个。
小学奥数计数之标数法经典例题讲解【三篇】
小学奥数计数之标数法经典例题讲解【三篇】
解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”
这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行
走路径的方向,就可使用标数法实行计算。
如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
【第二篇】
例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?
解答:
第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点
C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I
【第三篇】
分析:既然要走最短路线,自然是不能回头走,所以从A地到B地
的过程中只能向右或向下走.
我们首先来确认一件事,如下图
从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?
就是用加法原理,一共有m+n种走法.
这个问题明白了之后,我们就能够来解决这道例题了:
首先因为只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不能够走回头路).
我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.。
小学奥数计数专题--排列(六年级)竞赛测试.doc
小学奥数计数专题--排列(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
【答案】(1)5040(2)720(3)1440(4)240(5)2400(6)5040(7)2880【解析】(1)(种)。
(2)只需排其余6个人站剩下的6个位置.(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置. (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3××2=2880(种).排队问题,一般先考虑特殊情况再去全排列。
【题文】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【答案】20【解析】个位数字已知,问题变成从从个元素中取个元素的排列问题,已知,,根据排列数公式,一共可以组成(个)符合题意的三位数。
小学四年级奥数计数问题及解析
小学四年级奥数计数问题及解析奥数的学习并没有我们想象的那么难,只要用心我们依旧能够把奥数学习好的。
我们一起来看一下这篇小学四年级奥数计数问题吧。
假如一个大于9的整数,其每个数位上的数字都比它右边数位上的数字小,那么我们称它为"迎春数".那么,小于2021的"迎春数"共有个。
【答案解析】这是一道组合计数问题.方法一:枚举法――按位数分类运算.一、两位数中,"迎春数"个数(1)十位数字是1,如此的"迎春数"有12,13,…,19,共8个;(2)十位数字是2,如此的"迎春数"有23,…,29,共7个;(3)十位数字是3,如此的"迎春数"有34,…,39,共6个;(4)十位数字是4,如此的"迎春数"有45,…,49,共5个;(5)十位数字是5,如此的"迎春数"有56,…,59,共4个;(6)十位数字是6,如此的"迎春数"有67,68,69,共3个;(7)十位数字是7,如此的"迎春数"有78,79,共2个;(8)十位数字是8,如此的"迎春数"只有89这1个;(9)没有十位数字是9的两位的"迎春数";因此两位数中,"迎春数"共有36个.二、三位数中,"迎春数"个数(1)百位数字是1,如此的"迎春数"有123-129,134-139,…,189,共28个;(2)百位数字是2,如此的"迎春数"有234-239,…,289,共21个;(3)百位数字是3,如此的"迎春数"有345-349,…,389,共15个;(4)百位数字是4,如此的"迎春数"有456-459,…,489,共10个;(5)百位数字是5,如此的"迎春数"有567-569,…,589,共6个;(6)百位数字是6,如此的"迎春数"有678,679,689,共3个;(7)百位数字是7,如此的"迎春数"只有789,这1个;(8)没有百位数字是8,9的三位的"迎春数";因此三位数中,"迎春数"共有84个.三、1000-2021的自然数中,"迎春数"个数(1)前两位数字是12,如此的"迎春数"有1234-1239,…,1289,共21个(2)前两位数字是13,如此的"迎春数"有1345-1349,…,1389,共15个;(3)前两位数字是14,如此的"迎春数"有1456-1459,…,1489,共10个;(4)前两位数字是15,如此的"迎春数"有1567-1569,…,1589,共6个;(5)前两位数字是16,如此的"迎春数"有1678,1679,1689,共3个;(6)前两位数字是17,如此的"迎春数"只有1789这1个;(7)没有前两位数字是18,19的四位的"迎春数";因此四位数中,"迎春数"共有56个.四、2021-2021的自然数中,没有"迎春数"因此小于2021的自然数中,"迎春数"共有36+84+56=176 个.方法二:利用组合原理?小于2021的"迎春数",只可能是两位数、三位数和1000多的数.运算两位"迎春数"的个数,它就等于从1-9这9个数字中任意取出2个不同的数字,每一种取法对应于一个"迎春数",即有多少种取法就有多少个"迎春数".明显不同的取法有9×8÷2=36 中,因此两位的"迎春数"共有36个.同样运算三位数和1000多的数中"迎春数"的个数,它们分别有9×8×7÷3÷2÷1=84个和8×7×6÷3÷2÷1=56 个.因此小于2021的自然数中,"迎春数"共有36+84+56=176 个。
小学三年级奥数题100道及答案(完整版)
小学三年级奥数题100道及答案(完整版)1. 一只蜗牛在10 米深的井底往上爬,每天白天向上爬4 米,晚上又掉下去1 米,那么这只蜗牛()天能爬出井口。
A. 3B. 4C. 5D. 6答案:C解析:每天实际向上爬4 - 1 = 3 米,但是在最后一天白天爬出井口后就不会再掉下去了。
前几天一共爬了10 - 4 = 6 米,需要6 ÷3 = 2 天,再加上最后爬4 米的一天,共3 天。
2. 学校有一条长60 米的小道,计划在道路一旁栽树,每隔3 米栽一棵,有()个间隔。
A. 20B. 21C. 19D. 18答案:A解析:间隔数= 总长÷间隔长度,即60 ÷3 = 20 个。
3. 一个数除以5,商是12,余数是3,这个数是()A. 60B. 63C. 57D. 58答案:B解析:被除数= 商×除数+ 余数,即12 ×5 + 3 = 63 。
4. 小红做了36 朵花,是小翠所做的花的3 倍,小翠做了()朵花。
A. 9B. 12C. 108D. 18答案:B解析:小翠做的花= 36 ÷ 3 = 12 朵。
5. 把一根木头锯成4 段需要6 分钟,如果要锯成13 段,需要()分钟。
A. 24B. 26C. 28D. 30答案:B解析:锯成4 段需要锯3 次,每次需要6 ÷3 = 2 分钟。
锯成13 段需要锯12 次,共12 ×2 = 24 分钟。
6. 明明沿着正方形操场跑了一圈,跑了400 米,这个操场的边长是()米。
A. 100B. 200C. 50D. 150答案:A解析:正方形周长= 边长×4,边长= 周长÷4,即400 ÷4 = 100 米。
7. 小明今年8 岁,爸爸的年龄是小明的4 倍,爸爸今年()岁。
A. 32B. 24C. 36D. 40答案:A解析:爸爸的年龄= 8 ×4 = 32 岁。
小学奥数系列训练题-几何计数|通用版
2015年小学奥数计数专题——几何计数1.用3根等长的火柴可以摆成一个等边三角形.如图,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?2.如图,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?3.图是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?4.如图,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?5.如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.6.如图,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?7.图是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?8.图中共有多少个三角形?9.图是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?10.如图,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?11.在图中,共有多少个不同的三角形?12.如图,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图.那么,一共可以构成多少个不同的正方形?13.如图,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?14.如图,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?15.如图,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?16.数一数下列图形中各有多少条线段.17.数出下图中总共有多少个角.18.数一数下图中总共有多少个角?19.如下图中,各个图形内各有多少个三角形?20.如下图中,数一数共有多少条线段?共有多少个三角形?21.如右图中,共有多少个角?22.在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少? 37421812523.由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 。
小学奥数计数问题
小学奥数计数问题小学奥数计数问题奥数计数问题11、用1,2,3,4这四个数字(l)可以组成多少个两位数?(2)可以组成多少个没有重复数字的两位数?2、书架上有6本故事书,5本画报,7本科普读物,(l)小芳从书架上任取一本,有多少种不同取法?(2)小芳从这三种书籍中各取一本,有多少种不同取法?3、从甲地到乙地有4条不同的道路,从乙地到丙地有两条不同的道路,从甲地到丙地有3条不同的道路,问从甲地到丙地共有多少种不同走法?4、(1)有5个人排成一排照相,有多少种排法?(2)5个人排成一排照相,如果某人必须站在中间,有多少种排法?5、某条航线上共有8个航空站,这条航线上共有多少种不同的飞机票?如果不同的两站间票价都不同,那么有多少种不同的票价?6、用0,l,2,3这四个数,可以组成多少个没有重复数字的四位数?小学奥数计数问题2今年大华20岁,大明18岁,小芬12岁,小玲8岁,多少年后大华、大明的年龄的和的2倍等于小芬、小玲年龄的和的3倍?解:今年大华、大明年龄的和的2倍是(20+18)×2=76(岁),小芬、小玲年龄的和的3倍是(12+8)×3=60(岁),大华、大明年龄的和的2倍比小芬、小玲年龄的和的.3倍多76-60=16(岁),而每过一年,大华、大明增加年龄的和的2倍比小芬、小玲增加年龄的和的3倍少2×3-2×2=2(岁),使大华、大明年龄的和的2倍等于小芬、小玲年龄的和的3倍,过的年数是16÷2=8(年)。
答:8年后大华、大明的年龄的和的2倍等于小芬、小玲年龄的和的3倍。
小学奥数计数问题3小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论最多吃5天,最少吃1天1:吃1天或是5天,各一种吃法一共2种情况2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况?c101=103:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天?c82=284:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c63=20所以一共是2+10+28+20=60种下载全文下载文档。
小学奥数第五讲:图形的计数
小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。
在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。
例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。
可以采用数数的方法,按顺序数。
也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。
解:方法一:一个一个地数出8个正方体。
方法二:2×4=8(个)答:共有8个小正方体。
例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。
问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。
只有“粘在一起的”面没有涂色。
中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。
解:(1)2面涂成红色的小正方体只有1个。
(2)4面涂成红色的小正方体有4个。
(3)5面涂成红色的小正方体有4个。
例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。
应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。
解:10+10+1=21(个)答:共写21个。
例5:27个小方块堆成一个正方体。
如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。
3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。
五年级奥数.计数综合.计数方法与技巧
计数方法与技巧知识结构(1)归纳法:从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.(2)整体法:解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.(3)对应法:将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.(4)递推法:对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法.例题精讲【例 1】一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【例 2】平面上10个两两相交的圆最多能将平面分割成多少个区域?【巩固】10个三角形最多将平面分成几个部分?【例 3】一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【巩固】在平面上画5个圆和1条直线,最多可把平面分成多少部分?【例 1】一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【巩固】在三角形ABC内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【例 4】在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【巩固】用一张如图所示的纸片盖住66 方格表中的四个小方格,共有多少种不同的放置方法?【例 5】有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【巩固】三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【例 6】学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有种不同的摞法.【巩固】学学和思思一起洗4个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,问学学摞好的碗一共有种不同的摞法。
小学奥数几何中的计数问题
小学奥数几何中的计数问题数长方形例1如下图,数一数下列各图中长方形的个数?分析:图(Ⅰ)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为:4+3+2+1=10(个).图(Ⅱ)中AB边上共有线段4+3+2+1=10条. BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(Ⅱ)中共有长方形为:(4+3+2+1)×(2+1)=10×3=30(个).图(Ⅲ)中,依据计算图(Ⅱ)中长方形个数的方法:可得长方形个数为:(4+3+2+1)×(3+2+1)=60(个).解:图(Ⅰ)中长方形个数为4+3+2+1=10(个).图(Ⅱ)中长方形个数为:(4+3+2+1)×(2+1)=10×3=30(个).图(Ⅲ)中长方形个数为:(4+3+2+1)×(3+2+1)=10×6=60(个).小结:一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:(1+2+3+…+m)×(1+2+3+…+n).例2 如右图数一数图中长方形的个数.解:AB边上分成的线段有:5+4+3+2+1=15.BC边上分成的线段有:3+2+1=6.所以共有长方形:(5+4+3+2+1)×(3+2+1)=15×6=90(个).数正方形例3数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)分析:图Ⅰ中,边长为1个长度单位的正方形有:2×2=4(个),边长为2个长度单位的正方形有:1×1=1(个).所以,正方形总数为1×1+2×2=1+4=5(个).图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个);边长为2个长度单位的正方形有:2×2=4(个);边长为3个长度单位的正方形有1×1=1(个).所以,正方形的总数为:1×1+2×2+3×3=14(个).图Ⅲ中,边长为1个长度单位的正方形有:4×4=16(个);边长为2个长度单位的正方形有:3×3=9(个);边长为3个长度单位的正方形有:2×2=4(个);边长为4个长度单位的正方形有:1×1=1(个);所以,正方形的总数为:1×1+2×2+3×3+4×4=30(个).图Ⅳ中,边长为1个长度单位的正方形有:5×5=25(个);边长为2个长度单位的正方形有:4×4=16(个);边长为3个长度单位的正方形有:3×3=9(个);边长为4个长度单位的正方形有:2×2=4(个);边长为5个长度单位的正方形有:1×1=1(个).所有正方形个数为:1×1+2×2+3×3+4×4+5×5=55(个).小结:一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个).例4如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).分析:为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.①以一条基本线段为边的正方形个数共有:6×5=30(个).②以二条基本线段为边的正方形个数共有:5×4=20(个).③以三条基本线段为边的正方形个数共有:4×3=12(个).④以四条基本线段为边的正方形个数共有:3×2=6(个).⑤以五条基本线段为边的正方形个数共有:2×1=2(个).所以,正方形总数为:6×5+5×4+4×3+3×2+2×1=30+20+12+6+2=70(个).小结:一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1显然例4是结论的特殊情况.例5 如下图,平面上有16个点,每个点上都钉上钉子,形成4×4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.例6 如右图,数一数图中三角形的个数.分析这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.Ⅰ.以一条基本线段为边的三角形:①尖朝上的三角形共有四层,它们的总数为:W①上=1+2+3+4=10(个).②尖朝下的三角形共有三层,它们的总数为:W①下=1+2+3=6(个).Ⅱ.以两条基本线段为边的三角形:①尖朝上的三角形共有三层,它们的总数为:W②上=1+2+3=6(个).②尖朝下的三角形只有一个,记为W②下=1(个).Ⅲ.以三条基本线段为边的三角形:①尖朝上的三角形共有二层,它们的总数为:W③上=1+2=3(个).②尖朝下的三角形零个,记为W③下=0(个).Ⅳ.以四条基本线段为边的三角形,只有一个,记为:W④上=1(个).所以三角形的总数是10+6+6+1+3+1=27(个).我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与尖朝下的三角形的两种分类情况计算三角形个数.Ⅰ.尖朝上的三角形共有四种:W①下=1+2+3+4=10W②上=1+2+3=6W③上=1+2=3W④上=1所以尖朝上的三角形共有:10+6+3+1=20(个).Ⅱ.尖朝下的三角形共有二种:W①下=1+2+3=6W②下=1W③下=0W④下=0则尖朝下的三角形共有:6+1+0+0=7(个)所以,尖朝上与尖朝下的三角形一共有:20+7=27(个).小结:尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.(1)W①上=8+7+6+5+4=30(3)W③上=6+5+4=15(4)W④上=5+4=9(5)W⑤上=4∴尖朝上的三角形共有:30+22+15+9+4=80(个).Ⅱ.尖朝下的三角形有四种:(1)W①下=3+4+5+6+7=25(2)W②下=2+3+4+5=14(3)W③下=1+2+3=6(4)W④下=1尖朝下的三角形共有25+14+6+1=46(个).所以尖朝上与尖朝下的三角形总共有80+46=126(个).。
小学六年级奥数几何计数问题专项强化训练(高难度)
小学六年级奥数几何计数问题专项强化训练(高难度)例题1:某小学六年级有10名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?解析:首先确定男生和女生的位置,男生和女生的位置可以互换,所以先计算男生和女生的排列方式。
男生和女生分别有10!和8!种排列方式。
但是男生和女生之间是需要相邻的(间隔排列),所以男生和女生的位置可以看作是一个整体,即总共有(10!)(8!)种排列方式。
因此,共有(10!)(8!)种不同的排列方式。
专项练习应用题:1. 某小学六年级有12名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?2. 某小学六年级有8名男生和6名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?3. 某小学六年级有15名男生和12名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?4. 某小学六年级有6名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?5. 某小学六年级有10名男生和9名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?6. 某小学六年级有7名男生和7名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?7. 某小学六年级有14名男生和15名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
问共有几种不同的排列方式?8. 某小学六年级有9名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。
小学奥数家教 计数问题一几何中的计数
计数问题一、数线段第一种:按照线段的端点顺序去数第二种:按照基本线段多少的顺序去数.线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1.二、数角数角的方法可以采用数线段的方法来数,就是角的总数等于从1开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1三、数三角形1.共顶点只有一个公共底边的三角形数法:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的条数.2.有多条底边的三角形数法:分开看各底边用之前方法进行计数小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总数是 n(n-1)+1.练习1.数一数下图中,各有多少条线段?2.数一数下图中各有多少角?3.数一数下图中,各有多少条线段?4.数一数下图中,各有多少条线段,各有多少个三角形?四、数长方形一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:(1+2+3+…+m)×(1+2+3+…+n).五、数正方形一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个)一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1六、数复杂图形中三角形尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.我们已对较基本、简单的图形的数法作了较系统的研究,寻找到了一般规律.而对于较复杂的图形即综合图形的数法,我们仍需遵循不重复、不遗漏的原则,采用能按规律数的,按规律数,能按分类数的就按分类数,或者两者结合起来就一定能把图形数清楚了. 35练习1.下图中有多少个正方形?2.下图中有多少个长方形?3.下图中有多少个长方形?4.下图(1)、(2)中各有多少个三角形?5.下图中有多少个三角形?6.下图中有多少个三角形?7.下图中有多少个正方形?解答:1.①在AB线段上有4个分点,所以它上面线段的总条数为:5+4+3+2+1=15(条).②在线段AB上有3个分点,所以它上面线段的总条数为4+3+2+1=10(条).在线段CD上有4个分点:所以它上面线段的总条数为:5+4+3+2+1=15(条).∴整个图(2)共有线段10+15=25(条).③在线段AB上有3个分点,它上面线段的条数为:4+3+2+1=10(条).在线段CD上有2个分点,它上面线段的条数为:3+2+1=6(条).在线段EF上有2个分点,它上面线段的条数为6条.所以图(3)上总共有线段10+6+6=22(条).2.①在∠AOB内有4条角分线,所以共有角:5+4+3+2+1=15(个);②在∠AOB 内有9条角分线,所以共有角:10+9+8+7+6+5+4+3+2+1=55(个);③周角内含有6个基本角,所以共有角:6×(6-1)+1=31(个).3.①(3+2+1)×7=42;②(6+5+4+3+2+1)×4+(4+3+2+1)×7=21×4+10×7=84+70=154.4.①有线段:(4+3+2+1)×3+(3+2+1)×5=30+30=60(条)有三角形:(4+3+2+1)×3=30(个);②有线段:(5+4+3+2+1)+5×2+(2+1)=15+10+3=28(条)有三角形:(5+4+3+2+1)×2+5=15×2+5=35(个).1.共有正方形54个.2.共有长方形136个.3.共有长方形133个.4.(1)共有三角形78个.(2)共有三角形58个.5.共有三角形45个.6.共有三角形36个.7.共有正方形24个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法原理:如果完成一件事需要n个步骤,其中,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…… 完成第n步有m n种不同的方法,那么完成这件事情共有m1 ×m2 ×……×m n种不同的方法。
例1 上海到天津每天有 2 班飞机,4 趟火车,6 班汽车,从天津到北京有 2 班汽车。
假期小茗有一次长途旅游,他从上海出发先到天津,然后到北京,共有多少种走法?例2 “IMO”是国际奥林匹克的缩写,把这 3 个字母用红、黄、蓝三种颜色的笔来写,共有多少种写法?【巩固】在日常生活中,人们用来装饭、菜的有餐碗和餐盘,用来吃饭的有餐勺、餐叉和餐筷。
如果一种装饭菜的和一种吃饭的餐具配作一套,那么以上这些可以组成不重复的餐具多少套?例3 小红、小明准备在5×5的方格中放黑、白棋子各一枚,要求两枚不同的棋子不在同一行也不在同一列,共有多少种方法?【巩固】右图中共有 16 个方格,要把 A、B、C、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?例4 用数字0,1,2,3,4,组成三位数,符合下列条件的三位数各多少个?①各个位上的数字允许重复;②各个位上的数字不允许重复;【巩固】由数字 0、1、2、3 组成三位数,问:①可组成多少个不同的三位数?②可组成多少个没有重复数字的三位数?【拓展】由数字 1、2、3、4、5、6 共可组成多少个没有重复数字的四位奇数?例5 把1~100 这100 个自然数分别写在100 张卡片上,从中任意选出两张,使他们的差为奇数的方法有多少种?小结:应用乘法原理解决问题时要注意:①做一件事要分成几个彼此互不影响的独立的步骤来完成;②要一步接一步的完成所有步骤;③每个步骤各有若干种不同的方法。
加法原理:一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有:N=m1+m2+…+mk种不同的方法.例6 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150 本,不同的科技书200 本,不同的小说100 本.那么,小明借一本书可以有多少种不同的选法?例7 一个口袋内装有3 个小球,另一个口袋内装有8 个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?例8 如图,从甲地到乙地有4 条路可走,从乙地到丙地有2 条路可走,从甲地到丙地有3 条路可走.那么,从甲地到丙地共有多少种走法?例9 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?例10 从1 到500 的所有自然数中,不含有数字4 的自然数有多少个?例11 如图,一只小甲虫要从 A 点出发沿着线段爬到 B 点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?例 12 如图,要从 A 点沿线段走到 B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?家庭作业:1.由数字 1、2、3、4、5、6、7、8 可组成多少个:①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8 的没有重复数字的三位数?⑤百位为 8 的没有重复数字的三位偶数?2.某市的电话号码是六位数的,首位不能是 0,其余各位数上可以是 0~9 中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?3.图中有 7 个点和十条线段,一只甲虫要从 A 点沿着线段爬到 B 点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?4.现有一角的人民币 4 张,贰角的人民币 2 张,壹元的人民币 3 张,如果从中至少取一张,至多取 9 张,那么,共可以配成多少种不同的钱数?5.将10 颗相同的珠子分成三份,共有多少种不同的分法?分给三个人有多少种分法?6.有红、白、黄、蓝四种颜色的彩旗各 1 面,不同的旗可以表示不同的信号,不同的颜色排列也可以表示不同的信号,这 4 面旗可以发出多少种信号?7.从最小的五个质数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数?8.用1,2,3,4 这四种数码组成五位数,数字可以重复,至少有连续三位是 1 的五位数有多少?9.从1 到500 的所有自然数中,不含数字 2 的自然数有多少个?n Ⅰ 排列在实际生活中把一些事物进行有序的排列,计算共有多少种排法,这就是数学上的排列问题。
在排的过程中不仅与参加排列的事物的多少有关,而且与排列的先后顺序有关,那么所有排列的个数叫做排列数。
一般的从 n 个不同的元素中任取 m 个( m ≤ n )元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
记作: A m= n (n - 1)(n - 2) ⨯ ⨯ (n - m + 1) 。
例1 计算 (1) A3(2) A 4-2 A2588【巩固】计算:(1) A2 (2) A 3- A2(3) 3 A 3- A4(4)(6× A 6)÷ A761414541212例2 有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?【巩 1】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?【巩 2】某铁路线共有 14 个车站,这条铁路线共需要多少种不同的车票.例3 用 1、2、3、4、5、6、7、8 可组成多少个没有重复数字的五位数?【巩固】由数字 1、2、3、4、5、6 可以组成多少没有重复数字的①三位数?②个位是 5 的三位数?③百位是 1 的五位数?④六位数?例4 幼儿园里的6 名小朋友去坐3 把不同的椅子,有多少种坐法?【对比】幼儿园里 3 名小朋友去坐 6 把不同的椅子(每人只能坐一把),有多少种不同的坐法?例5 有4 个同学一起去郊游,照相时,必须有一名同学给其他 3 人拍照,共可能有多少种拍照情况?(照相时 3 人站成一排)例6 4 名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?【巩固】9 名同学站成两排照相,前排 4 人,后排 5 人,共有多少种站法?【拓展】5 个人并排站成一排,其中甲必须站在中间有多少种不同的站法?Ⅱ 组合在生活中还经常有许多“分组”问题,即从一些事物中选出几个不同的事物分成一组,计算共有多少种分组方法, 这就是数学中的组合问题。
nnA n组合是指从 m 个不同元素中选出 n 个元素组合在一起。
组合数用符号“ c m ”表示, c m例 7 计算:① c 3 ; ② c1998;③ c 3 × c 2 ; ④ A 2 - c 6.m 。
n n1520004888例8 分别写有 1、2、3、4、5、6、7、8 的八张卡片中任取两张作成一道两个一位数的加法题.问: ①有多少种不同的和?②有多少个不同的加法算式?例9 在圆周上有 12 个点.①过每两个点可以画一条直线,一共可以画出多少条直线?②过每三个点可以画一个三角形,一共可以画出多少个三角形?【拓展】以下图 8 个点中的 3 个为顶点,共可画出多少个不同的三角形?例 10 7 名运动员中选出两名参加决赛,有多少种不同的选法?A【对比】有 7 名同学参加游泳比赛,获得冠军与亚军的名单中有几种不同的情形?例 11 球队有 10 名男生、8 名女生,现在要选 8 人参加区里比赛,某两名女生最多入选一人,某两名男生至少选一人,共有多少种选法?【拓展】学校乒乓球队有 10 名男生、8 名女生,现在要选 8 人参加区里的比赛,(1)至少两名女生入选,有多少种不同的选法?(2)A、B 两名女生,C、D 两名男生这四人不能同时入选,有多少种不同的选法?(3)A、B 两名女生,C、D 两名男生这四人最多入选 2 人,有多少种不同的选法?例12 一次射击练习中,有 9 个气球排成 3 列(如图),要求每一次射击都要击打某一列中的最低一个,那么击碎全部 9 个气球有多少种不同的次序?小结:排列组合问题其实是乘法原理与加法原理应用的延伸,很多排列问题都能用乘法原理来解决。
其实在解决组合计数问题时,最重要的是理解题意,想清楚解决问题的关键是什么,以及各种情况,然后具体情况具体分析。
排列与组合的区别主要在于:排列的结果是元素相同顺序不同算作不同的结果,而组合的结果是元素相同顺序不同算作同一种结果。
家庭作业:1、①用 1、2、3、4、5、6、7 可以组成多少个不同的三位数?(数字允许重复)②用 1、2、3、4、5、6、7 可以组成多少个没有重复数字的三位数?③用 1、2、3、4、5、6、7 可以组成多少个没有重复数字的七位数?④从 1、2、3、4、5、6、7 中选出三个不同数字,有多少种不同的选法?2、圆周上有 7 个点,以这些点为顶点连四边形,一共能画出多少个不同的四边形?3、6 本不同的书借给 10 个小朋友,每人至多借一本,且 6 本书全部借出,一共有多少种不同的借书方法?4、张华、李明等七个同学照像,分别求出下列条件下有多少种站法?①七个人排成一排,张华、李明都没有站在边上;②七个人排成两排,前排三人,后排四人;③七个人排成两排,前排三人,后排四人,张华、李明不在同一排。
5、把7 本不同的书分给甲、乙两人,甲至少要分到2 本,乙至少要分到1 本,两人的本数不能相差1,则不同的分法共有()种。
6、六五班有 8 名同学参加《科技与环保》的宣传活动。
他们在街头站成一排,向行人宣传环保知识,其中正副两名组长不排在一起,一共有多少种排法?7、A、B、C、D、E、F、G、7 人排成一列,要求A 在B 前,B 在C 前,G 在D 前。
共有多少种不同排队方法?8、从 15 名同学中选 5 名参加数学竞赛,求分别满足下列条件的选法各有多少种。
(1)甲、乙二人必须入选;(2)甲、乙二人中至少有一人入选;(3)甲、乙、丙三人中恰有一人入选;9、张华、李明等七个同学照像,分别求出符合下列条件的排法各有多少种。
(1)七个人排成一排,张华必须站在中间;(2)七个人排成一排,张华李明至少有一人站在两边;= 前面我们已讨论了加法原理、乘法原理、排列、组合等问题.事实上,这些问题是相互联系、不可分割的.例如有时候,做某件事情有几类方法,而每一类方法又要分几个步骤完成.在计算做这件事的方法时,既要用到乘法原理,又要用到加法原理.又如,在照相时,如果对坐的位置有些规定,那么就不再是简单的排列问题了.类似的问题有很多, 要正确地解决这些问题,就一定要熟练地掌握两个原理和排列、组合的内容,并熟悉它们所解决问题的类型特点.加法原理:完成一件事情,可以有n 类方法;在第一类方法中有m 1 种不同的方法,在第一类方法中有m 1 种不同的方法,在第二类方法中有m 2 种不同的方法,……在第n 类方法中有m n 种不 同的方法;那么完成这件事共有:N=m 1 +m 2 +m 3 +… +m n 种不同的方法。