指数对数幂函数完全复习

合集下载

指数、对数、幂函数总结归纳

指数、对数、幂函数总结归纳

指数与指数幂的运算【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数与对数函数互为反函数(a >0,a ≠1).【要点梳理】要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质为防止讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1n na a =()m n m m n na a a ==-1m nm naa=3.运算法则当a >0,b >0时有:〔1〕nm nma a a +=⋅;〔2〕()mn nma a =;〔3〕()0≠>=-a n m a aa nm n m ,;〔4〕()mm m b a ab =.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.要点二、根式的概念和运算法则1.n 次方根的定义:假设x n=y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y .n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为n y ±负数没有偶次方根;零的偶次方根为零,00n =. 2.两个等式〔1〕当1n >且*n N ∈时,nnaa =;〔2〕⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn要点诠释:①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能防止出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数〔如15/4〕,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式: a 2-b 2=〔a -b 〕〔a +b 〕,a 3-b 3=〔a -b 〕〔a 2+ab +b 2〕,a 3+b 3=〔a +b 〕〔a 2-ab +b 2〕, 〔a ±b 〕2=a 2±2ab +b 2,〔a ±b 〕3=a 3±3a 2b +3ab 2±b 3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:〔1〕形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.〔2〕为什么规定底数a 大于零且不等于1:①如果0a <,则对于一些函数,比方(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在. ②如果1a =,则11xy ==是个常量,就没研究的必要了。

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。

指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。

在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。

一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。

指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。

指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。

2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。

3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。

4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。

1. 对数函数的图像是一条左开右闭的单调增函数。

2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。

4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。

三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。

幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。

幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。

四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。

在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。

指数对数幂函数知识点汇总

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇第1篇示例:指数对数幂函数是高等数学中重要、常用的一类函数。

它们是解决数学问题和建立数学模型中不可或缺的工具。

在学习指数对数幂函数的知识时,需要掌握函数的定义、性质、图像、导数等方面的内容。

本文将对指数对数幂函数进行系统总结,以便读者更好地理解和掌握这一知识点。

一、指数函数指数函数是形如y = a^x(其中a>0且a≠1)的函数,其中a称为底数,x称为指数。

指数函数的图像通常是一个以底为a的指数曲线,其特点是随着x的增大,y值迅速增大。

指数函数的性质有:1.当底数a>1时,函数y = a^x是递增函数;当0 0时,函数y = a^x是减函数。

2.指数函数的定义域是所有实数,值域是所有大于0的实数。

3.指数函数的图像通常是通过点(0,1) 并且随着x的增大发生指数增长。

4.指数函数满足f(x) * f(y) = f(x+y)。

5.指数函数的反函数是对数函数,即y = loga(x)。

3.对数函数的图像是一个S形曲线,随着x的增大,y值逐渐增大。

5.对数函数的导数为1/x*ln(a)。

三、幂函数幂函数是形如y = x^a(其中a为常数)的函数,其特点是x的次方为a。

幂函数的性质有:3.幂函数的特殊情况之一是y = x^2,即二次函数,其图像是一个开口向上的抛物线。

第2篇示例:指数对数幂函数是数学中常见的一类函数,主要包括指数函数、对数函数和幂函数。

在数学中,这些函数在图像、性质和应用等方面都有着重要的作用。

本文将从定义、性质和应用三个方面对指数对数幂函数进行总结。

一、指数函数指数函数的一般形式为f(x) = a^x,其中a为底数且a>0且a≠1,x为指数。

指数函数的定义域为实数集R,值域为正实数集R+。

指数函数的图像呈指数增长或指数衰减的特点,当底数a>1时为指数增长;当底数0<a<1时为指数衰减。

指数函数的特点包括:单调性、奇偶性、零点、渐近线等。

升学复习第四章-幂函数、指数函数、对数函数

升学复习第四章-幂函数、指数函数、对数函数
(4)loga
n
1
M= logaM.
n
典例解析
例11.求下列对数的值:
(1)log64+log69;
(2)log2162;
(3)log672-log62;
(4)lg5+lg2.
知识聚焦
5.换底公式
logaN lgN
logbN= loga = lg (a>0且a≠1,b>0且b≠1,N>0).
函数时,图像只分布在第一象限.
知识聚焦
3.幂函数的图象与性质
(-2,4)
4
y=x3
(2,4)
y=x2
3
y=x
1
-6
-4
-2
(1,1)
-1
-2
-3
-4
(0,+∞)内都有定义,并且函数图象
y=x-1
2
(-1,-1)
(2)过定点:所有的幂函数在
y=x 2
(4,2)
2
(-1,1)
1
4
6
都通过点(1,1).
特别地,以10为底的对数函数y=lgx叫做常用对数函数
以e为底的对数函数y=lnx叫做自然对数函数.
知识聚焦
2
对数
函数
的图
象与
性质
解析式
对数函数y=log
a>1(真大整体大,真小整体小)


a
0<a<1(真大整体小,真小整体大)
y
o
x (a>0, a≠1)
y
(1, 0)
(2)正数的负分数指数幂的意义:
a
m
n
1m
an
n
1 ( a 0, m , n N , 且n 1)

高一数学期终复习(四)——幂函数、指数函数和对数函数

高一数学期终复习(四)——幂函数、指数函数和对数函数

高一数学期终复习(四)——幂函数、指数函数和对数函数复习要点:1.幂函数的图象与性质。

2.反函数的概念。

3.指数函数与对数函数的图象与性质。

4.简单的指对数方程。

例1:作出下列函数的图象:(1)()321+=x y ;(2)()312+-=-x y 。

例2:求下列函数的反函数:(1)()R x x x x y ∈≠-+=,1132; (2)⎥⎦⎤⎢⎣⎡-∈--=0,35,9252x x y ; (3)()()()⎩⎨⎧<-≥-=.012;012x x x x x f(4)(]1,,3122-∝-∈=-+x y x x。

例3:已知函数()()1,011≠>+-=a a a a x f x x 。

(1)求()x f 的定义域和值域;(2)讨论()x f 的奇偶性;(3)讨论()x f 的单调性。

例4:已知函数()()x x f 22log 2-=, (1)求()x f 的定义域和值域;(2)解方程()()x f x f=--221。

例5:指出函数()445422++++=x x x x x f 的单调区间,并比较()π-f 与⎪⎪⎭⎫ ⎝⎛-22f 的大小。

例6:已知x 满足不等式()23log log 21221-≥x x ,求函数()⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=2log 4log 22x x x f 的最大值和最小值。

例7:已知函数()12-=x x f 的反函数为()x f 1-,()()13log 4+=x x g 。

(1)若()()x g x f ≤-1,求x 的取值范围D ;(2)设函数()()()x f x g x H 121--=,当D x ∈时,求函数()x H 的值域。

练习:一、 选择题:1.)1,0(x ,1n m ∈>>若,则正确的是( )x log x log )D ( x lg x lg )C ( x x )B ( n m )A (n m n m n m x x <>>>2.函数)1x lg(y 2-=的单调递减区间是( ))1,(D)( )(C)(1, ,0)(B)( ),0)(A (--∞+∞-∞+∞3.对于下列命题,正确的是( )(1)函数()x f y =的图像与函数()y f x =的图像关于直线x y =对称。

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理一、幂函数1.定义:幂函数是形如f(x)=x^n的函数,其中n为常数,x为自变量,n可以是整数、分数或实数。

2.性质:-当n为正偶数时,幂函数是单调递增函数,图像呈现开口向上的抛物线形状。

-当n为正奇数时,幂函数是单调递增函数,图像呈现开口向上的直线形状。

-当n为负偶数时,幂函数是单调递减函数,图像呈现开口向下的抛物线形状。

-当n为负奇数时,幂函数是单调递减函数,图像呈现开口向下的直线形状。

-当n=0时,幂函数f(x)=x^0恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-幂函数常用于描述成比例关系,如面积和边长的关系、体积和边长的关系等。

-幂函数还用于经济学、物理学、化学等学科中的一些数学模型。

二、指数函数1.定义:指数函数是形如f(x)=a^x的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-指数函数的值域为正实数,图像始终位于y轴的上方。

-当a>1时,指数函数是单调递增函数,图像呈现开口向上的曲线形状。

-当0<a<1时,指数函数是单调递减函数,图像呈现开口向下的曲线形状。

-当a=1时,指数函数f(x)=1^x恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-指数函数常用于描述指数增长或指数衰减的情况,如人口增长、放射性物质衰变等。

-指数函数还用于描述复利、投资和经济增长等问题。

三、对数函数1. 定义:对数函数是形如f(x)=loga(x)的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-对数函数的定义域为正实数,值域为实数。

-对数函数的图像呈现开口向右的曲线形状。

-对数函数关于直线y=x对称。

-对数函数的导数为1/x。

3.应用:-对数函数常用于解决指数方程和指数不等式,将复杂的指数问题转化为相对简单的对数问题。

-对数函数还广泛应用于科学、工程、经济等领域的数据处理和模型建立。

综上所述,幂函数、指数函数和对数函数是高中数学中的重要函数类型。

单元复习 幂函数、指数函数与对数函数-高一数学(苏教版2019必修第一册)

单元复习  幂函数、指数函数与对数函数-高一数学(苏教版2019必修第一册)

故 f(x)=lg
+1
(2)由(1)知,f(x)=lg 1- (-1<x<1),
-+1
1-
1+ -1
1+
所以 f(-x)=lg1-(-)=lg1+=lg 1- =-lg 1- =-f(x),
所以 f(x)为奇函数.
+1
(3)原不等式可化为 lg 1- ≥lg(3x+1)(-1<x<1),
改进数学模型.
题型探究
一、直观想象
在本章中,函数图象的识别及应用均突出体现了直观想象的核心素养.
图象的识别
[例 1]
m
n
(1)已知函数 y=x (m,n∈N *,且互质)的图象如图所示,
那么下面说法正确的是
(
)
m
A.m,n 是奇数, n <1
m
B.m 是偶数,n 是奇数, n >1
m
C.m 是偶数,n 是奇数, n <1
m
n
是奇数.根据函数图象,当 x∈(1,+∞)时,y=x 的图象在 y=x 图象的下方,
m
n
m
所以 n <1.故选 C.
(2)当 0<a<1 时,函数 y=ax 的图象过定点(0,1),在 R 上单调递减,
1
于是函数 y=ax的图象过定点(0,1),在 R 上单调递增,函数ຫໍສະໝຸດ 1 1

1
y=logax+2的图象过定点2,0,在-2,+∞上单调递减.
是由函数 f(x)=ax 的图象向下平移一个单位长度,再将 x 轴下方的图象翻折到 x 轴上
方得到,分 a>1 和 0<a<1 两种情况作图,如图.当 a>1 时,直线 g(x)=2a 与函数 f(x)

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结

1.幂函数知识点总结一、幂函数(power function ):函数y x α= (x 是自变量,α是常数)二、幂函数的性质对于幂函数,我们只研究 11,2,3,,12α=- 时的图象与性质.1232,,,y x y x y x y x ==== 和 1y x -=共同性质:图像都过点(1,1)不同性质:α为奇数时幂函数为奇函数;α为偶数时幂函数为偶函数。

2.指数函数知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换知识点一 指数函数的概念一般地,函数x a y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R .1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,x a 无意义;若0<a ,则对于x 的某些值,x a 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义.2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R .3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下:(1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)x a 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.知识点二 指数函数的图象和性质一般地,指数函数x a y =(0>a 且1≠a )的图象和性质如下表所示:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数x a y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x 时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数x a y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大.(2)由于指数函数x a y =(0>a 且1≠a )的图象经过点⎪⎭⎫ ⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小.2. 函数x a y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数xy 2=与xy ⎪⎭⎫ ⎝⎛=21的图象关于y 轴对称.(1)指数函数x a y =(0>a 且1≠a )与函数x a y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数x y 2=与函数x y 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数x a y --=(0>a 且1≠a )(即xa y ⎪⎭⎫⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数x y --=2(即xy ⎪⎭⎫⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数x a y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.4.指数函数x a y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快; (2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图y = 1高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b )的图象特点 (1)若1>>b a ,则当0<x 时,总有10<<<x x b a ;当0=x 时,总有1==x x b a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>x x a b ;当0=x 时,总有1==x x b a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a <.6. 指数函数x a y =(0>a 且1≠a )的图象和性质再说明 指数函数x a y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0. 图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交;(2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数x a y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间.(2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.知识点三 指数函数的定义域和值域1 定义域(1)指数函数x a y =(0>a 且1≠a )的定义域为R .(2)函数()x f a y =(0>a 且1≠a )的定义域与函数()x f 的定义域相同. (3)函数()x a f y =的定义域与函数()x f 的定义域不一定相同. 例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R. 注意:求指数型复合函数的定义域时,先观察函数是()x a f y =型还是()x f a y =型. 2 值域(1)指数函数x a y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f a y =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()x a f y =的函数的值域时,转化为求()+∞∈=,0x a t 时,函数()t f y =的值域.知识点四 指数函数的单调性及其应用1 单调性当1>a 时,函数x a y =在R 上为增函数;当10<<a 时,函数x a y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减. 2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较; 类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高; 类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小. (2)应用于解简单不等式不等式可化为()()x g x f a a <的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.3.对数函数及其性质知识点总结本节知识点(1)对数函数的概念; (2)对数函数的图象及其性质; (3)与对数函数有关的函数的定义域; (4)与对数函数有关的函数的值域;(5)与对数函数有关的函数的单调性及其应用; (6)与对数函数有关的函数的奇偶性; (7)反函数.知识点一 对数函数的概念一般地,函数x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量,函数的定义域是()+∞,0. 对数函数概念的理解 (1)形如x y a log =;(2)底数a 满足0>a 且1≠a ; (3)真数是x ,而不是含x 的表达式; (4)函数的定义域为()+∞,0. 两种特殊的对数函数特别地,以10为底的对数函数x y lg =叫做常用对数函数;以无理数e 为底的对数函数x y ln =叫做自然对数函数.知识点二 对数函数的图象及其性质一般地,对数函数x y a log =(0>a 且1≠a )的图象和性质如下表所示:(+∞,0对数函数x y a log =(0>a 且1≠a )的图象经过三个关键点:()0,1,()1,a 和⎪⎭⎫⎝⎛-1,1a .利用对数函数图象的三个关键点,可以快速地作出对数函数图象的简图. 特别提醒指数函数x a y =(0>a 且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.根据这三个关键点,可以快速地作出指数函数图象的简图.不难得出:在同一平面直角坐标系中,对数函数x y a log =(0>a 且1≠a )图象的三个关键点与指数函数x a y =(0>a 且1≠a )图象的三个关键点关于直线x y =对称.底数对对数函数图象的影响 (1)对数函数的对称性结论 函数x y a log =(0>a 且1≠a )的图象与函数x y a1log =(0>a 且1≠a )的图象关于x 轴对称.事实上,x x x y a a alog log log 111-===-,因为函数()x f y =与函数()x f y -=的图象关于x 轴对称,所以函数x y a log =与函数x y a1log =的图象关于x 轴对称.观察在同一平面直角坐标系在,分别画出函数x y 2log =,x y 3log =,x y 21log =和x y 31log =的图象,如图所示,体会对数函数图象的对称性.(2)底数a 决定对数函数的单调性 当1>a 时,对数函数的图象从左到右是上升的,函数在()∞+0上为增函数;当10<<a 时,对数函数的图象从左到右是下降的,函数在()∞+0上为减函数.(3)底数a 的大小决定对数函数图象相对位置的高低不论是1>a ,还是10<<a ,在第一象限内,取相同的函数值时,图象所对应的对数函数的底数从左到右逐渐变大.(1)上下比较 在直线1=x 的右侧,a 越大,图象越靠近x 轴;当10<<a 时,a 越小,图象越靠近x 轴.(2)左右比较 比较图象与直线1=y 的交点,交点的横坐标越大,对应的函数的底数越大.注意 若比较图象与直线1-=y 的交点,交点的横坐标越大,对应的函数的底数越小.说明 在平面直角坐标系中,对数函数x y a log =的图象与直线1=y 的交点为()1,a ,即交点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就越大;对数函数x y a log =与直线1-=y 的交点为⎪⎭⎫⎝⎛-1,1a ,故在= log 13x12x3x2x第四象限内,交点的横坐标越大(即a1越大),对数函数的底数反而越小. 关于对数函数函数值正负的判断根据对数函数的图象,当1>a ,1>x ,或10<<a ,10<<x 时,函数值0>y ,简记为同区间为正;当1>a ,10<<x ,或10<<a ,1>x 时,函数值0<y ,简记为异区间为负.即同区间为正,异区间为负.特别地,当1=x 时,0=y ,即对数函数的图象恒过点()0,1. 指数函数与对数函数的关系指数函数与对数函数的性质的比较如下表所示:知识点三 与对数函数有关的函数的定义域(1)对数函数x y a log =的定义域为()+∞,0. (2)形如()()x f y x g log =的函数,其定义域由()()()⎪⎩⎪⎨⎧≠>>100x g x g x f 确定.(3)形如()x f y a log =的函数的定义域,必须保证每一部分都有意义. 知识点四 对数型函数的值域(1)对数函数x y a log =(0>a 且1≠a )的值域利用函数的单调性求解; (2)求形如()x f y a log =的复合函数的值域,先求出()x f 的值域,然后结合对数函数的单调性求出函数()x f y a log =的值域;(3)求形如()x f y a log =的复合函数的值域,其中复合函数()x f y a log =一般是关于x a log 的二次函数,故可以采用换元法求解,注意新元的取值范围. 知识点五 与对数函数有关的函数的单调性及其应用 1.对数值大小的比较(1)同底数的利用函数的单调性; (2)同真数的利用函数的图象;(3)底数与真数都不同的,利用中间数0和1(介值法). 2.解简单的对数不等式(1)底数确定时,利用对数函数的单调性求解; (2)当底数不确定时,注意对底数进行分类讨论.注意 求解时注意“定义域优先”的原则,要保证每个真数都大于0.点评 简单的对数不等式经过适当的变形一般都可化为()()x g x f a a log log <的形式,当1>a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧<>>x g x f x g x f 00;当10<<a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧>>>x g x f x g x f 0. 3.对数型复合函数的单调性对数型复合函数一般分为两类:()x f y a log =型和()x f y a log =型.(1)研究()x f y a log =型复合函数的单调性,令x t a log =,则只需研究x t a log =及()t f y =的单调性即可;(2)研究()x f y a log =型复合函数的单调性,首先由()0>x f 确定函数的定义域,然后判断()x f t =在定义域上的单调性,再结合对数函数的单调性,判断函数()x f y a log =的单调性,其核心是:同增异减.4.三角函数知识点总结一、基础概念 1、正角、负角和零角正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角正角 负角 零角2、象限角、轴线角象限角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在第几象限就说这个角是第几象限角.轴线角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在坐标轴上就说这个角是轴线角,这个角不属于任何项限3、角的集合:与任意角α终边相同的角构成一个集合 {}Z k k ∈⋅+=,360 αββ常见结论:(1)第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}Z k k k ∈+<<+⋅,36018090360αα第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z(2)终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 终边在x y =上的角的集合为{}Z k k ∈⋅+=,18045 αα 终边在x y -=上的角的集合为{}Z k k ∈⋅+=,180135 αα(3)任何一个象限角有可能是正角,也有可能是负角;任何轴线角有可能是正角、负角、零角; 小于 90的角不一定是锐角; 大于 90的角不一定是钝角; 终边相同的角不一定相等4、已知α是第几象限角,确定nα)(Z n ∈所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结高中数学中的幂、指数、对数和三角函数是重要的数学概念和知识点。

这些知识点涉及到数学的基本运算、函数的性质和变化规律等内容。

下面是对这些知识点的详细总结:一、幂和指数1.幂函数:幂函数是以底数为自变量的函数,形如f(x)=a^x,其中a为常数,x为实数。

幂函数的图像为指数增长或指数衰减的曲线。

2.指数函数:指数函数是以指数为自变量的函数,形如f(x)=a^x,其中a为底数,x为实数。

指数函数的图像为单调递增或单调递减的曲线。

3.指数运算法则:-a^m*a^n=a^(m+n)-(a^m)^n=a^(m*n)-(a*b)^n=a^n*b^n-a^(-n)=1/a^n-a^0=1,其中a不等于0-a^1=a二、对数1. 对数函数:对数函数是指以对数为自变量的函数,形如f(x)=loga(x),其中a为底数,x为正实数。

对数函数的图像为单调递增的曲线。

2.对数运算法则:- loga(m * n) = loga(m) + loga(n)- loga(m / n) = loga(m) - loga(n)- loga(m^n) = n * loga(m)三、三角函数1.三角比:- 正弦函数 sin(x):在单位圆上,横坐标为x点对应的边长除以圆的半径。

- 余弦函数 cos(x):在单位圆上,纵坐标为x点对应的边长除以圆的半径。

- 正切函数 tan(x):在单位圆上,横坐标为x点对应的边长除以纵坐标对应的边长。

2.三角函数的基本性质:-三角函数的定义域为全体实数,值域为[-1,1]。

- 三角函数的周期性:sin(x + 2π) = sin(x), cos(x + 2π) = cos(x), tan(x + π) = tan(x)。

- 三角函数的奇偶性:sin(-x) = -sin(x), cos(-x) = cos(x),tan(-x) = -tan(x)。

- 三角函数的反函数:反正弦函数 arcsin(x),反余弦函数arccos(x),反正切函数 arctan(x)。

最全的高中幂,指数,对数,三角函数知识点总结

最全的高中幂,指数,对数,三角函数知识点总结

一.幂 函 数一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。

注意:幂函数与指数函数有何不同?【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。

0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。

探究:整数m,n 的奇偶与幂函数nm x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?结果:形如nmx y =),,,(互质且n m Z n m ∈的幂函数的奇偶性(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称;(3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内. 三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 四、规律方法总结:1、幂函数)1,0(==ααx y 的图像:2、幂函数),,,,(互质q p Z q p p qx y ∈==αα的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.二.指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。

(完整版)指数函数、对数函数、幂函数的图像和性质知识点总结

(完整版)指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mn m naa a m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm nmnaa m n N n a a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y=a xa>10<a<1n 为奇数 n 为偶数图象定义域R值域(0,+∞)性质(1)过定点(0,1)(2)当x>0时,y>1;x<0时,0<y<1(2) 当x>0时,0<y<1;x<0时, y>1(3)在(-∞,+∞)上是增函数(3)在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数1、对数的概念(1)对数的定义如果(01)xa N a a=>≠且,那么数x叫做以a为底,N的对数,记作log Nax=,其中a 叫做对数的底数,N叫做真数。

指数对数幂函数知识点汇总

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.(5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.。

指数对数幂函数总结归纳

指数对数幂函数总结归纳

指数对数幂函数总结归纳一、指数函数:1.定义与性质:指数函数的定义域为实数集,值域为正实数。

当底数为正数且不等于1时,指数函数是增函数;当底数为0和1之间的正数时,指数函数是减函数。

指数函数在x轴的值为1,右侧的值逐渐增加或递减。

它具有这样的性质:a^x * a^y = a^(x+y),(a^x)^y = a^(xy)。

2.图像:指数函数的图像在底数大于1时,呈上升曲线,称为指数增长曲线;在底数在0和1之间时,呈下降曲线,称为指数衰减曲线。

图像通过点(0,1),且在x轴右侧逐渐上升或递减。

指数增长曲线在x趋近无穷大时接近y轴,但不会与y轴相交;指数衰减曲线在x趋近无穷大时接近x轴。

3.应用:指数函数的应用十分广泛。

它可以用于描述一些增长或衰减的现象,如人口增长、物质衰变等。

在金融领域,指数函数可以用于计算复利。

在工程中,它可以用于描述电荷的衰减和放电等。

二、对数函数:对数函数是指数函数的反函数。

它的一般形式为y = loga(x),其中a是底数,x是真数,y是函数值。

1.定义与性质:对数函数的定义域为正实数集,值域为实数集。

当底数a大于1时,对数函数是增函数;当底数在0和1之间时,对数函数是减函数。

对数函数具有这样的性质:loga(x) + loga(y) = loga(xy),loga(x^y) = yloga(x)。

2.图像:对数函数的图像在底数大于1时,呈上升曲线;在底数在0和1之间时,呈下降曲线。

图像通过点(1,0),且右侧的值逐渐增大或减小。

对数函数在x趋近无穷大时接近y轴,但不会与y轴相交;在x轴右侧,它的值逐渐增大。

3.应用:对数函数在数学和科学中有广泛的应用。

它可以用于简化复杂的乘法和除法运算,将其转化为加法和减法。

在计算中,对数函数可以用于求解指数方程,解决一些复杂的问题。

在物理学中,对数函数可以用于描述一些指数增长的现象,如地震的震级等。

三、幂函数:幂函数是以x为底数的多项式函数。

(完整版)指数函数、对数函数和幂函数知识点归纳

(完整版)指数函数、对数函数和幂函数知识点归纳

一、 幂函数1、幂的有关概念正整数指数幂:...()n na a a a n N =∈ 零指数幂:01(0)a a =≠负整数指数幂:1(0,)p p a a p N a -=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n =>∈>且 负分数指数幂的意义是:11(0,,,1)mnm nmnaa m n N n aa-==>∈>且2、幂函数的定义一般地,函数ay x =叫做幂函数,其中x 是自变量,a 是常数(我们只讨论a 是有理数的情况). 3、幂函数的图象幂函数a y x =当11,,1,2,332a =时的图象见左图;当12,1,2a =---时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质:(1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数。

4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >).1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-. log log n a a M n M =.(00M N >>,,0a >,1a ≠)b mnb a n am log log =( a, b 〉 0且均不为1) 2.换底公式:log log log m a m NN a = ( a 〉 0 , a ¹ 1 ;0,1m m >≠)常用的推论:(1)log log 1a b b a ⨯= ;1log log log =⋅⋅a c b c b a .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3)01log =a ,1log =a a (4)对数恒等式N a N a =log .一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。

高中数学 必修1 指数函数及幂函数 总复习

高中数学 必修1 指数函数及幂函数 总复习

必修1 数学——指数函数及幂函数一、指数函数 1.整数指数幂)0(10≠=a a; )0,(1≠∈=-a N n aann; nmnmaa=2、指数函数【1】一般形式:()0,1x y a a a =>≠; 【2】定义域:(,)-∞+∞;值域:(0,)+∞;【3】函数值变化情况:当1a >时,1(0)1(0)1(0)x x a x x >>⎧⎪==⎨⎪<<⎩; 当01a <<时,1(0)1(0)1(0)xx ax x <>⎧⎪==⎨⎪><⎩【4】单调性:当1a >时,x y a =是增函数;当01a <<时,x y a =是减函数【类型题归纳】【例题1】下列哪些是指数函数:(1)(4)xy =-;(2)212x y -=;(3)xy a =;(4)1(21)(,1)2xy a a a =->≠;(5)23xy =⋅.【总结升华】判断一个函数是否为指数函数,要紧扣指数函数的定义:其一,底数大于0且不等于1;其二,幂指数是单一的自变量x ;其三,系数为1,且没有其他的项. 2、设137x=,则( )A 、21x -<<-B 、32x -<<-C 、10x -<<D 、01x << 3、若函数()(0,1)xf x a a a =>≠,则下列等式不正确的是( )A 、()()()f x y f x f y +=B 、 ()()()n n n f xy f x f y ⎡⎤=⎣⎦C 、 ()()()f x f x y f y -=D 、 ()()nf nx f x =【总结】对于()()()f x y f x f y +=类型的抽象函数,xy a =可以作为它的一个经典原型,用来解决实际问题。

4、化简46394369)()(a a ⋅的结果为( )A 、a 16B 、a 8C 、a 4D 、a 2【例题5】求下列函数的定义域、值域:(1)1421x x y +=++; (2)1(01xxa y a a -=>+,且1)a ≠.【变式训练】求下列函数的定义域、值域:(1)||2()3x y -=; (2)2120.5x x y +-=.【例题6】比较下列各组数的大小. (1) 2.51.7,31.7;(2)0.10.20.8,1.25-;(3)0.3 3.11.7,0.9;(4) 4.1 3.64.5,3.7.【例题7】讨论函数221()()3x xf x -=的单调性,并求其值域.【变式训练】求函数|12|1()2x y +=的单调区间.二、幂函数(1)定义:一般地,函数ay x =叫做幂函数,其中x 是自变量,α是常数. (2)注意:对于幂函数,我们只讨论11,2,3,,12α=-时的情形.(3)图象与性质:2、幂函数的图象不过第四象限3、幂函数y x α=的奇偶性的判断:令q pα=(其中,p q 互质,,p q N ∈)【1】若p 是奇数,则q pyx =的奇偶性取决于q 是奇数或偶数。

指数函数对数函数和幂函数知识点归纳

指数函数对数函数和幂函数知识点归纳

指数函数对数函数和幂函数知识点归纳指数函数、对数函数和幂函数是数学中常见的函数类型,它们有着重要的数学性质,并广泛应用于科学、经济和工程等领域。

本文将对这三类函数的定义、性质和应用进行归纳。

指数函数是以一个常数为底数的一个数的幂次运算,具有以下一般形式:f(x)=a^x,其中a为常数且不等于1、指数函数的定义域为全体实数,值域为(0,+∞)或(a^m,+∞)(若a>1时,其中m为任意正数)。

指数函数具有以下性质:1.当x趋于负无穷时,指数函数趋于0;当x趋于正无穷时,指数函数趋于正无穷。

2.对于任意正实数a,指数函数都是严格递增的。

即,当x1<x2时,f(x1)<f(x2)。

3. 指数函数的导数与原函数相等。

即,f'(x) = a^x * ln(a),其中ln(a)为a的自然对数。

指数函数具有广泛的应用,例如在经济学中,指数函数可以描述人口增长、物价上涨等现象。

在科学领域中,指数函数可以用于描述放射性衰变、细菌繁殖等过程。

对数函数是指数函数的逆运算,具有以下一般形式:f(x) =log⁡a(x),其中a为常数且大于0且不等于1、对数函数的定义域为(x>0),值域为全体实数。

对数函数具有以下性质:1.当x趋于0时,对数函数趋于负无穷;当x趋于正无穷时,对数函数趋于正无穷。

2.对于任意正实数a,对数函数都是严格递增的。

即,当x1<x2时,f(x1)<f(x2)。

3. 对数函数的导数为f'(x) = 1/ (x * ln(a))。

对数函数同样具有广泛的应用。

例如在经济学中,对数函数可以用于描述复利计算、收益率等指标。

在物理学和工程学中,对数函数可以用于描述声音强度、震动等现象。

幂函数是指数函数和常数函数的乘积,具有以下一般形式:f(x)=x^a,其中a为常数。

幂函数的定义域为全体实数,值域为[0,+∞)或(-∞,+∞)。

幂函数具有以下性质:1.当a为正数时,幂函数是严格递增的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. y=f(x) →y=f(x)+b:上下平移 y=f(x)+b, b>0 y=f(x) y=f(x)+b, b<0
b>0时,向上平移b个单位; b<0时,向下平移|b|个单位.
对称变换 y=f(x) →y=f(-x): (关于y轴对称) y=f(x) →y= -f(x): (关于x轴对称) y=f(x) →y= -f(-x): (关于原点对称)
则 x 叫做 a 的 n 次方根。
记为: n a
根指数
根式
被开方数
根式的性质 1. 当n为奇数时:
正数的n次方根为正数,负数的n次方根为负数
记作: x n a
2. 当n为偶数时, 正数的n次方根有两个(互为相反数)
记作: x n a
3. 负数没有偶次方根。 4. 0的任何次方根为0。
常用公式
值域为 0≤y<1
2.
y
(1)
1 x3
2
x≠ - 3
1 0 x3
y≠1, y>0 值域为 (0,1)∪(1,+∞)
指数函数3(函数的图象变换) 平移变换 1. y=f(x) →y=f(x-a):左右平移
y=f(x) y=f(x-a),a>0 y=f(x-a),a<0
a>0时,向右平移a个单位; a<0时,向左平移|a|个单位.
根式
知识点
1.整数指数幂的概念
an a a aa(n N*)
n个a
a0 1(a 0)
a n
1 an
(a
0, n N*)
2.运算性质
a m an a mn (m, n Z ) (am )n a mn (m, n Z ) (ab)n an bn (n Z )
根式的定义
一般地,若 xn a(n 1, n N*)
解答见后面
u 3 :单增
复合函数:同增,异减 减区间为(-∞,2];增区间为[2,+∞)
BC A
A’ B’ C’
f(a)=SAA’C’C-SAA’B-SB’C’C
(f2()af)(a)1 g(a) 1a(a2
2
2
ag(a2) 2 aa11)
1 [( a 2 a 1) ( a 1 a )] 2
1(
1
1
)0
2 a 2 a 1 a 1 a
7. (★★★★)当a≠0时,y=ax+b 和 y=bax
y=f(-x)
y=f(x)
y= -f(-x)
y= - f(x)
绝对值变换 y=f(x) → y=f(|x|):把y轴右边的图像翻折到y轴左边 y=f(x) → y=|f(x)|:把x轴下方的图像翻折到x轴上方
y=f(x)
f(|x|)
y=|f(x)|
反函数变换 y=f(x) →y= f-1(x): (关于 y=x 对称)
y
1
x
2
y 1 x
1
2
把 y 轴右边的图形翻折到 y 轴的左边
3. 作出函数 y= │ 2x -1│的图像
y= │ 2x -1│
y= 2x y= 2x -1
1
把 x 轴下方的图形翻折到 x 轴上方
4. 作出函数 y=|x-2|(x+1) 的图象
分段函数:x≥2, y=(x-2)(x+1) x<2, y= -(x-2)(x+1)
(2)(3 25 125) 4 5
5
a6
12 55 54 5.
(1)题把根式化成分数指数幂的形式,再计算。
(2)题先把根式化成分数指数幂的最简形式, 然后计算。
举例
1.用分数指数幂表示下列分式(其中各式字母均为正数)
7
(1) 3 a 4 a a12
7
(2) a a a
a8
(3) 3 (a b)2
⑵ y 3 5x1 ⑶ y 2 x 1
函数的定义域就是使函数表达式有意义的自变量 x的取值范围。
(1)定义域为{x|x≠1};
1
0 x 1
值域为{y|y>0且y≠1}
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
(2)
定义域为{x|
x
1 5
}
值域为{y|y≥1}
5x 1 ≥0
练习
2
4
⑴ 比较大小: (2.5) 3< ,(2.5) 5
2.532 2.532 , 2.554 2.554
底数化为正数。
(2). 已知下列不等式,试比较m、n的大小
(2)m (2)n 33
m<n 1.1m 1.1n
m<n
指数函数的应用
例1. 求下列函数的定义域、值域:
1
⑴ y 0.4 x1
nm
x x2 4
x 2 -4=( m n ) 2 -4=( m n ) 2
nm
nm
2 m n
A=
nm
m n m n nm nm
分子,分母同乘 mn
2mn
mn mn
讨论:见后
2mn
1. m>0,且 n>0,则 A=
mn mn

m n,则
A=
m
n
;若
m<n,则
n
A=
m
n
m
2nm
2. 设 m<0,且 n<0,则 A=
(
m
1 4
n
3 8
)8
.
m2
n3
3. 计算下列各式:
⑴ (3 25 125 ) 4 5 ; 12 55 54 5

a2 (a>0).
a 3 a2
6 a5
1
1
1
1
4 化简: (x 2 y 2 ) (x 4 y 4 )
1
1
x4 y4
5 已知 x+x-1=3,求下列各式的值:
1
1
3
3
(1)x 2 x 2 , 5 (2)x 2 x 2 . 2 5
y=|x-2|(x+1)
-1
2
x<2的部分关于 x 轴对称
6. 如图,点A、B、C都在函数y= x 的图象上,它们的
横坐标分别是a、a+1、a+2.又A、B、C在x轴上的射影分 别是A′、B′、C′,记△AB′C的面积为f(a), △A′BC′ 的面积 为g(a). (1)求函数f(a)和g(a)的表达式; (2)比较f(a)与g(a)的大小,并证明你的结论.
2
x2 x1 0
2
x1 x2 2 0
x1, x2 ,1
y2/y1>1,函数单调增
x1 x2 2 0
x1, x2 1, y2/y1<1,函数单调减
解法二.(用复合函数的单调性)
设: u x2 2x
则:
y
1
u
2
在R内单减
u x2 2x 在[-∞,1)内,单减;[1,∞)内,单增。
8
2 3
,100
1 2
,
(
1
)
3
,
(16
)
3 4
4 81
解:
2
83
2
(23 ) 3
3 2
2 3
22
4
1
100 2
(10
2
1
)2
2( 1 )
10 2
10 1
1
10
( 1 )3 (22 )3 2(2)(3) 26 64 4
(16
)
3 4
(
2
)
4(
3 4
)
( 2)3
27
81
3
3
8
2. 用分数指数幂的形式表示下列各式:
mn nm
若 n m,则
mn
A=


n<m,则
nm
A=
.
n
m
m n
综上所述得:A=
n
n
m
m
(m (m
n) n)
指数函数
指数函数的定义 函数 y=ax, (a>0,a≠1) 叫做指数函数, 其中x是自变量,函数定义域是R。
注意 类似与 2ax,ax+3的函数,不能叫指数函数。
y a x (a 0且a 1) 的图象和性质。
y≥1
(3)所求函数定义域为R 值域为{y|y>1}
例2. 求函数 y 1 x22x 的单调区间,并证明。 2
解一(作商法):设,x1<x2
结合图像
1 x22 2x2
y2 y1
2 1
x12 2 x1
1 x12 x12 2x2 2x1 2
1
(
x2
x1
) ( x2
x1 2 )
2
2x 2
) 1
2 2 2(2x 1 2x 2 ) 2x 2 1 2x 1 (2x 1 1)(2x 2 1)
2x 在R内单增,x1<x2:f(x1)<f(x2) 所以对于a取任意实数,f(x)为增函数。
练习
求下列函数的定义域和值域
1. ax 1
y 1ax
a>1
0<a<1
当a>1时x≤0 ; 指数幂和0的分数指数幂
m
an
1
m
an
(a>0,m,n∈N*,且n>1)
0的正分数指数幂等于0
0的负分数指数幂无意义 有理指数幂的运算性质
a m a n a mn (m, n Q) (a m )n a mn (m, n Q) (ab)n a n bn (n Q)
相关文档
最新文档