各地高考数学文科分类汇编——统计与概率
2019年全国高考文科数学分类汇编---概率统计
2019年全国高考文科数学分类汇编---概率统计1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)1 25;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K 的值,独立性检验,属于简单题目.4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.的(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1) 增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050=;(2)平均数0.3;标准差0.17. 【解析】 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。
最新各地高考数学文科分类汇编——统计与概率
(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模y t型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.(II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。
全国各地高考数学试题分类汇编11概率与统计文
全国各地高考文科数学试题分类汇编11:概率与统计一、选择题 1 .( 高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为 ( )A .23B .25C .35D .910【答案】D 2 .( 高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .B .0.4C .D . 【答案】B 3 .( 高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14C .32D .74【答案】D 4 .( 高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A .23B .13C .12D .16【答案】C 5 .( 高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .( 高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A .1169B .367 C .36D 677【答案】B 7 .( 高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是0.04组距频率0.05组距频率0.04组距频率0.04组距频率0.010.020.030.010.020.030.040.010.020.030.010.020.03(B)(A)(C)(D)【答案】A8 .( 高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )8 7 79 4 0 1 0 9 1xA.B.Error! Cannot insert return character.C.1 4D.1 6【答案】B9 .(高考陕西卷(文))对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图.根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为()A.B.0.20 C.D.【答案】D10.(高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.01【答案】D11.(高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B12.四名同学根据各自的样本数据研究变量,x y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且 2.347 6.423y x=-; ② y与x负相关且 3.476 5.648y x=-+;③ y与x正相关且 5.4378.493y x=+; ④ y与x正相关且 4.326 4.578y x=--.其中一定不正确...的结论的序号是 A.①② B.②③ C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C二、填空题 14.( 高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.( 高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.( 高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.( 高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________.【答案】2318.( 高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】10 19.( 上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】78 20.( 高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________.【答案】(Ⅰ)7 (Ⅱ)2 21.( 高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.( 上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示). x 1 2 3 4 5 6 y21334【答案】57三、解答题 23.( 高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA •一种数量积为-1的有15OA OA •,1624263435,,,,OA OA OA OA OA OA OA OA OA OA •••••六种 数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ••••四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ••••四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p = 因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.( 高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 组别 ABCDE人数5010015015050干评委, 其中从组中抽取了6人. 请将其余各组抽取的人数填入下表.组别 ABCDE人数 50 100 150 150 50 抽取人数61号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人. (Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P .所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92.25.( 高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生. (Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ; 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61. (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.( 高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.【答案】27.( 高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列产品编号A 1 A 2 A 3 A 4 A 5输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率甲 21001027 2100376 2100697乙 21001051 2100696 2100353质量指标(x, y, z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A6A7A8A9A10质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.【答案】28.(高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4). 与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:Y 51 48 45 42 频数2463平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.( 高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== 255306p == (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430254014503176010337010208059030x +++⨯++⨯++⨯++⨯+==2069302120842069150.5303030x x ===--30.( 高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.【答案】31.( 高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率; /频率组距0.0100.0150.0200.0250.030100110120130140150需求量/x t(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;32.( 高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:A B C D E 身高 体重指标(Ⅰ)从该小组身高低于的同学中任选2人,求选到的2人身高都在以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在以上且体重指标都在[,中的概率 【答案】33.(高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413.(III)从3月5日开始连续三天的空气质量指数方差最大.34.(高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B 从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手:生产能手 非生产能手 合计25周岁以上组 15 45 60 25周岁以下组 15 25 40合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.( 高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率. 【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A •.12121()=P()()()4P A A A P A P A •==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =•+••+•.1312312()()P B P B B B B B B B =•+••+• 1312312()()()P B B P B B B P B B =•+••+•1312312()()()()()()()P B P B P B P B P B P B P B =•+••+•111484=++ 58=. 36.( 高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 2.5服用B 药的20位患者日平均增加的睡眠时间:3.2 1.6(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=++++++++++++++++++=, 1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++= 由以上计算结果可得x >y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: A 药 B 药 6 0. 5 5 6 8 9 8 5 5 2 21. 1 2 2 3 4 6 7 8 9 9 8 7 7 6 5 4 3 3 22. 1 4 5 6 7 5 2 1 03.2从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎上,而B 药疗效的试验结果有10的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。
高考数学(文科)主干知识四:概率与统计
高考数学(文科)主干知识四:概率与统计考试要求1.统计(1)随机抽样会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计①会列频率分布表,会画频率分布直方图、茎叶图.② 理解样本数据标准差的意义和作用,会计算数据标准差. ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程;不要求记忆线性回归方程系数公式()()()1122211,nni i i i i i nni i i i x y n x y x xy yb a y b xx n xx x-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:2.概率(1)古典概型理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率. (2)几何概型复习关注解答概率与统计试题时要注意分类与整合思想的运用,关注基础知识和基本方法与解题规范强化训练一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的. 1.某校有男生1500人,女生1200人,为了解该年级学生的健康情况,从男生中任意抽取30人,从女生中任意抽取24人进行调查.这种抽样方法是( ) A .简单随机抽样法B .抽签法C .系统抽样法D .分层抽样法2.调查某厂工人生产某种产品的能力,随机抽查了2000位工人某天生产该产品的数量.产品数量的分组区间为[45,50),[50,55), [55,60),[60,65),[65,70),由此得到频率分布直方图如图示,这20名工人中一天生产该产品数量在[55,70)的人数是( ) A .1050B .950C . 210D .17903.从1008名学生中抽取20人参加义务劳动。
高三数学 概率、统计(文科)
第十一章 概率一、知识结构:二、重点知识回顾1. 事件与基本事件::S S S ⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.2. 频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往 在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概 率是一个常数,不随具体的实验次数的变化而变化3. 互斥事件与对立事件:4. 古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例. 注:两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.事件 定义集合角度理解 关系互斥事件事件A 与B 不可能同时发生两事件交集为空事件A 与B 对立,则A与B 必为互斥事件;事件A 与B 互斥,但不一是对立事件 对立事件事件A 与B 不可能同时发生,且必有一个发生两事件互补5. 古典概型与几何概型的概率计算公式:古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积)注:① 两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同. ② 事件A 的概率()P A 的范围为:0()1P A ≤≤6. 概率类型及其计算公式⑴ 等可能事件的概率公式:⑴()n mP A =⑵ 互斥事件A 与B 有一个发生的概率公式:()P A B +=()()P A P B +注:① 若事件A 与B 互斥,则事件A 与B 、A 与B 、A 与B 也都是互斥事件 ② 对立事件A 与B 的概率加法公式:()()1P A P B += ⑶ 相互独立事件同时发生的概率公式:()()()P AB P A P B =注:① 若事件A 、B 相互独立,则事件A 、B 至少有一个不发生的概率是1()1()()P AB P A P B -=-② 如果事件A 与B 相互独立,那么事件A 与B 至少有一个发生的概率是1()1()()P A B P A P B -⋅=-⑷ 独立重复试验概率公式:()(1)k kn k n n P k C p p -=- 即事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率三、考点剖析【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。
概率统计(文科)
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。
2022年数学文高考真题分类汇编专题07概率与统计
2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。
统计、概率-全国各地文科数学高考试题汇总 知识点总结(近5年)
全国各地文科数学(统计、概率)高考试题汇总(近5年)知识点归纳1 事件的定义:随机事件;必然事件;不可能事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3、等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件,其事件A 的概率()mP A n=4、互斥事件的概念:不可能同时发生的个事件叫做互斥事件 A 、B 互斥,即事件A 、B 不可能同时发生,这时P(A •B)=0)P(A+B)=P (A )+ P(B)。
若事件A 与B 不是互斥,运用P (A+B )=1-P (A B •)进行计算5、对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生,()()A P A p -=1 6、事件的和的意义:事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生 当A 、B 为互斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的, 因此当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥),且有P (A +A )=P (A )+P (A )=17、相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅8、独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率n k k n n P P C k P --=)1()( 表示事件A在n 次独立重复试验中恰好发生了.....k .次.的概率 9、解答概率问题的三个步骤:(1)确定事件的性质:事件是等可能,互斥,独立还是重复独立事件; (2)判断事件的运算:所求事件是由哪些基本事件通过怎样运算而得;(3)运用公式计算其事件的概率:等可能事件:()mP A n=,独立事件:()()()P A B P A P B ⋅=⋅互斥事件: P (A +B )=P (A )+P (B ),对立事件:P (A )=1-P (A )2011山东18.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女。
高考数学真题分类汇编文科-概率与统计(文科)
年高考数学真题分类汇编文科-概率与统计(文科)————————————————————————————————作者:————————————————————————————————日期:2一、选择题1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ) . A.总体 B.个体C.样本的容量D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ). A.100 B.150 C.200 D.2503.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.204.(2014湖南文5)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( ). A.45 B. 35 C.25 D. 155.(2014江西文3)掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118 B.19 C.16 D.1126.(2014陕西文6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( ). A.15 B. 25 C. 35 D. 457.(2014辽宁文6)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .2π B .4π C .6π D .8π8.(2014北京文8)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),如图所示记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟9.(2014大纲文7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种10.(2014湖北文5)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则( ). A .123p p p << B .213p p p << C .132p p p <<D .312p p p <<11.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ). A.123p p p =< B. 231p p p =< C.132p p p =< D. 123p p p == 12.(2014湖北文6)根据如表所示样本数据x 345678y4.02.50.5得到的回归方程为ˆybx a =+,则( ). A .0a >,0b < B .0a >,0b > C .0a <,0b <D .0a <,0b >13.(2014陕西文9)某公司10位员工的月工资(单位:元)为1210,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ).A.x ,22100s +B.100x +,22100s +C. x ,2sD.x +100,2s14.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)[)[)[)[]12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ).O 5430.80.70.5tp 0.5- 2.0- 3.0-A. 6B. 8C. 12D. 1815.(2014江西文7)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查了52名中学生,得到统计数据如表1至表4所示,则与性别有关联的可能性最大的变量是( ) 表1 表2表3 表4A.成绩B.视力C.智商D.阅读量二、填空题16.(2014新课标Ⅱ文13)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .17.(2014浙江文14)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是______________.18.(2014重庆文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_________(用数字作答). 19.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为 件.20.(2014新课标Ⅰ文13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率成绩 性别不及格及格总计男 6 14 20 女 10 22 32 总计163652视力 性别好 差 总计男 4 16 20 女 12 20 32 总计163652智商 性别偏高正常总计男 8 12 20 女 8 24 32 总计163652阅读量 性别丰富 不丰富 总计男 14 6 20 女 2 30 32 总计163652171615141312/kPa舒张压频率/组距0.360.080.160.24O为 .21.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.22. (2014广东文12)从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为________. 23.(2014江苏4)从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率 是 .24.(2014大纲文13)6(2)x -的展开式中3x 的系数为 .(用数字作答)25.(2014福建文13)如图所示,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 .26.(2014江苏6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[]80130,上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm .三、解答题27.(2014新课标Ⅰ文18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)作出这些数据的频率分布直方图;频率/组距100 90 80 110 120 130 0.020 0.025 0.030 0.0100.015 底部周长/cm(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?28.(2014重庆文17)(本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示: 洞穿高考预测题六(I )求频率分布直方图中a 的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率. 29.(2014陕西文19)(本小题满分12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表所示:赔付金额(元) 0 1000 200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;频率组距成绩(分)7a 6a 3a 2a100908070605000.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0O78910115 12质量指0.00.0(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.30. (2014山东文16)(本小题满分12分) 洞穿高考例3.11海关对同时从,,A B C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C 数量50 150100(1)求这6件样品中来自,,A B C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 31.(2014安徽文17)(本小题满分12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[]0,2,(]2,4,(]4,6,(]6,8,(]8,10,(]10,12.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:))()()(()(22d b c a d c b a bc ad n K ++++-=.32.(2014北京文18)(本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:()P K k 20≥0.10 0.05 0.010 0.005 k 02.7063.8416.6357.879组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7[12,14)6组距频率204681012)(小时时间025.0100.0570.0501.0125.0(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).33.(2014大纲文20)(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.34. (2014新课标Ⅱ文19)(本小题满分12分)洞穿高考例3.3某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 94 4 0 4 4 89 75 1 2 2 4 56 67 7 789 9 7 6 6 5 3 3 2 1 1 06 0 1 1 2 3 4 6 8 8 9 8 87 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 07 0 0 1 1 3 4 4 9 6 6 5 5 2 0 0 8 1 2 3 3 4 5 6 3 2 2 2 09 0 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价. 35.(2014福建文20)(本小题满分12分)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035-4085元为中等偏下收b a频率组距阅读时间18161412108642O8 [14,16) 2 9[16,18) 2 合计100入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如表所示:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.36.(2014广东文17)(本小题满分13分)洞穿高考例3.3某车间20名工人年龄数据如表所示:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.37.(2014辽宁文18)(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:()22112212211212n n n n n n n n n χ++++-=,38.(2014湖南文17)(本小题满分12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()a b a b a b a b a b a b a b a b ,,,,,,,,,,,,,,,, ()()()()()()()a b a b a b a b a b a b a b ,,,,,,,,,,,,,. 其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.39.(2014天津文15)(本小题满分13分)某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如表所示:一年级 二年级 三年级 男同学A B C 女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.40.(2014四川文16)(本小题满分12分)()2P k χ≥ 0.100 0.050 0.010 k 2.706 3.841 6.635一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a b c +=”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.41.(2014江苏22)(本小题满分10 分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球, 这些球除颜色外完全相同.(1)从盒中一次随机取出2个球, 求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球, 其中红球、 黄球、 绿球的个数分别记为1x ,2x ,3x ,随机变量X 表示1x ,2x ,3x 中的最大数. 求X 的概率分布和数学期望()E X .42.(2014江西文21)(本小题满分14分)将连续正整数*1,2,,()n n ∈N 从小到大排列构成一个数123n ,()F n 为这个数的位数(如12n =时,此数为123 456 789 101 112,共有15个数字,(12)15F =),现从这个数中随机取一个数字,()p n 为恰好取到0的概率.(1)求(100)p ;(2)当2014n ≤时,求()F n 的表达式;(3)令()g n 为这个数中数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,*{|()1,100,}S n h n n n ==∈N ≤,求当n S ∈时()p n 的最大值.43.(2014天津文20)(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}11212n n i A x x x x q x q x M i n -==+++∈=,,,,,, (1)当3,2==n q 时,用列举法表示集合A ;(2)设111212,,,+,n n n n s t A s a a q a q t b b q b q --∈=+++=++其中12i i a b M i n ∈=,,,,,,求证:若,n n b a <则t s <.。
2024全国高考真题数学汇编:概率与统计章节综合
2024全国高考真题数学汇编概率与统计章节综合一、单选题1.(2024上海高考真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势2.(2024天津高考真题)下列图中,线性相关性系数最大的是()A .B .C .D .二、多选题3.(2024全国高考真题)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x ,样本方差20.01s ,已知该种植区以往的亩收入X 服从正态分布 21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布 2N x s,则()(若随机变量Z 服从正态分布 2,N,()0.8413P Z )A .(2)0.2P XB .(2)0.5P XC .(2)0.5P Y D .(2)0.8P Y 三、填空题4.(2024上海高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,已知小申完成A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.5.(2024天津高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为;已知乙选了A 活动,他再选择B 活动的概率为.6.(2024全国高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为.四、解答题7.(2024全国高考真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p ,设p 为升级改造后抽取的n 件产品的优级品率.如果p p 150件产品的数据,能否认为生12.247 )附:22()()()()()n ad bc K a b c d a c b d2P K k0.0500.0100.001k3.8416.63510.8288.(2024上海高考真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩0,0.50.5,11,1.51.5,22,2.5优秀5444231不优秀1341471374027(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:22(),n ad bc a b c d a c b d 其中n a b c d , 2 3.8410.05P .)9.(2024北京高考真题)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:赔偿次数01234单数800100603010假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率.(1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差.(i )记X 为一份保单的毛利润,估计X 的数学期望 E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中 E X 估计值的大小.(结论不要求证明)10.(2024全国高考真题)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q (1)若0.4p ,0.5q 5分的概率.(2)假设0p q ,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?参考答案1.C【分析】根据相关系数的性质可得正确的选项.【详解】对于AB ,当气候温度高,海水表层温度变高变低不确定,故AB 错误.对于CD ,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C 正确,D 错误.故选:C.2.A【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 3.BC【分析】根据正态分布的3 原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ,所以 2.1,0.1Y N ,故 2 2.10.1 2.10.10.84130.5P Y P Y P Y ,C 正确,D 错误;因为 1.8,0.1X N ,所以 2 1.820.1P X P X ,因为 1.80.10.8413P X ,所以 1.80.110.84130.15870.2P X ,而 2 1.820.1 1.80.10.2P X P X P X ,B 正确,A 错误,故选:BC .4.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,,,A B C 题库的比例为:5:4:3,各占比分别为543,,121212,则根据全概率公式知所求正确率5430.920.860.720.85121212p .故答案为:0.85.5.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为 2435C 3C 5P M ;乙选了A 活动,他再选择B 活动的概率为 133524351C 2C C P MN C P N M P M故答案为:35;126.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .该轮得分的概率 631448k P X,所以 31,2,3,48k E X k .从而 441234113382k k k E X E X X X X E X .记 0,1,2,3k p P X k k .如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p .而X 的所有可能取值是0,1,2,3,故01231p p p p , 1233232p p p E X .所以121112p p,1213282p p ,两式相减即得211242p,故2312p p .所以甲的总得分不小于2的概率为2312p p .故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.7.(1)答案见详解(2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p ,根据题意计算p .【详解】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得2215026302470754.687550100965416K,因为3.841 4.6875 6.635,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150,用频率估计概率可得0.64p ,又因为升级改造前该工厂产品的优级品率0.5p ,则0.50.50.5 1.650.56812.247p ,可知p p所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 8.(1)12500(2)0.9h(3)有【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【详解】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25 290001250058.(2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.51391911794328580222220.9 .则估计该地区初中学生日均体育锻炼的时长为0.9小时.(3)由题列联表如下:1,2其他合计优秀455095不优秀177308485合计222358580提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中0.05 .22580(4530817750) 3.976 3.84195485222358.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.9.(1)110(2)(i)0.122万元;(ii)这种情况下一份保单毛利润的数学期望估计值大于(i )中 E X 估计值【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设 为赔付金额,则 可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求 的分布列及数学期望,从而可求 E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求 E Y ,从而即可比较大小得解.【详解】(1)设A 为“随机抽取一单,赔偿不少于2次”,由题设中的统计数据可得 603010180010060301010P A.(2)(ⅰ)设 为赔付金额,则 可取0,0.8,1.6,2.4,3,由题设中的统计数据可得 800410010,0.810005100010P P ,603( 1.6)100050P ,303( 2.4)1000100P ,101(3)1000100P,故 4133100.8 1.6 2.430.27851050100100E故 0.40.2780.122E X (万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255,故 0.1220.40320.40.1252E Y (万元),从而 E X E Y .10.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q 甲,331(1)Pq p 乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,比赛成绩不少于5分的概率 3310.610.50.686P .(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q 甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p 乙,0p q ,3333()()P P q q pq p p pq 甲乙2222()()()()()()q p q pq p p q p pq q pq p pq q pq2222()333p q p q p q pq 3()()3()[(1)(1)1]0pq p q pq p q pq p q p q ,P P 甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,比赛成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q, 3213511C 1P X p q q ,3223(10)1(1)C (1)P X p q q ,33(15)1(1)P X p q ,332()151(1)1533E X p q p p p q记乙先参加第一阶段比赛,比赛成绩Y 的所有可能取值为0,5,10,15,同理 32()1533E Y q q q p()()15[()()3()]E X E Y pq p q p q pq p q 15()(3)p q pq p q ,因为0p q ,则0p q ,31130p q ,则()(3)0p q pq p q ,应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.。
2018年各地高考数学文科分类汇编——统计与概率
(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4 D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5根据2010年至y t=-+;2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y $=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y $=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人. (II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。
2022年高考数学真题分类汇编专题:统计与概率
2022年高考数学真题分类汇编专题:统计与概率一、单选题(共7题;共35分)1.(5分)(2022·新高考Ⅱ卷)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种()A.12种B.24种C.36种D.48种【答案】B【解析】【解答】因为丙丁相邻,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;甲不在两端,则甲在三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式.故答案为:B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解.2.(5分)(2022·全国乙卷)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【解答】对于A:甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,故A正确;对于B:乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,故B正确;对于C :甲同学周课外体育运动时长大于 8 的概率的估计值 616=0.375<0.4 ,故C 错误;对于D :乙同学周课外体育运动时长大于 8 的概率的估计值 1316=0.8125>0.6 ,故D 正确. 故选:C【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案即可.3.(5分)(2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【解答】解:对于A ,讲座前中位数为70%+75%2>70%, 所以A 错;对于B ,讲座后问卷答题的正确率只有1个是80%,4个85%,剩下全部大于等于90%, 所以讲座后问卷答题的正确率的平均数大于85% ,所以B 对;对于C ,讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;对于D,讲座后问卷答题的正确率的极差为100%-80%=20% ,讲座前问卷答题的正确率的极差为95%-60%=35%>20% ,所以D错.故选:B.【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.4.(5分)(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【解答】解:从6张卡片中无放回抽取2张,共有如下15种情况:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),其中数字之积为4的倍数的有其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种情况,故概率为615=2 5.故选:C.【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可. 5.(5分)(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的此赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【解答】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p甲;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘的概率p丙.并对三者进行比较即可解决.6.(5分)(2022·北京)若(2x−1)4=a4x4+a3x3+a2x2+a1x+a0,则a0+a2+a4=()A.40B.41C.-40D.-41【答案】B【解析】【解答】当x=1时,a0+a1+a2+a3+a4=1,当x=−1时,a0−a1+a2−a3+ a4=81,两式相加得a0+a2+a4=41.故答案为:B【分析】令x=1和x=−1,所得两式相加即可求解.7.(5分)(2022·新高考Ⅱ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【解答】解:由题意得,从2至8的7个整数中随机取2个不同的数,共有C72=21个不同的结果,其中不是互质的有(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7个结果,则这2个数互质的概率为 P =1−721=23. 故选:D【分析】由题意先求得结果总数,再由古典概型概率计算公式,结合对立事件的概率关系求得答案.二、填空题(共8题;共50分)8.(10分)(2022·浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为 ξ ,则 P(ξ=2)= , E(ξ)= .【答案】1635;127【解析】【解答】根据题意可得:ξ的取值可为1,2,3,4, 又P (ξ=1)=C 62C 73=37,P (ξ=2)=C 21C 42+C 22C 41C 73=1635,P (ξ=3)=C 32C 73=335,P (ξ=4)=C 22C 73=335,∴E (ξ)=1×37+2×1635+3×335+4×135=127,故答案为:1635;127【分析】根据组合数公式,古典概型的概率公式,离散型随机变量的数学期望定义即可求解.9.(10分)(2022·浙江)已知多项式 (x +2)(x −1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5 ,则a 2= , a 1+a 2+a 3+a 4+a 5= .【答案】8;-2【解析】【解答】(x +2)(x ﹣1)4=x(x −1)4+2(x −1)4,∴a 2=C 43(−1)3+2C 42(−1)2=8;令x =0,则a 0=2,令x =1,则a 0+a 1+a 2+a 3+a 4+a 5=0, ∴a 1+a 2+a 3+a 4+a 5=−2.故答案为:8,﹣2.【分析】a2相当于是用(x+2)中的一次项系数乘以(x﹣1)4展开式中的一次项系数加上(x+2)中的常数项乘以(x﹣1)4展开式中的二次项系数之和;分别给x辅助令x=0,x=1,即可求得a1+ a2+a3+a4+a5的值.10.(5分)(2022·新高考Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)= 0.36,则P(X>2.5)=.【答案】0.14【解析】【解答】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X≤2.5)=0.5−0.36=0.14.故答案为:0.14【分析】根据正态分布曲线的性质即可求解.11.(5分)(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为.【答案】635【解析】【解答】解:从正方体的8个顶点中任取4个,有个结果n=C84=70,这个点在同一个平面的有m=6+6=12个,故所求概率P=mn=1275=635.故答案为:635.【分析】直接根据古典概型的概率公式即可求出.12.(5分)(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为.【答案】310【解析】【解答】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310.故答案为:3 10【分析】根据古典概型计算即可.13.(5分)(2022·新高考Ⅱ卷)(1−yx)(x +y)8 的展开式中 x 2y 6 的系数为 (用数字作答).【答案】-28【解析】【解答】解:(x+y)8的通项公式为T r+1=C 8r x 8−r y r (r =0,1,2,……,8), ①当8-r=2,即r=6时, 展开式中 x 2y 6 项为1×C 86x 2y 6=28x 2y 6,②当8-r=3,即r=5时, 展开式中 x 2y 6 项为(−y x )×C 85x 3y 5=−56x 2y 6,则展开式中 x 2y 6 项为−28x 2y 6, 故答案为:-28【分析】由二项式定理,分类讨论求解即可.14.(5分)(2022·上海)在 (x 3+1x)12 的展开式中,含 1x 4 项的系数为【答案】66【解析】【解答】解:由题意得 (x 3+1x )12的通项公式为T r+1=C 12r (x 3)12−r(x −1)r=C 12r x36−4r (0≤r≤12,r∈N) 令36-4r=-4,得r=10,则T 11=C 1210x−4=66x −4, 则1x4 项的系数为66.故答案为:66【分析】根据二项式定理直接求解即可.15.(5分)(2022·上海)已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为【答案】17【解析】【解答】解:由题意知符合要求的四位数分成三类,①千位数为3或4的四位数,共有C 21A 33=12个;②千位数为2且百位数是3或4的四位数,共有C 21A 22=4个;③千位数为2且百位数是1的四位数,只有一个数:2143. 根据分类加法计数原理得所求四位数的个数为12+4+1=17 故答案为:17【分析】根据分类加法计数原理与根据分步加法计数原理,结合排列组合求解即可.三、解答题(共6题;共65分)16.(15分)(2022·新高考Ⅱ卷)在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)(5分)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)(5分)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)(5分)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)【答案】(1)解:平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+ 55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁)(2)解:设A={一人患这种疾病的年龄在区间[20,70)},则P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种族病},则由条件概率公式,得P(C∣B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A= {一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P(A)即可解出;(3)根据条件概率公式即可求出.17.(10分)(2022·全国甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)(5分)求甲学校获得冠军的概率;(2)(5分)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1) 解:设甲在三个项目中获胜的事件依次记为A ,B ,C ,所以甲学校获得冠军的概率为P=P(ABC)+P(ABC)+P(ABC)+P(ABC) =0.5x0.4x0.8+0.5x0.4x0.8+0.5x0.6x0.8+0.5x0.4x0.2 =0.16+0.16+ 0.24+0.04 =0.6.(2)解:依题可知,X 的可能取值为 0,10,20,30 ,所以, P(X =0)=0.5×0.4×0.8=0.16 ,P(X =10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44 , P(X =20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34 , P(X =30)=0.5×0.6×0.2=0.06 . 即X 的分布列为期望 E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A ,B ,C ,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X 的可能取值为 0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.18.(10分)(2022·全国甲卷)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:附:K 2=n(ad−bc)(a+b)(c+d)(a+c)(b+d),(1)(5分)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)(5分)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?【答案】(1)解:由表中数据可知,A共有班次240+20=260次,准点班次有240次,设A家公司长途客车准点事件为M,则P(M)=240260=1213;则A家公司长途客车准点的概率为12 13;B共有班次210+30=240次,准点班次有210次,设B家公司长途客车准点事件为N,则P(N)=210240=78.B家公司长途客车准点的概率为78.(2)解:列联表K2=n(ad−bc)(a+b)(c+d)(a+c)(b+d)= 500×(240×30−210×20)260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K2,再利用临界值表比较即可得结论.19.(15分)(2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:并计算得∑x i2i=1=0.038,∑y i2i=1=1.6158,∑x i y ii=1=0.2474.附:相关系数r=∑(x i−x̅)ni=1(y−y̅)√∑(x i−x̅)2ni=1∑(y i−y̅)2ni=1√1.896≈1.377.(1)(5分)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)(5分)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)(5分)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.【答案】(1)解:样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m2,平均一棵的材积量为0.39m3(2)解:r=∑(x i−x̅)10i=1(y−y̅)√∑i=1(x i−x̅)2∑i=1(y i−y̅)2=∑10i=1x i y i−10x̅y̅√∑10i=1i2̅2∑10i=1i2̅2=√(0.038−10×0.062)(1.6158−10×0.392)=√0.0001896≈0.01340.01377≈0.97则r≈0.97(3)解:设该林区这种树木的总材积量的估计值为Ym3,又已知树木的材积量与其根部横截面积近似成正比,可得0.060.39=186Y,解之得Y=1209m3.则该林区这种树木的总材积量估计为1209m3【解析】【分析】(1)计算出样本中10棵这种树木根部横截面积的平均值及10棵这种树木材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)根据相关系数公式计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.20.(5分)(2022·北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖,为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;(III)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(I)由题意得:设甲在校运会铅球比赛中获优秀奖为事件A:比赛成绩达到9.50m以上获优秀奖,甲的比赛成绩达到9.50以上的有:9.80,9.70,9.55,9.54 四个,所以甲在校运会铅球比赛中获优秀奖的概率为P(A)=0.4;(II)X所有可能取值为0,1,2,3甲在校运会铅球比赛中获优秀奖的概率为P(A)=0.4乙在校运会铅球比赛中获优秀奖的概率为事件B,则P(B)=0.5丙在校运会铅球比赛中获优秀奖的概率为事件C,则P(C)=0.5P(X=0)=0.6×0.5×0.5=0.15P(X=1)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=0.4P(X=2)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35P(X=3)=0.4×0.5×0.5=0.1E(X)=0×0.15+1×0.4+2×0.35+3×0.1=1.4(III)甲的平均数:(9.80+9.70+9.55+9.54+9.48+9.42+9.40+9.35+9.30+9.25)×0.1= 9.479乙的平均数:(9.78+9.56+9.51+9.36+9.32+9.23)÷6=9.457丙的平均数:(9.85+9.65+9.20+9.16)×0.25=9.465甲的方差:S2=[(9.8−9.479)2+⋯+(9.25−9.479)2]÷10=0.172乙的方差:S2=[(9.78−9.457)2+⋯+(9.23−9.457)2]÷6=0.0329丙的方差:S2=[(9.85−9.465)2+⋯+(9.16−9.465)2]÷4=0.086在校运动会铅球比赛中,乙获得冠军的概率估计值最大.【解析】【分析】(1)根据古典概型概率公式计算即可;(2)由题意X 的可能取值为0,1,2,3,先分别求得甲、乙、丙在校运会铅球比赛中获优秀奖的概率,再分别求取X取值的相应概率,由此得分布列和数学期望;(3)根据甲、乙、丙的比赛成绩的平均值和方差即可判断.21.(10分)(2022·新高考Ⅱ卷)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在己患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:附:K2=n(ad−bc)(a+b)(c+d)(a+c)(b+d)(1)(5分)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)(5分)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,P(B∣A)P(B̅∣A)与P(B∣A̅)P(B̅∣A̅)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(i)证明:R=P(A∣B)P(A̅∣B)⋅P(A̅∣B̅)P(A∣B̅);(ii)利用该调查数据,给出P(A|B),P(A∣B̅)的估计值,并利用(i)的结果给出R的估计值.【答案】(1)K2=200×(40×90−10×60)2100×100×50×150=24>6.625所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)用局部估计总体(i) R=P(B∣A)P(B̅∣A)÷P(B∣A̅)P(B̅∣A̅)=P(B∣A)⋅P(B̅∣A̅)P(B̅∣A)⋅P(B∣A̅)=P(AB)P(A)⋅P(B̅A̅)P(A̅)P(B̅A)P(A)⋅P(BA̅)P(A̅)=P(AB)⋅P(B̅A̅)P(B̅A)⋅P(BA̅̅̅̅̅)=P(AB)P(B)⋅P(B̅A̅)P(B̅)P(B̅A)P(B̅)⋅P(BA̅)P(B)=P(A∣B)⋅P(A̅∣B̅)P(A̅∣B)⋅P(A∣B̅)(ii) P(A∣B)=P(AB)P(B)=n(AB)n(B)=40100,P(A∣B̅)=P(A̅B̅)P(B̅)=n(A̅B̅)n(B̅)=90100P(A∣B)=P(A̅B)P(B)=n(A̅B)n(B)=60100,P(A∣B̅)=P(AB̅)P(B̅)=n(AB̅)n(B̅)=10100R=40×9060×10=6故R的估计值为6【解析】【分析】(1)代入数据,求得K2,再对出表格,即可得结论;(2)(∈)根据新定义,结合条件概率的计算公式,即可证明;(∈)由条件概率的计算公式分别求得P(A∣B),P(A∣B̅),P(A∣B),P(A∣B̅),再代入R,求解即可.。
2019年高考试题分类汇编(统计与概率)
2019年高考试题分类汇编(统计与概率)2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2.1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是:A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除。
某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况。
Ⅰ)应从老、中、青员工中分别抽取多少人?Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F。
现从这6人中随机抽取2人接受采访。
i)试用所给字母列举出所有可能的抽取结果;ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率。
考法2 数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是:A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进。
经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为。
1.已知一组数据为 6.7.8.8.9.10,则该组数据的方差为 1.2.2.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为 0.618,称为黄金分割比例。
广东高考文科数学--概率知识点
广东高考文科数学-统计及概率知识点一、统计1.简单随机抽样1.1简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
1..2简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
2.系统抽样2.1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K (抽样距离)=N (总体规模)/n (样本规模)前提条件:可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布呈某种循环性规律,不可用系统抽样。
2.2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3.分层抽样3.1分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
4.用样本的数字特征估计总体的数字特征4.1本均值:nx x x x n +++= 214.2样本标准差:n x x x x x x s s n 222212)()()(-++-+-== 4.3(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理5.两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法:y a bx =+,其中()()()1122211n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑ 3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。
2021年高考数学分项汇编 专题11 概率和统计(含解析)文
2021年高考数学分项汇编专题11 概率和统计(含解析)文一.基础题组1. 【xx上海,文5】某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.【答案】70【考点】分层抽样.2. 【xx上海,文13】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结构用最简分数表示).【答案】【考点】古典概型.3. 【xx上海,文6】某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.【答案】784. 【xx上海,文11】盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).【答案】5. 【xx上海,文11】三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是__________(结果用最简分数表示).【答案】6. 【2011上海,文10】课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.【答案】2【解析】7. 【2011上海,文13】随机抽取的9个同学中,至少有2个同学在同一月份出生的概率是______(默认每个月的天数相同,结果精确到0.001).【答案】0.985【解析】8. 【xx上海,文5】将一个总体为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取____________个个体.【答案】209. 【xx 上海,文10】从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为______(结果用最简分数表示).【答案】10. (xx 上海,文11)若某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,则选出的志愿者中男女生均不少于1名的概率是__________(结果用最简分数表示).【答案】11. (xx 上海,文18)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【答案】D12. 【xx 上海,文8】在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中 任取三个,这三点能构成三角形的概率是 (结果用分数表示).【答案】13. 【xx上海,文10】已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别.【答案】14. 【xx上海,文9】在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).【答案】【解析】15. 【xx上海,文10】在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示).【答案】16. 【xx上海,文8】某班有50名学生,其中15人选修A课程,另外35人选修B课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是__________.(结果用分数表示)【答案】36532 8EB4 躴31983 7CEF 糯31536 7B30 笰27518 6B7E 歾e 30281 7649 癉~@T34577 8711 蜑38234 955A 镚30643 77B3 瞳40381 9DBD 鶽。
高考数学试题分类汇编算法
高考数学试题分类汇编——算法、统计、概率一、选择题: 1、(2007全国1 文科)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 答案:C 2、(2007广东 文科)图l 是某县参加2007年高考的学生身高条形统计图,从左到右 的各条形表示的学生人数依次记 为1A 、2A 、…、m A (如2A表示身高(单位:cm )在[150, 155)内的学生人数).图2是统计 图l 中身高在一定范围内学生人 数的一个算法流程图.现要统计 身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是A .9i <B .8i <C .7i <D .6i < 答案:B 3、(2007湖北 文科)为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .450答案:B4、(2007湖北 文科)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .48125答案:A 5、(2007湖南文科)根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )方图(如图2),从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是A .48米B . 49米 C. 50米 D . 51米答案:C 6、(2007江西 文科)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有.放回..地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.364答案:D 7、(2007辽宁 文科)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( ) A .122B .111C .322D .211答案:D 8、(2007全国 文科)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种答案:D9、某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( )A .0.935,B .0.945,C .0.135,D .0.145, 答案:A10、阅读右边的程序框,若输入的n 是100,则输出的秒变量S 和T 的值依次是( )A .2550,2500B .2550,2550C .2500,2500D .2500,2550答案:A11、(2007山东 文科)设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4 答案:D 12、(2007四川 文科)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是 (A)150.2克 (B)149.8克 (C)149.4克 (D)147.8克 答案:B 13、(2007四川 文科)用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有A.48个B.36个C.24个D.18个 答案:解析:选B.个位是2的有33318A =个,个位是4的有33318A =个,所以共有36个. 14、(2007重庆 文科)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A )41 (B )12079 (C )43 (D )2423 答案:C 15、(2007山东 理科)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于19秒。
高考数学各地名校试题解析分类汇编(一)10 统计与概率 文
各地解析分类汇编:统计与概率1.【山东省济南外国语学校2013届高三上学期期中考试 文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A. 6 B. 7 C. 8 D.9 【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2013届高三上学期期中考试 文科】(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表:近20年六月份降雨量频率分布表(II )假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【答案】解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为…………………………………………………………………………………….…..….5分.(II )("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.…………………………………………………………………………………12分3.【云南师大附中2013届高三高考适应性月考卷(三)文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 4.【云南省昆明一中2013届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(全国1卷3)
答案:
(全国1卷19)
答案:
(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为
A.0.6B.0.5C.0.4D.0.3
答案:D
(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17
L)建立模型①:ˆ30.413.5
L)建立模=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7
y t
型②:ˆ9917.5
=+.
y t
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为
y$=–+×19=(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为
y$=99+×9=(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+
上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.
以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.
(全国3卷5)
答案:B
(全国3卷14)
答案:分层抽样
(全国3卷18)
答案:
(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
答案:
(天津卷15)
(15)(本小题满分13分)
已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概
率.
答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.
(II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,
{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,
{},F G ,共21种.
(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.
所以,事件M 发生的概率5()21
P M =
.。