应用题——线性规划
线性规划经典例题
线性规划经典例题一、问题描述假设有一家生产玩具的工厂,该工厂生产两种类型的玩具:A型和B型。
工厂有两个车间可供使用,分别是车间1和车间2。
每一个车间生产一种类型的玩具,并且每一个车间每天的生产时间有限。
玩具A的生产需要1个小时在车间1和2个小时在车间2,而玩具B的生产需要3个小时在车间1和1个小时在车间2。
每一个车间每天的生产能力分别是8个小时和6个小时。
每一个玩具A的利润为100元,而玩具B的利润为200元。
现在的问题是,如何安排每一个车间每天的生产时间,以使得利润最大化?二、数学建模1. 定义变量:设x1为在车间1生产的玩具A的数量(单位:个);设x2为在车间2生产的玩具A的数量(单位:个);设y1为在车间1生产的玩具B的数量(单位:个);设y2为在车间2生产的玩具B的数量(单位:个)。
2. 建立目标函数:目标函数为最大化利润,即:Maximize Z = 100x1 + 200y13. 建立约束条件:a) 车间1每天的生产时间限制:x1 + 3y1 ≤ 8b) 车间2每天的生产时间限制:2x1 + y1 ≤ 6c) 非负约束条件:x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0三、求解线性规划问题使用线性规划求解器,可以求解出最优的生产方案。
1. 求解结果:根据线性规划求解器的结果,最优解为:x1 = 2, x2 = 0, y1 = 2, y2 = 0即在车间1生产2个玩具A,在车间2生产2个玩具B,可以实现最大利润。
2. 最大利润:根据最优解,可以计算出最大利润:Z = 100x1 + 200y1= 100(2) + 200(2)= 600元因此,在给定的生产时间限制下,最大利润为600元。
四、结果分析根据线性规划求解结果,我们可以得出以下结论:1. 最优生产方案:根据最优解,最优生产方案为在车间1生产2个玩具A,在车间2生产2个玩具B。
2. 最大利润:在给定的生产时间限制下,最大利润为600元。
八种 经典线性规划例题(超实用)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
线性规划题及答案
线性规划题及答案线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。
在实际应用中,线性规划可以用于解决各种决策问题,如生产计划、资源分配、投资组合等。
以下是一个线性规划问题的示例:问题描述:某工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要2小时的加工时间,产品B每件需要3小时的加工时间。
每天的加工时间总共有16个小时。
产品A的利润为100元/件,产品B的利润为150元/件。
工厂的目标是最大化每天的总利润。
解决步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。
2. 建立目标函数:目标函数是每天的总利润,即:Z = 100x + 150y。
3. 建立约束条件:a) 加工时间约束:2x + 3y ≤ 16,表示每天的加工时间不能超过16小时。
b) 非负约束:x ≥ 0,y ≥ 0,表示产品的生产数量不能为负数。
4. 求解最优解:将目标函数和约束条件带入线性规划模型,使用线性规划算法求解最优解。
最优解及分析:经过计算,得到最优解为x = 4,y = 4,此时总利润最大为100 * 4 + 150 * 4 = 1000元。
通过最优解的分析可知,工厂每天应生产4件产品A和4件产品B,才能达到每天最大利润1000元。
同时,由于加工时间约束,每天的加工时间不能超过16小时,这也是生产数量的限制条件。
此外,也可以通过灵敏度分析来了解生产数量的变化对最优解的影响。
例如,如果产品A的利润提高到120元/件,而产品B的利润保持不变,那么最优解会发生变化。
在这种情况下,最优解为x = 6,y = 2,总利润为120 * 6 + 150 * 2 = 960元。
这表明,产品A的利润提高会促使工厂增加产品A的生产数量,减少产品B 的生产数量,以获得更高的总利润。
总结:线性规划是一种重要的数学优化方法,可以用于解决各种实际问题。
通过建立目标函数和约束条件,可以将实际问题转化为数学模型,并通过线性规划算法求解最优解。
线性规划经典例题
线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品分别需要使用两种原材料X和Y。
已知每种产品的利润和原材料的用量,求解最大利润的生产方案。
二、数据分析1. 产品A的利润为每单位100元,产品B的利润为每单位150元。
2. 产品A每单位需要用2单位的原材料X和1单位的原材料Y;产品B每单位需要用1单位的原材料X和3单位的原材料Y。
3. 公司每天可用的原材料X和Y的数量分别为10单位和15单位。
三、数学建模设产品A的生产数量为x,产品B的生产数量为y。
目标函数:最大化利润,即最大化目标函数Z = 100x + 150y。
约束条件:1. 原材料X的用量约束:2x + y ≤ 10。
2. 原材料Y的用量约束:x + 3y ≤ 15。
3. 非负约束:x ≥ 0,y ≥ 0。
四、求解过程1. 构建线性规划模型:最大化目标函数 Z = 100x + 150y约束条件:2x + y ≤ 10x + 3y ≤ 15x ≥ 0,y ≥ 02. 使用线性规划求解方法(如单纯形法)求解最优解。
五、最优解分析经过计算,得到最优解为:x = 5,y = 3,Z = 100*5 + 150*3 = 950。
六、结论为了实现最大利润,公司应生产5个单位的产品A和3个单位的产品B,此时可以获得最大利润950元。
七、敏感性分析通过敏感性分析可以了解目标函数和约束条件的变化对最优解的影响程度。
1. 原材料X的用量增加1单位,最优解变化情况:- 目标函数值:增加100元。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
2. 原材料Y的用量增加1单位,最优解变化情况:- 目标函数值:增加150元。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
3. 公司每天可用的原材料X的数量增加1单位,最优解变化情况:- 目标函数值:不变。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
4. 公司每天可用的原材料Y的数量增加1单位,最优解变化情况:- 目标函数值:不变。
线性规划经典例题
线性规划经典例题【题目描述】某公司生产两种产品A和B,每天的生产时间为8小时。
产品A和B的生产时间分别为2小时和3小时。
产品A和B的利润分别为每一个单位的利润为5元和4元。
公司希翼最大化每天的利润。
已知产品A和B的生产过程中,每一个单位所需的原材料分别为2个和3个。
公司每天可用的原材料数量为12个。
请问公司应该如何安排每天的生产计划,以获得最大利润?【解题思路】这是一个典型的线性规划问题,我们可以通过建立数学模型来求解。
首先,我们定义决策变量:x表示每天生产的产品A的数量,y表示每天生产的产品B的数量。
然后,我们需要确定目标函数和约束条件。
【目标函数】公司的目标是最大化每天的利润,即最大化目标函数Z:Z = 5x + 4y【约束条件】1. 生产时间约束:产品A和B的生产时间不能超过每天的生产时间,即:2x + 3y ≤ 82. 原材料约束:产品A和B的生产过程中所需的原材料数量不能超过每天可用的原材料数量,即:2x + 3y ≤ 123. 非负约束:产品A和B的数量不能为负数,即:x ≥ 0y ≥ 0【求解过程】我们可以使用线性规划的求解方法来求解该问题。
首先,我们需要将目标函数和约束条件转化为标准的线性规划形式。
将目标函数Z = 5x + 4y转化为标准形式:Z = 5x + 4y + 0将约束条件2x + 3y ≤ 8转化为标准形式:2x + 3y + s1 = 8,其中s1 ≥ 0将约束条件2x + 3y ≤ 12转化为标准形式:2x + 3y + s2 = 12,其中s2 ≥ 0将约束条件x ≥ 0转化为标准形式:-x + 0y + s3 = 0,其中s3 ≥ 0将约束条件y ≥ 0转化为标准形式:0x - y + s4 = 0,其中s4 ≥ 0得到线性规划的标准形式为:Max Z = 5x + 4y + 02x + 3y + s1 = 82x + 3y + s2 = 12-x + 0y + s3 = 00x - y + s4 = 0x ≥ 0y ≥ 0s1 ≥ 0s2 ≥ 0s3 ≥ 0s4 ≥ 0【求解结果】通过线性规划求解器,我们可以得到最优解:x = 2,y = 2,Z = 5(2) + 4(2) = 18因此,公司应该每天生产2个产品A和2个产品B,以获得最大利润18元。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种运筹学方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划方法。
一、生产计划问题1.1 最大利润问题在生产计划中,一个常见的线性规划问题是最大利润问题。
假设一个公司有多个产品,每个产品的生产和销售都有一定的成本和利润。
我们需要确定每个产品的生产数量,以最大化整体利润。
1.2 生产能力限制另一个常见的问题是生产能力限制。
公司的生产能力可能受到设备、人力资源或原材料等方面的限制。
我们需要在这些限制下,确定每个产品的生产数量,以实现最大化的利润。
1.3 市场需求满足除了考虑利润和生产能力,还需要考虑市场需求。
公司需要根据市场需求确定每个产品的生产数量,以满足市场需求,并在此基础上最大化利润。
二、资源分配问题2.1 资金分配问题在资源分配中,一个常见的线性规划问题是资金分配问题。
假设一个公司有多个项目,每个项目需要一定的资金投入,并有相应的回报。
我们需要确定每个项目的资金分配比例,以最大化整体回报。
2.2 人力资源分配另一个常见的问题是人力资源分配。
公司的人力资源可能有限,而各个项目对人力资源的需求也不同。
我们需要在人力资源有限的情况下,确定每个项目的人力资源分配比例,以实现最大化的效益。
2.3 时间分配除了资金和人力资源,时间也是一种有限资源。
在资源分配中,我们需要合理安排时间,以满足各个项目的需求,并在此基础上实现最大化的效益。
三、运输问题3.1 最小成本运输问题在运输领域,线性规划可以用于解决最小成本运输问题。
假设有多个供应地和多个需求地,每个供应地和需求地之间的运输成本不同。
我们需要确定每个供应地和需求地之间的货物运输量,以实现最小化的总运输成本。
3.2 运输能力限制另一个常见的问题是运输能力限制。
运输公司的运输能力可能受到车辆数量、运输距离或运输时间等方面的限制。
线性规划_应用题
x 2y 8
x y
4 3
x+2y=8 y
4
3
x=4
y=3
x
0
y 0
o
4
8x
提出新问题: 若生产一件甲产品获利2万元,生产 一件乙产品获利3万元,采用那种生产安排利润最大?
A配件 (个)
甲产品 4 乙产品
限 制 16
B配件 (个)
4 12
耗时(h) 利润(万元)
1
2万元
2
3万元
8
设工厂获得的利润为z,则z=2x+3y
一、实际问题
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算, 该厂所有可能的日生产安排是什么?
A配件 (个)
甲产品 4 乙产品
限 制 16
B配件 (个)
是 B(3,9) 和C(4,8),它们是最优解.
课堂练习
某工厂家具车间造型两类桌子,每张桌子需木工 和漆工两道工序完成.已知木工做一张型桌子分别需 要1小时和2小时,漆工油漆一张型桌子分别需要3小时 和1小时;又知木工、漆工每天工作分别不得超过8小 时和9小时,而工厂一张型桌子分别获利润2千元和3千 元,试问工厂每天应生产型桌子各多少张,才能获利 润最大?
然后根据此表数据,设出未知数,列出约束条件和目标函数, 最后用图解法求解.
解:设生产A产品x百吨,生产B产品y百米,利润为s百万元
2x 3y 14
则约束条件为
2 x y 9
x
0
y 0
目标函数为 S3x2y
作出可行域(如图),
线性规划经典例题
线性规划经典例题一、问题描述某工厂生产两种产品A和B,每单位产品A需要2个工时和3个材料单位,每单位产品B需要3个工时和2个材料单位。
已知该工厂每天有40个工时和50个材料单位可用。
产品A的利润为每单位100元,产品B的利润为每单位80元。
问该工厂应该生产多少单位的产品A和产品B才能使利润最大化?二、数学建模1. 假设生产产品A的单位数量为x,生产产品B的单位数量为y。
2. 根据题目要求,可以得到以下约束条件:- 工时约束:2x + 3y ≤ 40- 材料约束:3x + 2y ≤ 50- 非负约束:x ≥ 0,y ≥ 03. 目标函数:利润最大化,即最大化目标函数 Z = 100x + 80y。
三、标准格式的线性规划模型最大化目标函数:Z = 100x + 80y约束条件:2x + 3y ≤ 403x + 2y ≤ 50x ≥ 0,y ≥ 0四、求解方法可以使用线性规划的求解方法,如单纯形法或者求解器进行求解。
以下是使用求解器求解的步骤:1. 打开线性规划求解器,输入目标函数和约束条件。
2. 设置目标为最大化。
3. 添加约束条件:2x + 3y ≤ 40,3x + 2y ≤ 50,x ≥ 0,y ≥ 0。
4. 点击求解按钮,得到最优解及最优值。
5. 解释结果并作出决策。
五、求解结果与决策分析经过求解器计算,得到最优解为x = 10,y = 10,最优值为Z = 1800。
根据最优解,该工厂应该生产10个单位的产品A和10个单位的产品B,才能使利润最大化,最大利润为1800元。
六、敏感性分析对于该线性规划问题,我们可以进行敏感性分析来了解目标函数系数的变化对最优解的影响。
1. 目标函数系数变化:- 如果产品A的利润系数从100变为110,产品B的利润系数从80变为90,重新求解得到新的最优解为x = 10,y = 10,最优值为Z = 2000。
可以看出,利润系数的变化对最优解有一定的影响,但最优解仍然是生产10个单位的产品A和10个单位的产品B。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。
现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。
已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。
同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。
公司总共有40个资源X和30个资源Y可供使用。
二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。
2. 目标函数:最大化利润。
利润可以表示为10x + 15y。
3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。
通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。
四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。
同时,资源X还剩余28个,资源Y还剩余24个。
五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。
1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 8,y = 4,利润最大化为168元。
b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 4,y = 7,利润最大化为190元。
2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。
线性规划应用题
最新资料推荐线性规划应用题1.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨:生产 每吨乙产品要用A 原料1吨、B 原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产 品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18 吨,求该企业可获得最大利润。
解析:设甲、乙种两种产品冬需生产丿吨,可使利润Z 最大,故本题即 已知约束条件< 3x + y < 132x + 3y S 18 c ,求目标函数Z = 5x + 3y 的最大 x n ojno 值,可求出最优解为\X = 3 ,故=15 + 12= 27 oIJ = 42.某公司租赁甲、乙两种设备生产A 、B 两类产品,甲种设备每天能 生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件. 已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类 产品50件.B 类产品140件,求所需租赁费的最少值.【解析】:设甲种设备需要生产x 天,乙种设备需要生产y 天,该公司所需租赁费为z 元,则 Z = 200x + 300y,甲、乙两种设备生产A.B 两类产品的情况为下表所示: A 类产品 B 类产品 租赁费 设备 (件50) (件)0140) (元) 甲设备 5 10 200 乙设备 6 20 300 x + |y>10则满足的关系为< 5x + 6y >50 10x + 20y>14 0 即:<A > 0, y > 0 x + 2y>14 x>0,y>0作出不等式表示的平而区域,当z = 200x + 300y 对应的直线过两宜线<V+5 V = 1°的交点x + 2y = 14 (4.5)时,目标函数z = 200x + 300y 取得最低为2300元.答案:23003.某人上午7时,乘摩托艇以匀速v n mi/e/h (4VW20)从A港岀发到距50 n mi/e的B 港去,然后乘汽车以匀速wkm/h (30WwW100)自B港向距300 km的C市驶去应该在同一天下午4至9点到达C市.设乘汽车、摩托艇去所需要的时间分别是xh、yh(1)作图表示满足上述条件的x、y范围;(2)如果已知所需的经费p=100+3X (5-x) +2X (8-y)(元),那么V、W分别是多少时走得最经济?此时需花费多少元?分析:由p=100+3X (5-x) +2X (8-y)可知影响花费的是3x+2y的取值范围5()300解:(1)依题意得v=—, H=-一,4WvW20, 30W H<100y x5 75•••3WxW10,二 WyW 二①2- 2 _由于乘汽车、摩托艇所需的时间和x+y应在9至14个小时之间,即93応14 ②因此,满足①②的点(X, y)的存在范用是图中阴影部分(包括边界)(2) \>=100+3 • (5-x) +2 • (8-y),3x+2)=131 —°设\3\-p=k,那么当k最大时.p最小在通过图中的阴影部分区域(包括边界)且斜率为3飞的直线时心中,使俺最大的直线必通过点<10, 4),即当日。
线性规划练习题及解答
线性规划练习题及解答线性规划是数学中一种常见的优化方法,它广泛应用于实际问题的解决中。
本文将提供一些线性规划的练习题及解答,以帮助读者更好地理解和运用线性规划。
练习题1:某公司生产两种产品:甲品和乙品。
每天可用于生产的原料数量分别为A和B。
已知每单位甲品所需的原料A和B的消耗量分别为a1和b1,每单位乙品所需的原料A和B的消耗量分别为a2和b2。
假设甲品和乙品的利润分别为p1和p2,求解出该公司在给定原料限制下能获得的最大利润。
解答:设甲品的生产量为x,乙品的生产量为y,则目标函数为最大化利润,即maximize p1 * x + p2 * y。
受限条件为原料A的消耗量限制 a1 * x + a2 * y <= A,原料B的消耗量限制 b1 * x + b2 * y <= B。
另外,x和y的取值范围为非负数(x >= 0,y >= 0)。
这样,我们可以得出完整的线性规划模型如下:maximize p1 * x + p2 * ysubject to:a1 * x + a2 * y <= Ab1 * x + b2 * y <= Bx >= 0y >= 0练习题2:某工厂生产三种产品:甲、乙、丙。
已知每单位甲、乙、丙产品的利润分别为p1、p2、p3,每天需要的原材料A、B的数量为a和b,每单位甲、乙、丙产品消耗的原材料A、B的数量分别为a1、b1和a2、b2以及a3、b3。
现在要求在给定的原材料数量限制下,求解出最大化利润的生产方案。
解答:设甲、乙、丙产品的生产量分别为x、y、z,则目标函数为最大化利润,即maximize p1 * x + p2 * y + p3 * z。
受限条件为原材料A和B的数量限制,分别为 a1 * x + a2 * y + a3 * z <= a 和 b1 * x + b2 * y + b3 * z <= b。
另外,x、y、z的取值范围为非负数(x >= 0,y >= 0,z >= 0)。
线性规划经典例题
线性规划经典例题一、问题描述:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要1小时的加工时间,产品B每件需要2小时的加工时间。
公司每天的总加工时间不能超过8小时。
产品A的利润为100元/件,产品B的利润为200元/件。
公司希望最大化每天的利润。
二、数学建模:设公司每天生产的产品A的件数为x,产品B的件数为y。
则目标函数为最大化利润,即:Maximize Z = 100x + 200y约束条件:1. 生产时间约束:x + 2y ≤ 82. 非负约束:x ≥ 0, y ≥ 0三、线性规划模型:Maximize Z = 100x + 200ySubject to:x + 2y ≤ 8x ≥ 0y ≥ 0四、求解方法:可以使用线性规划求解器进行求解,例如使用单纯形法或内点法等。
以下是使用单纯形法求解的步骤:1. 将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 100x + 200y约束条件:x + 2y ≤ 8x ≥ 0y ≥ 02. 引入松弛变量将不等式约束转化为等式约束:x + 2y + s1 = 8x ≥ 0y ≥ 0s1 ≥ 03. 构建初始单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | 0 | 0-----------------------------s1 | 1 | 2 | 1 | 84. 进行单纯形法迭代计算:a. 选择进入变量:选择目标函数系数最大的非基变量,即选择y进入基变量。
b. 选择离开变量:计算各个约束条件的最小比值,选择比值最小的非基变量对应的约束条件的基变量离开基变量。
在本例中,计算得到最小比值为4,对应的约束条件为x ≥ 0,所以x对应的基变量离开基变量。
c. 更新单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | -2 | -400-----------------------------s1 | 1 | 2 | 1 | 8d. 继续迭代计算,直到目标函数系数均为负数或零,达到最优解。
线性规划应用题
线性规划应用题1.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,求该企业可获得最大利润。
解析:设甲、乙种两种产品各需生产x 、y 吨,可使利润z 最大,故本题即已知约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001832133y x y x y x ,求目标函数y x z 35+=的最大值,可求出最优解为⎩⎨⎧==43y x ,故271215max =+=z 。
2. 某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,求所需租赁费的最少值.【解析】:设甲种设备需要生产x 天, 乙种设备需要生产y 天, 该公司所需租赁费为z 元,则200300z x y =+,甲、乙两种设备生产A,B 两类产品的情况为下表所示:产品 设备 A 类产品 (件)(≥50) B 类产品 (件)(≥140) 租赁费 (元) 甲设备 5 10 200 乙设备620300则满足的关系为565010201400,0x y x y x y +≥⎧⎪+≥⎨⎪≥≥⎩即:61052140,0x y x y x y ⎧+≥⎪⎪⎨+≥⎪⎪≥≥⎩,作出不等式表示的平面区域,当200300z x y =+对应的直线过两直线6105214x y x y ⎧+=⎪⎨⎪+=⎩的交点(4,5)时,目标函数200300z x y =+取得最低为2300元.答案:23003. 某人上午7时,乘摩托艇以匀速v n mi l e/h (4≤v ≤20)从A 港出发到距50 n mi l e 的B 港去,然后乘汽车以匀速w km/h (30≤w ≤100)自B 港向距300 km 的C 市驶去应该在同一天下午4至9点到达C 市设乘汽车、摩托艇去所需要的时间分别是x h 、y h(1)作图表示满足上述条件的x 、y 范围;(2)如果已知所需的经费p =100+3×(5-x )+2×(8-y )(元), 那么v 、w 分别是多少时走得最经济?此时需花费多少元?分析:由p =100+3×(5-x )+2×(8-y )可知影响花费的是3x +2y 的取值范围解:(1)依题意得v =y 50,w =x300,4≤v ≤20,30≤w ≤100 ∴3≤x ≤10,25≤y ≤225①由于乘汽车、摩托艇所需的时间和x +y 应在9至14个小时之间,即9≤x +y ≤14 ② 因此,满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界) (2)∵p =100+3·(5-x )+2·(8-y ), ∴3x +2y =131-p设131-p =k ,那么当k 最大时,p 最小在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当x =10,y =4时,p 最小 此时,v =125,w =30,p 的最小值为93元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式然后分析要求量的几何意义4. 某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:(表中单位:百元)资 金 单位产品所需资金 月资金供应量空调机 洗衣机 成 本 30 20 300 劳动力:工资 5 10 110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少? 解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P =6x +8y ,由题意有30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x 、y 均为整数由图知直线y =-43x +81P 过M (4,9)时,纵截距最大这时P 也取最大值P max =6×4+8×9=96(百元)故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元5. 某矿山车队有4辆载重量为10 t 的甲型卡车和7辆载重量为6 t 的乙型卡车,有9名驾3 9 10 14 xO 2.5 9 14y驶员此车队每天至少要运360 t 矿石至冶炼厂已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解解:设每天派出甲型车x 辆、乙型车y 辆,车队所花成本费为z 元,那么9106683604,7,x y x y x x N y y N+≤⎧⎪⨯+⨯≥⎪⎨≤∈⎪⎪≤∈⎩ z =252x +160y ,作出不等式组所表示的平面区域,即可行域,如图 作出直线l 0:252x +160y =0,把直线l 使其经过可行域上的整点,且使在y 轴上的截距最小观察图形,y =t 经过点(2,5)时,满足上述要求此时,z =252x +160y 取得最小值,即x =2,y =5时,z min =252×2+160×5=1304 答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低解题回顾:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f (x ,y )=t 的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点6. 某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质6个单位,含淀粉4个单位,售价05元,米食每100 g 含蛋白质3个单位,含淀粉7个单位,售价04元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x (百克),米食y (百克), 所需费用为S =05x +04y ,且x 、y 满足 6x +3y ≥8,4x +7y ≥10,x ≥0,y ≥0,由图可知,直线y =-45x +25S 过A (1513,1514)时,纵截距25S 最小,即S 最小 故每盒盒饭为面食1513百克,米食1514百克时既科学又费用最少7. 配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg 今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?解:设A 、B 两种药分别配x 、y 剂(x 、y ∈N ),则 x ≥1,y ≥1,3x +5y ≤20,5x +4y ≤25上述不等式组的解集是以直线x =1,y =1,3x +5y =20及5x +4y =25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1)所以,在至少各配一剂的情况下,共有8种不同的配制方法8. 要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表:每张钢板的面积为:第一种1m 2,第二种2 m 2,今需要A 、B 、C 三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需的三种规格成品,且使所用钢板面积最小?解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z m 2,则有:⎪⎪⎩⎪⎪⎨⎧∈≥≥≥+≥+≥+Ny x y x y x y x y x ,,0,027315212,y x z 2+=, 作出可行域,得1l 与3l 的交点为A (215,29),当直线y x z 2+=过点A 时z 最小,但A 不 是整点,而在可行域内,整点(4,8)和 (6,7)都使z 最小,且20726824min =⨯+=⨯+=z ,所以应分别截第一、第二种钢板4张、8张,或6张、7张,能满足要求.块数 规格 种类A B C第一种钢板 1 2 1 第二种钢板1138l 11228l 2x yl 3O1216 A。
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。
在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。
部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。
公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。
二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。
车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。
工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。
三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。
线性规划题型总结
线性规划题型总结一、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x 【类型一:已知线性约束条件,探求线性目标关系最值问题】例1.求y x z 32+=的最大值.【类型二:已知线性约束条件,探求分式目标关系最值问题】例2.求112++=y x z 的取值范围.【类型三:已知线性约束条件,探求平方和目标关系最值问题】例3.求22)2(-+=y x z 的最值,以及此时对应点的坐标.【类型四:已知线性约束条件,探求区域面积与周长问题】例4.试求所围区域的面积与周长.【类型五:已知最优解,探求目标函数参数问题】例5.已知目标函数z ax y =+(其中0<a )仅在(3,4)取得最大值,求a 的取值范围.【类型六:已知最优解,探求约束条件参数问题】 例6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥-≤-122y x m y x y x ,目标函数y x z 32+=在(4,6)取得最大值,求m .二、线性规划的实际应用线性规划的实际应用题型大体有两类,一类是一项任务确定后,如何统一安排,做到以最少的人力物力完成任务;另一类是在人力物力一定的条件下,如何安排使得最大化的发挥效益.两类题型是同一个问题的两面,主要依据以下步骤:1.认真分析实际问题的数学背景,将对象间的生产关系列成表格;2.根据问题设未知量,并结合表格将生产关系写出约束条件;3.结合图形求出最优解.例1.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?例2. 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?针对练习一、选择题1.下列四个命题中真命题是( )A .经过点P (x o ,y o )的直线都可以用方程y -y o =k (x -x o )表示;B .经过任意两不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C .不经过原点的直线都可以用方程1=+by a x 表示; D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A.(02), B.(20)-,C.(02)-, D.(20), 4.若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为A.4B.3C.2D.15.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+最大值的变化范围是( ) A.[6,15] B. [7,15] C. [6,8] D. [7,8]6.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()A. B.4C. D.27.某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是( )A.80B.85C. 90D.958.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( ).A ⎥⎦⎤⎢⎣⎡6,59 .B [)965⎛⎤-∞+∞ ⎥⎝⎦,,.C (][)36-∞+∞,, .D [36],二、填空题 9.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 ;10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ;11.已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在给定约束条件下寻找使目标函数最大或最小的变量值。
在实际生活和工作中,线性规划经常被应用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 约束条件:某公司有两种产品A和B,生产一单位产品A需要耗费2个单位的资源X和1个单位的资源Y,生产一单位产品B需要耗费1个单位的资源X和3个单位的资源Y。
公司每天可用资源X和资源Y分别为10个单位和12个单位。
假设产品A的利润为3万元,产品B的利润为4万元,问如何分配资源才能使公司利润最大化?1.2 目标函数:设生产产品A的单位数为x,生产产品B的单位数为y,则目标函数为Maximize 3x + 4y。
1.3 答案:通过线性规划计算,最优解为生产产品A 4个单位,生产产品B 2个单位,公司利润最大化为20万元。
二、生产计划问题2.1 约束条件:某工厂生产两种产品C和D,生产一单位产品C需耗费2个单位的资源M和3个单位的资源N,生产一单位产品D需耗费4个单位的资源M和2个单位的资源N。
工厂每天可用资源M和资源N分别为8个单位和10个单位。
产品C的利润为5万元,产品D的利润为6万元,问如何安排生产计划以最大化利润?2.2 目标函数:设生产产品C的单位数为x,生产产品D的单位数为y,则目标函数为Maximize 5x + 6y。
2.3 答案:经过线性规划计算,最佳生产计划为生产产品C 2个单位,生产产品D 2个单位,工厂利润最大化为22万元。
三、运输问题3.1 约束条件:某公司有三个仓库分别存储产品E、F和G,每个仓库的存储容量分别为100、150和200个单位。
产品E、F和G的单位运输成本分别为2元、3元和4元,需求量分别为80、120和150个单位。
问如何安排运输计划以最小化总成本?3.2 目标函数:设从仓库i运输产品j的单位数为xij,则目标函数为Minimize2x11 + 3x12 + 4x13 + 2x21 + 3x22 + 4x23 + 2x31 + 3x32 + 4x33。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。
公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。
产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。
每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。
公司的目标是在满足车间生产能力的前提下,最大化利润。
二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。
目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。
1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。
线性规划经典例题
线性规划经典例题一、问题描述某工厂生产A、B两种产品,每天生产的产品数量不同,且每种产品的生产时间和利润也不同。
现在需要确定每种产品的生产数量,以使得总利润最大化。
已知每天可用的生产时间为8小时,A产品的生产时间为2小时/件,利润为200元/件;B产品的生产时间为3小时/件,利润为300元/件。
同时,还有以下限制条件:1. A、B产品的总生产数量不能超过100件;2. A产品的生产数量不能超过60件;3. B产品的生产数量不能超过80件。
二、问题分析这是一个典型的线性规划问题,需要确定A、B产品的生产数量,使得总利润最大化。
根据题目中的限制条件,可以得到以下数学模型:目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0三、数学模型目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0四、求解过程1. 根据数学模型,列出线性规划的标准形式:目标函数:max Z = 200A + 300B约束条件:A +B ≤ 100A ≤ 60B ≤ 80A, B ≥ 02. 根据标准形式,画出目标函数和约束条件的图形:在二维坐标系中,以A为横轴,B为纵轴,画出以下直线:A +B = 100A = 60B = 80并标明非负约束条件。
3. 确定可行解区域:根据约束条件,可得到可行解区域为一个三角形,顶点分别为(60, 40)、(60, 80)和(0, 80)。
4. 确定目标函数的最优解:由于目标函数是线性的,最优解一定在可行解区域的某个顶点上。
计算每一个顶点的目标函数值:(60, 40):Z = 200 * 60 + 300 * 40 = 28,000(60, 80):Z = 200 * 60 + 300 * 80 = 36,000(0, 80):Z = 200 * 0 + 300 * 80 = 24,000可知,目标函数的最优解为Z = 36,000,对应的生产数量为A = 60,B = 80。
线性规划经典例题
线性规划经典例题一、问题描述假设有一家面包店,每天需要生产两种类型的面包:A型和B型。
生产一块A型面包需要3分钟,而生产一块B型面包需要4分钟。
面包店每天可供给的总生产时间为480分钟。
A型面包的利润为5元,B型面包的利润为4元。
面包店希翼最大化每天的利润。
二、数学建模为了解决这个问题,我们可以使用线性规划模型来进行数学建模。
首先,我们需要定义决策变量和目标函数,然后列出约束条件。
1. 决策变量:设x为A型面包的生产数量,y为B型面包的生产数量。
2. 目标函数:面包店的每日利润可以表示为目标函数,即最大化利润。
根据题意,A型面包的利润为5元,B型面包的利润为4元,因此目标函数可以表示为: maximize Z = 5x + 4y3. 约束条件:a) 生产时间约束:每天可供给的总生产时间为480分钟,而生产一块A型面包需要3分钟,生产一块B型面包需要4分钟。
因此,生产时间约束可以表示为:3x + 4y ≤ 480b) 非负约束:由于面包的生产数量不能为负数,所以需要添加非负约束条件:x ≥ 0y ≥ 0三、线性规划求解通过将目标函数和约束条件带入线性规划模型,我们可以求解出最优解。
1. 构建线性规划模型:maximize Z = 5x + 4ysubject to:3x + 4y ≤ 480x ≥ 0y ≥ 02. 求解最优解:使用线性规划求解方法,可以得到最优解。
假设最优解为(x*, y*),则最大利润为Z* = 5x* + 4y*。
四、数值计算为了求解最优解,我们可以使用线性规划求解器或者手工计算。
1. 使用线性规划求解器:可以使用诸如MATLAB、Python的SciPy库或者在线线性规划求解器等工具来得到最优解。
2. 手工计算:为了方便计算,我们可以使用图形法来解决这个问题。
首先,我们将约束条件3x + 4y ≤ 480绘制成直线,然后确定可行解的区域。
接下来,我们将目标函数5x + 4y = Z绘制成直线,并通过挪移直线找到最大利润的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划例1.(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?变式1:(2012四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1800元B .2400元C .2800元D .3100元 例2. 已知321()(2)13f x ax bx b x =-+-+,在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<< .(1)证明0a >;(2)求2t a b =+的范围变式2:方程220x bx c +-=的两根满足12(1,0),(0,1)x x ∈-∈,则21++b c 的范围是练习1. (2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30.0C .20,30D .0,502. (2007四川)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为( )A.36万元B.31.2万元C.30.4万元D.24万元3. (2012辽宁)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )A .20B .35C .45D .554. (2012山东)已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2-- C .[1,6]- D .3[6,]2-5. (2012福建)若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m的最大值为( )A .12B .1C .32D .26. (2007辽宁)已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭, B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,, C .(][)36-∞+∞U ,,D .[36],7. 满足约束条件22x y +≤的目标函数z y x =-的最小值是 8. (2012陕西)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.9. (2010广东)某营养师要为某个儿童预定午餐和晚餐。
已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C. 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?10. 在ABC ∆中,C B A 、、 的对边分别是c b a 、、,且满足C b B c a cos cos )2(=-. (1)求B 的大小;(2)设m )2cos ,(sin A A =,n )1,4(k =)1(>k ,且m·n 的最大值是5,求k 的值.11. 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为 等边三角形,2AD DE AB ==,F 为CD 的中点. (1) 求证://AF 平面BCE ; (2) 求证:平面BCE ⊥平面CDE ; (3) 求直线BF 和平面BCE 所成角的正弦值.12. 已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和.ABCDEF线性规划例1.(2007山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域, 即可行域. 如图:作直线:300020000l x y +=, 即320x y +=.平移直线l ,从图中可知,当直线l 过M 点时, 目标函数取得最大值.联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),.max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台,做200分钟广告,公司的收益最大,最大收益是70万元. 变式1:(2012四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1800元B .2400元C .2800元D .3100元 [答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为 Y=400z x 43+-这是随Z 变化的一族平行直线 0 100 200 300100200 300 400 500 yxM解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z例2.已知321()(2)13f x ax bx b x =-+-+,在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<< .(1)证明0a >;(2)求2t a b =+的范围答案:(2)(2,5)变式2:方程220x bx c +-=的两根满足12(1,0),(0,1)x x ∈-∈,则21++b c 的范围是 1,31练习:1. (2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金年产量/亩年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30.0C .20,30D .0,50 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为 50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.2. (2007四川)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为( B ) A.36万元 B.31.2万元 C.30.4万元 D.24万元3. (2012辽宁)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )A .20B .35C .45D .55答案:D4. (2012山东)已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( ) A .3[,6]2-B .3[,1]2-- C .[1,6]- D .3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 5. (2012福建)若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( )A .12B .1C .32D .2答案:B6. (2007辽宁)已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是(A )A .965⎛⎫ ⎪⎝⎭, B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,, C .(][)36-∞+∞U ,,D .[36],7. 满足约束条件22x y +≤的目标函数z y x =-的最小值是8. (2012陕西)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2.【答案】-2.9. (2010广东)某营养师要为某个儿童预定午餐和晚餐。