2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案【优质版】

合集下载

2019-2020学年重庆市綦江区统考八年级上期末数学试题含答案

2019-2020学年重庆市綦江区统考八年级上期末数学试题含答案

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x 有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1.3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175° 12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S . 你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC 是等边三角形,点D 在边AC 上(点D 不与点A ,C 重合),点E 是射线BC 上的一个动点(点E 不与点B ,C 重合),连接DE ,以DE 为边作等边△DEF ,连接CF.(1)如图1,当DE 的延长线与AB 的延长线相交,且点C ,F 作直线DE 的同侧时,过点D 作DG ∥AB ,DG 交BC 于点G ,求证:CF=EG ;(2)如图2,当DE 的反向延长线与AB 的反向延长线相交,且点C ,F 在直线DE 的同侧时,求证:CD=CE+CF ;(3)如图3,当DE 的反向延长线与线段AB 相交,且点C ,F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k >21且k ≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分 解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a2+b2=3,ab=-1,∴S4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4猜想:S2-n +S1-n=Sn. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S3=4,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,S7=S5+S6=11+18=29,∴S8=S6+S7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC是等边三角形,∴∠B=∠ACB=60°.⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案-精华版

2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案-精华版

βα重庆市綦江区八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷. 2.请将所有试题的解答都写在答题卷上. 3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上. 1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( ) 2.使分式1x 1x +-有意义的的取值范围是( ) A 、=1;B 、≠1;C 、=-1;D 、≠-1. 3.计算:(-)3·2的结果是( ) A 、-24;B 、-23;C 、24;D 、23.4.化简:1x x1x x 2---=( ) A 、1;B 、0;C 、;D 、-.5.一个等腰三角形的两边长分别为3和5,则它的周长为( ) A 、11;B 、12;C 、13;D 、11或13.6.如果(-2)(+3)=2+p+q ,那么p 、q 的值为( ) A 、p=5,q=6;B 、p=1,q=-6;C 、p=1,q=6;D 、p=5,q=-6. 7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形, 则图中∠α+∠β的度数是( )BACDDCBAA nA 4A 3A 2A 1E DCB AEH DCB AA 、180°;B 、220°;C 、240°;D 、300°. 8.下列从左到右的变形中是因式分解的有( )①2-y 2-1=(+y)(-y)-1;②3+=(2+1);③(-y)2=2-2y+y 2;④2-9y 2=(+3y)(-3y). A 、1个;B 、2个;C 、3个;D 、4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的 平分线BD 交AC 于点D ,若AD=3,则BD+AC=( ) A 、10;B 、15;C 、20;D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件套,根据题意可得方程为( ) A 、30x 5.12700x 2700=+; B 、30x 5.1x 2700x 2700=++; C 、30x 5.1x 5400x 2700=++; D 、30x5.1x 2700x 5400=++. 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B , 在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C , 得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到 A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5 个三角形中,以点A 5为顶点的底角的度数为( ) A 、5°;B 、10°;C 、170°;D 、175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB , 垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论: ①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形. 你认为正确的序号是( )A 、①②③;B 、①③④;C 、②③④;D 、①②③④.二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.E DCBAFEDC B A 13.正六边形一个外角是 度. 14.因式分解:a 3-a= . 15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可). 16.已知关于的分式方程11x k1x k x =--++(≠1)的解为负数,则的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则18.如图,△ABC 中,AC=10,AB=12,△ABC AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤. 19.解方程)2x )(1x (311x x +-=--. 20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF. 求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分) 21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:(a+2)2-a(a+2)-(3a 2-6a)÷3a.F EDCBA22.先化简,再求值:x14x 4x )2x 1x 4x 2x (22-++÷+--+-,其中是||<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.已知a+b=1,ab=-1.设S 1=a+b ,S 2=a 2+b 2,S 3=a 3+b 3,⋯,S n =a n+b n,G E DCB AFEDCBA图2FEDCBA图3(1)计算S2;(2)请阅读下面计算S3的过程:a3+b3=a3+b3+(b2a-b2a)+(a2b-a2b)=(a3+b2a)+(b3+a2b)-(b2a+a2b)=(a2+b2)a+(a2+b2)b-ab(a+b)=(a+b)(a2+b2)-ab(a+b)∵a+b=1,ab=-1,∴S3=a3+b3=(a+b)(a2+b2)-ab(a+b)=1×S2-(-1)×1=S2+1= .你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;(3)猜想并写出S n-2,S n-1,S n三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF. (1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D 作DG∥AB,DG交BC于点G,求证CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.图1F参考答案及评分意见一、选择题(12个小题,共48分)1——12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C. 二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ; 16.>21且≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(-1)(+2),得(+2)-(-1)(+2)=3 ⋯⋯⋯⋯⋯⋯4分解得=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 检验:当=1时,(-1)(+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 (2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=x1)2x (]1x )1x )(2x (1x 4x 2x [22-+÷-----+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=2)2x (x 11x 2x +-⋅-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又是||<2的整数,∴=-1或0或1. 当=1时原式无意义. ∴当=-1时,原式=-1;当=0时,原式=21-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DFDE ADAD∴Rt△ADE≌Rt△ADF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价元,根据题意,得5x 50002x 2100+=⨯.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得 =120.经检验,=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得6405000y 1.080%-1150125500080%1501255000≥-⨯⨯⨯+⨯⨯)( ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 (2)S 3=4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4. 猜想:S n-2+S n-1=S n .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11, ∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10图1FGEDC B A分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG ,∠CDG=60°. ∵△DEF 是等边三角形, ∴DE=DF ,∠EDF=60°∴∠EDG=60°-∠GDF ,∠FDC=60°-∠GDF ∴∠EDG=∠FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 (2)∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 如图2,过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴CD=DG=CG ,∠CDG=60°∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°-∠CDE ,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵CG=CE+EG ,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分 (3)如图3,猜想DC 、EC 、FC 之间的等量关系是FC=DC+EC. 证明如下:∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60° ∴△DGC 是等边三角形.FEDCB A 图2G GFEDC BA 图3∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

【精选】2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案

【精选】2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1B.x ≠1C.x=-1D.x ≠-1.3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1B.0C.xD.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x +=④()()y 3-x 3x y 9-x 22y += A.1个B.2个C.3个D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是度.14.因式分解:a -a 3=.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是.(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是. 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A=.18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC =∠B .∴∠DGC =∠DCG =60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ∴DC=DG ,∠CDG =60°∵△DEF 是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC.∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案-最新推荐

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案-最新推荐

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1B.x ≠1C.x=-1D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1B.0C.xD.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x +=④()()y 3-x 3x y 9-x 22y += A.1个B.2个C.3个D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x 5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是度.14.因式分解:a -a 3=.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是.(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是. 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A=.18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC.∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案【必备】

2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案【必备】

βα重庆市綦江区八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷. 2.请将所有试题的解答都写在答题卷上. 3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )2.使分式1x 1x +-有意义的的取值范围是( ) A 、=1;B 、≠1;C 、=-1;D 、≠-1. 3.计算:(-)3·2的结果是( ) A 、-24;B 、-23;C 、24;D 、23.4.化简:1x x1x x 2---=( ) A 、1;B 、0;C 、;D 、-.5.一个等腰三角形的两边长分别为3和5,则它的周长为( ) A 、11;B 、12;C 、13;D 、11或13.6.如果(-2)(+3)=2+p+q ,那么p 、q 的值为( ) A 、p=5,q=6;B 、p=1,q=-6;C 、p=1,q=6;D 、p=5,q=-6. 7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形, 则图中∠α+∠β的度数是( ) A 、180°;B 、220°;C 、240°;D 、300°. 8.下列从左到右的变形中是因式分解的有( )BACDDCBAA nA 4A 3A 2A 1E DCB AEHDCBAEDCBA①2-y 2-1=(+y)(-y)-1;②3+=(2+1);③(-y)2=2-2y+y 2;④2-9y 2=(+3y)(-3y). A 、1个;B 、2个;C 、3个;D 、4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的 平分线BD 交AC 于点D ,若AD=3,则BD+AC=( ) A 、10;B 、15;C 、20;D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件套,根据题意可得方程为( ) A 、30x 5.12700x 2700=+; B 、30x 5.1x 2700x 2700=++; C 、30x 5.1x 5400x 2700=++; D 、30x5.1x 2700x 5400=++. 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B , 在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C , 得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到 A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( ) A 、5°;B 、10°;C 、170°;D 、175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB , 垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论: ①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形. 你认为正确的序号是( )A 、①②③;B 、①③④;C 、②③④;D 、①②③④.二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度. 14.因式分解:a 3-a= .FEDC B A 15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可). 16.已知关于的分式方程11x k1x k x =--++(≠1)的解为负数,则的取值范围是 .17.若4次3项式m 4+4m 2+A 是一个完全平方式,则18.如图,△ABC 中,AC=10,AB=12,△ABC AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF , 则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤. 19.解方程)2x )(1x (311x x +-=--. 20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF. 求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分) 21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:(a+2)2-a(a+2)-(3a 2-6a)÷3a.22.先化简,再求值:x14x 4x )2x 1x 4x 2x (22-++÷+--+-,其中是||<2的整数.FEDCBA23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元. (1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.已知a+b=1,ab=-1.设S 1=a+b ,S 2=a 2+b 2,S 3=a 3+b 3,⋯,S n =a n+b n, (1)计算S 2;(2)请阅读下面计算S 3的过程:a 3+b 3=a 3+b 3+(b 2a-b 2a)+(a 2b-a 2b) =(a 3+b 2a)+(b 3+a 2b)-(b 2a+a 2b) =(a 2+b 2)a+(a 2+b 2)b-ab(a+b) =(a+b)(a 2+b 2)-ab(a+b)G E DCB AFEDCBA图2FEDCBA图3∵a+b=1,ab=-1,∴S3=a3+b3=(a+b)(a2+b2)-ab(a+b)=1×S2-(-1)×1=S2+1= .你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;(3)猜想并写出S n-2,S n-1,S n三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.图1F参考答案及评分意见一、选择题(12个小题,共48分)1——12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C. 二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ; 16.>21且≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(-1)(+2),得(+2)-(-1)(+2)=3 ⋯⋯⋯⋯⋯⋯4分 解得=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 检验:当=1时,(-1)(+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=x1)2x (]1x )1x )(2x (1x 4x 2x [22-+÷-----+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=2)2x (x 11x 2x +-⋅-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分=2x 1+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分又是||<2的整数,∴=-1或0或1. 当=1时原式无意义. ∴当=-1时,原式=-1;当=0时,原式=21-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DFDE ADAD∴Rt△ADE≌Rt△ADF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价元,根据题意,得5x 50002x 2100+=⨯.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分GD CA 解得 =120.经检验,=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (2)设剩余的葡萄每件售价打y 折.根据题意,得6405000y 1.080%-1150125500080%1501255000≥-⨯⨯⨯+⨯⨯)(⋯⋯⋯⋯⋯⋯8分 解得 y ≥7. 答:剩余的葡萄每件售价最少打7折.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 (2)S 3=4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4. 猜想:S n-2+S n-1=S n .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11, ∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29, ∴S 8=S 6+S 7=18+29=47.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG ∥AB ,∴∠DGC=∠B. ∴∠DGC=∠DCG=60°.∴△DGC是等边三角形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ∴DC=DG ,∠CDG=60°. ∵△DEF 是等边三角形, ∴DE=DF ,∠EDF=60°∴∠EDG=60°-∠GDF ,∠FDC=60°-∠GDF ∴∠EDG=∠FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∴△EDG ≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 (2)∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 如图2,过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴CD=DG=CG ,∠CDG=60°∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°-∠CDE ,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG ≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵CG=CE+EG ,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分 (3)如图3,猜想DC 、EC 、FC 之间的等量关系是FC=DC+EC. 证明如下:∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60° ∴△DGC 是等边三角形.∴CD=DG=CG ,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 ∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°+∠CDE ,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG ≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分 ∴EG=FC. ∵EG=EC+CG ,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分FE DCBA 图2GGFEDC BA 图3。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新推荐

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新推荐

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x 5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义. ∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4猜想:S2-n +S1-n=Sn. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S3=4 ,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,S7=S5+S6=11+18=29,∴S8=S6+S7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-可编辑修改

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-可编辑修改

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1.3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x 5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC 是等边三角形,点D 在边AC 上(点D 不与点A ,C 重合),点E 是射线BC 上的一个动点(点E 不与点B ,C 重合),连接DE ,以DE 为边作等边△DEF ,连接CF.(1)如图1,当DE 的延长线与AB 的延长线相交,且点C ,F 作直线DE 的同侧时,过点D 作DG ∥AB ,DG 交BC 于点G ,求证:CF=EG ;(2)如图2,当DE 的反向延长线与AB 的反向延长线相交,且点C ,F 在直线DE 的同侧时,求证:CD=CE+CF ;(3)如图3,当DE 的反向延长线与线段AB 相交,且点C ,F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k >21且k ≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S2=a2+b2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S4=a4+b4=(a2+b2)2-2a2b2=(a2+b2)2-2(ab)2,又∵a2+b2=3,ab=-1,∴S4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4猜想:S2-n +S1-n=Sn. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S3=4 ,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,S7=S5+S6=11+18=29,∴S8=S6+S7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

【推荐】2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案-优质版

【推荐】2019-2020年重庆市綦江区八年级上册期末考试数学试题有答案-优质版

βα重庆市綦江区八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()2.使分式1x 1x 有意义的的取值范围是()A 、=1;B 、≠1;C 、=-1;D 、≠-1.3.计算:(-)3·2的结果是()A 、-24;B 、-23;C 、24;D 、23.4.化简:1x x1x x 2=()A 、1;B 、0;C 、;D 、-.5.一个等腰三角形的两边长分别为3和5,则它的周长为()A 、11;B 、12;C 、13;D 、11或13.6.如果(-2)(+3)=2+p+q ,那么p 、q 的值为()A 、p=5,q=6;B 、p=1,q=-6;C 、p=1,q=6;D 、p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠+∠的度数是()B A C DD C B AA n A 4A 3A 2A 1EDCBA E H D CB AA 、180°;B 、220°;C 、240°;D 、300°.8.下列从左到右的变形中是因式分解的有()①2-y 2-1=(+y)(-y)-1;②3+=(2+1);③(-y)2=2-2y+y 2;④2-9y 2=(+3y)(-3y).A 、1个;B 、2个;C 、3个;D 、4个. 9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=()A 、10;B 、15;C 、20;D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件套,根据题意可得方程为()A 、30x 5.12700x2700; B 、30x 5.1x 2700x 2700;C 、30x 5.1x 5400x 2700; D 、30x 5.1x 2700x 5400.11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5 个三角形中,以点A 5为顶点的底角的度数为()A 、5°;B 、10°;C 、170°;D 、175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形. 你认为正确的序号是()A 、①②③;B 、①③④;C 、②③④;D 、①②③④.二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.ED C B AF ED C BA F E DC B A 13.正六边形一个外角是度. 14.因式分解:a 3-a= . 15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可). 16.已知关于的分式方程11x k 1x k x (≠1)的解为负数,则的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= . 18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程)2x )(1x (311x x.20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p;(2)化简:(a+2)2-a(a+2)-(3a 2-6a)÷3a.FED C B A22.先化简,再求值:x 14x4x )2x 1x 4x2x (22,其中是||<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.已知a+b=1,ab=-1.设S 1=a+b ,S 2=a 2+b 2,S 3=a 3+b 3,?,S n =a n +b n ,G E DCB AFEDCBA图2FEDCBA图3(1)计算S2;(2)请阅读下面计算S3的过程:a3+b3=a3+b3+(b2a-b2a)+(a2b-a2b)=(a3+b2a)+(b3+a2b)-(b2a+a2b)=(a2+b2)a+(a2+b2)b-ab(a+b)=(a+b)(a2+b2)-ab(a+b)∵a+b=1,ab=-1,∴S3=a3+b3=(a+b)(a2+b2)-ab(a+b)=1×S2-(-1)×1=S2+1= .你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;(3)猜想并写出S n-2,S n-1,S n三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF. (1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D 作DG∥AB,DG交BC于点G,求证CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.图1F参考答案及评分意见一、选择题(12个小题,共48分)1——12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.>21且≠1;17.4或±4m 3;18.8.三、解答题(共18分)19.解:方程两边乘(-1)(+2),得(+2)-(-1)(+2)=3 ??????4分解得=1 ??????????????????????????????7分检验:当=1时,(-1)(+2)=0,∴原方程无解. ??????????????????????????????8分20.证明:∵AB=CD ,∴AC=BD. ??????????????????2分又∵AE ∥BF ,∴∠A=∠DBF. ??????????????????????4分在△ACE 和△BDF 中BF AEDBFA BD AC∴△ACE ≌△BDF.????????????????????????6分∴EC=FD.???????????????????????????8分四、解答题(共40分)21.(1)原式=p 2-4???????????????????????????3分 =(p+2)(p-2). ?????????????????????5分(2)解:原式=a 2+4a+4-a 2-2a-a+2??????????????????3分 =a+6.????????????????????????5分22.解:原式=x 1)2x (]1x )1x )(2x (1x4x2x [22?????????3分 =2)2x(x 11x 2x?????????????????????6分 =2x 1????????????????????????7分又是||<2的整数,∴=-1或0或1. 当=1时原式无意义.∴当=-1时,原式=-1;当=0时,原式=21-. ????????????10分23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF. ???????????????????????????????????3分在Rt △ADE 和Rt △ADF 中,DFDE AD AD∴Rt △ADE ≌Rt △ADF. ??????????????????????????????7分∴AE=AF. ????????????????????????????????????8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ??????????10分24.解:(1)设第一批葡萄每件进价元,根据题意,得DA5x 50002x 2100.??????????????????????????????3分解得 =120.经检验,=120是原方程的解且符合题意. ????????????5分答:第一批葡萄每件进价为120元. ??????????????????????6分(2)设剩余的葡萄每件售价打y 折.根据题意,得6405000y 1.080%-1150125500080%1501255000)(??????8分解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ??????????????????10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3.???????????????3分(2)S 3=4. ?????????????????????????????????4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ????????????????????????6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4.猜想:S n-2+S n-1=S n . ??????????????????????????????8分∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47.??????????????????????????10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ??????1分∵DG ∥AB ,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC 是等边三角形. ???????????????2分∴DC=DG ,∠CDG=60°.∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°∴∠EDG=60°-∠GDF ,∠FDC=60°-∠GDF∴∠EDG=∠FDC. ????????????3分∴△EDG ≌△FDC. ????????????4分∴FC=EG. ????????????????????????????5分(2)∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 如图2,过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ???????????????6分∴CD=DG=CG ,∠CDG=60°∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°,∴∠EDG=60°-∠CDE ,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG ≌△FDC. ????????????????7分∴EG=FC. ????????????????????????????8分∵CG=CE+EG ,∴CG=CE+FC. ∴CD=CE+FC. ????????????9分(3)如图3,猜想DC 、EC 、FC 之间的等量关系是FC=DC+EC. 证明如下:∵△ABC 是等边三角形,∴∠B=∠ACB=60°.过点D 作DG ∥AB ,DG 交BC 于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ∴CD=DG=CG ,∠CDG=60°. ????????????10分∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°,∴∠EDG=60°+∠CDE ,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG ≌△FDC. ????????????????11分∴EG=FC. ∵EG=EC+CG ,∴FC=EC+DC. ??????????????12分FE DC BA图2G G F ED C B A 图3。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新精品

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新精品

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC. 证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020学年重庆市綦江区八年级上册期末考试数学试题有答案-最新推荐

2019-2020学年重庆市綦江区八年级上册期末考试数学试题有答案-最新推荐

βαD CB A2019-2020学年重庆市綦江区八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )2.使分式1x 1x +-有意义的x 的取值范围是( ) A 、x=1;B 、x ≠1;C 、x=-1;D 、x ≠-1.3.计算:(-x)3·2x 的结果是( )A 、-2x 4;B 、-2x 3;C 、2x 4;D 、2x 3.4.化简:1x x 1x x 2---=( ) A 、1;B 、0;C 、x ;D 、-x.5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A 、11;B 、12;C 、13;D 、11或13.6.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A 、p=5,q=6;B 、p=1,q=-6;C 、p=1,q=6;D 、p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A 、180°;B 、220°;C 、240°;D 、300°.8.下列从左到右的变形中是因式分解的有( )①x 2-y 2-1=(x+y)(x-y)-1;②x 3+x=x(x 2+1);③(x-y)2=x 2-2xy+y 2;④x 2-9y 2=(x+3y)(x-3y).A 、1个;B 、2个;C 、3个;D 、4个. 9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )B AC DA n A 4A 3A 2A 1E D CB A E H D CB A E DC B AFE DC B A A 、10;B 、15;C 、20;D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( )A 、30x 5.12700x2700=+; B 、30x 5.1x 2700x 2700=++; C 、30x 5.1x 5400x 2700=++; D 、30x5.1x 2700x 5400=++. 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B , 在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到 A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5 个三角形中,以点A 5为顶点的底角的度数为( )A 、5°;B 、10°;C 、170°;D 、175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ; ③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A 、①②③;B 、①③④;C 、②③④;D 、①②③④. 二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a 3-a= .15.如图,AB=AC ,要使△ABE ≌△ACD , 应添加的条件是 .(添加一条件即可). 16.已知关于x 的分式方程11x k 1x k x =--++(k ≠1)的解为负数,则k 的取值范围是 .17.若4次3项式m 4+4m 2+A 是一个完全平方式,则18.如图,△ABC 中,AC=10,AB=12,△ABC AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接则CE+EF 的最小值为 . 三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程)2x )(1x (311x x +-=--. 20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.F E D C B A 求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:(a+2)2-a(a+2)-(3a 2-6a)÷3a.22.先化简,再求值:x14x 4x )2x 1x 4x 2x (22-++÷+--+-,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.图1FG E DCB AFEDCBA图2FEDCBA图325.已知a+b=1,ab=-1.设S1=a+b,S2=a2+b2,S3=a3+b3,⋯,S n=a n+b n,(1)计算S2;(2)请阅读下面计算S3的过程:a3+b3=a3+b3+(b2a-b2a)+(a2b-a2b)=(a3+b2a)+(b3+a2b)-(b2a+a2b)=(a2+b2)a+(a2+b2)b-ab(a+b)=(a+b)(a2+b2)-ab(a+b)∵a+b=1,ab=-1,∴S3=a3+b3=(a+b)(a2+b2)-ab(a+b)=1×S2-(-1)×1=S2+1= .你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;(3)猜想并写出S n-2,S n-1,S n三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1——12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k>21且k ≠1;17.4或±4m 3;18.8. 三、解答题(共18分) 19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分 解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 22.解:原式=x1)2x (]1x )1x )(2x (1x 4x 2x [22-+÷-----+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =2)2x (x 11x 2x +-⋅-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义. ∴当x=-1时,原式=-1;当x=0时,原式=21-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分图1F G E D C B A ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得6405000y 1.080%-1150125500080%1501255000≥-⨯⨯⨯+⨯⨯)( ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4.猜想:S n-2+S n-1=S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG ,∠CDG=60°.∵△DEF 是等边三角形, ∴DE=DF ,∠EDF=60°∴∠EDG=60°-∠GDF ,∠FDC=60°-∠GDF ∴∠EDG=∠FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 如图2,过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG ,∠CDG=60°∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°-∠CDE ,∠FDC=60°-∠CDE F E D C B A 图2G∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC. 证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分GFEDCBA图3。

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(2)

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(2)

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(2)一、选择题1.如果分式22444x x x --+的值为0,则x 的值为( ) A .2- B .2 C .2± D .不存在2.把分式6228a b 12a b -约分结果是( ) A .4a 4b- B .3a 4b - C .42a 3b - D .32a 3b - 3.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A 和B 分别代表的是( )A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠04.把x 2+x+m 因式分解得(x-1)(x+2),则m 的值为( )A .2B .3C .2-D .3- 5.下列计算正确的是( ) A .a 5+a 5=a 10B .a 7÷a=a 6C .a 3·a 2=a 6D .(2x)3=2x 3 6.下列计算结果等于4a 6的是( )A .2a 3+2a 3B .2a 2•2a 3C .(2a 3)2D .8a 6÷2a 6 7.如图,在△AB C 中,AB =AC ,BD 和CD 分别是∠ABC 和∠ACB 的平分线,EF 过D 点,且EF ∥BC ,图中等腰三角形共有( )A .2个B .3个C .4个D .5个8.如图,在△ABC 中,∠ACB =45°,AD ⊥BC 于点D ,点E 为AD 上一点,连接CE ,CE =AB ,若∠ACE =20°,则∠B 的度数为( )A .60°B .65°C .70°D .75°9.平面直角坐标系中,点P(﹣2,3)关于x 轴对称的点的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,3)10.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A .SASB .ASAC .AASD .SSS11.如图,BAC 30∠=,AP 平分BAC ∠,GF 垂直平分AP ,交AC 于F ,Q 为射线AB 上一动点,若PQ 的最小值为3,则AF 的长为( )A .3B .6C .D .912.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为( )A .正三角形B .正四边形C .正五边形D .正六边形 13.用三种正多边形铺设地板,其中两种是正方形和正五边形,则第三种正多边形的边数是( ) A .12B .15C .18D .20 14.如图,在五边形ABCDE 中,∠A+∠B+∠E =300°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A.50°B.55°C.60°D.65°15.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A.85°B.90°C.95°D.100° 二、填空题16.计算3x x 4x 22x++--的结果是______.(结果化为最简形式) 17.若m -n =2,则m 2-2mn +n 2=__________.18.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =4,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于4,则α=_____.19.如图,在∠AOB 内部作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD ,OE .若∠AOB =120°,则∠DOE 的度数=_____.20.已知直线y 与x 轴、y 轴分别交于点A 、B ,在坐标轴上找点P ,使△ABP 为等腰三角形,则点P 的个数为_____个.三、解答题21.计算: (1) 2421422x x x++-+- (2) 11()22m n m n m m n m+-⋅--+ 22.已知210a +=,求代数式22(1)(4)1a a a a ---+的值.23.如图①,在四边形ABCD 中,∠A =x°,∠C =y°(0°<x <180°,0°<y <180°).(1)∠ABC +∠ADC = °.(用含x ,y 的代数式表示)(2)如图1,若x=y=90°,DE 平分∠ADC ,BF 平分与∠ABC 相邻的外角,请写出DE 与BF 的位置关系,并说明理由.(3)如图2,∠DFB 为四边形ABCD 的∠ABC 、∠ADC 相邻的外角平分线所在直线构成的锐角, ①当x <y 时,若x+y=140°,∠DFB=30°,试求x 、y .②小明在作图时,发现∠DFB 不一定存在,请直接指出x 、y 满足什么条件时,∠DFB 不存在.24.如图,在ABC ∆中,2AB AC ==,40B C ∠=∠=,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=,DE 交线段AC 于E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠= ;点D 从B 向C 运动时,BDA ∠逐渐 (填“增大”或“减小”);(2)当DC 等于多少时,ABD DCE ∆∆≌,请说明理由;(3)在点D 的运动过程中,ADE ∆的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数.若不可以,请说明理由.25.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)如果∠AOB =130°,那么∠COE 是多少度?(2)在(1)的条件下,如果∠COD =20°31′,那么∠BOE 是多少度?【参考答案】***一、选择题16.217.418.30°19.60°20.6三、解答题21.(1)12x +;(2)1 22.123.(1)360°-x-y ;(2)DE ⊥BF ;(3)①x =40°,y =100°;②x=y.【解析】【分析】(1)利用四边形内角和定理得出答案即可;(2)利用角平分线的性质结合三角形外角的性质得出即可;(3)①利用角平分线的性质以及三角形内角和定理,得出∠DFB=12y-12x=30°,进而得出x,y的值;②当x=y时,∠ABC、∠ADC相邻的外角平分线所在直线互相平行,此时∠DFB不存在.【详解】(1)∠ABC+∠ADC=360°-x-y;故答案为:360°-x-y;(2)如图1,延长DE交BF于G∵DE平分∠ADC,BF平分∠MBC,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG⊥BF(即DE⊥BF);(3)①由(1)得:∠CDN+∠CBM=x+y,∵BF、DF分别平分∠CBM、∠CDN,∴∠CDF+∠CBF=12(x+y),如图2,连接DB,则∠CBD+∠CDB=180°-y,得∠FBD+∠FDB=180°-y+12(x+y)=180°-12y+12x,∴∠DFB=12y-12x=30°,解方程组:1401130 22x yy x==+︒⎧⎪⎨-︒⎪⎩,解得:40100xy︒⎧⎨︒⎩==;②当x=y 时,∠ABC 、∠ADC 相邻的外角平分线所在直线互相平行,此时∠DFB 不存在.【点睛】此题主要考查了多边形的内角和角平分线的性质以及三角形内角和定理等知识,正确应用角平分线的性质是解题关键.24.(1)40°,100°;减小;(2)当DC=2时,△ABD ≌△DCE ;理由见解析;(3)当∠ADB=110°或80°时,△ADE 是等腰三角形.【解析】【分析】(1)利用平角的定义可求得∠EDC 的度数,再根据三角形内角定理即可求得∠DEC 的度数,利用三角形外角的性质可判断∠BDA 的变化情况;(2)利用∠ADC=∠B+∠BAD ,∠ADC=∠ADE+∠EDC 得出∠BAD=∠EDC ,进而求出△ABD ≌△DCE ;(3)根据等腰三角形的判定以及分类讨论得出即可.【详解】(1)∵∠BDA=100°,∠ADE=40°,∠BDA+∠ADE+∠EDC=180°,∴∠EDC=180°-100°-40°=40°,∵∠EDC+∠DEC+∠C=180°,∠C=40°,∴∠DEC=180°-40°-40°=100°;∵∠BDA=∠C+∠DAC ,∠C=40°,点D 从B 向C 运动时,∠DAC 逐渐减小,∴点D 从B 向C 运动时,∠BDA 逐渐减小,故答案为:40°,100°;减小;(2)当DC=2时,△ABD ≌△DCE ;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD ,∠ADC=∠ADE+∠EDC .∴∠BAD=∠EDC .在△ABD 和△DCE 中,B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△DCE (ASA );(3)①当AD=AE 时,∠ADE=∠AED=40°,∵∠AED>∠C ,∴此时不符合;②当DA=DE 时,即∠DAE=∠DEA=12(180°-40°)=70°, ∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DA E=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.【点睛】此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.25.(1)65°(2)44°29′。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案-可编辑修改

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案-可编辑修改

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1B.x ≠1C.x=-1D.x ≠-1.3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1B.0C.xD.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x +=④()()y 3-x 3x y 9-x 22y += A.1个B.2个C.3个D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x 5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是度.14.因式分解:a -a 3=.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是.(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是. 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A=.18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S.你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC 是等边三角形,点D 在边AC 上(点D 不与点A ,C 重合),点E 是射线BC 上的一个动点(点E 不与点B ,C 重合),连接DE ,以DE 为边作等边△DEF ,连接CF.(1)如图1,当DE 的延长线与AB 的延长线相交,且点C ,F 作直线DE 的同侧时,过点D 作DG ∥AB ,DG 交BC 于点G ,求证:CF=EG ;(2)如图2,当DE 的反向延长线与AB 的反向延长线相交,且点C ,F 在直线DE 的同侧时,求证:CD=CE+CF ;(3)如图3,当DE 的反向延长线与线段AB 相交,且点C ,F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k >21且k ≠1;17.4或±4m 3;18.8. 三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S2=a2+b2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S4=a4+b4=(a2+b2)2-2a2b2=(a2+b2)2-2(ab)2,又∵a2+b2=3,ab=-1,∴S4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S1=1,S2=3,S3=4,S4=7,∴S1+S2=S3,S2+S3=S4猜想:S2-n +S1-n=Sn. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S3=4 ,S4=7,∴S5=S3+S4=4+7=11,∴S6=S4+S5=7+11=18,S7=S5+S6=11+18=29,∴S8=S6+S7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC.∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(4)

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(4)

重庆市綦江县2019-2020学年数学八上期末模拟教学质量检测试题(4)一、选择题1.用A ,B 两个机器人搬运化工原料,A 机器人比B 机器人每小时多搬运30kg ,A 机器人搬运900kg 所用时间与B 机器人搬运600kg 所用时间相等,设A 机器人每小时搬运xkg 化工原料,那么可列方程( ) A.900x =6003x - B.9003x +=600x C.60030x +=900x D.9003x -=600x2.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00 000 201kg ,用科学记数法表示10粒芝麻的重量为( )A .2.01×10﹣6kgB .2.01×10﹣5kgC .20.1×10﹣7kgD .20.1×10﹣6kg3.为积极响应“传统文化进校园”的号召,某市某中学举行书法比赛,为奖励获奖学生,学校购买了一些钢笔和毛笔,钢笔单价是毛笔单价的1.5倍,购买钢笔用了1200元,购买毛笔用1500元,购买的钢笔支数比毛笔少20支,钢笔,毛笔的单价分别是多少元?如果设毛笔的单价为x 元/支,那么下面所列方程正确的是(A.B.C. D.4.正方形的边长增加了2cm ,面积相应增加了224cm ,则这个正方形原来的面积是( )A .215cmB .225cmC .236cmD .249cm 5.下列整式乘法中,能运用平方差公式进行运算的是( )A .(2a+b) (2b-a)B .(-x-b) (x+b)C .(a-b) (b-a)D .(m+b)(- b+m) 6.计算,得( )A. B. C. D. 7.点A 、B 均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。

若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA QB +的值最小的点,则OP OQ ⋅=( )A.4B.6.3C.6.4D.58.一定能确定△ABC ≌△DEF 的条件是( )A .∠A=∠D ,AB=DE ,∠B=∠EB .∠A=∠E ,AB=EF ,∠B=∠DC .AB=DE ,BC=EF ,∠A=∠D D .∠A=∠D ,∠B=∠E ,∠C=∠F9.如图,已知∠BDA=∠CDA ,则不一定能使△ABD ≌△ACD 的条件是( )A.BD=DCB.AB=ACC.∠B=∠CD.∠BAD=∠CAD10.平面直角坐标系内的点A (1,﹣2)与点B (1,2)关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称11.若ABO ∆关于y 轴对称,O 为坐标原点,且点A 的坐标为(1,3)-,则点B 的坐标为( )A.(3,1)B.(1,3)-C.(1,3)D.(1,3)--12.如图,在等腰直角△ABC 中,∠ACB=90°,O 是斜边AB 的中点,点D ,E 分别在直角边AC ,BC 上,且∠DOE=90°,DE 交OC 于点P .则下列结论:(1)AD+BE=AC ;(2)AD 2+BE 2=DE 2;(3)△ABC 的面积等于四边形CDOE 面积的2倍;(4)OD=OE .其中正确的结论有( )A .①④B .②③C .①②③D .①②③④ 13.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A .3,4,8B .4,4,9C .5,7,12D .7,8,9 14.将含30°角的三角板ABC 如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是( )A .6个B .5个C .4个D .3个15.学校阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( )A .正方形2块,正三角形2块B .正方形2块,正三角形3块C .正方形l 块,正三角形2块D .正方形2块,正三角形l 块二、填空题16.已知 1a -1 b =1,则a ab b a 2ab b+--- 的值等于 __________ 17.已知2015×2016×2017×2018+1是一个自然数的平方,若设2016=x ,则这个自然数用含x 的代数式可表示为:_____【答案】:x (x+1)﹣1.18.如图,AB CD ⊥,且AB CD =.点E F ,是AD 上的两点,CE AD BF AD ⊥⊥,.若543CE BF EF ===,,,则AD 的长为________________.19.三角形中,如果有一个内角是另外一个内角的2倍,我们把这个三角形叫做“二倍三角形”.在一个“二倍三角形”中有一个内角为60,则另外两个角分别为_______.20.若点A (m ,﹣3),B (﹣2,n )关于y 轴对称,则m n 的值为____.三、解答题21.计算:021|2|( 3.14)(1)2π----+- 22.已知有甲、乙两个长方形,它们的边长如图所示(m 为正整数),面积分别为1S 、2S .(1)请比较1S 和2S 的大小.(2)满足条件124n S S <<-的整数n 有且只有4个,直接写出m 的值并分别求出1S 与2S 的值.23.如图1,在△ABC 中,AB =AC ,点D 是BC 边上一点(不与点B 、C 重合),以AD 为边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE ,设∠BAC =α,∠BCE =β.(1)线段BD 、CE 的数量关系是________;并说明理由;(2)探究:当点D 在BC 边上移动时,α,β之间有怎样的数量关系?请说明理由;(3)如图2,若∠BAC =90°,CE 与BA 的延长线交于点F.求证:EF =DC.24.如图,已知ABC ∆.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题:(1)作ABC ∠的平分线BD 、交AC 于点D ;(2)作线段BD 的垂直平分线,交AB 于点E ,交BC 于点F ,连接,DE DF ;(3)写出你所作出的图形中的所有等腰三角形.25.己知:如图,//FE OC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且1A ∠=∠.(1)求证://AB DC ;(2)若30B ∠=︒,165∠=︒,求OFE ∠的度数.【参考答案】***一、选择题16.;17.无18.619.或20.18三、解答题21.522.(1)12S S >;(2)2m =,154S =,245S =.23.(1)BD=CE ,理由见解析;(2)α+β=180°,理由见解析;(3)见解析.【解析】【分析】(1)首先求出∠BAD=∠CAE ,再利用SAS 得出△ABD ≌△ACE 即可得BD=CE ;(2)利用△ABD ≌△ACE ,推出∠BAC+∠BCE=180°,根据三角形内角和定理求出即可;(3)利用△ABD ≌△ACE ,可得∠B=∠ACE ,由∠BAC =90°,AB =AC 得∠B=∠ACE=∠ACB=45°,可证出△BCF 是等腰直角三角形,则BC=FC ,即可得出结论.【详解】(1)BD=CE.证明:∵∠BAC=∠DAE ,∴∠BAD=∠CAE ,∵在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎪∠⎪⎩∠⎧⎨=== ,∴△ABD ≌△ACE (SAS )∴BD=CE ;(2)α+β=180°理由:∵△ABD ≌△ACE ,∴∠B=∠ACE ,∴∠BCE=∠ACB+∠ACE=∠ACB+∠B ,∵∠BAC+∠B+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°;(3)∵△ABD ≌△ACE ,∴∠B=∠ACE ,BD=CE ,∵∠BAC =90°,AB =AC ,∴∠B=∠ACE=∠ACB=45°,∴△BCF 是等腰直角三角形,∴BC=FC ,∴BC-BD=FC-CE ,即EF =DC.故答案为:(1)BD=CE ,理由见解析;(2)α+β=180°,理由见解析;(3)见解析.【点睛】本题考查全等三角形的性质和判定,等腰直角三角形的性质,掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点是解题的关键.24.(1)见解析;(2)见解析;(3),,,BEF DEF EBD FBD ∆∆∆∆【解析】【分析】(1)利用尺规作出∠ABC 的角平分线即可.(2)利用尺规作出线段BD 的垂直平分线即可.(3)根据等腰三角形的定义判断即可.【详解】(1)射线BD 即为所求.(2)直线EF 即为所求.(3)△BDE ,△BDF ,△BEF 是等腰三角形.【点睛】本题考查作图-复杂作图,线段的垂直平分线,角平分线的定义等知识,解题的关键是熟练掌握基本知识.25.(1)详见解析;(2)95︒。

重庆綦江县联考2019年数学八上期末学业水平测试试题

重庆綦江县联考2019年数学八上期末学业水平测试试题

重庆綦江县联考2019年数学八上期末学业水平测试试题一、选择题1.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为( )A .2.6×10﹣6B .2.6×10﹣5C .26×10﹣8D .0.26x10﹣72.若关于x 的方程223ax a x =-的解为1x =,则a 等于( ) A .12- B .2 C .12 D .-23.下列计算正确的是( )A .(ab 4)4=a 4b 8B .(a 2)3÷(a 3)2=0C .(﹣x )6÷(﹣x 3)=﹣x 3D .x 0=14.下列各式由左边到右边的变形,属于因式分解的是( )A .(x+1)(x ﹣1)=x 2﹣1B .x 2+2x+1=x (x+2)+1C .﹣4a 2+9b 2=(﹣2a+3b )(2a+3b )D .2x+1=x (2+1x) 5.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 2 6.38181-不能被( )整除.A .80B .81C .82D .837.在△ABC 中,∠A =40°,点D 在BC 边上(不与C 、D 点重合),点P 、点Q 分别是AC 、AB 边上的动点,当△DPQ 的周长最小时,则∠PDQ 的度数为( )A .140°B .120°C .100°D .70°8.如图所示,在Rt △ABC 中,∠ABC=90°,AB=BC ,点D 是AC 的中点,直角∠EDF 的两边分别交AB 、BC 于点E 、F ,给出以下结论:①AE=BF ;②S 四边形BEDF =12S △ABC ;③△DEF 是等腰直角三角形;④当∠EDF 在△ABC 内绕顶点D 旋转时D 旋转时(点E 不与点A 、B 重合),∠BFE=∠CDF ,上述结论始终成立的有( )个.A.1B.2C.3D.49.如图,ΔABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒10.如图,在锐角三角形ABC 中,AB=4,△ABC 的面积为8,BD 平分∠ABC 。

重庆市綦江区2019—2020 学年八年级上学期义务教育质量监测数学试题(含答案)

重庆市綦江区2019—2020 学年八年级上学期义务教育质量监测数学试题(含答案)

八年级数学试题卷 第1页(共4页) 八年级数学试题卷 第2页(共4页)綦江区2019—2020学年上期义务教育质量监测八年级 数学试题卷(本卷共四个大题,满分150分,考试时间120分钟)考生注意:1.试题的答案书写在答题卡...上,不得在试题卷上直接作答; 2.答题前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..的签字笔完成; 4.考试结束,由监考人员将试题卷和答题卡...一并收回. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .2.下列运算,正确的是( ) A .22a a a =⋅B .2a a a =+C .236a a a =÷D .623)(a a =3.下列手机APP 图案中,属于轴对称的是( )A. B.C. D.4.如果3,1a b ab -==,那么22a b +=( ) A .13B .11C .9D .75.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )八年级数学试题卷 第3页(共4页) 八年级数学试题卷 第4页(共4页)6.如图,已知A D ∠=∠ ,12∠=∠ ,那么要得到ABC ∆≌DEF ∆,还应给出的条件是( )A .B E ∠=∠ B .CD AF =C .AB EF =D .BC ED =7.下列从左边到右边的变形,属于因式分解的是( )A .(x +1)(x ﹣1)=x 2﹣1B .x 2﹣2x +1=x (x ﹣2)+1C .x 2﹣2y 2=(x +2y )(x ﹣2y )D .(x ﹣1)(x ﹣2)﹣2=x (x ﹣3)8.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠EDC =70°,则∠B的度数等于( )A .50°B .55°C .60°D .65°9.如图,已知AF 平分∠BAC ,过F 作FD ⊥BC ,若∠B 比∠C 大20度,则∠F 的度数是( )A .10度B .15度C .20度D .不能确定10.李老师到新世纪超市去买猪肉,他发现:现在1200元买到的猪肉与原来800元买的猪肉重量相等,已知现在比原来的猪肉每斤上涨10元,求现在的猪肉价格是多少元?设现在猪肉价格为x 元,列方程为( )A .1200800-10x x = B .120080010x x =+ C .1200800-10x x =D .1200800+10x x=11.在平面直角坐标系中,O 为坐标原点,已知A (1,1), 在x 轴上确定点P ,使△AOP为等腰三角形,则符合条件的点P 的个数共有( )A .1个B .2个C .3个D .4个12.若关于x 的方程3222ax a xx x x +=----的解为整数,且不等式组2390x x a ->⎧⎨-<⎩无解,则这样的非负整数a 有( )A .2个B .3个C .4个D .5个6题8题9题八年级数学试题卷 第5页(共4页) 八年级数学试题卷 第6页(共4页)二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.因式分解2294a c -= . 14.若无意义,且分式的值等于零,那么= .15.如图,在ABC ∆中,︒=∠90C ,AD 平分BAC ∠,BC=10cm ,BD=7cm ,则点D 到AB 的距离为________cm . 16.对于实数a ,b ,c ,d ,规定一种运算a bad bc c d=-, 如101(2)2(2)=⨯--022-⨯=-,那么当(1)(2)(3)(1)x x x x ++--=27时, x = .17.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE折叠,使点A 落在点F 处,若∠B=55°,则∠BDF= .18.晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共用50元、20元、10元三种面额钞票各若干张购买了一套.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是 元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)分解因式:(1)3x (a ﹣b )﹣9y (b ﹣a ); (2) (x -1)(x -3)+1. 20.( 10分)先化简,再求值:(1﹣)÷,其中a=2﹣1+(π﹣2019)021.( 10分)已知:a +b =5,ab =4.(1)求a 2+b 2的值;(2)若a >b ,求a ﹣b 的值;(3)若a >b ,分别求出a 和b 的值.22.( 10分)如图,在平面直角坐标中,已知A (﹣1,5),B(﹣3,0),C (﹣4,3)(1)在图中作出△ABC 关于y 轴对称的图形△A ′B ′C ′; (2)如果线段AB 的中点是P (﹣2,m ),线段A 'B '的中点八年级数学试题卷 第7页(共4页) 八年级数学试题卷 第8页(共4页)是(n ﹣1,2.5).求m +n 的值. (3)求△A 'B 'C 的面积.23.(10分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC平分线.(1)若∠B =38°,∠C =70°,求∠DAE 的度数.(2)若∠C >∠B ,试探求∠DAE 、∠B 、∠C 之间的数量关系.24. ( 10分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x 3+2x 2﹣x ﹣2因式分解的结果为(x ﹣1)(x +1)(x +2),当x =18时,x ﹣1=17,x +1=19,x +2=20,此时可以得到数字密码171920. (1)根据上述方法,当x =21,y =7时,对于多项式x 3﹣xy 2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x 3+(m ﹣3n )x 2﹣nx ﹣21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m 、n 的值.25.(10分)在等腰△ABC 中,AB=AC ,D 为AB 上一点,E 为CD 的中点.(1)如图1,连接AE ,作EH ⊥AC ,若AD=2BD ,S △BDC =6,EH=2 ,求AB 的长.(2)如图2,F 为腰AC 上一点,连接BF ,BE.若∠BAC=∠ABE=∠CBF ,求证:BD+CF=AB.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 26.(8分)(1)如图1,在四边形ABCD 中,AB=AD ,∠B=∠D=90°.E,F 分别是边BC ,CD 上的点,且∠EAF=12∠BAD.求证:EF=BE+FD. (2)如图2,在四边形ABCD 中,AB=AD, ∠B+∠D=180°,E,F 分别是边BC ,CD 上的点,且∠EAF=12∠BAD.(1)中的结论是否仍然成立?(直接写出结论,不必证明)(3)如图3,在四边形ABCD 中,AB=AD ,∠B+∠ADC=180°,E ,F 分别是边BC ,CD延长线上的点,且∠EAF=12∠BAD.(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.八年级数学试题卷第9页(共4页)八年级数学试题卷第10页(共4页)1 / 52019-2020学年上期中小学课程实施情况测查八年级数学参考答案与评分意见一、选择题:(本大题12个小题,每小题4分,共48分) AD B BD B DB AC DB. 二、填空题:(本大题共6个小题,每小题4分,共24分) 13.(32)(32)a c a c + -; 14. 2; 15. 3; 16. 22; 17. 70°; 18. 60. 三、解答题:(本大题7个小题,每小题10分,共70分) 19.解:(1)3x (a ﹣b )﹣9y (b ﹣a )=3x (a ﹣b )+9y (a ﹣b )………………………………………………(2分) =3(a ﹣b )(x+3y );……………………………………………………(5分)(2)原式=2431x x -++……………………………………………………………(2分)=244x x -+…………………………………………………………(3分) =2(2)x -………………………………………………………………(5分) 20. 解:原式=(﹣)÷…………………………………………(2分)=•……………………………………………………………………………(4分)=,………………………………………………………………………………(6分)当a=2﹣1+(π﹣2018)0=+1=时,………………………………………………(8分) 原式===.………………………………………………………………(10分)21. 解:(1)∵a +b =5,ab =4,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×4=17;……………………………………(2分) (2)∵(a ﹣b )2=a 2+b 2﹣2ab =17﹣8=9,…………………………………(3分) ∴a ﹣b =±3,………………………………………………………………………(5分) 又∵a >b ,∴a ﹣b =3;………………………………………………………………………(6分)(3)由(2)得a﹣b=3,解方程组,………………………………………………………………(8分)解得.…………………………………………………………………………(10分)22.解:(1)如图所示:△A′B′C′即为所求;………………………………………(3分)(2)∵△ABC和△A′B′C′是关于y轴对称的图形,∴线段AB的中点是P(﹣2,m),线段A'B'的中点是(n﹣1,2.5)关于y轴对称,∴n﹣1=2,m=2.5,………………………………………………………………(4分)∴n=3,……………………………………………………………………………(5分)∴m+n=5.5;………………………………………………………………………(6分)(3)△A'B'C的面积:7×5﹣×7×3﹣×2×5﹣×2×5=35﹣10.5﹣5﹣5 =14.5.………………………………………………………………………(10分)23. 解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,………………………………………………………………………(1分)∵AE是∠BAC平分线,∴∠BAE=36°,………………………………………………………………………(2分)∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,………………………………………………………………………(3分)∴∠DAE=∠BAD﹣∠BAE=16°;…………………………………………………(4分)(2)∠DAE =(∠C﹣∠B),2 / 5如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC =(180°﹣∠B﹣∠C),………………………………………………(6分)又∵Rt△ACD中,∠DAC=90°﹣∠C,……………………………………………(7分)∴∠DAE=∠EAC﹣∠DAC =(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).………………………………………………………………(10分)24. 解:(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),…………………………(2分)当x=21,y=7时,x+y=28,x﹣y=14,…………………………………………(3分)∴可以形成的数字密码是:212814、211428;……………………………………(4分)(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),……………………(6分)∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,………………………………………………(7分)解得,p=﹣3,q=1,r=7,………………………………………………………(8分)∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,…………………………………(9分)∴,得,…………………………………………………………(10分)即m的值是56,n的值是17.25. (1)解:∵AD=2BD,E为CD的中点∴S△ACE= S△ADE=S△BDC=6……………………………………………………………(2分)∵EH⊥AC, EH=2∴AC=6………………………………………………………………………………(3分)∴AB=AC=6…………………………………………………………………………(4分)(2)证明:如答图,延长BE至点G,使得EG=BE,连接CG设∠BAC=∠ABE=∠CBF=α,∠EBF=βαβ……………………………………………………………(5分)∴∠ABF=∠CBG=-3 / 5∵E为CD的中点∴DE=CE∵∠DEB=∠CEG∴△BDE≌△GCE(SAS)……………………………………………………………(6分)∴∠G=∠ABE=∠BAC=α,BD=CG∵AB=AC∴∠ABC=∠ACB=2-αβ……………………………………………………………(7分)∵∠ACB=∠BFC∴BF=BC………………………………………………………………………………(8分)∴△BCG≌△BFA(AAS)∴AF=CG∴AF=BD………………………………………………………………………………(9分)∴AC=AF+CF=BD+CF∴AB=BD+CF………………………………………………………………………(10分)四、解答题:(本大题1个小题,共8分)26. (1)证明:如图1,延长EB到点G,使BG=DF,连接AG∵∠ABG=∠ABC=∠D=90°,AB=AD∴△ABG≌△ADF………………………………………………………………………(1分)∴AG=AF, ∠1=∠2∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD∴∠GAE=∠EAF…………………………………………………………………………(2分)又∵AE=AE∴△AEG≌△AEF∴EG=EF∴EF=BE+FD……………………………………………………………………………(3分)(2)解:(1)中的结论EF=BE+FD仍然成立………………………………………(4分)(3)解:结论EF=BE+FD不成立,应当是EF=BE-FD4 / 5证明:∵∠B+∠ADC=180°,∠ADF+∠ADC=180°∴∠B=∠ADF∵AB=AD∴△ABG≌△ADF………………………………………………………………………(5分)∴∠BAG=∠DAF,AG=AF∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD∴∠GAE=∠EAF…………………………………………………………………………(6分)∵AE=AE∴△AEG≌△AEF………………………………………………………………………(7分)∴EG=EF∴EG=BE-BG∴EF=BE-FD……………………………………………………………………………(8分)5 / 5。

2019-2020学年重庆市区八年级上册期末数学试卷

2019-2020学年重庆市区八年级上册期末数学试卷

2019-2020学年重庆市区八年级上册期末数学试卷题号 一 二 三 四 总分 得分第I 卷(选择题)一、选择题(本大题共11小题,共44.0分)1. 若不等式组的解集为−1≤x ≤3,则图中表示正确的是( ).A.B.C.D.2. 下列四幅图案中,属于中心对称图形的是( )A.B.C.D.3. 已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( )A. a +c >b +dB. a −c >b −dC. ac >bdD. a c >bd4. 在直角坐标系中,点P(2,−3)向上平移3个单位长度后的坐标为( )A. (5,−3)B. (−1,−3)C. (2,0)D. (2,−6)5. 某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15,绘画小组人数的2倍比书法小组的人数多5.问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( )A. {y −3x =15x −2y =5 B.C. {3x −y =15x −2y =5D. {3x −y =152y −x =56. 如图,函数y 1=−2x 的图像与y 2=ax +3的图像相交于点A(m,2),则关于x 的不等式−2x >ax +3的解集是( )A. x >2B. x <2C. x>−1D. x<−17.如图,点A、B的坐标分别为(1,2),(3,12),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为()A. (1,−5)B. (5,−2)C. (5,−1)D. (−1,5)8.如图所示运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输出的结果为12.……则第2018次输出的结果是()A. 1B. 6C. 3D. 49.以下命题是假命题的是()A. 对顶角相等B. 经过直线外一点,有且只有一条直线与这条直线平行C. 两直线被第三条直线所截,内错角相等D. 邻补角是互补的角10.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A. ∠BDO=60°B. ∠BOC=25°C. OC=4D. BD=411.若关于x、y的方程组{x+y=5kx−y=7k的解也是二元一次方程2x+3y=9的解,则k的值为()A. 1B. −1C. 2D. −2第II卷(非选择题)二、填空题(本大题共7小题,共28.0分)12.若√3−m为二次根式,则m的取值范围是______.13.已知一次函数y=kx+b的图像经过点A(1,−5),且与直线y=−3x+2平行,那么该一次函数的解析式为_________.14.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为______.15.甲乙两车同时从A地出发,背向而行,甲车匀速行驶,开往相距360千米的目的B地才停下,乙车开往相距a千米的C地,图中停车检查并休息一段时间后,速度变为原来的2倍,到达目的地停下休息,如图表示的是两车各自行驶的路程y(千米)与两车出发后时间t(时)之间的函数图象,则出发后______小时,两车行驶的路程共600千米.16.直线l1:y=kx+b与直线l2:y=−3x在同一平面直角坐标系中的图象如图所示,则关于x的不等式−3x>kx+b的解集为______.17.在平面直角坐标系中,将点P(−3,2)绕点Q(−1,0)顺时针旋转90°,所得到的对应点P′的坐标为____.18.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点M是AC边的中点,点N是BC边上的任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为______.三、计算题(本大题共1小题,共10.0分)19.已知:如图所示,点O在∠BAC的平分线上,OD⊥AC,OE⊥AB,垂足分别为D,E,DO,EO的延长线分别交AE,AD的延长线于点B,求证:OB=OC.四、解答题(本大题共7小题,共68.0分)20.解方程:(1)x2+1=x−13(2){3x≥x+2x+44<2x−1221.已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.(1)求证:BD//AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.22.如图,直线l1:y=−x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,−1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若ΔABP的面积等于ΔABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.23.某工厂甲、乙两个部门各有员工200人,为了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下.从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:甲:7886748175768770759075798170758085708377乙:9271838172819183758280816981737482807059整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲 0 0 12 7 1乙 1 1 6______ ______(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格)根据上述表格绘制甲、乙两部门员工成绩的频数分布图.分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3577.575乙7880.581(1)请将上述不完整的统计表和统计图补充完整;(2)请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工人数是多少;②你认为甲、乙哪个部门员工的生产技能水平较高,说明理由.(至少从两个不同的角度说明推断的合理性)24.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴正半轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.25.某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价−总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;(2)求总利润w关于x的函数解析式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.26.在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?____(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=____度时,存在AQ=2BD,说明理由.答案和解析1.【答案】D【解析】【分析】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能正确地把不等式的解集在数轴上表示出来是解此题的关键.实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.【解答】解:不等式组的解集为−1≤x≤3在数轴表示−1和3以及两者之间的部分:故选D.2.【答案】B【解析】【分析】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据中心对称图形的概念判断.【解答】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.3.【答案】A【解析】解:∵a >b ,c >d ,∴a +c >b +d .故选:A .直接利用不等式的基本性质分别化简得出答案.此题主要考查了不等式的性质,正确掌握不等式的基本性质是解题关键.4.【答案】C【解析】解:点P(2,−3)向上平移3个单位长度后,纵坐标变为−3+3=0, 所以,平移后的坐标为(2,0),故选:C .根据向上平移纵坐标解答.本题考查了坐标与图形变化−平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.【答案】D【解析】【分析】此题主要考查了实际问题与二元一次方程组,根据题意可得等量关系:书法小组的人数×3−绘画小组的人数=15,绘画小组人数×2−书法小组的人数=5,列出方程组即可.【解答】解:设书法小组有x 人,绘画小组有y 人,由题意,得:{3x −y =152y −x =5, 故选D .6.【答案】D【解析】【分析】此题主要考查了一次函数与一元一次不等式,关键是求出A 点坐标.首先利用待定系数法求出A 点坐标,再以交点为分界,结合图象写出不等式−2x >ax +3的解集即可.【解答】解:∵函数y 1=−2x 过点A(m,2),∴−2m =2,解得:m=−1,∴A(−1,2),∴不等式−2x>ax+3的解集为x<−1.故选D.7.【答案】C【解析】解:设A1的坐标为(m,n),∵线段AB绕点B顺时针旋转180°得线段A1B,∴BA=BA1,∠ABA1=180°,∴点B为AA1的中点,∴3=1+a2,12=2+b2,解得a=5,b=−1,∴A1的坐标为(5,−1).故选C.设A1的坐标为(m,n),根据旋转的性质得BA=BA1,∠ABA1=180°,则可判断点B为AA1的中点,根据线段中点坐标公式得到3=1+a2,12=2+b2,解得a=5,b=−1,然后解方程求出a、b即可得到A1的坐标.本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.利用线段中点坐标公式是解决本题的关键.8.【答案】C【解析】【分析】本题考查有理数的混合运算、代数式求值,解答本题的关键是明确有理数混合运算的计算方法.根据题意和运算程序,可以求得前几次的输出结果,从而可以发现输出结果的变化规律,进而求得第2018次输出的结果.【解答】解:当x=48时,第一次输出的结果为:48×12=24,第二次输出的结果为:24×12=12,=6,第三次输出的结果为:12×12=3,第四次输出的结果为:6×12第五次输出的结果为:3+3=6,=3,第六次输出的结果为:6×12∵(2018−2)÷2=1008,∴第2018次输出的结果是3,故选:C.9.【答案】C【解析】【分析】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据对顶角的性质、平行公理、平行线的性质、邻补角的概念判断即可.【解答】解:对顶角相等,A是真命题;经过直线外一点,有且只有一条直线与这条直线平行,B是真命题;两平行线被第三条直线所截,内错角相等,C是假命题;邻补角是互补的角,D是真命题;故选C.10.【答案】D【解析】【分析】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【解答】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC−∠AOB=60°−35°=25°,故B选项正确;故选:D.11.【答案】A【解析】【分析】此题考查了二元一次方程组的解和二元一次方程组的解法,方程组的解即为能使方程组中两方程成立的未知数的值.将k看做已知数,表示出x与y,根据题意代入方程2x+ 3y=9中计算,即可求出k的值.【解答】解:{x+y=5k①x−y=7k②,①+②得:2x=12k,x=6k,将x=6k代入①得:y=−k,将x=6k,y=−k代入2x+3y=9中得:12k−3k=9,解得:k=1.故选A.12.【答案】m≤3【解析】【分析】此题主要考查了二次根式定义,关键是掌握二次根式的被开方数是非负数.根据二次根式定义可得3−m≥0,再解之即可.【解答】解:由题意知3−m≥0,解得:m≤3,故答案为:m≤3.13.【答案】y=−3x−2【解析】【分析】此题考查了一次函数的待定系数法.注意:若两条直线平行,则它们的k值相等.根据两条直线平行,则k值相等,可设这个一次函数的解析式是y=−3x+b,再根据一次函数的图象经过点(1,−5),求得b的值,就得到函数解析式.【解答】解:设直线解析式是y=kx+b.∵它与直线y=−3x+2平行,∴k=−3,∴y=−3x+b,∵一次函数的图象经过点(1,−5),∴b=−2.∴这个一次函数的解析式是y=−3x−2.故答案为y=−3x−2.14.【答案】3√32【解析】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC−CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,,根据勾股定理可得EH=3√32∴E到直线BD的距离为3√3,2.故答案为3√32如图,过点E作EH⊥BC于H.首先证明△ABD是等边三角形,解直角三角形求出EH即可.本题考查翻折变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】5【解析】解:设甲车对应的函数解析式为y=kt,360=6k,得k=60,∴甲车对应的函数解析式为y=60t,当0≤t≤2.5时,乙的速度为:100÷2=50千米/时,当2.5≤t≤4.5时,乙的速度为:50×2=100千米/时,∵100+2.5×60=250<600,100+(4.5−2.5)×100+60×4.5=570<600,∴令570+60(t−4.5)=600,解得,t=5,故答案为:5.根据题意可以分别求得甲对应的函数解析式和乙的休息前后的速度,然后根据题目中的数据即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.16.【答案】x<−1【解析】【解答】解:由图形可知,当x<−1时,−3x>kx+b,所以,关于x的不等式−3x>kx+b的解集是x<−1.故答案为:x<−1【分析】此题考查一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.根据图形,找出直线l1在直线l2下方部分的x的取值范围即可.17.【答案】(1,2)【解析】【分析】本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.根据题意,画出图形即可解决问题.【解答】解:如图,观察图象可知,P′(1,2).故答案为(1,2).18.【答案】43或16−4√73【解析】解:取BC 、AB 的中点H 、G ,连接MH 、HG 、MG .如图1中,当点C′落在MH 上时,设NC =NC′=x ,由题意可知:MC =MC′=4,MH =5,HC′=1,HN =3−x ,在Rt △HNC′中,∵HN 2=HC′2+NC′2,∴(3−x)2=x 2+12,解得x =43.如图2中,当点C′落在GH 上时,设NC =NC′=x ,在Rt △GMC′中,MG =CH =3,MC =MC′=4,∴GC′=√7,∵∠NHC′=∠C′GM =90°,∠NC′M =90°,∴∠HNC′+∠HC′N =∠GC′M +∠HC′N =90°,∴∠HNC′=∠CGC′M ,∴△HNC′∽△GC′M , ∴HC′GM =NC′MC′, ∴4−√73=x 4,∴x =16−4√73.如图3中,当点C′落在直线GM 上时,易证四边形MCNC′是正方形,可得CN =CM =2.∴C′M >GM ,此时点C′在中位线GM 的延长线上,不符合题意.综上所述,满足条件的线段CN 的长为43或16−4√73. 故答案为:43或16−4√73. 取BC 、AB 的中点H 、G ,连接MH 、HG 、MG.分三种情形:①如图1中,当点C′落在MH 上时;②如图2中,当点C′落在GH 上时;③如图3中,当点C′落在直线GM 上时,分别求解即可解决问题;本题考查轴对称、三角形的中位线、勾股定理、相似三角形的判定和性质、正方形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.19.【答案】证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°,在△BEO 和△CDO 中∵{∠BEO =∠CDO OE =OD ∠EOB =∠DOC∴△BEO≌△CDO(ASA),∴OB=OC.【解析】根据角平分线性质得出OE=OD,又根据ASA证△BEO≌△CDO,(全等三角形的判定定理有SAS,ASA,AAS,SSS,HL).根据全等三角形的性质(全等三角形的对应角相等,对应边相等),得出OB=OC.20.【答案】解:(1)3x+6=2x−2,3x−2x=−2−6,x=−8;(2)解不等式3x≥x+2,得:x≥1,解不等式x+44<2x−12,得:x>2,则不等式组的解集为x>2.【解析】(1)根据解一元一次方程的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】证明:(1)∵A(0,8),B(0,4),∴OA=8,OB=4,点B为线段OA的中点,∵点D为OC的中点,即BD为△AOC的中位线,∴BD//AC;解:(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,6),∵BD//AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=4,点G为AB的中点,AB=2,∴FG=BG=12∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA=√AC2−OC2=√3x,∵OA=4,∴x=4√3,3∵点C在x轴的正半轴上,∴点C的坐标为(4√3,0);3(3)如图2,当四边形ABDE为平行四边形时,AB//DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)得:{4k +b =0b =4, 解得:{k =−1b =4.∴直线AC 的解析式为y =−x +4.【解析】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.(1)由A 与B 的坐标求出OA 与OB 的长,进而得到B 为OA 的中点,而D 为OC 的中点,利用中位线定理即可得证;(2)如图1,作BF ⊥AC 于点F ,取AB 的中点G ,确定出G 坐标,由平行线间的距离相等求出BF 的长,在直角三角形ABF 中,利用斜边上的中线等于斜边的一半求出FG 的长,进而确定出三角形BFG 为等边三角形,即∠BAC =30°,设OC =x ,则有AC =2x ,利用勾股定理表示出OA ,根据OA 的长求出x 的值,即可确定出C 坐标;(3)如图2,当四边形ABDE 为平行四边形时,AB//DE ,进而得到DE 垂直于OC ,再由D 为OC 中点,得到OE =CE ,再由OE 垂直于AC ,得到三角形AOC 为等腰直角三角形,求出OC 的长,确定出C 坐标,设直线AC 解析式为y =kx +b ,将A 与C 坐标代入求出k 与b 的值,即可确定出AC 解析式.22.【答案】解:(1)由题知:{−1=3k +b 0=6k +b,解得:{k =13b =−2, 故直线l 2的函数关系式为:y =13x −2; (2)由题及(1)可设点P 的坐标为(t,13t −2). 解方程组{y =−x +3y =13x −2,得{x =154y =−34, ∴点D 的坐标为(154,−34). ∵S △ABP =2S △ABD ,∴12AB ⋅|13t −2|=2×12AB ⋅|−34|,即|13t −2|=32,解得:t =212或t =32, ∴点P 的坐标为(212,32)或(32,−32);(3)作直线y=3(如图),再作点A关于直线y=3的对称点A′,连结A′B,由几何知识可知:A′B与直线y=3的交点即为QA+QB最小时的点Q.∵点A(3,0),∴A′(3,6)∵点B(6,0),∴直线A′B的函数表达式为y=−2x+12.∵点Q(m,3)在直线A′B上,∴3=−2m+12解得:m=92,故存在m的值使得QA+QB最小,此时点Q的坐标为(92,3).【解析】本题考查的是待定系数法求一次函数解析式,一次函数的性质和应用,一次函数图象上点的坐标特点,轴对称最短路线问题,三角形的面积公式等知识,在解答(3)时要注意作出辅助线,利用轴对称的性质求解.(1)把点(3,−1),点B(6,0)代入直线l2,求出k、b的值即可;(2)设点P的坐标为(t,13t−2),求出D点坐标,再由S△ABP=2S△ABD求出t的值即可;(3)作直线y=3,作点A关于直线y=3的对称点A′,连结A′B,利用待定系数法求出其解析式,根据点Q(m,3)在直线A′B上求出m的值,进而可得出结论.23.【答案】解:(1)补全图表如下:成绩x人数部门50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲 0 0 12 7 1乙 1 1 6 10 2(2)①估计乙部门生产技能优秀的员工人数是200×1220=120人; ②(答案不唯一) 如选甲:1°、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高; 2°、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高; 如选乙:1°、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高; 2°、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.【解析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键. (1)根据题干数据整理即可得;(2)①总人数乘以样本中优秀的人数所占比例;②根据中位数和众数等意义解答可得.24.【答案】解:(1)∵直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,∴A(−2,0),B(0,4), ∴OA =2,OB =4, ∵S △ABC =12⋅AC ⋅OB =10, ∴AC =5, ∴OC =3, ∴C(3,0),设直线B 的解析式为y =kx +b ,则有{3k +b =0b =4,∴{k =−43b =4.∴直线BC的解析式为y=−43x+4.(2)∵FA=FB,A(−2,0),B(0,4),∴F(−1,2),设G(0,n),①当n>2时,如图2−1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q 作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证△FMG≌△GNQ,∴MG=NQ=1,FM=GN=n−2,∴Q(n−2,n−1),∵点Q在直线y=−43x+4上,∴n−1=−43(n−2)+4,∴n=237,∴G(0,23 7 ).②当n<2时,如图2−2中,同法可得Q(2−n,n+1),∵点Q在直线y=−43x+4上,∴n+1=−43(2−n)+4,∴n=−1,∴G(0,−1).综上所述,满足条件的点G坐标为(0,237)或(0,−1).(3)如图3中,设M(m,−43m+4),∵S△AMB=S△AOB,∴S△ABC−S△AMC=S△AOB,∴12×5×4−12×5×(−43m+4)=12×2×4,∴m=65,∴M(65,125),∴直线AM的解析式为y=34x+32,作BE//OC交直线AM于E,此时E(103,4),当CD=BE时,可得四边形BCDE,四边形BECD1是平行四边形,可得D(193,0),D1(−13,0),根据对称性可得点D关于点A的对称点D2(−313,0)也符合条件,综上所述,满足条件的点D的坐标为(193,0)或(−13,0)或(−313,0).【解析】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解决问题.(2)分两种情形:①当n >2时,如图2−1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N.求出Q(n −2,n −1).②当n <2时,如图2−2中,同法可得Q(2−n,n +1),利用待定系数法即可解决问题.(3)利用三角形的面积公式求出点M 的坐标,求出直线AM 的解析式,作BE//OC 交直线AM 于E ,此时E(103,4),当CD =BE 时,可得四边形BCDE ,四边形BECD 1是平行四边形,可得D(193,0),D 1(−13,0),再根据对称性可得D 2解决问题.25.【答案】解:(1)y 与x 的函数解析式为y =60−x ;(2)总利润w 关于x 的函数解析式为w =(52−40)x +(32−25)(60−x)=5x +420; (3)由题意得40x +25(60−x)≤2100,解得x ≤40, ∵w =5x +420,w 随x 的增大而增大, ∴当x =40时,w 最大值=5×40+420=620, 此时购进碳酸饮料60−40=20(箱).∴该商场购进果汁饮料和碳酸饮料分别为40箱和20箱时,能获得最大利润620元.【解析】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.(1)依题意可列出y 关于x 的函数关系式;(2)根据总利润=每个的利润×数量就可以表示出w 与x 之间的关系式;(3)由题意得40x +25(60−x)≤2100,解得x 的取值范围,再由一次函数的性质可以求出进货方案及最大利润.26.【答案】(1)证明:∵∠ACB =∠ADB =90°,∠APD =∠BPC ,∴∠DAP =∠CBP , 在△ACQ 和△BCP 中{∠QCA =∠PCB CA =CB ∠CAQ =∠CBP∴△ACQ≌△BCP(ASA), ∴BP =AQ ; (2)成立;(3)22.5理由:∵BP=AQ,DB+DP=AQ,∵AQ=2BD,∴BD=DP,∵AD⊥PB,∴∠BAD=∠DAP,∵BC=AC,∠BCA=90°,∴∠ABC=∠BAC=45°,∴∠BAP=135°,∴∠DAB=67.5°,∴∠DBA=22.5°.【解析】【分析】此题是三角形综合题,主要考查了全等三角形的判定与性质以及等腰三角形性质和三角形内角和定理等知识,根据题意得出全等三角形是解题关键.(1)见答案;(2)成立,理由:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,{∠ACQ=∠BCP CA=CB∠CAQ=∠DBQ∴△AQC≌△BPC(ASA),∴AQ=BP,故答案为:成立;(3)见答案.。

【精选】2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版

【精选】2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC =∠B .∴∠DGC =∠DCG =60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ∴DC=DG ,∠CDG =60°∵△DEF 是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新推荐

2019-2020学年重庆市綦江区统考八年级上册期末数学试题有答案新人教版-最新推荐

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1 B.x ≠1 C.x=-1 D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1 B.0 C.x D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x += ④()()y 3-x 3x y 9-x 22y += A.1个 B.2个 C.3个 D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是 度.14.因式分解:a -a 3= .15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是 .(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A= .18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义. ∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯ ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分∵DG∥AB,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

重庆市八年级上册期末考试数学试题有答案 【精编】.doc

重庆市八年级上册期末考试数学试题有答案 【精编】.doc

βα2019-2020学年重庆市八年级上期末考试数学试题考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷. 2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( ) 2.使分式1x 1x +-有意义的x 的取值范围是( ) A 、x=1;B 、x ≠1;C 、x=-1;D 、x ≠-1. 3.计算:(-x)3·2x 的结果是( ) A 、-2x 4;B 、-2x 3;C 、2x 4;D 、2x 3.4.化简:1x x1x x 2---=( ) A 、1;B 、0;C 、x ;D 、-x.5.一个等腰三角形的两边长分别为3和5,则它的周长为( ) A 、11;B 、12;C 、13;D 、11或13.6.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A 、p=5,q=6;B 、p=1,q=-6;C 、p=1,q=6;D 、p=5,q=-6. 7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形, 则图中∠α+∠β的度数是( ) A 、180°;B 、220°;C 、240°;D 、300°.BACDDCB AA nA 4A 3A 2A 1E DCB AE HDCBAE DCB A8.下列从左到右的变形中是因式分解的有( )①x 2-y 2-1=(x+y)(x-y)-1;②x 3+x=x(x 2+1);③(x-y)2=x 2-2xy+y 2;④x 2-9y 2=(x+3y)(x-3y). A 、1个;B 、2个;C 、3个;D 、4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的 平分线BD 交AC 于点D ,若AD=3,则BD+AC=( ) A 、10;B 、15;C 、20;D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A 、30x 5.12700x 2700=+; B 、30x5.1x 2700x 2700=++; C 、30x 5.1x 5400x 2700=++; D 、30x5.1x 2700x 5400=++. 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到 A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( ) A 、5°;B 、10°;C 、170°;D 、175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB , 垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论: ①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形. 你认为正确的序号是( )A 、①②③;B 、①③④;C 、②③④;D 、①②③④.二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上. 13.正六边形一个外角是 度. 14.因式分解:a 3-a= . 15.如图,AB=AC ,要使△ABE ≌△ACD ,FCA FEDC B A FEDCBA应添加的条件是 .(添加一条件即可). 16.已知关于x 的分式方程11x k1x k x =--++(k ≠1)的解为负数,则k 的取值范围是 . 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则18.如图,△ABC 中,AC=10,AB=12,△ABC AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接则CE+EF 的最小值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程)2x )(1x (311x x +-=--. 20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:(a+2)2-a(a+2)-(3a 2-6a)÷3a.22.先化简,再求值:x14x 4x )2x 1x 4x 2x (22-++÷+--+-,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.已知a+b=1,ab=-1.设S1=a+b,S2=a2+b2,S3=a3+b3,⋯,Sn=a n+b n,(1)计算S2;(2)请阅读下面计算S3的过程:a3+b3=a3+b3+(b2a-b2a)+(a2b-a2b) =(a3+b2a)+(b3+a2b)-(b2a+a2b)=(a2+b2)a+(a2+b2)b-ab(a+b)=(a+b)(a2+b2)-ab(a+b)∵a+b=1,ab=-1,∴S3=a3+b3=(a+b)(a2+b2)-ab(a+b)=1×S2-(-1)×1=S2+1= .G E DCB AFEDCBA图2FEDCBA图3你读懂了吗?请你先填空完成(2)中S3的计算结果;再计算S4;(3)猜想并写出Sn-2,Sn-1,Sn三者之间的数量关系(不要求证明,且n是不小于2的自然数),根据得出的数量关系计算S8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF. (1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.图1F参考答案及评分意见一、选择题(12个小题,共48分)1——12:C 、D 、A 、C 、D 、B 、C 、B 、B 、B 、A 、C.二、填空题(6个小题,共24分) 13.60;14.a(a+1)(a-1);15.∠C=∠B 或∠AEB=∠ADC 或∠CEB=∠BDC 或AE=AD 或CE=BE ;16.k>21且k ≠1;17.4或±4m 3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分 解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 检验:当x=1时,(x-1)(x+2)=0,∴原方程无解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 20.证明:∵AB=CD ,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 又∵AE ∥BF ,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE 和△BDF 中⎪⎩⎪⎨⎧=∠=∠=BF AE DBF A BD AC∴△ACE ≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 四、解答题(共40分) 21.(1)原式=p 2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 (2)解:原式=a 2+4a+4-a 2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=x1)2x (]1x )1x )(2x (1x 4x 2x [22-+÷-----+- ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=2)2x (x 11x 2x +-⋅-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=21-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高 ∴DE=DF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DFDE ADAD∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (2)设剩余的葡萄每件售价打y 折.根据题意,得6405000y 1.080%-1150125500080%1501255000≥-⨯⨯⨯+⨯⨯)( ⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 五、解答题(共24分) 25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 (2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 (3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4. 猜想:S n-2+S n-1=S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11, ∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分图1FGED CB A∵DG ∥AB ,∴∠DGC=∠B.∴∠DGC=∠DCG=60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴DC=DG ,∠CDG=60°. ∵△DEF 是等边三角形, ∴DE=DF ,∠EDF=60°∴∠EDG=60°-∠GDF ,∠FDC=60°-∠GDF ∴∠EDG=∠FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 (2)∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 如图2,过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60°∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 ∴CD=DG=CG ,∠CDG=60°∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°-∠CDE ,∠FDC=60°-∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵CG=CE+EG ,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分 (3)如图3,猜想DC 、EC 、FC 之间的等量关系是FC=DC+EC. 证明如下:∵△ABC 是等边三角形,∴∠B=∠ACB=60°. 过点D 作DG ∥AB ,DG 交BC 于点G. ∴∠DGC=∠B. ∴∠DGC=∠DCG=60° ∴△DGC 是等边三角形.∴CD=DG=CG ,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 ∵△DEF 是等边三角形,∴DE=DF ,∠EDF=60°, ∴∠EDG=60°+∠CDE ,∠FDC=60°+∠CDE∴∠EDG=∠FDC. ∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分FE DCBA图2GGFED C BA 图3∴EG=FC. ∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年重庆市綦江区八年级上期末考试数学试题 考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷.2.请将所有试题的解答都写在答题卷上.3.全卷共五个大题,满分150分,时间120分钟.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上.1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是( )A B C D2.使分式1x 1-x +有意义的x 的取值范围是( ) A.x=1B.x ≠1C.x=-1D.x ≠-1. 3.计算:(-x)3·2x 的结果是( )A.-2x 4B.-2x 3C.2x 4D.2x 34.化简:1-x x -1-x 1-x 2=( ) A.1B.0C.xD.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11B.12C.13D.11或136.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( )A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()第7题 第9题A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有( )①()()1-y -x y x 1-y -x 22+=②()1x x x x 23+=+③()222y xy 2-x y -x +=④()()y 3-x 3x y 9-x 22y += A.1个B.2个C.3个D.4个.9.如图,在Rt △ABC 中,∠A=90°,∠C=30°,∠ABC 的平分线BD 交AC 于点D ,若AD=3,则BD+AC=( )A 、10B 、15C 、20D 、30.10.精元电子厂准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x 套,根据题意可得方程为( ) A.30x 5.12700x 2700=+ B.30x5.1x 2700x 2700=++ C.30x 5.1x 5400x 2700=++ D.30x5.1x 2700x 5400=++ 11.如图,在第一个△ABA 1中,∠B=20°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 5为顶点的底角的度数为( )第11题 第12题A.5°B.10°C.170°D.175°12.如图,在△ABC 中,∠BAC=45°,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC ;③BE+CH=AE ;④△AEC 是等腰直角三角形.你认为正确的序号是( )A.①②③B.①③④C.②③④D.①②③④二、填空题(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷上.13.正六边形一个外角是度.14.因式分解:a -a 3=.15.如图,AB=AC ,要使△ABE ≌△ACD ,应添加的条件是.(添加一条件即可).第15题 第16题16.已知关于x 的分式方程11-x k 1x k x =-++(k ≠1)的解为负数,则k 的取值范围是. 17.若4次3项式m 4+4m 2+A 是一个完全平方式,则A=.18.如图,△ABC 中,AC=10,AB=12,△ABC 的面积为48,AD 平分∠BAC ,F ,E 分别为AC ,AD 上两动点,连接CE ,EF ,则CE+EF 的最小值为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时须给出必要的演算过程或推理步骤.19.解方程:()()2x 1-x 31-1-x 1+=20.已知:如图,A 、B 、C 、D 四点在同一直线上,AB=CD ,AE ∥BF 且AE=BF.求证:EC=FD.四、解答题(本大题4个小题,每小题10分,共40分)21.(1)分解因式:(p+4)(p-1)-3p ;(2)化简:()()()a 3a 6-a 3-2a a -2a 22÷++22.先化简,再求值:x -14-x 4-x 2x -1-x 4x 2-x 22÷⎪⎪⎭⎫ ⎝⎛++,其中x 是|x|<2的整数.23.如图,AD 是△ABC 的角平分线,DE ,DF 分别是ABD 和△ACD 的高.求证:AD 垂直平分EF.24.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价-进价)五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时须给出必要的演算过程或推理步骤.25.25.已知a+b=1,ab=-1.设n n n 3332221b a b a b a b a +=⋯+=+=+=S S S S ,,,, (1)计算S 2;(2)请阅读下面计算S 3的过程:()()b a -b a a b -a b b a b a 22223333+++=+ ()()()()()()()()()b a ab -b a b a b a ab -b b a a b a b a a b -b a b a b a 222222222323+++=++++=++++= ∵a+b=1,ab=-1,∴()()()()=+=⨯⨯=+++=+=111--1b a ab -b a b a b a 2222333S S S .你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;(3)猜想并写出n 1-n 2-n S S S ,,三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 8.26.如图,△ABC是等边三角形,点D在边AC上(点D不与点A,C重合),点E是射线BC上的一个动点(点E不与点B,C重合),连接DE,以DE为边作等边△DEF,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且点C,F作直线DE的同侧时,过点D作DG∥AB,DG交BC于点G,求证:CF=EG;(2)如图2,当DE的反向延长线与AB的反向延长线相交,且点C,F在直线DE的同侧时,求证:CD=CE+CF;(3)如图3,当DE的反向延长线与线段AB相交,且点C,F在直线DE的异侧时,猜想CD、CE、CF 之间的等量关系,并说明理由.参考答案及评分意见一、选择题(12个小题,共48分)1—12:C、D、A、C、D、B、C、B、B、B、A、C.二、填空题(6个小题,共24分)13.60;14.a(a+1)(a-1);15.∠C=∠B或∠AEB=∠ADC或∠CEB=∠BDC或AE=AD或CE=BE;16.k>21且k≠1;17.4或±4m3;18.8.三、解答题(共18分)19.解:方程两边乘(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3 ⋯⋯⋯⋯⋯⋯4分解得x=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分检验:当x=1时,(x-1)(x+2)=0,∴原方程无解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分20.证明:∵AB=CD,∴AC=BD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分又∵AE∥BF,∴∠A=∠DBF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分在△ACE和△BDF中⎪⎩⎪⎨⎧=∠=∠=BFAEDBFABDAC∴△ACE≌△BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴EC=FD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、解答题(共40分)21.(1)原式=p2-4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=(p+2)(p-2). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)解:原式=a2+4a+4-a2-2a-a+2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分=a+6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分22.解:原式=()()()x -12x 1-x 1-x 2-x -1-x 4x 2-x 22+÷⎥⎦⎤⎢⎣⎡+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 =()22x x -11-x 2x +⨯+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 =2x 1-+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 又x 是|x|<2的整数,∴x=-1或0或1. 当x=1时原式无意义.∴当x=-1时,原式=-1;当x=0时,原式=-21. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分 23.证明:∵AD 是△ABC 的角平分线,且DE ,DF 分别是ABD 和△ACD 的高∴DE=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分在Rt △ADE 和Rt △ADF 中,⎩⎨⎧==DF DE AD AD ∴Rt △ADE ≌Rt △ADF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分 ∴AE=AF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∴点D 、A 都是EF 的垂直平分线上的点,故AD 垂直平分EF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分24.解:(1)设第一批葡萄每件进价x 元,根据题意,得5x 50002x 2100+=⨯. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得 x=120.经检验,x=120是原方程的解且符合题意. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 答:第一批葡萄每件进价为120元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(2)设剩余的葡萄每件售价打y 折.根据题意,得()6405000-y 1.0%80-11501255000%801501255000≥⨯⨯⨯+⨯⨯⋯⋯⋯⋯⋯⋯8分 解得 y ≥7.答:剩余的葡萄每件售价最少打7折. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分五、解答题(共24分)25.解:(1)S 2=a 2+b 2=(a+b)2-2ab=12-2×(-1)=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)S 3=4. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∵S 4=a 4+b 4=(a 2+b 2)2-2a 2b 2=(a 2+b 2)2-2(ab)2,又∵a 2+b 2=3,ab=-1,∴S 4=7. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)∵S 1=1,S 2=3,S 3=4,S 4=7,∴S 1+S 2=S 3,S 2+S 3=S 4猜想:S 2-n +S 1-n =S n . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分 ∵S 3=4 ,S 4=7,∴S 5=S 3+S 4=4+7=11,∴S 6=S 4+S 5=7+11=18,S 7=S 5+S 6=11+18=29,∴S 8=S 6+S 7=18+29=47. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分26.(1)证明:如图1,∵△ABC 是等边三角形,∴∠B=∠ACB=60°. ⋯⋯⋯⋯⋯⋯1分 ∵DG ∥AB ,∴∠DGC =∠B .∴∠DGC =∠DCG =60°. ∴△DGC 是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ∴DC=DG ,∠CDG =60°∵△DEF 是等边三角形,∴DE=DF,∠EDF=60°∴∠EDG=60°-∠GDF,∠FDC=60°-∠GDF∴∠EDG=∠FDC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴FC=EG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)∵△ABC是等边三角形,∴∠B=∠ACB=60°.如图2,过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CD=DG=CG,∠CDG=60°∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°-∠CDE,∠FDC=60°-∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∴EG=FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分∵CG=CE+EG,∴CG=CE+FC. ∴CD=CE+FC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(3)如图3,猜想DC、EC、FC之间的等量关系是FC=DC+EC.证明如下:∵△ABC是等边三角形,∴∠B=∠ACB=60°.过点D作DG∥AB,DG交BC于点G.∴∠DGC=∠B.∴∠DGC=∠DCG=60°∴△DGC是等边三角形.∴CD=DG=CG,∠CDG=60°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∴∠EDG=60°+∠CDE,∠FDC=60°+∠CDE∴∠EDG=∠FDC.∴△EDG≌△FDC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11分∴EG=FC.∵EG=EC+CG,∴FC=EC+DC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分。

相关文档
最新文档