高考物理 模拟新题精选分类解析(第11期)专题19带电粒子在复合场中的运动
高考物理带电粒子在复合场中的运动知识归纳
带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力永不做功.(2) 重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和 圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r联立求解得m =U L qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B Um q又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m r v 2,r =qBmv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2km e .最大动能:E km =m r B q 22m 22f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转.③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =d U q ,可得v =Bd U液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE , E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =d BI k nqd BI k=nq 1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面.求磁场的磁感应强度(g 取10 m /s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+m qE αcos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F电,加速度a =m f mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)R v 2'研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′ 以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m ≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f 洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A 点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu 设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ将L 结果代入上式得s =θθ sin 12cos 352222B q g m碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ 【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有vv 0=cos θ ①v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =r mv 2 ⑤r =qBmv 02 ⑥(3)由几何关系得ON =r sin θ ⑦设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qBm π2 ⑩ 设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qBm 32π ⑫ t =t 1+t 2=qB m 3π)233(+【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s=8 cm 的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m =6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v =3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N ·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m R v 2,得R =Bqmv =0.2 m 如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m r Qq 22'=α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J 易错门诊3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =q dU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·m qU d 22= 竖直方向有v 2y =v 2+2gL离开时的速度v ′=m qU d B U gL v v y x 2222222++=+【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU d B U gL ++2222【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.。
高考物理一轮复习讲义带电粒子在复合场中的运动
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中的运动(含详细解析过程)
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】
专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
带电粒子在复合场中的运动解题技巧
带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。
接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。
带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。
带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。
值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。
带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。
带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。
根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。
如果是重力场与磁场共存,说明重力与洛伦兹力平衡。
带电粒子在复合场中的运动(经典题例)
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
带电粒子在复合场中的运动典型例题解析
带电粒子在复合场中的运动·典型例题解析【例1】一带电量为+q、质量为m的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B的匀强磁场中,磁场方向如图16-83所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【例2】空气电离后形成正负离子数相等、电性相反、呈现中性状态的等离子体,现有如图16-84所示的装置:P和Q为一对平行金属板,两板距离为d,内有磁感应强度为B的匀强磁场.此装置叫磁流体发电机.设等离子体垂直进入磁场,速度为v,电量为q,气体通过的横截面积(即PQ两板正对空间的横截面积)为S,等效内阻为r,负载电阻为R,求(1)磁流体发电机的电动势ε;(2)磁流体发电机的总功率P.【例3】如图16-85所示,在x轴上方有水平向左的匀强电场,电场强度为E,在x轴下方有垂直纸面向里的匀强磁场,磁感应强度为B.正离子从M 点垂直磁场方向,以速度v射入磁场区域,从N点以垂直于x轴的方向进入电场区域,然后到达y轴上P点,若OP=ON,则入射速度应多大?若正离子在磁场中运动时间为t1,在电场中运动时间为t2,则t1∶t2多大?【例4】如图16-86所示,套在很长的绝缘直棒上的小球,其质量为m、带电量是+q,小球可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的摩擦系数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电量不变)跟踪反馈1.如图16-87所示,一质量为m的带电液滴在相互垂直的匀强电场和匀强磁场中(电场竖直向下,磁场在水平方向)的竖直平面内作半径为R的匀速圆周运动,则这个液滴[ ] A.一定带正电,而且沿逆时针方向运动B.一定带负电,而且沿顺时针方向运动C.一定带负电,但绕行方向不能确定D.不能确定带电性质,也不能确定绕行方向2.图16-88中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方P点处以v水平射入的电子,穿过此区域未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ] A.E和B都沿水平方向,并与v方向相同B.E和B都沿水平方向,并与v方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里3.如图16-89所示,光滑的半圆形绝缘曲面半径为R,有一质量为m,带电量为q的带正电小球从与圆心等高的A位置由静止沿曲面下滑,整个装置处于匀强电场和匀强磁场中,磁场的磁感应强度为B,电场强度为E=mg/q.则小球第二次经过最低点时对曲面的压力为多大?4.如图16-90所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E 和B ,一个质量为m ,带正电量为q 的油滴,以水平速度v 0从a 点射入,经一段时间后运动到b ,试计算(1)油滴刚进入叠加场a 点时的加速度.(2)若到达b 点时,偏离入射方向的距离为d ,此时速度大小为多大?参考答案[]1 B 2ABC 36mg 2Bq Rg 4跟踪反馈...-.①-+②+a Bqv mg Eq m v v Eq mg dm==+00202()()。
带电粒子在复合场中的运动
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
高考物理二轮复习 精选题组专练19 带电粒子在复合场中的运动(含解析)
专练19 带电粒子在复合场中的运动1.如图1所示,在直角坐标系xOy 平面内,第二象限内虚线MN 平行于y 轴,N 点坐标为(-L,0)其左侧有水平向左的匀强电场E1,MN 与y 轴之间有沿y 轴正方向的匀强电场E2,E1、E2均未知,在第一、三、四象限内有垂直纸面向里的匀强磁场,磁感应强度B 未知.现有一质量为m 、电荷量为q 的负粒子从图中A 点静止释放,不计粒子重力,粒子到达MN 上的P 点时速度为v0,速度方向水平,粒子从y 轴上的C 点(0,0.5L)与y 轴负方向成30°角进入磁场,偏转后从x 轴上的D 点(图中未画出)垂直x 轴穿出磁场并进入MN 左侧电场且刚好又击中P 点,求:图1(1)匀强电场的电场强度E2的大小.(2)匀强磁场磁感应强度B 的大小.(3)匀强电场的电场强度E1的大小.解析 (1)粒子在电场E2中做类平抛运动,令粒子进入磁场时速度为v ,沿y 轴方向的速度大小为vy则有cot 30°=vy v0=qE2L mv20 所以E2=3mv20qL.(2)粒子的运动轨迹如图所示,由运动规律及图中角度知ΔCO1G 是一正三角形,所以粒子在磁场中做圆周运动的半径为r =CG =2OC =L又因Bqv =m v2r而v0=vsin 30°联立得B =2mv0qL . (3)粒子从D 到P 做类平抛运动,所用时间为t1,则有OD -ON =qE12m t21 NP =vt1而OD =r +32r粒子从P 到C 所用时间为t2,则t2=L v0,所以NP =L 2+qE22m t22=3+12L联立得E1=163-24mv20qL . 答案 (1)3mv20qL (2)2mv0qL (3)163-24mv20qL2.(2014·宿州市第三次质量检测)如图2所示,水平放置的两平行金属板A 、B 长8 cm ,两板间距离d =8 cm ,两板间电势差UAB =300 V ,一质量m =1.0×10-20kg 、电荷量q =1.0×10-10 C 、初速度v0=2×106 m/s 的带正电的粒子,沿A 、B 板中心线OO′飞入电场,粒子飞出两板间电场后,经PQ 上某点进入PQ 右侧、OO′下侧的足够大的匀强磁场中,最后垂直OO′射出磁场.已知MN 、PQ 两界面相距L =12 cm 、D 为中心线OO′与PQ 界面的交点,不计粒子重力.求:图2(1)粒子飞出两板间电场时偏离中心线OO′的距离;(2)粒子经过PQ 界面时到D 点的距离;(3)匀强磁场的磁感应强度B 的大小.解析 (1)设粒子在电场中的偏移距离为y在电场中,由牛顿第二定律得:qUAB d =ma由类平抛运动的规律得:d =v0ty =12at2vy =atv =v20+v2ytan θ=vy v0联立以上各式代入数值得:y =3 cm v =2.5×106 m/s ,tan θ=34(2)设粒子经过PQ 界面时到D 点的距离为H由几何知识得:H =y +Ltan θ 代入数值得:H =12 cm(或用:H y =L +12d 12d 也可得分) (3)设粒子在磁场中圆周运动的圆心为S ,半径为R由图可知:R =H cos θ由牛顿第二定律得:qvB =mv2R联立以上各式代入数值得:B =1.67×10-3 T答案 见解析3.(2014·济南高三教学质量调研考试)如图3所示,在x <0的区域内存在沿y 轴负方向的匀强电场,在第一象限倾斜直线OM 的下方和第四象限内存在垂直纸面向里的匀强磁场.一带电粒子自电场中的P 点沿x 轴正方向射出,恰好经过坐标原点O 进入匀强磁场,经磁场偏转后垂直于y 轴从N 点回到电场区域,并恰能返回P 点.已知P 点坐标为(-L ,32L),带电粒子质量为m ,电荷量为q ,初速度为v0,不计粒子重力.求:图3(1)匀强电场的电场强度大小;(2)N 点的坐标;(3)匀强磁场的磁感应强度大小.解析 (1)设粒子从P 到O 时间为t ,加速度为a ,则L =v0t ,32L =12at2由牛顿第二定律,可得qE =ma由以上三式,可解得E =3mv20qL(2)设粒子运动到N 点时速度为v ,则v =v20+2a×32L =2v0 所以粒子从N 到P 的时间t′=12t沿y 轴位移h =12at′2=38L 因此N 点坐标为(0,538L) (3)粒子在磁场中运动轨迹如图所示,设半径为R.粒子在O 点时速度方向与y 轴负方向的夹角为30°由几何关系可知R +Rsin 30°=538L又因为qvB =m v2R解得B =83mv05qL 答案 (1)3mv20qL (2)(0,538L) (3)83mv05qL 4.(2014·天津卷,12)同步加速器在粒子物理研究中有重要的应用,其基本原理简化为如图4所示的模型.M 、N 为两块中心开有小孔的平行金属板.质量为m 、电荷量为+q 的粒子A(不计重力)从M 板小孔飘入板间,初速度可视为零.每当A 进入板间,两板的电势差变为U ,粒子得到加速,当A 离开N 板时,两板的电荷量均立即变为零.两板外部存在垂直纸面向里的匀强磁场,A 在磁场作用下做半径为R 的圆周运动,R 远大于板间距离.A 经电场多次加速,动能不断增大,为使R 保持不变,磁场必须相应地变化.不计粒子加速时间及其做圆周运动产生的电磁辐射,不考虑磁场变化对粒子速度的影响及相对论效应.求:图4(1)A 运动第1周时磁场的磁感应强度B1的大小.(2)在A 运动第n 周的时间内电场力做功的平均功率P n ;(3)若有一个质量也为m 、电荷量为+kq(k 为大于1的整数)的粒子B(不计重力)与A 同时从M 板小孔飘入板间,A 、B 初速度均可视为零,不计两者间的相互作用,除此之外,其他条件均不变.下图中虚线、实线分别表示A 、B 的运动轨迹.在B 的轨迹半径远大于板间距离的前提下,请指出哪个图能定性地反映A 、B 的运动轨迹,并经推导说明理由.解析 (1)设A 经电场第1次加速后速度为v1,由动能定理得qU =12mv21-0① A 在磁场中做匀速圆周运动,所受洛伦兹力充当向心力qv1B1=m v21R ②联立解得:B1=1R 2mU q ③(2)设A 经n 次加速后的速度为vn ,由动能定理得nqU =12mv2n -0④设A 做第n 次圆周运动的周期为Tn ,有Tn =2πR vn ⑤设在A 运动第n 周的时间内电场力做功为Wn ,则Wn =qU ⑥ 在该段时间内电场力做功的平均功率为P n =Wn Tn ⑦ 联立解得:P n =qU πR nqU 2m ⑧(3)A 图能定性地反映A 、B 运动的轨迹. A 经过n 次加速后,设其对应的磁感应强度为Bn ,A 、B 的周期分别为Tn 、T′,综合②⑤式并分别应用A 、B 的数据得Tn =2πm qBn⑨ T′=2πm kqBn =Tn k⑩ 由上可知,Tn 是T′的k 倍,所以A 每绕行1周,B 就绕行k 周.由于电场只在A 通过时存在,故B 仅在与A 同时进入电场时才被加速.经n 次加速后,A 、B 的速度分别为vn 、vn′,结合④式有vn =2nqU m ⑪vn′=2nkqU m =kvn ⑫由题设条件并结合⑤式,对A 有Tnvn =2πR ⑬设B 的轨迹半径为R′,有T′vn′=2πR′⑭比较以上两式得R′=R k ⑮上式表明,运动过程B 的轨迹半径始终不变.由以上分析可知,两粒子运动的轨迹如图A 所示. 答案 (1)1R 2mU q (2)qU πR nqU 2m(3)A 理由见解析5. (2014·山东潍坊市一模)如图5所示,在xOy 平面内存在着垂直于xOy 平面的磁场和平行于y 轴的电场,磁场和电场随时间的变化规律如图6甲、乙所示.以垂直于xOy 平面向里磁场的磁感应强度为正,以沿y 轴正方向电场的电场强度为正.t =0时,带负电粒子从原点O 以初速度v0沿y 轴正方向运动,t =5t0时,粒子回到O 点,v0、t0、B0已知,粒子的比荷q m =πB0t0,不计粒子重力.图5(1)求粒子在匀强磁场中做圆周运动的周期;(2)求电场强度E0的值;(3)保持磁场仍如图甲所示,将图乙所示的电场换成图丙所示的电场.t =0时刻,前述带负电粒子仍由O 点以初速度v0沿y 轴正方向运动,求粒子在t =9t0时的位置坐标.图6解析 (1)粒子在磁场中运动时qv0B =mv20r ①T =2πrv0②qm =πB0t0得T =2t0③(2)粒子t =5t0时回到原点,轨迹如图所示由牛顿第二定律qv0B0=mv20r1④由几何关系得r2=2r1⑤得v2=2v0⑥由运动学公式v2=v0+at0⑦由牛顿第二定律E0q =ma ⑧得E0=B0v0π⑨ (3)t0时刻粒子回到x 轴⑩t0~2t0时间内,粒子位移s1=2[v0·t02+12a(t202)],⑪2t0时刻粒子速度为v03t0时刻,粒子以速度v0到达y 轴⑫3t0~4t0时间内,粒子运动的位移 s2=2[v0·t02-12a(t02)2]⑬ 5t0时刻粒子运动到点[2r1,-(s2-s1)]⑭根据粒子的周期性运动规律可知,t =9t0时刻的位置坐标为[2r1,-2(s1-s2)],代入数值即为(2v0t0π,-v0t0)⑮ 答案 (1)2t0 (2)B0v0π (3)(2v0t0π,-v0t0) 方法技巧求解带电粒子在交变复合场中运动问题的基本思路。
高考物理试卷分类汇编物理带电粒子在复合场中的运动(及答案)含解析
一、带电粒子在复合场中的运动专项训练1.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)2.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
高考物理带电粒子在复合场中的运动试题(有答案和解析)及解析
一、带电粒子在复合场中的运动专项训练1.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd =得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:01U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=2.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
高考物理 粒子在复合场中的运动
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高考物理粒子在复合场中的运动地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容粒子在复合场中的运动历年高考题1.(19分)如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ= 370,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×l05N/C、方向垂直于斜轨向下的匀强电场。
质量m=5×l0-2kg、电荷量q=+1×10-6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3m/s冲上斜轨。
以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。
已知斜轨与小物体间的动摩擦因数μ=0.25。
设小物体的电荷量保持不变,取g=10m/s2.sin370=0.6,cos370=0.8。
(1)求弹簧枪对小物体所做的功;(2)在斜轨上小物体能到达的最高点为P,求CP的长度。
2.(18分)如图,一半径为R的圆表示一柱形区域的横截面(纸面)。
在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。
圆心O到直线的距离为。
现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b 点离开该区域。
若磁感应强度大小为B,不计重力,求电场强度的大小。
3. (16分)如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m、电荷量为+q的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A点射入待测区域,求此时的偏转电压U;(3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向.4、(20分)匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示。
高考物理二轮复习专题--带电粒子在复合场中的运动(附答案)
近几年高考中,关于此部分内容的命题方向有:在带电粒子在组合场中的运动、带电体在复合场中的运动、电磁场技术的应用。
题目以计算题为主,难度较大。
1.带电粒子在叠加场中的运动(1)若只有两个场且正交,合力为零,则表现为匀速直线运动或静止状态。
例如电场与磁场中满足qE=qvB;重力场与磁场中满足mg=qvB;重力场与电场中满足mg=qE。
(2)三场共存时,若合力为零,则粒子做匀速直线运动;若粒子做匀速圆周运动,则有mg=qE,粒子在洛伦兹力作用下做匀速圆周运动,即qvB=mv2r。
(3)当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解。
带电粒子在复合场中做什么运动,取决于带电粒子所受的合外力及初始运动状态的速度,因此带电粒子的运动情况和受力情况的分析是解题的关键。
2.带电粒子在组合场中的运动1.(多选)如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M点水平射入场区,经一段时间运动到N点,关于小球由M到N的运动,下列说法正确的是( )A.小球可能做匀变速运动 B.小球一定做变加速运动C.小球动能可能不变 D.小球机械能守恒2.(2018•全国卷Ⅰ•25)如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。
一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向。
已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。
11H的质量为m,电荷量为q。
不计重力。
求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)21H第一次离开磁场的位置到原点O的距离。
1.(多选)如图所示,平行纸面向下的匀强电场与垂直纸面向外的匀强磁场相互正交,一带电小球刚好能在其中做竖直面内的匀速圆周运动.若已知小球做圆周运动的半径为r,电场强度大小为E,磁感应强度大小为B,重力加速度大小为g,则下列判断中正确的是( )A.小球一定带负电荷B.小球一定沿顺时针方向转动C.小球做圆周运动的线速度大小为gBrED.小球在做圆周运动的过程中,电场力始终不做功2.如图所示,水平向右的匀强电场场强为E,且Eq=mg,垂直纸面向里的水平匀强磁场磁感应强度为B,一带电荷量为q 的液滴质量为m,在重力、静电力和洛伦兹力作用下在叠加场空间运动。
2021年高考物理带电粒子在复合场中的运动解析版
带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示为一种质谱仪的工作原理示意图,此质谱仪由粒子源、加速电场、静电分析器和磁分析器组成。
加速电场的加速电压为U,半圆形通道内有方向指向圆心的均匀电场,在中心线处的电场强度大小为E;磁分析器中分布着方向重直于纸面向外,磁感应强度为B的范围足够大的有界匀强磁场,其上边界与静电分析器的下边界重合。
由粒子源发出一个质量为m、电荷量为q的粒子(初速度为零,重力不计),经加速电场加速后沿垂直静电分析器左侧边界的方向进入并沿中心线通过静电分析器,由p点进入磁分析器中,最终打到胶片上的Q点。
高考物理 模拟新题精选分类解析(第11期)专题19带电粒
2013高考物理模拟新题精选分类解析(第11期)专题19带电粒子在复合场中的运动1.(22分) (2013浙江省湖州市二模)如图所示,水平地面上方有一绝缘弹性竖直薄档板,板高h=3 m,与板等高处有一水平放置的小篮筐,筐口的中心距挡板s=1 m。
整个空间存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度B=1T,而匀强电场未在图中画出;质量m=1×10-3kg、电量q=﹣1×10-3C的带电小球(视为质点),自挡板下端的左侧以某一水平速度v0开始向左运动,恰能做匀速圆周运动,若小球与档板相碰后以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能从筐口的中心处落入筐中。
(g取10m/s2,可能会用到三角函数值sin37°=0.6,cos37°=0.8)。
试求:(1)电场强度的大小与方向;(2)小球运动的可能最大速率;(3)小球运动的可能最长时间。
2、(2013北京市模拟反馈题)如图5所示,空间存在足够大、正交的匀强电、磁场,电场强度为E、方向竖直向下,磁感应强度为B、方向垂直纸面向里。
从电、磁场中某点P由静止释放一个质量为m、带电量+q粒子(粒子受到的重力忽略不计),其运动轨迹如图5虚线所示。
求:(1)带电粒子在最低点受到的洛仑兹力;(2)带电粒子在最低点时的加速度。
3(2013安徽皖北协作区联考)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第二象限内,有一个竖直向下的匀强电场,在第三象限,存在沿y轴正方向的匀强电场和垂直xOy平面(纸面)向里的匀强磁场.在第一、第四象限,存在着与x轴正方向夹角为30°的匀强电场,四个象限的电场强度大小均相等.一质量为m、电量为+q的带电质点,从y 轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限.然后经过x轴上x=-2h 处的P2的进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限,已知重力加速为g.求:(1)粒子到达P2点时速度的大小和方向;(2)电场强度和磁感应强度的大小;(3)带电质点在进入第四象限空间运动过程中离x轴最小距离.4.(20分)(2013北京市西城区二模)如图1所示,以O点为坐标原点,沿水平地面向右建立x轴;线段OA、AB、BC的长度均为x0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高考物理模拟新题精选分类解析(第11期)专题19带电粒子
在复合场中的运动
1.(22分) (2013浙江省湖州市二模)如图所示,水平地面上方有一绝缘弹性竖直薄档板,板高h=3 m,与板等高处有一水平放置的小篮筐,筐口的中心距挡板s=1 m。
整个空间存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度B=1T,而匀强电场未在图中画出;质量m=1×10-3kg、电量q=﹣1×10-3C的带电小球(视为质点),自挡板下端的左侧以某一水平速度v0开始向左运动,恰能做匀速圆周运动,若小球与档板相碰后以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能从筐口的中心处落入筐中。
(g
取10m/s2,可能会用到三角函数值sin37°=0.6,cos37°=0.8)。
试
求:
(1)电场强度的大小与方向;
(2)小球运动的可能最大速率;
(3)小球运动的可能最长时间。
2、(2013北京市模拟反馈题)如图5所示,空间存在足够大、正交的匀强电、磁场,电场强度为E、方向竖直向下,磁感应强度为B、方向垂直纸面向里。
从电、磁场中某点P由静止释放一个质量为m、带电量+q粒子(粒子受到的重力忽略不计),其运动轨迹如图5虚线所示。
求:
(1)带电粒子在最低点受到的洛仑兹力;
(2)带电粒子在最低点时的加速度。
3(2013安徽皖北协作区联考)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第二象限内,有一个竖直向下的匀强电场,在第三象限,存在沿y轴正方向的匀强电场和垂直xOy平面(纸面)向里的匀强磁场.在第一、第四象限,存在着与x轴正方向夹角为30°的匀强电场,四个象限的电场强度大小均相等.一质量为m、电量为+q的带电质点,从y 轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限.然后经过x轴上x=-2h 处的P2的进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限,已知重力加速为g.求:
(1)粒子到达P2点时速度的大小和方向;
(2)电场强度和磁感应强度的大小;
(3)带电质点在进入第四象限空间运动过程中离x轴最小距离.
4.(20分)(2013北京市西城区二模)如图1所示,以O点为坐标原点,沿水平地面向右建立x轴;线段OA、AB、BC的长度均为x0。
在x轴附近有垂直纸面向里的匀强磁场和沿x轴正方向的电场,电场强度大小E随x的变化关系如图2所示(图1中未画出)。
物体甲和乙的质量均为m,甲带的电荷量为+q,乙是不带电的绝缘体。
物体甲从O点由静止释放,物体乙静止在水平地面上的A点。
物体甲经过加速后,在A点与物体乙相撞,不计碰撞过程中损失的机械能,整个过程中物体甲的电荷量保持不变。
不计一切摩擦,重力加速度为g。
(1)求两物体在A点碰撞前的瞬间,物块甲的速度大小v;
(2)求物体甲从A点运动到C点过程中两物体间的最大距离s;
(3)若两物体相撞前的瞬间,物体甲对地面的压力刚好等于其重力的
一半。
求在C处物体甲对地面的压力与自身重力的比值k。
5.(20分) (2013北京市海淀区模拟)如图13所示,四分之一光滑绝缘圆弧轨道AP和水平绝缘传送带PC固定在同一竖直平面内,圆弧轨道的圆心为0,半径为R0传送带PC之间的距离
为L,沿逆时针方向的运动速度v=gR
.在PO的右侧空间存在方向竖直向下的匀强电场。
一
质量为m 、电荷量 为+q 的小物体从圆弧顶点A 由静止开始沿轨 道下滑,恰好运动到C 端后返回。
物体与传送 带间的动摩擦因数为 ,不计物体经过轨道与传 送带连接处P 时的机械能损失,重力加速度为g
(1) 求物体下滑到P 点时,物体对轨道的压力F
(2) 求物体返回到圆弧轨道后,能上升的最大高度H
(3) 若在PO 的右侧空间再加上方向垂直于纸面向里、磁感应强度为B 的水平匀强磁场 (图中未画出),物体从圆弧顶点A 静止释放,运动到C
端时的速度为22gR
,试求物体 在传送带上运动的时间t 。
6.(18分)(2013广东省梅州市二模)如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为Bo的匀强磁场;在xoy直角坐标平面内,第一象限有沿y 轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场。
一质量为m、电量为q的正离子(不计重力)以初速度Vo沿平行于金属板方向射入两板间并做匀速直线运动。
从P点垂直y轴进入第一象限,经过x轴上的A点射出电场,进入磁场。
已知离子过A点时的速度方向与x轴成45o角。
求:
(1)金属板M、N间的电压U;
(2)离子运动到A点时速度V的大小和由P点运动到A点所需时间t;
(3)离子第一次离开第四象限磁场区域的位置C(图中未画出)与坐
标原点的距离OC。
- 11 -。