三角恒等变形(上):逆用公式、角的转化

合集下载

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形[考情分析] 1.三角恒等变换的求值、化简是命题的热点,利用三角恒等变换作为工具,将三角函数与解三角形相结合求解最值、范围问题.2.单独考查可出现在选择题、填空题中,综合考查以解答题为主,中等难度.考点一 三角恒等变换核心提炼1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”,关键注意角的范围及隐含的条件,根据已知条件将所求角的范围尽量缩小,避免产生增解。

2.三角恒等变换“五大策略”(1) 常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2) 项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3) 降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4) 弦、切互化.(5)引入辅助角,化“多名”为“单名”。

asin θ+bcos θ=sin(θ+),这里辅助角所在象限由a 、b 的符号确定,角的值由tan=确定。

属于高考热点。

例1 (1) (2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( )A.53 B.23 C.13 D.59(2)已知sin α=55,sin(α-β)=-1010,α,β 均为锐角,则 β 等于( ) A.5π12 B.π3 C.π4 D.π6跟踪演练1 (1) 已知α∈(0,π2),β∈(0,π2),tan α=cos 2β1-sin 2β,则 ( )A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2(2) (tan 10°-3)·cos 10°sin 50°=________.(3)已知tan (θ2−π4)=12,求cosθ 22b a +ϕϕϕab(4)已知sinθ1+cosθ=2,求tan θ考点二 正弦定理、余弦定理核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c 2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等. 2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc 等; 3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A . 4.解三角形常用技巧是角、边互化。

三角函数变换的方法总结

三角函数变换的方法总结

三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。

三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。

下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。

(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。

解析:已知显然有:由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0即有:acosθ+b=0又 a≠0所以,cosθ=-b/a ③将③代入①得:a(-a/b)2-b(-b/a)=2a即a4+b4=2a2b2∴(a2-b2)2=0即|a|=|b|点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。

(2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

解析:设θ+15°=α,则原式=sin(α+60°)+cos (α+30°)-cosα=(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα=sinα+cosα+cosα-sinα-cosα=0点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。

三角恒等变换复习

三角恒等变换复习
2
cos cos 1 [cos( ) cos( )]
2
sin sin 1 [cos( ) cos( )]
2
(2)和差化积公式
sin sin 2sin cos
2
2
sin sin 2cos sin
2
2
cos cos 2cos cos
函数名的变化,合理选择公式进行变形,同时注意三角变换
技巧的运用.(给角求值,给值求值,给值求角)
[典例]
已知函数 f(x)=2cos2x+4
3sin
x 2cos
x 2·cos x.
(1)求函数 f(x)的最小正周期;
(2)求函数 f(x)在区间 -π6,π4上的值域.
[解]
(1)f(x)=2cos2x+4
用已知角表示.
例3 :已知 A、B、C是△ABC三内角,向量
m (1 , 3) , n (cos A , sin A) , m n 1 .
(1)求角
A;(2)若
1 sin2B cos2 B sin2
B
3
,

tanC
.
解:(1) m n 1 ,
(1 , 3 ) (cos A , sin A) 1 ,
tan( )
tan tan . 1 tan tan
tan( ) tan tan .
1 tan tan
2、辅助角公式
asin x bcosx
a
a2 b2 (
sin x a2 b2
这个公式
有什么作 用?
b cos x)
a2 b2
a2 b2 (cos sin x sin cos x)

3 sin A cos A 1 ,

三角恒等变换专题复习带答案

三角恒等变换专题复习带答案

三角恒等变换专题复习教学目标:1、能利用单位圆中的三角函数线推导出 απαπ±±,2的正弦、余弦、正切的诱导公式;2、理解同角三角函数的基本关系式:;3、可熟练运用三角函数见的基本关系式解决各种问题; 教学重难点:可熟练运用三角函数见的基本关系式解决各种问题 基础知识一、同角的三大关系:① 倒数关系 tan α•cot α=1 ② 商数关系 sin cos αα= tan α ; cos sin αα= cot α ③ 平方关系 22sin cos 1αα+=温馨提示:1求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解;来源:学+科+网2利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“±”号;二、诱导公式口诀:奇变偶不变,符号看象限用诱导公式化简,一般先把角化成,2k z α+∈的形式,然后利用诱导公式的口诀化简如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把α看作是锐角,判断角2k πα+在第几象限,在这个象限的前面三角函数的符号是 “+”还是“--”,就加在前面;用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间0(0,360)的角,再变到区间00(0,180)的角,再变到区间00(0,90)的角计算;三、和角与差角公式 :sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=变 用 tan α±tan β=tan α±β1 tan αtan β四、二倍角公式:sin 2α= 2sin cos αα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-五、注意这些公式的来弄去脉这些公式都可以由公式cos()cos cos sin sin αβαβαβ±=推导出来;六、注意公式的顺用、逆用、变用;如:逆用sin cos cos sin sin()αβαβαβ±=± 1sin cos sin 22ααα=变用22cos 1cos 2αα+=22cos 1sin 2αα-= 21cos 4cos 22αα+= 七、合一变形辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式;()22sin cos αααϕA +B =A +B +,其中tan ϕB=A. 八、万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=九、用αsin ,αcos 表示2tanααααααsin cos 1cos 1sin 2tan-=+=十、积化和差与和差化积积化和差 )]sin()[sin(cos sin βαβαβα-++=; )]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=; )]cos()[cos(sin sin βαβαβα--+=.和差化积 2cos2sin2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=- 2cos 2cos 2cos cos ϕθϕθϕθ-+=+ 2sin 2sin 2cos cos ϕθϕθϕθ-+=-十一、方法总结1、三角恒等变换方法观察角、名、式→三变变角、变名、变式1 “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=α+β-β=α-β+β, 2α=α+β+ α-β, 2α=β+α-β-α,α+β=2·错误! , 错误! = α-错误!-错误!-β等.2“变名”指的是切化弦正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==, 3“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等; 2、恒等式的证明方法灵活多样①从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.②左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子. ③比较法, 即设法证明: "左边-右边=0" 或" 错误! =1";④分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.例题精讲例1 已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-解:1因为α为第四象限角所以原式=αααααα2222cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααααααααsin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-=例2 已知360270<<α,化简α2cos 21212121++ 解:360270<<α,02cos,0cos <>∴αα所以原式2111cos211cos 22222αα++=+21cos cos cos 222ααα+===- 例3 tan20°+4sin20°解:tan20°+4sin20°=0020cos 40sin 220sin +=0sin(6040)2sin 40cos 20-+00003340sin 403cos 20223cos 20+=== 例4 05天津已知727sin()2425παα-==,求sin α及tan()3πα+.解:解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα 以下同解法一小结:1、本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系均含α进行转换得到.2、在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例 5 已知,,A B C 为锐角ABC ∆的三个内角,两向量(22sin ,cos sin )p A A A =-+,(sin cos ,q A A =-1sin )A +,若p 与q 是共线向量.1求A 的大小;2求函数232sin cos()2C By B -=+取最大值时,B 的大小. 解:122// 2(1)(1+)- p q sinA sinA sin A cos A ∴-=22220 120cos A cos A cos A ∴+=∴+= 1cos 2A 2∴=-0<2A<π,002A 120 A=60∴=∴200A=60 B+C=120∴ 2013y=2sin B+cos(602B)1cos 2B+cos 2B sin 2B 22-=-+31 =sin 2B cos 2B+1=sin(2B )1226π--+ , 2B B 623πππ-=当时,即=. 小结:三角函数与向量之间的联系很紧密,解题时要时刻注意例6 设关于x 的方程sinx +3cosx +a =0在0, 2π内有相异二解α、β.1求α的取值范围; 2求tan α+β的值. 解: 1∵sinx +3cosx =221sinx +23cosx =2 sinx +3π, ∴方程化为sinx +3π=-2a.∵方程sinx +3cosx +a =0在0, 2π内有相异二解, ∴sinx +3π≠sin 3π=23 .又sinx +3π≠±1 ∵当等于23和±1时仅有一解, ∴|-2a |<1 . 且-2a≠23. 即|a |<2且a ≠-3.∴ a 的取值范围是-2, -3∪-3, 2.2 ∵α、 β是方程的相异解, ∴sin α+3cos α+a =0 ①. sin β+3cos β+a =0 ②. ①-②得sin α- sin β+3 cos α- cos β=0. ∴ 2sin2βα-cos2βα+-23sin2βα+sin2βα-=0, 又sin2βα+≠0, ∴tan2βα+=33.∴tan α+β=2tan22tan22βαβα+-+=3.小结:要注意三角函数实根个数与普通方程的区别,这里不能忘记0, 2π这一条件. 例7 已知函数()x x m x f cos sin 2-=在区间⎪⎭⎫⎝⎛2,0π上单调递减,试求实数m 的取值范围.解:已知条件实际上给出了一个在区间⎪⎭⎫⎝⎛2,0π上恒成立的不等式. 任取∈21,x x ⎪⎭⎫⎝⎛2,0π,且21x x <,则不等式()()21x f x f >恒成立,即>-11cos sin 2x x m 22cos sin 2x x m -恒成立.化简得()()2112sin 2cos cos x x x x m ->- 由2021π<<<x x 可知:0cos cos 12<-x x ,所以()1221cos cos sin 2x x x x m --<上式恒成立的条件为:()上的最小值,在区间⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛--<20cos cos sin 21221πx x x x m . 由于()2sin 2cos 22sin 2sin 22cos 2sin4cos cos sin 22121212121211221x x x x x x x x x x x x x x x x +-=-+--=-- 2sin2cos 2cos 2sin 2sin 2sin 2cos 2cos 221212121x x x x x x x x +⎪⎭⎫ ⎝⎛+=2tan2tan 2tan 2tan 122121x x x x +⎪⎭⎫ ⎝⎛+=且当2021π<<<x x 时,42,2021π<<x x ,所以 12tan ,2tan 021<<x x , 从而 02tan 12tan 12tan 2tan 2tan 2tan1212121>⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x x x , 有 22tan2tan 2tan 2tan 122121>+⎪⎭⎫ ⎝⎛+x x x x , 故 m 的取值范围为]2,(-∞.基础精练1.已知α是锐角,且sin 错误!=错误!,则sin 错误!的值等于A.错误! B .-错误! C.错误! D .-错误!2.若-2π<α<-错误!,则 错误!的值是A .sin 错误!B .cos 错误!C .-sin 错误!D .-cos 错误!3.错误!·错误!等于A.-sinαB.-cosαC.sinαD.cosα4.已知角α在第一象限且cosα=错误!,则错误!等于A.错误!B.错误!C.错误!D.-错误!5.定义运算错误!=ad -bc.若cosα=错误!,错误!=错误!,0<β<α<错误!,则β等于A.错误!B.错误!C.错误!D.错误!6.已知tanα和tan 错误!-α是方程ax 2+bx +c =0的两个根,则a 、b 、c 的关系是A.b =a +cB.2b =a +cC.c =b +aD.c =ab7.设a =错误!sin56°-cos56°,b =cos50°cos128°+cos40°cos38°,c =错误!,d =错误!cos80°-2cos 250°+1,则a,b,c,d 的大小关系为A.a >b >d >cB.b >a >d >cC.d >a >b >cD.c >a >d >b8.函数y =错误!sin2x +sin 2x,x ∈R 的值域是A.错误!B.错误!C.错误!D.错误!9.若锐角α、β满足1+错误!tanα1+错误!tanβ=4,则α+β= .10.设α是第二象限的角,tanα=-错误!,且sin 错误!<cos 错误!,则cos 错误!= .11.已知sin-4πx=135,0<x<4π,求)4cos(2cos x x +π的值;12.若),0(,πβα∈,31tan ,507cos -=-=βα,求α+2β;拓展提高1、设函数fx =sin 错误!-错误!-2cos 2错误!+11求fx 的最小正周期.2若函数y =gx 与y =fx 的图像关于直线x =1对称,求当x ∈0,错误!时y =gx 的最大值2.已知向量a =cosα,sinα,b =cosβ,sinβ,|a -b|=错误!1求cosα-β的值;2若0<α<错误!,-错误!<β<0,且sinβ=-错误!,求sinα.3、求证:αβαsin 2sin )(+-2cos α+β=αβsin sin .基础精练参考答案4.C 解析原式=错误!=错误!=错误!=2×cosα+sinα=2×错误!+错误!=错误!. 5.D 解析依题设得:sinα·cosβ-cosα·sinβ=sin α-β=错误!.∵0<β<α<错误!,∴cosα-β=错误!. 又∵cosα=错误!,∴sinα=错误!.sinβ=sinα-α-β=sinα·cosα-β-cosα·sinα-β =错误!×错误!-错误!×错误!=错误!,∴β=错误!.6.C 解析tan tan()4,tan tan(),4b a c a πααπαα⎧+-=-⎪⎪⎨⎪-=⎪⎩∴tan 错误!=tan 错误!-α+α=错误!=1,∴-错误!=1-错误!,∴-b =a -c,∴c =a +b.7.B 解析a =sin56°-45°=sin11°,b =-sin40°cos52°+cos40°sin52°=sin52°-40°=sin12°,c =错误!=cos81°=sin9°,d =错误!2cos 240°-2sin 240°=cos80°=sin10°∴b >a >d >c.8.C 解析y =错误!sin2x +sin 2x =错误!sin2x -错误!cos2x +错误!=错误!sin 错误!+错误!,故选择C. 9. 错误!解析由1+错误!tanα1+错误!tanβ=4,可得错误!=错误!,即tanα+β=错误!. 又α+β∈0,π,∴α+β=错误!.10. -错误!解析:∵α是第二象限的角,∴错误!可能在第一或第三象限,又sin 错误!<cos 错误!,∴错误!为第三象限的角, ∴cos 错误!<0.∵tanα=-错误!,∴cosα=-错误!,∴cos 错误!=- 错误!=-错误!.12.解析∵),0(,πβα∈,507cos -=α∴),0,33(71tan -∈-=α),0,33(31tan -∈-=β∴),65(,ππβα∈,α+2β)3,25(ππ∈,又tan2β=43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα,来源:Zxxk ∴α+2β=411π拓展提高参考答案1、解析 1fx =sin 错误!cos 错误!-cos 错误!sin 错误!-cos 错误!x =错误!sin 错误!x -错误!cos 错误!x=错误!sin 错误!x -错误!,故fx 的最小正周期为T =错误!=82法一:在y =g x 的图象上任取一点 x,gx,它关于x =1的对称点2-x,gx.由题设条件,点2-x ,gx 在y =fx 的图象上,从而gx =f2-x =错误!sin 错误!2-x -错误! =错误!sin 错误!-错误!x -错误!=错误!cos 错误!x +错误!,当0≤x≤错误!时, 错误!≤错误!x +错误!≤错误!,因此y =gx 在区间0,错误!上的最大值为gx max =错误!cos 错误!=错误!.法二:因区间0,错误!关于x =1的对称区间为错误!,2,且y =gx 与y =fx 的图象关于x =1对称,故y =gx 在0,错误!上的最大值为y =fx 在错误!,2上的最大值,由1知fx =错误!sin 错误!x -错误!, 当错误!≤x ≤2时,-错误!≤错误!x -错误!≤错误!,因此y =gx 在0,错误!上的最大值为gx max =错误!sin 错误!=错误!.2、解析1∵a =cos α,sinα,b =cosβ,sinβ, ∴a -b =cosα-cosβ,sinα-sinβ. ∵|a -b|=错误!,∴错误!=错误!, 即2-2cosα-β=错误!,∴cosα-β=错误!.2∵0<α<错误!,-错误!<β<0,∴0<α-β<π,∵cosα-β=错误!,∴sinα-β=错误! ∵sin β=-错误!,∴cosβ=错误!,∴sinα=sinα-β+β=sinα-βcosβ+cosα-βsinβ=错误!·错误!+错误!·-错误!=错误!。

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧三角恒等变换是三角函数中的主要部分,是培养学生等价转化与化归思想、逻辑思维能力、知识的联系性与灵活性的重要内容。

下面举例说明三角恒等变换的方法与技巧。

一、变角角是研究三角函数问题的切入点.若表达式中出现了较多相异的角,必须对比分析变换对象与变换目标,其余的角都朝目标角转化.这是三角变换最基本的策略。

例1.已知cos(α-■)=-■,sin(■-β)=■(■<α<π,0<β<■)求cos(α+β)的值解析:由已知得■ <α-■<π,-■<■-β<■∴sin(α-■)=■,cos(■-β)=■∴cos■=cos[(α-■)-(■-β)]=cos(α-■)cos(■-β)+sin(α-■)sin(■-β)=-■∴cos(α+β)=2cos2■-1=-■点评:(α-■)-(■-β)=■ α+β=2·■注意角的拼凑、拆分,倍、半的相对性。

二、变函数名称若表达式中函数种类较多,变形困难,应尽量减少函数种类.这是恒等变换的又一策略。

例2.已知锐角α,β满足tan(α-β)=sin2β,求证:2tan2β=tanα+tanβ解析:∵sin2β=■∴■= ■t anα=■∴tanα+tanβ=■=2tan2β点评:弦化切,同一为切,正用、逆用公式.三、变结构对较复杂的表达式,一般先变形结论,再寻找由条件得到的有用结论,合理选择公式,建立差异间联系,解决问题。

例3.已知cos(■+x)=■,■<x<■,求■的值解析:■=■=■= 2sinxcosx·■=2sinxcosx·tan(■+x)由■<x<■得■<x+■<2π,又cos(■+x)=■∴sin(■+x)=-■,tan(■+x)=-■cosx=cos[(■+x)-■]=-■,sinx=-■∴■=-■点评:在综合变角、变名的基础上,首先对所求复杂式子结构恒等变形,再结合已知条件,寻找目标。

三角恒等变换题型归纳

三角恒等变换题型归纳

第五节 两角和与差的正弦、余弦和正切公式及二倍角公式❖ 基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z . 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.❖ 常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例](1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. (2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.[答案] (1)-12 (2) 3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β;(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b . 2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45.答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦. [题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( )A .1B.12C.32 D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12. 2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( )A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79. 3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B. 2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718. 6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.第六节 简单的三角恒等变换考点一 三角函数式的化简[典例](1)sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α(2)化简:sin (2α+β)sin α-2cos(α+β).[解] (1)选D 原式=-sin 2α·cos 2α2cos 2α(-sin α)=-2sin αcos α·cos 2α2cos 2α(-sin α)=cos α.(2)原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.[题组训练]1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α.解:原式=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1.考点二 三角函数式的求值考法(一) 给角求值 [典例]cos 10°(1+3tan 10°)cos 50°的值是________.[解析] 原式=cos 10°+3sin 10°cos 50°=2sin (10°+30°)cos 50°=2sin 40°sin 40°=2.[答案] 2[解题技法] 三角函数给角求值问题的解题策略一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换转化为求特殊角的三角函数值问题,另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.考法(二) 给值求值[典例] 已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求:(1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值. [解] (1)由sin ⎝⎛⎭⎫α+π4=210, 得sin αcos π4+cos αsin π4=210,化简得sin α+cos α=15,①又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫π2,π② 由①②解得cos α=-35.(2)∵α∈⎝⎛⎭⎫π2,π,cos α=-35,∴sin α=45, ∴cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425,∴sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250.[解题技法] 三角函数给值求值问题的基本步骤(1)先化简所求式子或已知条件;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手); (3)将已知条件代入所求式子,化简求值. 考法(三) 给值求角 [典例] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π4[解析] ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π, ∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255. 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4. [答案] A[解题技法] 三角函数给值求角问题的解题策略(1)根据已知条件,选取合适的三角函数求值.[题组训练]1.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C. 2D. 3解析:选C 原式=cos 20°cos 35°|sin 10°-cos 10°|=cos 210°-sin 210°cos 35°(cos 10°-sin 10°)=cos 10°+sin 10°cos 35°=2⎝⎛⎭⎫22cos 10°+22sin 10°cos 35°=2cos (45°-10°)cos 35°=2cos 35°cos 35°= 2.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 法一:因为sin α+cos α=33,所以(sin α+cos α)2=13,即2sin αcos α=-23,即sin 2α=-23. 又因为α为第二象限角且sin α+cos α=33>0, 所以sin α>0,cos α<0,cos α-sin α<0,cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α- sin α)<0. 所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫-232=-53. 法二:由cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α),且α为第二象限角,得cos α-sin α<0, 因为sin α+cos α=33, 所以(sin α+cos α)2=13=1+2sin αcos α,得2sin αcos α=-23,从而(cos α-sin α)2=1-2sin αcos α=53,则cos α-sin α=-153,所以cos 2α=33×⎝⎛⎭⎫-153=-53. 3.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.考点三 三角恒等变换的综合应用[典例] (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)因为f (x )=sin 2x +3sin x cos x=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1, 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.[解题技法]三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(5)反思回顾,查看关键点、易错点和答题规范. [题组训练]1.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32 解析:选D 因为f (x )=sin ωx cos ωx +3cos 2ωx -32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3,所以T =2π2ω=π,所以ω=1,所以f (x )=sin ⎝⎛⎭⎫2x +π3.对于A ,因为f ⎝⎛⎭⎫π3=0,所以不正确;对于B ,当x ∈⎣⎡⎦⎤π12,7π12时,2x +π3∈⎣⎡⎦⎤π2,3π2,所以函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递减,故不正确;对于C ,将函数f (x )的图象向右平移π6个单位长度所得图象对应的函数y =f ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin 2x ,所以不正确;对于D ,当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3,所以f (x )∈⎣⎡⎦⎤-32,1,故正确.故选D. 2.已知函数f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3. (1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心. 解:(1)f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3 =4sin x ⎝⎛⎭⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3.令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 令2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),得k π+5π12≤x ≤k π+11π12(k ∈Z),所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z). (2)令2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).令2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).[课时跟踪检测]A 级1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .1 B .-1 C.12D .0解析:选B ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝⎛⎭⎫32-12sin α=⎝⎛⎭⎫12-32cos α,∴tan α=sin αcos α=-1.2.化简:cos 40°cos 25°1-sin 40°=( )A .1 B. 3 C. 2D .2解析:选C 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°= 2.3.(2018·唐山五校联考)已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010B.1010C .-31010D.31010解析:选C 因为α是第三象限的角,tan α=2,所以⎩⎨⎧sin αcos α=2,sin 2α+cos 2α=1,所以cos α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010. 4.(2019·咸宁模拟)已知tan(α+β)=2,tan β=3,则sin 2α=( )A.725B.1425C .-725D .-1425解析:选C 由题意知tan α=tan [(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-725.5.已知cos ⎝⎛⎭⎫2π3-2θ=-79,则sin ⎝⎛⎭⎫π6+θ的值为( ) A.13 B .±13C .-19D.19解析:选B ∵cos ⎝⎛⎭⎫2π3-2θ=-79, ∴cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+2θ=-cos ⎝⎛⎭⎫π3+2θ =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-79, 解得sin 2⎝⎛⎭⎫π6+θ=19,∴sin ⎝⎛⎭⎫π6+θ=±13. 6.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝⎛⎭⎫α+π4=( ) A .7 B.17C .-7D .-17解析:选B ∵sin(α-β)sin β-cos(α-β)cos β=45,即-cos(α-β+β)=-cos α=45,∴cos α=-45.又∵α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 7.化简:2sin (π-α)+sin 2αcos2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α8.(2018·洛阳第一次统考)已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫142=78. 答案:789.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又因为α+β∈(0,π),所以α+β=π3.答案:π310.函数y =sin x cos ⎝⎛⎭⎫x +π3的最小正周期是________. 解析:y =sin x cos ⎝⎛⎭⎫x +π3=12sin x cos x -32sin 2x =14sin 2x -32·1-cos 2x 2=12sin ⎝⎛⎭⎫2x +π3-34,故函数f (x )的最小正周期T =2π2=π.答案:π11.化简:(1)3tan 12°-3sin 12°(4cos 212°-2); (2)cos 2α1tan α2-tan α2.解:(1)原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=3sin 12°-3cos 12°2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =43sin (12°-60°)sin 48°=-4 3. (2)法一:原式=cos 2αcos α2sin α2-sin α2cos α2=cos 2 αcos 2 α2-sin 2 α2sin α2cos α2=cos 2αsin α2cos α2cos 2 α2-sin 2 α2=cos 2αsin α2cos α2cos α =sin α2cos α2cos α=12sin αcos α=14sin 2α. 法二:原式=cos 2αtan α21-tan 2 α2=12cos 2α·2tan α21-tan 2 α2 =12cos 2α·tan α=12cos αsin α=14sin 2α. 12.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)因为f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32, 所以函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z. (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32.故f (x )的值域为⎣⎡⎦⎤0,1+32. B 级1.(2018·大庆中学期末)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( )A. 3B. 2 C .- 2 D .- 3解析:选C ∵tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,∴tan α+1tan α=k ,tan α·1tan α=k 2-3.∵3π<α<7π2,∴k >0,∴k =2, ∴tan α=1,∴α=3π+π4, 则cos α=-22,sin α=-22,∴cos α+sin α=- 2. 2.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________. 解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13, ∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13, 即1-2sin 2A =13,∴sin A =33. 答案:333.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3),∴sin α=12,cos α=-32,tan α=-33. ∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g (x )=3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤2π3, ∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝⎛⎭⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1, 故函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域是[-2,1].。

三角恒等变换

三角恒等变换

专题三角恒等变换(一)一、诱导公式1、诱导公式(一~六)诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z ∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z∈2、诱导公式口诀:“奇变偶不变,符号看象限”,意思是说角90k α⋅±(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.3、用诱导公式进行化简时的注意点:(1)化简后项数尽可能的少;(2)函数的种类尽可能的少;(3)分母不含三角函数的符号;(4)能求值的一定要求值;(5)含有较高次数的三角函数式,多用因式分解、约分等.二、利用诱导公式求任意角三角函数值的步骤1、“负化正”:用公式一或三来转化.2、“大化小”:用公式一将角化为0°到360°间的角.3、“角化锐”:用公式二或四将大于90°的角转化为锐角.4、“锐求值”:得到锐角的三角函数后求值.三、利用诱导公式求值与求解解题策略1、条件求值问题的策略(1)条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.2、给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.3、观察互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4α与π4+α等互余,π3+θ与2π3θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.题型一利用诱导公式给角求值【例1】cos 210︒的值等于()A .12B 32C .32D .22-【变式1-1】35πsin 6=()A .12B .12-C 32D .32【变式1-2】计算:5π7ππ2sin2cos tan 663⎛⎫+--= ⎪⎝⎭______.题型二利用诱导公式给值求值【例2】若()4sin ,5πα+=-且α是第二象限角,则cos α=()A .45-B .35-C .35D .45【变式2-1】设02πα⎛⎫∈ ⎪⎝⎭,,若3sin ,5α=则cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .45C .35-D .45-【变式2-2】若()4sin 5πα+=-,则3cos 2πα⎛⎫-= ⎪⎝⎭()A .45-B .35-C .45D .35【变式2-3】设sin 25a ︒=,则sin 65cos115tan 205︒︒︒=()A 221a -B .221a -C .2a -D .2a题型三利用互余互补关系求值【例3】已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【变式3-1】已知π1sin 43α⎛⎫+= ⎪⎝⎭,则πcos 4α⎛⎫- ⎪⎝⎭的值为()A .13B.3C .13-D.3-【变式3-2】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【变式3-3】已知cos 6πθ⎛⎫- ⎪⎝⎭=a (|a |≤1),则cos 56πθ⎛⎫+⎪⎝⎭+sin 23πθ⎛⎫- ⎪⎝⎭的值是________.【变式3-4】已知函数()π5π10πcos 2cos 2tan 26334π4πtan 2sin 233x x x f x x x ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭.(1)化简()f x ;(2)若()0310f x =,求00π2πsin 2cos 263x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.题型四利用诱导公式化简求值A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos 4+【变式4-1】(多选)已知角α满足sin cos 0αα⋅≠,则()()()sin πcos πsin cos k k k αααα+++∈Z 的取值可能为()A .2-B .1-C .2D .0【变式4-2】已知α是第四象限角,且cos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭___________.【变式4-3】(1)化简:222cos(4)cos ()sin (3)sin(4)sin(5)cos ()θπθπθπθππθθπ+++-+--(2)已知()sin 3n f n π=(n ∈Z ),求(1)f +(2)f +(3)f +…+(2012)f 的值.【变式4-4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.题型五三角恒等式的证明【例5】(1)求证:tan(2)sin(2)cos(6)tan 33sin()cos()22παπαπααππαα----=-++;(2)设8tan()7m πα+=,求证1513sin()3cos()37720221sin()cos()77m m ππααππαα++-+=+--+.【变式5-1】求证:232sin()cos()12212sin ()ππθθπθ-+--+=tan(9)1tan()1πθπθ+++-.专题三角恒等变换(二)一、升(降)幂缩(扩)角公式利用余弦的二倍角公式变形可得:升幂公式:21cos 22cos αα+=,21cos 22sin αα-=降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=二、半角公式(只要求推导,不要求记忆)sin2a =cos2a =sin 1cos tan.21cos sin ααααα-===+以上三个公式分别称作半角正弦、余弦、正切公式,它们是用无理式表示的.sin 1cos tan ,tan 21cos 2sin αααααα-==+;2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===以上两个公式称作半角正切的有理式表示.三、积化和差与和差化积公式1、积化和差1sin cos [sin()sin()]2αβαβαβ=-++1cos sin )sin()]2αβαβαβ=+--1cos cos )cos()]2αβαβαβ=-++1sin sin [cos()cos()]2αβαβαβ=--+2、和差化积sin sin 2sincos 22x y x yx y +-+=sin sin 2cossin 22x y x yx y +--=cos cos 2cos cos22x y x yx y +-+=cos cos 2sin 22x y x yx y +--=-四、辅助角公式对于形如sin cos a x b x +的式子,可变形如下:sin cos a x b x +sin cos x x ⎫⋅⋅的平方和为1,故令cos ϕϕ==则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan baϕ=确定,或由sin ϕ=和cos ϕ=五、万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-六、三角函数化简“三看”原则七、三角恒等变换综合应用的解题思路(1)将()f x 化为sin cos a x b x +的形式;(2)构造)cos sin ()(x ba b x ba ab a x f ⋅++⋅++=222222(3)和角公式逆用,得())f x x ϕ=+(其中φ为辅助角);(4)利用())f x x ϕ=+研究三角函数的性质;(5)反思回顾,查看关键点、易错点和答题规范.题型一半角公式与万能公式的应用【例1】已知,02πα⎛⎫∈- ⎪⎝⎭,3sin 5α=-,则tan 2α=()A .3B .3-C .13D .13-【变式1-1】已知π3,π,sin 25αα⎛⎫∈= ⎪⎝⎭,则cos π2α⎛⎫-= ⎪⎝⎭()A.10B.10C.10-D.10【变式1-2】若3sin 5θ=,5π3π2θ<<,则tan cos 22θθ+=()A.3B .3C .3D .3-【变式1-3】已知()tan 3πα+=,则cos 22πα⎛⎫-= ⎪⎝⎭()A .35B .310C .34D 【变式1-4】若sin 11cos 2αα=+,则sin cos αα+的值为________.题型二积化和差与和差化积的应用【例2】利用和差化积公式,求下列各式的值:(1)sin15sin105︒+︒;(2)sin20sin40sin80︒+︒-︒;(3)cos40cos60cos80cos160︒+︒+︒+︒.【变式2-1】利用积化和差公式,求下列各式的值:(1)cos15cos75︒︒;(2)sin20sin40sin80︒︒︒.【变式2-2】下列关系式中正确的是()A .sin 5sin 32sin 8cos 2θθθθ+=B .cos3cos52sin 4sin θθθθ-=-C .1sin3sin5cos4cos 2θθθθ-=-D .()()1cos cos sin sin 2x y x y x y --+=⎡⎤⎣⎦【变式2-3】若1cos cos sin sin 2x y x y +=,2sin 2sin 23x y +=,则()sin +=x y ()A .23B .23-C .13D .13-【变式2-4】求值:cos 40cos80cos80cos160cos160cos 40︒︒︒︒︒++︒.【变式2-5】在ABC 中,若30B = ,则cos sin A C 的取值范围是()A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .13,44⎡⎤-⎢⎥⎣⎦D .31,44⎡⎤-⎢⎥⎣⎦题型三辅助角公式及其应用【例3】将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).444x x ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【变式3-1】求下列函数的最大值和最小值:(1)1cos 2y x x =;(2)sin cos y x x =-;(3)sin y x x =+;(4)sin 22y x x =.【变式3-2】(多选)若1sin cos()22x x x ϕ+=+,则ϕ的值可能为()A .6π-B .6πC .56πD .116π【变式3-3】已知πcos(63x -=,则πcos cos()3x x +-等于()A B .±C .-1D .1【变式3-4】已知函数2()cos 2cos f x x x x =+.(1)求函数()f x 的单调增区间;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值,以及此时x 的取值.题型四三角恒等变换的化简问题【例4】化简4sin 24cos 24tan12cos12︒︒︒︒+=()A .1B CD .2【变式4-1】化简()()sin5cos51︒+︒︒=()A .2B .C .2D【变式4-2】若1cos sin 222αα=,则1sin cos 14ααπα++=⎛⎫+ ⎪⎝⎭()A .1B .12CD.【变式4-3】若2πθπ<<,tan 3θ=-=_________.题型五三角形中的三角恒等变换【例5】在ABC ∆中,若sin cos()1sin()cos 22A B A B ππ-=--,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【变式5-1】已知ABC ,角,,A B C 所对应的边分别为,,a b c ,且sin sin cos cos A B A B +=+,则ABC 是()A .直角三角形B .等边三角形C .钝角三角形D .锐角三角形【变式5-2】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()2sin sin sin B C B C A +⋅-=.则△ABC的形状为()A .正三角形B .等腰直角三角形C .直角三角形D .等腰三角形。

三角恒等变换的技巧.

三角恒等变换的技巧.

巧用三角恒等变换凌云县中学毛昌强三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。

三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。

三角恒等变换是以三角基本关系式,诱导公式,和,差,倍角等公式为基础的,三角变换的常见策略有:(1)发现差异;(2)寻找联系;(3)合理转换。

概括起来就是:利用和,差,倍角等三角公式实行各种转化,从而达到问题解决的目的。

三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能。

常用的数学思想方法技巧如下:一、知角求值一般所给出的角都是非特殊角。

当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式。

例1:已知,,则()A. B. C. D.解析:两边平方,再同时除以,得,或,代入,得到。

选C。

变式:已知向量与互相垂直,其中。

(1)求和的值;(2)若,求的值。

解析(1)由,即,又,所以。

(2)因为。

点评已知非特殊角的三角函数值,求另外一些角的三角函数值,一般用同角三角函数的关系式来解,它分为两种情况:(1)一个角的某一个三角函数和这个角所在的象限或终边落在哪个坐标轴上都是已知的,此类情况只有一组解;(2)一个角的某一个三角函数值是已知的,但角的范围不确定,那么要根据已知的三角函数值确定这个角的值的象限或终边落在哪个坐标轴上,然后分不同的情况来解。

例1通过化简后,求出的正切值,再直接用的二倍角的正切值得解,也可利用同角的三角函数基本关系式分别求出的值后求得,不过此时要注意角所在的象限。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin 22+⋅+⋅=ααααααααααααc o s s i n 1c o s s i n )c o s (s i n c o s s i n c o s c o s s i n 2s i n 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类.【例2】 已知θ同时满足b a b a b a 2sec cos 2cos sec 22=-=-θθθθ和,且b a ,均不为零,试求“b a ,”b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径.【例3】 化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】(2005年全国卷)设α为第四象限角,若513sin 3sin =αα,则=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】已知锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。

专题三 三角函数与平面向量的综合应用

专题三 三角函数与平面向量的综合应用

专题三 三角函数与平面向量的综合应用1. 三角恒等变换(1)公式:同角三角函数基本关系式、诱导公式、和差公式.(2)公式应用:注意公式的正用、逆用、变形使用的技巧,观察三角函数式中角之间的联系,式子之间以及式子和公式间的联系.(3)注意公式应用的条件、三角函数的符号、角的范围. 2. 三角函数的性质(1)研究三角函数的性质,一般要化为y =A sin(ωx +φ)的形式,其特征:一角、一次、一函数.(2)在讨论y =A sin(ωx +φ)的图象和性质时,要重视两种思想的应用:整体思想和数形结合思想,一般地,可设t =ωx +φ,y =A sin t ,通过研究这两个函数的图象、性质达到目的. 3. 解三角形解三角形问题主要有两种题型:一是与三角函数结合起来考查,通过三角变换化简,然后运用正、余弦定理求值;二是与平面向量结合(主要是数量积),判断三角形形状或结合正、余弦定理求值.试题一般为中档题,客观题、解答题均有可能出现. 4. 平面向量平面向量的线性运算,为证明两线平行提供了重要方法.平面向量数量积的运算解决了两向量的夹角、垂直等问题.特别是平面向量的坐标运算与三角函数的有机结合,体现了向量应用的广泛性.1. 已知角α终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin (9π2+α)=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义得tan α=y x =-34.所以cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α=-34.2. 已知f (x )=sin(x +θ)+3cos(x +θ)的一条对称轴为y 轴,且θ∈(0,π),则θ=________.答案 π6解析 f (x )=sin(x +θ)+3cos(x +θ)=2sin ⎝⎛⎭⎫x +θ+π3,由θ+π3=k π+π2 (k ∈Z )及θ∈(0,π),可得θ=π6.3. 如图所示的是函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|∈⎝⎛⎭⎫0,π2)图象 的一部分,则f (x )的解析式为____________. 答案 f (x )=2sin ⎝⎛⎭⎫23x +π6+1解析 由于最大值和最小值之差等于4,故A =2,B =1. 由于2=2sin φ+1,且|φ|∈⎝⎛⎭⎫0,π2,得φ=π6. 由图象知ω(-π)+φ=2k π-π2 (k ∈Z ),得ω=-2k +23(k ∈Z ).又2πω>2π,∴0<ω<1.∴ω=23.∴函数f (x )的解析式是f (x )=2sin ⎝⎛⎭⎫23x +π6+1.4. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25.而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5.在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π, ∴sin ∠CED =1-cos 2∠CED=1-⎝⎛⎭⎫310102=1010.5. 如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB=3,P 是BC 上的一个动点,当PD →·P A →取得最小值时,tan ∠DP A 的 值为________. 答案1235解析 如图,以A 为原点,建立平面直角坐标系xAy ,则A (0,0), B (3,0),C (3,2),D (0,1),设∠CPD =α,∠BP A =β, P (3,y ) (0≤y ≤2).∴PD →=(-3,1-y ),P A →=(-3,-y ), ∴PD →·P A →=y 2-y +9=⎝⎛⎭⎫y -122+354, ∴当y =12时,PD →·P A →取得最小值,此时P ⎝⎛⎭⎫3,12, 易知|DP →|=|AP →|,α=β. 在△ABP 中,tan β=312=6,tan ∠DP A =-tan(α+β)=2tan βtan 2β-1=1235.题型一 三角恒等变换例1 设π3<α<3π4,sin ⎝⎛⎭⎫α-π4=35,求sin α-cos 2α+1tan α的值. 思维启迪:可以先将所求式子化简,寻求和已知条件的联系. 解 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎫α-π4=35, 所以cos ⎝⎛⎭⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝⎛⎭⎫α-π4cos π4-sin ⎝⎛⎭⎫α-π4sin π4=210, 所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.下同方法一.探究提高 三角变换的关键是寻求已知和所求式子间的联系,要先进行化简,角的转化是三角变换的“灵魂”.要注意角的范围对式子变形的影响.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235B.235 C .-45D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 题型二 三角函数的图象与性质例2 (2011·浙江)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点, 点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.思维启迪:三角函数图象的确定,可以利用图象的周期性、最值、已知点的坐标列方程来解决.解 (1)由题意得T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A ·9+A 2=-12,解得A 2=3.又A >0,所以A= 3.探究提高 本题确定φ的值时,一定要考虑φ的范围;在三角形中利用余弦定理求A 是本题的难点.已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎡⎦⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由. 解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2 (k ∈Z ),φ=2k π+π6 (k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6. 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫πx +π6. (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2 (k ∈Z ),解得x =k +13,由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f (x )的对称轴,其方程为x =163. 题型三 三角函数、平面向量、解三角形的综合应用 例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪:(1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12. cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 探究提高 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且lg a -lg b =lg cos B -lg cos A ≠0.(1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(n -m )=14,求a ,b ,c 的值.解 (1)因为lg a -lg b =lg cos B -lg cos A ≠0, 所以a b =cos B cos A ≠1,所以sin 2A =sin 2B 且a ≠b .因为A ,B ∈(0,π)且A ≠B ,所以2A =π-2B ,即A +B =π2且A ≠B .所以△ABC 是非等腰的直角三角形. (2)由m ⊥n ,得m·n =0.所以2a 2-3b 2=0.① 由(m +n )·(n -m )=14,得n 2-m 2=14, 所以a 2+9b 2-4a 2-b 2=14,即-3a 2+8b 2=14.② 联立①②,解得a =6,b =2.所以c =a 2+b 2=10.故所求的a ,b ,c 的值分别为6,2,10.高考中的平面向量、三角函数客观题典例1:(5分)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3考点分析 本题考查三角函数的性质,考查整体思想和数形结合思想. 解题策略 根据整体思想,找出角π6x -π3的范围,再根据图象求函数的最值.解析 由题意-π3≤πx 6-π3≤7π6.画出y =2sin x 的图象如图,知, 当π6x -π3=-π3时,y min =- 3. 当π6x -π3=π2时,y max =2. 故y max +y min =2- 3. 答案 A解后反思 (1)函数y =A sin(ωx +φ)可看作由函数y =A sin t 和t =ωx +φ构成的复合函数.(2)复合函数的值域即为外层函数的值域,可以通过图象观察得到.典例2:(5分)(2012·天津)在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D .2考点分析 本题考查向量的线性运算,考查向量的数量积和运算求解能力.解题策略 根据平面向量基本定理,将题中的向量BQ →,CP →分别用向量AB →,AC →表示出来,再进行数量积计算.解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →, CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23.答案 B解后反思 (1)利用平面向量基本定理结合向量的线性运算表示向量是向量问题求解的基础;(2)本题在求解过程中利用了方程思想.方法与技巧1.研究三角函数的图象、性质一定要化成y =A sin(ωx +φ)+B 的形式,然后利用数形结合思想求解.2.三角函数与向量的综合问题,一般情况下向量知识作为一个载体,可以先通过计算转化为三角函数问题再进行求解. 失误与防范1.三角函数式的变换要熟练公式,注意角的范围.2.向量计算时要注意向量夹角的大小,不要混同于直线的夹角或三角形的内角.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·大纲全国)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →等于( )A.13a -13b B.23a -23b C.35a -35bD.45a -45b 答案 D解析 利用向量的三角形法则求解.如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°, ∴AB =AC 2+BC 2= 5.又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为 ( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3答案 C解析 由m ⊥n 得m·n =0,即3cos A -sin A =0,即2cos ⎝⎛⎭⎫A +π6=0, ∵π6<A +π6<7π6,∴A +π6=π2,即A =π3. 又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c =c sin C , 所以sin C =1,C =π2,所以B =π-π3-π2=π6.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以 点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相 切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 二、填空题(每小题5分,共15分)5. (2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案 π2解析 利用正弦定理及三角形内角和性质求解. 在△ABC 中,由正弦定理可知a sin A =b sin B, 即sin B =b sin Aa=3×323=12. 又∵a >b ,∴∠B =π6.∴∠C =π-∠A -∠B =π2.6. 在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若AB →⊥OC →,则x 的值为______.答案 π2或π3解析 因为AB →=(2cos x +1,-2cos 2x -2),OC →=(cos x,1), 所以AB →·OC →=(2cos x +1)cos x +(-2cos 2x -2)·1 =-2cos 2x +cos x =0,可得cos x =0或cos x =12,所以x 的值为π2或π3.7. 已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin 2x=________. 答案 -195解析 由题意知,f ′(x )=cos x +sin x ,由f ′(x )=2f (x ), 得cos x +sin x =2(sin x -cos x ),得tan x =3, 所以1+sin 2xcos 2x -sin 2x =1+sin 2xcos 2x -2sin x cos x=2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195.三、解答题(共22分)8. (10分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin 2α1+tan α的值.解 (1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3), ∴AC →2=(cos α-3)2+sin 2α=10-6cos α, BC →2=cos 2α+(sin α-3)2=10-6sin α, 由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α. 又α∈⎝⎛⎭⎫π2,3π2,∴α=5π4.(2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α.由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin 2α+sin 2α1+tan α=-59.9. (12分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. 解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6.(2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2,故0<5π6-A <π2,解得π3<A <5π6,又0<A <π2,所以π3<A <π2.故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解. 由题意知f (x )=sin 2⎝⎛⎭⎫x +π4 =1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2,令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 2. 已知a =⎝⎛⎭⎫-12,32,b =(1,3),则|a +t b | (t ∈R )的最小值等于( )A .1 B.32C.12D.22答案 B解析 方法一 a +t b =⎝⎛⎭⎫-12+t ,32+3t ,∴|a +t b |2=⎝⎛⎭⎫-12+t 2+⎝⎛⎭⎫32+3t 2 =4t 2+2t +1=4⎝⎛⎭⎫t +142+34,∴当t =-14时,|a +t b |2取得最小值34,即|a +t b |取得最小值32. 方法二 如图所示,OA →=a ,OB →=b ,在OB 上任取一点T ,使得OT →=-t b (t <0),则|a +t b |=|TA →|,显然,当AT ⊥OB 时,取最小值. 由TA →·OB →=(a +t b )·b =a·b +t b 2=0,得t =-14,∴当t =-14时,|a +t b |取得最小值32.3. 在△ABC 中,AB →·BC →=3,△ABC 的面积S △ABC ∈⎣⎡⎦⎤32,32,则AB →与BC →夹角的取值范围是( )A.⎣⎡⎦⎤π4,π3B.⎣⎡⎦⎤π6,π4 C.⎣⎡⎦⎤π6,π3D.⎣⎡⎦⎤π3,π2答案 B解析 记AB →与BC →的夹角为θ,AB →·BC →=|AB →|·|BC →|·cos θ=3,|AB →|·|BC →|=3cos θ,S △ABC =12|AB→|·|BC →|·sin(π-θ)=12|AB →|·|BC →|sin θ=32tan θ,由题意得tan θ∈⎣⎡⎦⎤33,1,所以θ∈⎣⎡⎦⎤π6,π4,正确答案为B.二、填空题(每小题5分,共15分)4. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是__________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) 解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ). 5.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13, cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=________. 答案593 解析 ∵0<α<π2,∴sin ⎝⎛⎭⎫π4+α=232, ∵-π2<β<0,∴sin ⎝⎛⎭⎫π4-β2=63, 则cos ⎝⎛⎭⎫α+β2=cos[⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2] =13×33+232×63=593.6. (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向 滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________. 答案 (2-sin 2,1-cos 2)解析 利用平面向量的坐标定义、解三角形知识以及数形结合思想求解.设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2 =2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2, ∴OP →的坐标为(2-sin 2,1-cos 2). 三、解答题7. (13分)已知f (x )=log a ⎝⎛⎭⎫sin 2x 2-sin 4x2(a >0且a ≠1),试讨论函数的奇偶性、单调性. 解 f (x )=log a ⎣⎡⎦⎤sin 2x 2⎝⎛⎭⎫1-sin 2x 2 =log a 1-cos 2x8.故定义域为cos 2x ≠1,即{x |x ≠k π,k ∈Z },关于原点对称且满足f (-x )=f (x ),所以此函数是偶函数. 令t =18(1-cos 2x ),则t 的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ); 递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 所以,当a >1时,f (x )的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z );递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 当0<a <1时,f (x )的递增区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z );递减区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ).。

三角恒等变换之题型总结及解题策略分析

三角恒等变换之题型总结及解题策略分析

撷英篇三角恒等变换是解决三角函数问题的重要工具.三角恒等变换是高中数学的一个重要模块,在历年的高考中都是必考内容,同时也是很多学生学习,考试的难点.本文将三角恒等变换的一些常见题型及解决策略作了梳理,仅供参考,希望能对学生学习有所帮助.一、公式的变形三角公式是变换的基础,应熟练地掌握公式的顺用、逆用及变形应用.1.化简(1)cos (α+β)cos β+sin (α+β)sin β;(2)sin (α+β)cos β-cos (α+β)sin β解:(1)cos (α+β)cos β+sin (α+β)sin β=cos [(α+β)-α]=cos β(2)sin (α+β)cos β-cos (α+β)sin β=sin [(α+β)-α]=sin α2.求证:tan20°+tan40°+3√tan20°tan40°=3√.证明:由tan (20°+40°)=tan20°+tan40°1-tan20°tan40°得tan20°+tan40°=3√(1-tan20°tan40°),所以3√(1-tan20°tan40°)+3√tan20°tan40°=3√.二、角的变换在表达式中或者在已知条件和所求问题中出现较多的相异角,可以通过观察,寻找两角之间的和差、倍半、互补、互余等关系,从而应用角的变换,建立已知和结论之间的联系,使问题得以解决.1.已知cos α=17,cos (α+β)=-1114且α,β均为锐角,求cos β.思路分析:通过寻找题目中的角α,α+β,β三者之间的关系,利用角的变换来解决.解:因为cos α=17,cos (α+β)=-1114,且α,β均为锐角,所以sin α=1-17()2√=43√7,sin (α+β)=1--1114()2√=53√14cos β=cos [(α+β)-β]=cos (α+β)cos β+sin (α+β)sin β=-1114×17+53√14×43√7=122.已知cos (α-β)=-45,cos (α+β=)45,且(α-β)∈π2,π()(α+β)∈3π2,2π(),求cos2α.思路分析:通过寻找题目中的角α-β,α+β,2α三者之间的关系,利用角的变换来解决.解:因为cos (α-β)=-45,(α-β)∈π2,π(),所以sin (α-β)=1--45()2√=35.因为cos (α+β)=45,(α+β)∈3π2,2π(),所以sin (α+β)=1-45()2√=-35.所以cos2α=cos [(α-β)+(α+β)]=cos (α-β)cos (α+β)-sin (α-β)sin (α+β)=-45×45-35×-35()=-725三、函数名称的改变三角变形中,常常需要变不同函数名称为同名函数.如在三角函数中正余弦是基础,通常化切为弦,化弦为切,变异名为同名.1.求sin15°sin30°sin75°值.解:sin15°sin30°sin75°=12sin15°cos15°=14sin30°=14×12=182.化简2cos 2α-1tan π4-α()sin 2π4+α().解:原式=cos 2αsin π4-α()cosπ4-α()sin 2π4+α()=cos2αsinπ4-α()cos π4-α()cos 2π4-α()=cos2αsinπ4-α()cos π4-α()=cos2α12sin π2-2α()=cos2α12cos2α=2.四、常数变换,巧用“1”在三角函数运算,求值,证明中,有时需要将常数1转化为三角函数值来代换,以达到解决问题的目的.1.已知tan π4+θ()=3,求sin2θ-2cos 2θ.解:由tan π4+θ()=3得,tan θ=12.sin2θ-2cos 2θ=2sin θcosθ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=2×12-212()2+1=-45.2.求1-tan15°tan60°+3√tan15°.解:原式=tan45°-tan15°3√+3√tan15°=tan45°-tan15°3√(1+tan45°tan15°)=13√tan30°=13五、幂的变换升降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法,降幂并非绝对,有时需要升幂.求使函数f (x )=12cos 4x +3√sin x cos x -12sin 4x 为正值的x 的集合.解:f (x )=12cos 4x +3√sin x cos x -12sin 4x =12(cos 4x -sin 4x )+3√2sin2x =12(cos 2x -sin 2x )(cos 2x +sin 2x )+3√2sin2x =12cos2x +3√2sin2x =sin 2x+π6(),由sin 2x+π6()>0得2k π<2x +π6<2k π+π,k ∈z .解得-π12+k π<x <k π+5π12.所以x 的集合为x -π12+k π<x <k π+5π12,k ∈z {}.六、结构的变换通过表达式结构特点,通过构造上的变换,从而使问题得到解决.求cos20°cos40°cos80°的值.解析:根据式子结构特点,乘以并除以2sin20°.解:cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°2sin20°=sin40°cos40°cos80°2sin20°=12sin80°cos80°2sin20°=14sin160°2sin20°=sin20°8sin20°=18.参考文献:[1]牛晓伟.三角恒等变换的技巧及其应用[J ].考试周刊,2012(49).[2]黄伟军.三角恒等变换之七变[J ].泛舟学海(高中),2008.[3]华丽凤.三角恒等变换之“差异分析”策略[J ].高中数理化,2011(22).[4]杜春辉.例谈三角恒等变换中的“变角”技巧及其应用[J ].考试周刊(数理系),2011(78).•编辑谢尾合三角恒等变换之题型总结及解题策略分析王传勇(诸城市实验中学,山东诸城)337--. All Rights Reserved.。

3.2简单的三角恒等变换(一)

3.2简单的三角恒等变换(一)
3.2 简单的三角恒等变换(一)
1.两角和差的正弦、余弦、正切公式
2.二倍角正弦、余弦、正切公式
sin 2 2 sin cos
cos 2 cos2 sin 2
2 cos2 1
1 2 sin2
tan 2

1
2
tan tan2
学习了和(差)角公式,倍角公式以后,我 们就有了进行三角变换的新工具,从而使三角 变换的内容、思路和方法更加丰富,这为提高 我们的推理、运算能力提供了新的平台.
证明:左边 = sin2 x cos2 x 2sin x cos x cos2 x sin2 x

(sin x cos x)2
cos x sin x
(cos x sin x)(cos x sin x) sin x cos x
1 tan x =右边 1 tan x
A.12[sin(α+β)+cos(α-β)] B.-21[cos(α+β)-cos(α-β)] C.-12[sin(α+β)+sin(α-β)] D.12[sin(α+β)+cos(α-β)]
1.下列各式恒成立的是( B )
A.tan = 1 cos 2 sin
2 tan
C.
2
1 tan2
2
22

2sin cos 22
2 cos cos
sin 1 cos


1. 2
22
4、已知 sinθ=-35,3π<θ<72π,则 tanθ2=___-_3____.
解析:根据角 θ 的范围,求出 cosθ 后代入公式计算, 即由 sinθ=-35,3π<θ<72π,得 cosθ=-45,从而 tanθ2= 1+sincoθsθ=1--3554=-3.

常用的14个恒等变形公式

常用的14个恒等变形公式

常用的14个恒等变形公式恒等变形公式是数学中的重要概念,它指的是在等式两边同时进行相同的运算,从而得到等价的新式子的过程。

在数学中,恒等变形公式被广泛应用于各种数学问题的解决中。

本文将介绍常用的14个恒等变形公式,希望能够帮助读者更好地理解数学知识。

1. 平方差公式平方差公式是指:$a^2-b^2=(a+b)(a-b)$。

这个公式在代数中是非常常用的,它可以帮助我们快速计算两个数之间的平方差。

2. 完全平方公式完全平方公式是指:$a^2+2ab+b^2=(a+b)^2$。

这个公式可以帮助我们快速计算一个二次项的平方。

3. 二次差公式二次差公式是指:$a^2-b^2=(a+b)(a-b)$。

这个公式与平方差公式相同,但它更适用于计算两个数的平方差。

4. 一次多项式恒等式一次多项式恒等式是指:$ax+by=c$。

这个公式可以帮助我们快速求解一次方程。

5. 一次多项式因式分解公式一次多项式因式分解公式是指:$ax+ay+bx+by=a(x+y)+b(x+y)=(x+y)(a+b)$。

这个公式可以帮助我们快速因式分解一次多项式。

6. 二次多项式恒等式二次多项式恒等式是指:$ax^2+bx+c=(x-p)(x-q)$,其中$p$和$q$是二次方程的解。

这个公式可以帮助我们快速求解二次方程。

7. 二次多项式完全平方公式二次多项式完全平方公式是指:$ax^2+bx+c=a(x+p)^2+q$,其中$p$是二次方程的解。

这个公式可以帮助我们快速将二次多项式变成完全平方的形式。

8. 二次多项式配方法二次多项式配方法是指:$ax^2+bx+c=a(x+frac{b}{2a})^2-frac{b^2-4ac}{4a}$。

这个公式可以帮助我们快速将二次多项式配成平方的形式。

9. 欧拉公式欧拉公式是指:$e^{ix}=cos x+isin x$。

这个公式是数学中的重要公式,它将复数与三角函数联系起来。

10. 对数公式对数公式是指:$log_ab=frac{log_cb}{log_ca}$。

高中三角函数常见题型与解法

高中三角函数常见题型与解法

三角函数的题型和方法令狐采学一、思想方法1、三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

即倍角公式降次与半角公式升次。

(4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

(5)引入辅助角。

asinθ+bcosθ=22ba+sin(θ+ϕ),这里辅助角ϕ所在象限由a、b的符号确定,ϕ角的值由tanϕ=ab确定。

(6)万能代换法。

巧用万能公式可将三角函数化成tan2θ的有理式。

2、证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4、解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思维与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如ααββαββαα22122)()(⨯=⨯=+-=-+=.也要注意题目中所给的各角之间的关系。

三角函数恒等变换知识点总结

三角函数恒等变换知识点总结

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合:; 与α角终边关于x 轴对称的角的集合:; 与α角终边关于y 轴对称的角的集合:; 与α角终边关于x y =轴对称的角的集合:;②一些特殊角集合的表示:终边在坐标轴上角的集合:;终边在一、三象限的平分线上角的集合:; 终边在二、四象限的平分线上角的集合:; 终边在四个象限的平分线上角的集合:; (3)区间角的表示:①象限角:第一象限角:;第三象限角:;第一、三象限角:;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”=; “第一象限的角”=;“锐角”=; “小于o90的角”=;(5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式:;半径公式:;扇形面积公式:;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系:。

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。

专题解析:三角恒等变换与解三角形

专题解析:三角恒等变换与解三角形

三角恒等变换与解三角形核心考点(一)三角恒等变换【核心知识】1.两角和与差的余弦、正弦及正切公式①cos (α+β)=cos αcos β-sin αsin β②cos (α-β)=cos αcos β+sin αsin β③sin (α+β)=sin αcos β+cos αsin β④sin (α-β)=sin αcos β-cos αsin β⑤tan (α+β)=tan α+tan β1-tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α+β≠k π+π2,k ∈Z )⑥tan (α-β)=tan α-tan β1+tan αtan β(α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α-β≠k π+π2,k ∈Z )2.二倍角公式:①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α③tan2α=2tan α1-tan 2α(α≠k π+π2,k ∈Z ,2α≠k π+π2,k ∈Z ,α≠k π±π4,k ∈Z )3.辅助角公式:a cos x +b sin x x +ba 2+b 2sin 令sin θ=aa 2+b 2,cos θ∴a cos x +b sin x =a 2+b 2sin (x +θ),其中θ为辅助角,tan θ=ab .4.降幂公式①sin 2α=1-cos2α2②cos 2α=1+cos2α2③sin αcos α=12sin 2α【典例引领·研明】【典例】(1)(2020·全国卷Ⅲ)已知sin θ+sin 1,则sin ()A .12B .33C .23D .22解析:选B .∵sin θ+sin =32sin θ+32cos θ=3sin 1,∴sin =33.故选B .(2)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值为黄金比值(即黄金分割值5-12,该值恰好等于2sin 18˚),则sin 100˚cos 26˚+cos 100˚sin 26˚=()A .-5+24B .5+24C .-5+14D .5+14解析:选D .由已知可得2sin 18˚=5-12,故sin 18˚=5-14,则sin 100˚cos 26˚+cos 100˚sin 26˚=sin 126˚=sin (36˚+90˚)=cos 36˚=1-2sin 218˚=1-2×(5-14)2=5+14.故选D .(3)(多选)下列各式中值为12的是()A .1-2cos 275°B .sin135°cos 15°-cos 45°cos 75°C .tan 20°+tan 25°+tan 20°tan 25°D .cos 35°1-sin 20°2cos 20°解析:选BD.对于A ,1-2cos 275°=-cos 150°=cos 30°=32,A 错误;对于B ,sin 135°cos 15°-cos 45°cos 75°=sin 45°sin 75°-cos 45°cos 75°=-cos 120°=12,B 正确;对于C ,∵tan 45°=1=tan 20°+tan 25°1-tan 20°tan 25°,∴1-tan 20°tan 25°=tan 20°+tan 25°,∴tan20°+tan 25°+tan 20°tan 25°=1,C 错误;对于D ,cos 35°1-sin 20°2cos 20°=cos 35°(cos 10°-sin 10°)22(cos 10°+sin 10°)(cos 10°-sin 10°)=cos 35°2(cos 10°+sin 10°)=cos 45°cos 10°+sin 45°sin 10°2(cos 10°+sin 10°)=22(cos 10°+sin 10°)2(cos 10°+sin 10°)=12,D 正确;故选BD.(4)(2022·浙江高考)若3sin α-sin β=10,α+β=π2,则sin α=______,cos 2β=____________.解析:∵α+β=π2,∴sin β=cos α,∵3sin α-cos α=10,α-1010cos =10,令sin θ=1010,cos θ=31010,则10sin (α-θ)=10,∴α-θ=π2+2k π,k ∈Z ,即α=θ+π2+2k π,∴sin α=sin +π2+2k cos θ=31010,则cos 2β=2cos 2β-1=2sin 2α-1=45.答案:3101045【解题方法】———————————————————————————————●1.三角函数求值的类型及方法(1)常值代换:常用到“1”的代换,1=sin 2θ+cos 2θ=tan45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次.(4)弦、切互化:一般是切化弦.【对点集训·练透】1.(2021·全国高考甲卷)若αtan2α=cos α2-sin α,则tan α=()A .1515B .55C .53D .153解析:选A .∵tan 2α=cos α2-sin α,∴tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α=cos α2-sin α,∵αcos α≠0,∴2sin α1-2sin 2α=12-sin α,解得sin α=14,∴cos α=1-sin 2α=154,∴tan α=sin αcos α=1515.故选A .2.(2022·江苏盐城二模)计算2cos 10°-sin 20°cos 20°所得的结果为()A .1B .2C .3D .2解析:选C .2cos 10°-sin 20°cos 20°=2cos (30°-20°)-sin 20°cos 20°=3cos 20°+sin 20°-sin 20°cos 20°=3.3.已知αsin +=13,则tan α的值为____________.解析:∵sin 2cos 2α=13,α∴sin α=1-cos 2α2=33,cos α=1+cos 2α2=63,∴tan α=sin αcos α=22.答案:224.(2022·湖南郴州二模)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P -35,,则sin 2α+cos 2α+11+tan α=________.解析:由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2=1825.答案:1825核心考点(二)利用正、余弦定理解三角形【核心知识】1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径).【变形】a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R.a ∶b ∶c =sin A ∶sin B ∶sin C .2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .【推论】cos A =b 2+c 2-a 22bc,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab.【变形】b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =a cos B +b cos A ,称为“射影定理”.4.面积公式S△ABC=12bc sin A=12ac sin B=12ab sin C.角度1利用正、余弦定理进行边角计算【例1】(2021·福建漳州模拟)在△ABC中,角A,B,C的对边分别为a,b,c,已知(2b -c)cos A=a cos C,则A=()A.π6B.π3C.2π3D.5π6解析:选B.法一∵(2b-c)cos A=a cos C,∴由正弦定理得(2sin B-sin C)cos A=sin A cos C,∴2sin B cos A=sin A cos C+sin C cos A=sin(A+C)=sin B,∵0<B<π,∴cos A=12,又0<A<π,∴A=π3.法二∵(2b-c)cos A=a cos C,∴2b cos A=a cos C+c cos A=b,∴cos A=12,又0<A<π,∴A=π3.【例2】已知△ABC的内角A,B,C的对边分别为a,b,c,且3a cos C-c sin A=3b.(1)求角A;(2)若c=2,且BC边上的中线长为3,求b.解:(1)由题意,3a cos C-c sin A=3b,由正弦定理得3sin A cos C-sin C sin A=3sin B,因为B=π-A-C,所以3sin A cos C-sin C sin A=3sin(A+C),得3sin A cos C-sin C sin A=3sin A cos C+3cos A sin C,得-sin C sin A=3cos A sin C,因为sin C≠0,所以sin A=-3cos A,即tan A=-3,又A∈(0,π),所以A=2π3.(2)在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=b2+4+2b①,cos B=a2+c2-b22ac=a2+4-b24a.设BC的中点为D,则在△ABD中,cos B2×a2×c=a24+12a,所以a 2+4-b 24a =a 24+12a ,得a 2+4-2b 2=0②,由①②可得,b 2-2b -8=0,所以b =4.【解题方法】———————————————————————————————●(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(5)常常应用A +B +C =π减少未知角的个数.【对点练】1.(2022·山西大同二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin (A +B )=sin B +sin A ·cos B +cos A sin B ,于是sin B =sin (A -B ).又A ,B ∈(0,π),故0<A -B ,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以,A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos (A +B )=-cos A cos B +sin A sin B =2227.2.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos C +c sin A cos B =15a4.(1)求sin A ;(2)若a =32,b =4,求c .解:(1)因为b sin A cos C +c sin A cos B =15a4,所以由正弦定理,得sin B sin A cos C +sin C sin A cos B =15sin A4,因为sin A ≠0,所以sin B cos C +sin C cos B =154,所以sin (B +C )=154,所以sin (π-A )=154,所以sin A =154.(2)因为△ABC 为锐角三角形,所以A 为锐角,因为sin A =154,所以cos A =14.因为a =32,b =4,由余弦定理得(32)2=42+c 2-2×4×c ×14,所以c 2-2c -2=0,所以c =3+1.角度2与面积和周长有关的问题【例3】(2022·北京高考)在△ABC 中,sin 2C =3sin C .(1)求∠C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长.解:(1)因为C ∈(0,π),则sin C >0,由已知可得3sin C =2sin C cos C ,可得cos C =32,因此,C =π6.(2)由三角形的面积公式可得S △ABC =12ab sin C =32a =63,解得a =4 3.由余弦定理可得c 2=a 2+b 2-2ab cos C =48+36-2×43×6×32=12,∴c =23,所以,△ABC 的周长为a +b +c =63+6.【例4】(2022·湖南益阳二模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sinπ612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.【解题方法】———————————————————————————————●(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含该角的公式.(2)与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.三角形面积公式还可用其他几何量表示:S =12(a +b +c )r ,其中a +b +c 为三角形的周长,r 为三角形内切圆的半径.【对点练】3.(2021·新高考全国Ⅱ卷)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且满足b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求a ;若不存在,说明理由.解:(1)2sin C =3sin A ⇒2c =3a ,∵c =a +2,∴2(a +2)=3a ,∴a =4,∴b =a +1=5,c =a +2=6,∴cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,∴sin A =1-cos 2A =74,∴S △ABC =12bc sin A =12×5×6=1574.(2)存在.由于c >b >a ,故要使△ABC 为钝角三角形,只能是C 为钝角.cos C =a 2+b 2-c 22ab <0⇒a 2+b 2<c 2⇒a 2+(a +1)2<(a +2)2⇒a 2-2a -3<0⇒-1<a <3,又a >0,∴a ∈(0,3).考虑构成△ABC 的条件,可得a +b >c ⇒a +(a +1)>a +2⇒a >1.综上,a ∈(1,3).又a 为正整数,∴a =2,∴存在a =2,使得△ABC 为钝角三角形.4.(2022·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解:(1)由于cos C =35,0<C <π,则sin C =45.因为4a =5c ,由正弦定理知4sin A =5sin C ,则sin A =54sin C =55.(2)因为4a =5c ,由余弦定理,得cos C =a 2+b 2-c 22ab=a 2+121-165a 222a =11-a 252a=35,即a 2+6a -55=0,解得a =5,而sin C =45,b =11,所以△ABC 的面积S =12ab sin C =12×5×11×45=22.角度3最值与范围问题【例5】(2019·全国高考Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解:(1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C=32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是(38,32).【例6】(2022·河北沧州二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A.(1)证明:a +b =2c ;(2)求cos C 的最小值.解:(1)证明:由题意知=sin A cos A cos B +sin Bcos A cos B ,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin (A +B )=sin A +sin B ,因为A +B +C =π,所以sin (A +B )=sin (π-C )=sin C .从而sin A +sin B =2sin C .由正弦定理得a +b =2c .(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =2ab -14≥12,当且仅当a =b 时,等号成立.故cos C 的最小值为12.【解题方法】———————————————————————————————●求解三角形中最值、范围问题的方法(1)函数法:建立有关的函数关系式,利用角的范围求解;(2)基本不等式法:当三角形中一组边角成对已知时,一般考虑余弦定理,转化为圆内接三角形,利用不等式可求周长最大值问题.【对点练】5.(2021·内蒙古包头一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 2B -sin 2A -sin 2C =sin A sin C .(1)求B ;(2)若b =3,当△ABC 的周长最大时,求它的面积.解:(1)由正弦定理得b 2-a 2-c 2=ac ,∴cos B =a 2+c 2-b 22ac =-12,∵B ∈(0,π),∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac +ac =(a +c )2-ac =9,∴ac =(a +c )2-9(当且仅当a =c 时取等号),∴a +c ≤23,∴当a =c =3时,△ABC 周长取得最大值,此时S △ABC =12ac sin B =32×32=334.6.(2022·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B 1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.解:(1)因为cos A 1+sin A =sin 2B 1+cos 2B=2sin B cos B 2cos 2B =sin Bcos B ,即sin B =cos A cos B -sin A sin B =cos (A +B )=-cos C =12,而0<B <π2,所以B =π6.(2)由(1)知,sin B =-cos C >0,所以π2<C <π,0<B <π2,而sin B =-cos C =sin所以C =π2+B ,即有A =π2-2B ,所以a 2+b 2c 2=sin 2A +sin 2Bsin 2C=cos 22B +1-cos 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 2B +2cos 2B -5≥28-5=42-5,当且仅当cos 2B =22时取等号,所以a 2+b 2c2的最小值为42-5.核心考点(三)解三角形的综合应用角度1与平面几何有关的解三角形问题【例1】(2020·全国Ⅰ卷)如图,在三棱锥P ­ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.解析:在△ABC 中,AB ⊥AC,AC =1,AB =3,所以BC =2.在△ABD 中,AB ⊥AD,AD =3,AB =3,所以BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE ·cos ∠CAE =1+3-2×1×3×32=1,所以CE =1.在△BCF 中,BC =2,FC =CE =1,BF =BD =6,由余弦定理得cos ∠FCB =FC 2+BC 2-FB 22FC ·BC =1+4-62×1×2=-14.答案:-14【例2】(2021·新高考全国Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .解:(1)证明:由题设,BD =a sinC sin ∠ABC,由正弦定理知c sin C =b sin ∠ABC ,即sin C sin ∠ABC =c b,∴BD =acb ,又b 2=ac ,∴BD =b ,得证.(2)由题意知,BD =b ,AD =2b3,DC =b 3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠CDB =b 2+b 29-a 22b ·b 3=10b 29-a 22b 23,∵∠ADB =π-∠CDB ,∴13b 29-c 24b 23=a 2-10b 292b 23,整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,由余弦定理知,cos ∠ABC =a 2+c 2-b 22ac=43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意;当a 2b 2=32时,cos ∠ABC =712.综上,cos ∠ABC =712.【解题方法】———————————————————————————————●(1)分析平面几何图形,寻找一个含有三个独立条件的三角形并求解,将解得的边、角再用于求解其他三角形.(2)如果两个三角形有共同的边或角,也可列方程求解.【对点练】1.(2022·山东临沂一模)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin (∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =82+52-2×8×5×12=49,所以AC =7.2.(2022·湖南株洲二模)如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值;(2)求BE 的长.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC .于是由题设知,7=CD 2+1+CD ,即CD 2+CD -6=0.解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC=CDsin α.于是,sin α=CD ·sin2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =coscos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB=2714=47.角度2正、余弦定理的实际应用【例3】如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15˚、北偏东45˚方向,再往正东方向行驶40n mile 至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60˚方向,则A ,B 两处岛屿间的距离为()A .206n mileB .406n mileC .20(1+3)n mileD .40n mile解析:选A .在△ACD 中,∠ADC =15˚+90˚=105˚,∠ACD =30˚,所以∠CAD =45˚,由正弦定理可得:CD sin ∠CAD =ADsin ∠ACD,解得AD =CD sin ∠ACDsin ∠CAD=40×1222=20 2.在Rt △DCB 中,∠BDC =45˚,所以BD =2CD =40 2.在△ABD 中,由余弦定理可得:AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =800+3200-2×202×402×12=2400,解得AB =20 6.【例4】如图,小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为(153-15)m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15˚和60˚,在楼顶A 处测得塔顶C 的仰角为30˚,则小明估算索菲亚教堂的高度为()A .20mB .30mC .203mD .303m解析:选D .由题意知:∠CAM =45˚,∠AMC =105˚,所以∠ACM =30˚.在Rt △ABM 中,AM =AB sin ∠AMB =ABsin 15˚,在△ACM 中,由正弦定理得AM sin 30˚=CMsin 45˚,所以CM =AM ·sin 45˚sin 30˚=AB ·sin 45˚sin 15˚·sin 30˚,在Rt △DCM 中,CD =CM ·sin 60˚=AB ·sin 45˚·sin 60˚sin 15˚·sin 30˚=(153-15)×22×326-24×12=30 3.【解题方法】———————————————————————————————●应用三角知识解决实际问题的模型【对点练】3.小明去海边钓鱼,将鱼竿AB摆成如图所示的样子.已知鱼竿=4.2m,海平面EC与地面AM相距0.9m,鱼竿甩出后,BC,CD均为钓鱼线,线长共5m,鱼竿尾端离岸边0.3m,即AM=0.3m,假设水下钓鱼线CD与海平面垂直,水面上的钓鱼线BC与海平面的夹角为45˚,鱼竿与地面的夹角为30˚,则鱼钩D到岸边的距离约为________.(结果保留两位小数,3≈1.732)解析:如图,过点B作BN⊥CE,垂足为N,过点A作AG⊥BN,垂足为G.∵AB=4.2m,鱼竿与地面的夹角为30˚,∴BG=2.1m,AG=2.13m.∵海平面EN与地面AM相距0.9m,∴BN=2.1+0.9=3m,∵水面上的钓鱼线BC45˚,∴CN=BN=3m,∴C到岸边的距离为3+2.13-0.3≈6.34m.又水下钓鱼线CD与海平面垂直,∴鱼钩D到岸边的距离约为6.34m.答案:6.34m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档