明德实验学校2008~2009学年九年级上期末数学试题
2008-2009学年度第一学期期末考试九年级数学试卷(B1)
2008-2009学年度第一学期期末考试九年级数学试卷(B)第一卷一、选择题(每小题4分,共40分)1、等腰三角形的一个内角为120°,则这个等腰三角形的底角等于( )A 、20°B 、30°C 、45°D 、60° 2、下列方程中,是一元二次方程的是( )A 、13+xB 、02=+y xC 、012=+xD 、32=+y x 3、一元二次方程x x 32=的根为( )A 、3=xB 、01=x ,32=xC 、3-=xD 、31-=x ,02=x 4、菱形具有而平行四边形不一定具有的性质是( )A 、对角相等B 、对边相等C 、邻边相等D 、对边平行 5、顺次连结等腰梯形各边中点所得的四边形是( )A 、平行四边形B 、菱形C 、矩形D 、正方形 6、下列光源发出的光线中,能形成平行投影的是( )A 、探照灯B 、太阳C 、路灯D 、手电筒7、下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )8、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(1,-2)B 、(-1,2)C 、(-2,1)D 、(-1,-2) 9、反比例函数xm y =的图象在第二、四象限内,那么m 的取值范围是( )A 、 0>mB 、 0=mC 、0<mD 、0≠m 10、甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( )A 、21 B 、 31 C 、41 D 、无法确定二、填空题(每题4分,共20分)11、方程0)3)(2(=-+x x 的解是 。
12、菱形的两条对角线长分别为6和8,则此菱形的面积为___________。
13、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 。
14、如果反比例函数xk y =的图象过点(2,-3),那么k = 。
15、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 。
2008-2009学年度九年级数学第一学期期末考试试卷(B2)
2008-2009学年度第一学期期末考试九年级数学试卷(B)题号 一 二 三 四 五 总分 得分第二卷一、选择题(每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题4分,共20分) 11、 12、 13、 14、 15、三、解答题(每小题8分,共40分) 16、解方程①062=-x x ②0982=-+x x17、画出图中三棱柱的三视图。
18、如图,在△ADF和△CBE中,点A、E、F、C在同一直线上,AD=CB,AD∥BC,AF=CE。
求证:∠B=∠D19、随机掷一枚均匀的硬币两次,两次都是正面朝上的概率是多少?(用树状图或列表法求)20、X大爷为了估计鱼塘中有多少条鱼,他先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记。
请问:鱼塘中大约有多少条鱼?四、解答题(每小题10分,共30分)21.已知, AB 和DE 是直立在地面上的两根立柱,AB=5m ,某一时刻AB 在阳光下的投影BC=3m 。
(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m , 请你计算DE 的长。
22、已知:反比例函数xky =的图像经过点A (4,3-). (1)试求反比例函数的解析式;(2)试判断点B (3 ,4)是否也在该函数的图像上?说明你的理由。
23、如图,AD 是△ABC 的角平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F求证:四边形AEDF 是菱形。
AEDCword5 / 5五、解答题(每小题10分,共20分)24、已知21y y y +=, 1y 与x 成反比例关系,2y 成x 正比例关系,并且当1=x 时1=y ,当2=x 时5=y 。
求y 与x 之间的函数表达式。
25、某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件。
2008-2009学年度九年级数学第一学期期末评价题
2008-2009学年度九年级数学第一学期期末评价题一.选择题(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
01.已知x=-1是方程x 2+mx+1=0的一个实数根,则m 的值是( )A 、0B 、1C 、2D 、-202.X 华同学的身高为,某一时刻他在阳光下的影长为2米,同时与他邻近的一棵树的影长为6米,则这棵树的高为( )A 、B 、C 、D 、 03.反比例函数y=xk(k>0)在第一象限内的图象如图,点M 是图象上点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( ) A 、 1 B 、 2 C 、 4 D 、2 04.下列四个命题中,假.命题的是.( ) A 、有三个角是直角的四边形是矩形; B 、对角线互相垂直平分且相等的四边形是正方形; C 、四条边都相等的四边形是菱形; D 、顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形.05.函数y=(2m -1)x 是正比例函数,且y 随自变量x 的增大而增大,则m 的取值X 围是( ) A 、m>21 B 、m<21 C 、m ≥21 D 、m ≤2106.右边几何体的俯视图是( )DC BA07.下列关于反比例函数的叙述,不正确...的是( ) A 、反比例函数y=x k的图象绕原点旋转180°后,能与原来的图象重合; B 、反比例函数y=xk的图象既不与x 轴相交,也不与y 轴相交;C 、经过反比例函数y=xk的图象上任意一点向x 轴,y 轴作垂线,垂线段与坐标轴围成的矩形面积总等于k ; D 、反比例函数y=xk,当k >0时,y 随x 的增大而减少。
08.如图, 梯形两底之差等于一腰的长,那么这个梯形较小内角 的度数是( )A 、90B 、60C 、45D 、30 09.如图,在同一坐标系中(水平方向是x 轴),函数kyx和3y kx 的图象大致是( )A B C 10.如图,大正方形中有2个小正方形,如果它们的面积分别是 S 1、S 2 ,那么S 1、S 2的大小关系是( ) A 、S 1> S 2B 、 S 1 = S 2C 、 S 1< S 2D 、 S 1、S 2 的大小关系不确定 二.填空题(本题有6个小题,每小题5分,共30分) 11.一次函数ykx b 的图象经过A (-3,0)和B (O ,2)两点,则kx b >0的解集是.12. 等腰三角形的底和腰的长是方程2680x x 的两个根,则这个三角形的周长为.13.已知双曲线kyx经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b .14.如下左图,已知正方形ABCD 的边长为m ,△BPC 是等边三角形,则△CDP 的面积为___(用含m 的代数式表示).15.如下右图,某同学从A 点出发前进10米,向右转18°,再前进10米,又向右转18°,这样下去,他第一次回到出发点A 时,一共走了___________米.(第15题图)16.已知:直角三角形的两边长分别是6和8,那么这个直角三角形的另一条边的长是___________。
2008—2009年初三数学第一学期质量测试试卷
08—09 第一学期质量测试初三数学试卷一.选择题(给出的四个选项只有一个是正确的,把你认为正确的答案代号填写在上面的表格中,每题3分,共计36分),一定是二次根式的是()A. B.C.D.2.下列计算正确的是()A=B=C4=; D3=-3.若m的值为()A.20511315...32688B C D4.)A B C、3D5.10b-=,那么2007()a b+的值为().A、-1B、1C、20073 D、200736. .等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为--()A.8B.10C.8或10D.不能确定7.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A.1 B.0 C.0或1 D.0或-1x2+6x–5=0的左边配成完全平方后所得方程为()A、(x+3)2=14B、(x–3)2=14C、(x+3)2=4D、(x–3)2=49.下面图形中,不是旋转图形的是()10.下列命题中的真命题的是()A.全等的两个图形是中心对称图形. B.关于中心对称的两个图形全等.C.中心对称图形都是轴对称图形.D.轴对称图形都是中心对称图形.11.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()。
A、(-2,2)B、(4,1)C、(3,1)D、(4,0)OBOBCEDABCD1,1)(3,2)(2,4)(0,3)O xy(第11题图) (第12题图) (第13题图)12.如图,AD 是⊙O 的直径,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,则BC 等于( ).A .3 B .3+3 C .5-123 D .5第二卷 (非选择题 共84分)二.填空题(每小题3分,共18分,只要求填写最后的结果)13.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.14.化简:(7-52)2007·(-7-52)2007=______________.15.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后 得到的正 方形EFCG ,EF 交AD 于点H ,那么DH 的长为______. 16已知方程230x x k -+=有两个相等的实数根,则k = 。
长沙市明德中学数学九年级上册期末试卷(带解析)
长沙市明德中学数学九年级上册期末试卷(带解析)一、选择题1.已知3sin 2α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .225.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°6.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 7.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .18.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 9.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .2310.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8911.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>12.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的 13.下列条件中,一定能判断两个等腰三角形相似的是( )A .都含有一个40°的内角B .都含有一个50°的内角C .都含有一个60°的内角D .都含有一个70°的内角14.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度15.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>二、填空题16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.19.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.20.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 21.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .22.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .23.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.24.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.25.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.26.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…27.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.28.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC∆另一边的交点为点P ,则DP =__________.29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.已知234x y z x z y+===,则_______ 三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示:(1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?33.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.34.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.35.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元; (2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度.37.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.38.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).39.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】 解:由3sin α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.4.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键7.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.9.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是31 93 =.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.10.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.13.C解析:C【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.14.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.15.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形A OB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出D E=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.18.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 19.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 20.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 21.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.22.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.23.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.24.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.25.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.26.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.27.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 28.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答. 【详解】 解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP ∥AC∴△DC解析:1,83,32【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB ∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】 本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.29.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
长沙市明德中学九年级上册期末精选试卷检测题
长沙市明德中学九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。
2008--2009学年度上学期期末九年级数学试卷
2008--2009学年度上学期期末九年级数学试卷班级_________姓名__________成绩_______一、选择题(每小题3分,共36分)1.下列图形中,是.中心对称图形的是( )A .B .C .D .2.下列计算正确的是( )A .6868+=+B .94)9()4(-⨯-=-⨯-C .1)23)(23(-=+-D .313319= 3.在左右两边同时加上4,用配方法可求得实数解的方程是( )A .x 2+4x = –5B .2x 2– 4x =5C .x 2– 4x = 5D .x 2+2x = –5 4.如图,A 、B 、C 是⊙O 上的三点,D为BC 中点,已知∠BOD =40°,则∠CAD 的度数为( )A .40°B .30°C .25°D .20°5.化简b a 3-,要使得的结果为–ab a -,则需附加条件( )A .a >bB .a <bC .a >0,b <0D .ab <0 6.如右表,对x 取两个不同的值,分别得到代数式x 2–2x –m 的对 应值,则下列方程中一定有一根为x =n 的为( )A .x 2–2x +1=0B .x 2–2x –1=0C .x 2–2x –2=0D .x 2–2x 7.如图,将半径为8的⊙O 沿AB 折叠,AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为( ) A .215B .415C .8D .108.如图,将Rt △ABC 绕直角顶点C 按顺时针方向旋转90°到△A B C ''的位置,AB 中点D 旋转到D ',已知AC=12cm ,BC =5cm ,则线段DD '长为( )B 'D 'DA .ODC BA∙ODC BAA .6.5cmB .26cmC .7cmD .2213cm 9.据资料显示,2005年我市软件产业总收入76.23亿元,比2004增长12.3%.由于产业发展专项资金的投放,预计今明两年全市软件产业总收入将保持每年15%的速度递增,则2007年全市软件产业总收入约为( ) A .276.23(115%)112.3%⨯++ 亿元 B .3%)151(%3.12123.76++亿元C .2%)151(23.76+亿元D .%)151(23.76+亿元 10.如图,Rt △ABC 中,∠BCA =90°,BC =24㎝,AB =30㎝,点P 从A 点出发以每秒1㎝的速度沿AC 向C 点运动,⊙P 的半径为8㎝.在点运动的过程中,⊙P 与△ABC 时间为( )A .1.5秒B .2秒C .2.5秒D .3秒11.据悉,近日一辆小汽车因故障停在黄浦路铁路道口上,此时一列货车正以20m/s 的速度向道口驶来,火车司机及时发现,紧急刹车后火车均匀减速并滑行了50m 停下,避免了事故的发生.那么刹车后火车滑行到32m 时用了( ) A .2秒 B .3秒 C .4秒 D .5秒12.如图,⊙O 的弦AB ⊥CD 于H ,D 、E 关于AB 对称,BE 延长线交⊙O 于F ,连接FC ,作OG ⊥AB 于G ,则下列结论:①FC =CE ;②AF =AD ;③OG =21CF ;④E 点关于BC 的对称点必在⊙O 上,正确的是( )A .①②③④B .①②③C .②③④D .①②④ 二、填空题(每小题3分,共12分)13.请写出一个一根为0,另有一个负根的一元二次方程14.如图,将一个长为a 的长方形纸条ABCD 沿M 1N 1折叠,使AB 落在A 1B 1处,且A 1D =1,得到M 1A 1=21-a ;再将纸条沿M 2N 2折叠,使M 1N 1落在A 2B 2处,且A 2A 1=1,得到 M 2A 2=432121-=--a a ……,如果这张纸条可进行6次这样的折叠,则M 6A 6=.H OGFE DCBA15.如图,在直角坐标系中,P 1(1,1)绕另一点M 旋转45–1),则M 点的坐标为16.如图,Rt △ABC 中,∠BCA =90°,AC =4㎝,将△ABC 按顺时针方向旋转100°到△BDE 的位置,并得到AE 、CD 中阴影部分的面积为 ㎝2.C DB 1A 1B 2A 2N 1M 1N 2M 2M 2N 2A 2B 2A 1B 1DCM 1N 1N 1A 1B 1DCA 1M 1AB DC B 1数学答题卡一、选择题(共3小题,共36分)13. ; 14. ; 15. ; 16. ; 三、解答与证明(共4小题,共26分) 17.(6分)解方程:0122=-+x x18.(7分)化简:0)25(452021515---+19.(7分) 如图,△ABO 与△CDO 关于O 点中心对称,线段AC 上两点F 、E 关于O 点中心对称,求证:FD=BE20.(6分)近日我市又有一批的士完成了天然气加装.使用天然气代替汽油,汽车有害尾气排量减少60%,燃料的使用费用也相对减少.王师傅的1.6升富康车于2006年元月加装了天然气,据他记录,在加装前后同期5个月燃料费用如下表:OF EDCBA①估计的士加装了天然气后,每月平均可节约“油耗”多少元?②如果每台的士改装天然气费用6750元,则改装后一年内的设备与燃料总投入比以往增加还是减少?增加或减少多少元?四、解答下列各题(共5小题,共46分)21.(6分)BAC=90°,∠BCA=30°,A(3,1)、B(3,3)、C1),分别旋转、平移△ABC,使点B都落在原点O,得到和△A2OC2.请在图中画出△A1OC1和△A2OC2xC2的坐标.22.(8分) 武汉市政府为改善投资和居民生活环境,决定对多处街心花园进行改造.现需A、B两种花砖60万块,全部由某砖厂完成此项任务,该厂现有原料甲240万kg,乙原料225万kg.已知生产1万块A砖,需用甲原料5万kg,乙原料2万kg,造价1.8万元;生产1万块B砖,需用甲原料3.5万kg,乙原料4.5万kg,造价2万元.①利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?(以万块为单位且取整数)②你设计的方案中,哪一种造价最低?最低造价是多少万元?23.(10分) 某房地产公司在阳春湖畔竞标得到一块建筑用地,预规划建成一个矩形临湖小区,南临湖滨大道,西接迎宾大道(如图),初步规划东西方向AB长3600m,南北方向BC长600m.后经测量发现,如果AB长减少30m,则BC长就可增加20m,为了合理利用土地,AB长又不能小于1800m.①设AB长为x m,小区的占地面积为S m2,请求出S与x的函数关系式,并写出x的取值范围;②当AB长为多少时,可建成一个占地面积为300万m2的小区?③能否找到一个方案,使小区的占地面积最大?如能,求出AB长;如不能,说明理由.24.(10分)如图,有一个含45°角的直角三角板EFG,其直角顶点为F,将锐角顶点G与正方形ABCD的顶点C重合,绕C旋转三角板.①当∠ECF的两边CF、CE分别交正方形两边AB、AD于P、Q 两点时,连接PQ,试探索BP、PQ、QD之间是否存在某种确定的数量关系?直接写出你的结论,不需证明.②当F点旋转到BC的垂直平分线MN上时,连接正方形的中心H 与E,探究线段EH与FM的数量关系,并加以证明.Q(G)FEDCBAPHNM(G)FEDCB A25.(12分)如图,直角坐标系中,直线AB :y = –3x +4交y 轴于A 点,且过第四象限内的B 点,与x 轴交于C 点,连接BO ,AO =BO . ① 求B 点坐标;② 作△AOB 的内角平分线AD ,EA 切△AODEO 交⊙O 1于F ,连接O 1F , 求证:∠AEO =∠O 1FO ;③ 过A 作直线m ∥x 轴,将一直角三角板MHN 中60°角的顶点H 与B 重合,另一直角边NH 与直线m 交于P ,斜边MH 交△APB 的外接圆于Q .在三角板绕B 点旋转的过程中,以A 、Q 、B 、P 为顶点的四边形:①面积不变;②周长不变,请选择一个正确的结论证明并求其值.初三年级数学试题参考答案及评分标准一、选择题:(3分×12=36分)二、填空题:(3分×4=12分) 13.x 2+x =0或其它正确答案; 14.6463-a ;15.(–2,0)或(2+2,0);16.940π三.解答与证明(26分)17.(6分) x 1= –1+2 x 2= –1–2 18.(7分) –5–119.(7分)证明:依题意:△ABO ≌△CDO ,FO=EO ---------2′∴BO=DO ---------3′…… △BOE ≌△DOF ---------6′∴ FD=BE ---------7′20.(6分)① 780元 ---------3′② 减少2610元 ---------6′四.解答下列各题(46分)21.(6分)画图正确 ---------2′C 1(0,4) ---------4′ C 2(23,–2) ---------6′22.(8分)解: ①设生产A 砖x 万块,得:⎩⎨⎧≤-+≤-+225)60(5.42240)60(5.35x x x x 18≤x ≤20 ---------2′三种方案:A :18万块,B :42万块A :19万块,B :41万块A :20万块,B :40万块 ---------5′②设造价为y 万元,则:y= –0.2x+120 ---------7′ 当x=20时,造价最低为116万元 ---------8′ 23.(10分) ① S= –x x 3000322+ (1800≤x ≤3600) ---------3′ ② –x x 3000322+=3000000 ---------4′x 1=1500 x 2=3000 ---------6′ ∵x ≥1800,∴x 1=1500(舍去) 取 x=3000 ---------7′ ③ S= –3375000)2250(322+-x ---------9′ AB=2250m 时,小区面积最大 ---------10′24.(10分)① BP+QD=PQ --------3′ ②作EP ⊥NM 于P ,证得:△EPF ≌△FMC --------5′PF=MC=MH --------7′ NH=FM --------9′ HE=2FM --------10′ 25.(12分)解:① B (23,–2) --------3′ ② 连接O 1A 和O 1O ,得∠OAB=30°∠ADO=45° --------4′ ∠AO 1O=90°=∠O 1AEAE ∥O 1O --------6′ ∠AEO=∠FOO 1=∠O 1FO --------7′ ③ 四边形面积不变,证得:△BPQ 为等边三角形 --------9′ 将△APB 绕B 点逆时针旋转60°,得等边△ABG --------10′ 求得:AB=43四边形面积=△ABG 面积=123 --------12′。
2008学年第一学期九年级数学期末试卷.doc
2008学年第一学期九年级数学期末试卷一、选择题:(每小题4分,共40分。
) 1、如果反比例函数xky =(k ≠0)的图象经过点(-2,1),那么k 的值为 ( ) A. 2 B. -2 C. -21 D. 212、已知二次函数的解析式为()221y x =-+,则该二次函数图象的顶点坐标是( ) A. (-2,1) B. (1,2) C. (2,-1) D. (2,1)3、在△ABC 中,若tan 1,sin A B ==) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形4、已知等边△ABC 、等边△A'B'C'的面积分别为4、9,则△ABC 、△A'B'C'的边长比为( ) A. 4:9 B. 16:81 C. 2:3 D. 3:25、抛物线y =-2x 2不具有的性质是( )A .开口向下 B. 对称轴是y 轴 C .当x >0时,y 随x 的增大而减小 D. 函数有最小值6、如果圆锥的高为3cm ,底面半径为4cm ,那么这个圆锥的侧面积是 ( )A .212cm B. 212cm π C. 202cm D. 220cm π7、如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8、钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( ) A.203cm π B. 103cm π C. 503cm π D. 253cm π9、在半径为5cm 的圆内有一条长为53cm 的弦,则此弦所对的圆周角等于( )A 、60°B 、120°C 、60°或120°D 、30°或150°10、小明、小亮、小梅、小花四人共同探讨代数式x 2-6x+10的值的情况.他们作了如下 分工:小明负责找其值为1时的x 的值,小亮负责找其值为0时的x 的值,小梅负责找最小值,小花负责找最大值,几分钟后,各自通报探究的结论,其中错误的...是( ) A .小明认为只有当x=3时,x 2-6x+10的值为1; 2C .小梅发现x 2-6x+10的值随x 的变化而变化,因此认为没有最小值;D .小花发现当x 取大于3的实数时,x 2-6x+10的值随x 的增大而增大,因此认为没有最大值。
2008-2009学年九年级上学期数学期末模拟试卷
2008-2009学年九年级上学期数学期末模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.在函数y= 中,自变量x 的取值范围是( ) A .x ≥-2且x ≠0 B .x ≤2且x ≠0 C .x ≠0 D .x ≤-22.一元二次方程x 2-2x-2=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.方程:x (x+1)=3(x+1)的解的情况是( )A .x=-1B .x=3C .x1=-1,x2=3D .以上答案都不对4.下列图形中,既是中心对称又是轴对称图形的是( )A .B .C .D .5.等边三角形外接圆的半径等于边长的( )倍.A .12B .2C .3D 6.⊙O1与⊙O2的半径分别为2和5,当O1O2=2.5时,两圆的位置关系是( )A .外切B .相交C .内切D .内含7.已知⊙O1,⊙O2外切,半径分别为1和3,则平面上半径为4且与⊙O1、⊙O2都相切的圆有( )A .2个B .3个C .4个D .5个8.圆锥的母线为2cm ,则圆锥的表面积为( )A .πcm 2B .2πcm 2C .3πcm 2D .4πcm 29.下列事件是随机事件的是( )A .购买一张彩票,中奖B .在一个标准大气压下,加热到100℃,水沸腾C .奥运会上,百米赛跑的成绩为5秒D .掷一枚普通骰子,朝上一面的点数是810.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( )A .15B .25C .23D .1311.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (0,2),N (0,8)两点,则点P 的坐标是( )A .(5,3)B .(3,5)C .(5,4)D .(4,5)12.如图,MN 是⊙O 的直径,MN=2,点A 在⊙O 上,∠AMN=30°,B 为AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .BC .1D .2二、填空题(共6小题,每小题4分,满分24分)13.当m <3 =14.三角形一边长为10,另两边长是方程x2-14x+48=0的两实根,则这是一个三角形.15.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.16.边长为6,8,10的三角形,其内心和外心间的距离为17.用半径为12cm,圆心角为150°的扇形做成一个圆锥模型的侧面,则此圆锥的高为cm.(结果保留根号)18.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为三、解答题(共7小题,满分60分)19.计算:(1)(2) 220.解方程(1)2x2+1=3x;(2)3y2-6y+4=021.一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用了多少时间(精确到0.1s)?22.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图的方法求小颖获胜的概率;(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.23.如图,△ABC中A(-2,3),B(-3,1),C(-1,2).(1)将△ABC各点的横坐标增加4个单位长度,纵坐标保持不变,得△A1B1C1,画出△A1B1C1;(2)将△ABC各点的横坐标保持不变,纵坐标分别乘以-1,得△A2B2C2,画出△A2B2C2;(3)将△A2B2C2各点的纵坐标保持不变,横坐标分别乘以-1,得△A3B3C3,画出△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△与△成轴对称,对称轴是;△与△成中心对称,对称中心的坐标是.24.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.25.如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.(1)求⊙M的直径;(2)求直线ON的解析式;(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在请在图2中标出T点所在位置,并画出△OTN(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标);若不存在,请说明理由.。
深圳明德外语实验学校九年级上册期末精选试卷检测题
深圳明德外语实验学校九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,,由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB,CQ的长.3.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:A型销售数量(台)B型销售数量(台)总利润(元)510 2 000105 2 500(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.4.如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S△POA=S△AOB时,求P点所经过的弧长(不考虑点P与点B重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AO B 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 3P 到直线OA 3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.5.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)2cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2. 考点:一元二次方程的应用.二、初三数学 二次函数易错题压轴题(难)6.已知,抛物线y =-12x 2+bx+c 交y 轴于点C (0,2),经过点Q (2,2).直线y =x+4分别交x 轴、y 轴于点B 、A .(1)直接填写抛物线的解析式________;(2)如图1,点P 为抛物线上一动点(不与点C 重合),PO 交抛物线于M ,PC 交AB 于N ,连MN. 求证:MN∥y 轴;(3)如图,2,过点A 的直线交抛物线于D 、E ,QD 、QE 分别交y 轴于G 、H.求证:CG •CH 为定值.【答案】(1)2122y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】(1)把点C 、D 代入y =-12x 2+bx+c 求解即可; (2)分别设PM 、PC 的解析式,由于PM 、PC 与抛物线的交点分别为:M 、N.,分别求出M 、N 的代数式即可求解;(3)先设G 、H 的坐标,列出QG 、GH 的解析式,得出与抛物线的交点D 、E 的横坐标,再列出直线AE 的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证. 【详解】 详解:(1)∵y =-12x 2+bx+c 过点C (0,2),点Q (2,2),∴2122222b c c ⎧-⨯++⎪⎨⎪=⎩=, 解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =-由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124bx x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -.由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+得22k m =+22mk -∴=∴直线QG 的解析式为22my x m -=+ 同理可求直线QH 的解析式为22ny x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4,由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124bx x a∴⋅=-= 即x D x E =4,即(m-2)•(n-2)=4 ∴CG•CH=(2-m )•(2-n )=4.7.如图,抛物线y=﹣x 2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2). (1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣a+2),F (a ,﹣a 2+a+2),∴EF=﹣a 2+a+2﹣(﹣a+2)=﹣a 2+2a (0≤x≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD •OC+EF•CM+EF•BN , =+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=,∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值8.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a ≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<.【点睛】本题考查了抛物线与x轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.9.如图1所示,抛物线223y x bx c=++与x轴交于A、B两点,与y轴交于点C,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P的横坐标为m.(1)求抛物线的解析式;(2)求使△APC的面积为整数的P点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x=-+;(2)9个;(3)33,22或44,;(4)33【解析】【分析】(1)抛物线与y轴交于点C,顶点的横坐标为72,则472223cb,即可求解;(2)APC∆的面积PHA PHCS S S,即可求解;(3)当四边形OPAQ是正方形时,点P只能在x轴的下方,此时OAP为等腰直角三角形,设点(,)P x y,则0x y+=,即可求解;(4)求出直线AP的表达式为:2(1)(6)3y m x,则直线OQ的表达式为:2(1)3y m x②,联立①②求出Q的坐标,又四边形OPAQ是平行四边形,则AO的中点即为PQ的中点,即可求解.【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433k t kmtm m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.10.如图,在平面直角坐标系中,矩形AOBC 的边AO 在x 轴的负半轴上,边OB 在y 轴的负半轴上.且AO =12,OB =9.抛物线y =﹣x 2+bx+c 经过点A 和点B . (1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M ,连接AM ,BM ,AB ,当△ABM 面积最大时,求点M的坐标;(3)点D是线段AO上的动点,点E是线段BO上的动点,点F是射线AC上的动点,连接EF,DF,DE,BD,且EF是线段BD的垂直平分线.当CF=1时.①直接写出点D的坐标;②若△DEF的面积为30,当抛物线y=﹣x2+bx+c经过平移同时过点D和点E时,请直接写出此时的抛物线的表达式.【答案】(1)y=﹣x2﹣514x﹣9;(2)M(﹣6,31.5);(3)①(﹣50)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).∵EF垂直平分线段BD,∴FD=FB,∵F(﹣12,﹣10),B(0,﹣9),∴102+(m+12)2=122+12,∴m=﹣12﹣55∴D(﹣50).当点F在线段AC上时,同法可得D(﹣3,0),综上所述,满足条件的点D的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF的面积为30,∴D(﹣3,0),E(0,﹣4),把D,E代入y=﹣x2+b′x+c′,可得'493''0cb c=-⎧⎨--+=⎩,解得:13'3'4bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣133x﹣4.故答案为:y=﹣x2﹣133x﹣4.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.三、初三数学旋转易错题压轴题(难)11.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAF AE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=22,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC=22AB AC+=4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EAD AF AE=⎧⎪∠=∠⎨⎪=⎩,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=53,即DE=53.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.12.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.13.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)61;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.14.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.15.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答; (2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,。
2008—2009第一学期(期末考试)
)
( A )正四边形 (B )正六边形 ( C)正十二边形 ( D)正三角形
14、柜中有 5 双鞋,任取一只,是右脚穿的鞋的概率是(
)
校 学
(A) 1 (B) 1 (C) 1 (D) 1
10
5
3
2
15、若圆锥的母线长为 4cm,底面半径为 3cm,则圆锥的侧面展开图的面积为(
)
( A ) 6 cm2
2008— 2009 学年度第一学期期末水平测试试卷
__________________________
九年级 数学科
(本卷必须在 90 分钟内完成,满分为 70 分)
一、填空题(每小题 2 分,共 20 分)
线 1、化简:
2
5 _______
名
2、方程 x 2 4 x 的解是
姓
3、当 x
时,式子 2 x 在实数范围内有意义。
4、如图 1, AB 是⊙ O 的直径, CD 是⊙ O 的弦,连结 AC 、AD , 若∠ CAB=35 0,则∠ ADC 的度数是
5、化简:
23
9x y
_________
6、若点 P( 2 ,a), Q(b, 3)关于原点对称,则 a=
, b=
订
2
号
7、已知 2 是一元二次方程 x 2x c 0 的一个根,则此方程的另一个根是
成中心对称。 cm。
11、⊙ O 的半径是 6,圆心 O 到直线 a 的距离是 5,则直线 a 与⊙ O 的位置关系是(
)
级
( A )相离 ( B )相切 ( C)相交 (D )内含
班
பைடு நூலகம்12、下列根式中属最简二次根式的是(
)
深圳明德外语实验学校九年级上册期末数学试题(含答案)
深圳明德外语实验学校九年级上册期末数学试题(含答案)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变B.团队日工资的方差不变C.团队日工资的中位数不变D.团队日工资的极差不变3.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个4.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.95.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A .30°B .35°C .40°D .50° 6.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x -- C .221x y -= D .20x y += 7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( )A .1月,2月B .1月,2月,3月C .3月,12月D .1月,2月,3月,12月8.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( )A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 29.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣212.如图,点P (x ,y )(x >0)是反比例函数y=k x(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变13.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③15.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50°B.80°C.100°D.110°二、填空题16.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.17.正方形ABCD的边长为4,圆C半径为1,E为圆C上一点,连接DE,将DE绕D顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.19.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.20.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.21.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.23.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m .24.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.25.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.26.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.27.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .28.数据1、2、3、2、4的众数是______. 29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.30.已知234x y z x z y+===,则_______ 三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”;运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.(1)解方程:27100x x -+=(2)计算:cos60tan 452cos 45︒⨯︒-︒33.华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元.(1)求y 与x 的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?34.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).35.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD .①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点(1)求b 的值; (2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4.(1)请直接写出a 的值____________;(2)若抛物线当0x =和4x =时的函数值相等,①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F ,(1)如图①,当点F 与点B 重合时,DE DC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DE DC 的值; (3)如图③,若DE CF =,求DE DC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.B解析:B【解析】【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;故A正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误; 调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.3.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长.【详解】连接OA ,∵PA 为⊙O 的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A .【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.5.C解析:C【解析】【分析】 根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°,∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 6.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.7.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D8.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x =a 或x =b ,当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.9.D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO , ∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.19.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.20.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 21.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.22.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.23.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.24.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两解析:3.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD 3 ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为: 33=3+π.故答案为3.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式. 25.16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.26.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.27.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.28.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.29.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =,∴2423x z k ky k++==;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z.三、解答题31.(1)详见解析;(2)详见解析;(3)4【解析】【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D点的位置.(2)通过导出对应角相等证出ABD∆∽DBC∆,根据四边形ABCD的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出FEH∆∽FHG∆,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:80ABC BD,︒∠=平分ABC∠,40,140ABD DBCA ADB︒︒∴∠=∠=∴∠+∠=140,140ADCBDC ADBA BDC,︒︒∠=∴∠+∠∠=∠∴=ABD∴∆∽DBC∆∴BD是四边形ABCD的“相似对角线”.(3)FH是四边形EFGH的“相似对角线”,三角形EFH与三角形HFG相似.又EFH HFG∠=∠FEH∴∆∽FHG∆FE FHFH FG∴=2FH FE FG ∴=⋅过点H 作EQ FG ⊥垂足为Q则sin 60EQ FE ︒=⨯=14321322FG EQ FG FE ∴=∴=16FG FE ∴=28FH FE FG ∴=⋅=216FH FG FE ∴==4FH =【点睛】本题考查相似三角形的判定与性质的综合应用及解直角三角形,对于这种新定义阅读材料题目读,懂题意是解答此题的关键.32.(1)∴x 1=2,x 2=5;(2)12-【解析】【分析】(1)用因式分解法解一元二次方程;(2)先将特殊角三角形函数值代入,然后进行实数的混合运算.【详解】解:(1)27100x x -+= (2)(5)0x x --=∴x 1=2,x 2=5(2)cos60tan 4545︒⨯︒-︒112=⨯ 12=-. 【点睛】本题考查解一元二次方程,特殊角三角函数值的混合运算,掌握运算法则正确计算是解题关键.33.(1)y=﹣5x 2+110x +1200;(2) 售价定为189元,利润最大1805元【解析】【分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.34.(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);。
明德实验学校九年级第一学期期末数学试卷【苏教版】
明德实验学校2008~2021学年第一学期九年级期末数 学 试 题温馨提示:亲爱的同学,本次测试试题总分为120分,考试时间为100分钟,请仔细审题,细心答题,相信你一定会有出色的表现!祝你考出好成绩。
一、精心选一选(3x12=36)1、如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于(▲ )A .12cmB .10cmC . 8cmD . 6cm2、要使二次根式有意义,字母x 必须满足的条件是( ▲ )A 、x ≥1B 、x >-1C 、x ≥-1D 、x >13、若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 (▲ ).A .1B .2C .1或2D .0 4、对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;甲x =乙x ,S 2甲=0.025, S 2乙=0.026,下列说法正确的是 (▲ )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定5、在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是▲A .矩形 B.菱形 C.正方形 D.梯形6、如图,在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠( ▲ )A.55B.35C.25D.307、下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③ 相等的圆心角所对的弧相等.其中真命题的是(▲ )A.①②B. ②③C. ①③D. ①②③ 8、已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( ▲ )A.内切B.相交C.外离D.外切 9、两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( ▲ )A EB C第6题图 DECBAA.2B.7C.2或7D.2或4.5 10、如图2,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为( ▲ )A 、45㎝B 、25㎝C 、213㎝D 、13㎝11、对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,12、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是 ( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 二、耐心填一填(3x8=24)13、等腰ABC △两边的长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是 ▲ .14、数据11,8,10,9,12的极差是__ ▲ ____,方差是_ ▲ _______。
2008学年度上学期期末测试九年级数学试题答案与评分参考(2009-01-08)[1]
— 1 —2008学年第一学期九年级 数学科期末测试题(答案)第一部分 选择题(共20分)一、 选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有1. 实数16的算术平方根是(※). (A(B )(C )4(D2. 的结果是(※). (A )4b(B )(C )2b(D )3. 两个相似三角形的面积比为1:2,则它们周长的比为(※).(A )1:4(B )1(C (D )44. 将方程2650x x +-=的左边配成完全平方式后所得的方程为(※).(A )2(3)14x += (B )2(3)14x -= (C )2(3)4x += (D )2(3)4x -=5. 下列判断中正确的是(※).(A )两个矩形一定相似 (B )两个平行四边形一定相似 (C )两个等腰三角形一定相似 (D )两个正方形一定相似— 2 —6. 如图1,在Rt ABC △中,将ABC △进行折叠,使顶点A 、B 重合,折痕为DE ,则下列结论中不正确...的是(※). (A )ABC ∆∽ ADE ∆ (B )ABC ∆∽BDC ∆ (C )222AD CD CB =+ (D )tan DEA AE=7. 已知12,x <<1x -=(※).(A )23x - (B )1 (C )1- (D )32x -8. 如图2,把边长为1m 的正方形木板锯掉四个角做成正八边形的桌面,设正八边形的桌面的边长为x m ,则可列出关于x 的方程为(※).(A )()2212x x -= (B )()221x x -=(C )()2214x x -= (D )()()222111124x x x -+-= 9. 如图3,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为,那么大“鱼”上对应“顶点”的坐标为(※).(A ) ()b a 2,-- (B ) ()b a --,2 (C )()a b 2,2-- (D ) ()b a 2,2-- 10.如图4,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,测得仰角为45︒,则 该高楼的高度为(※)米.(A ))151 (B ))301(C ))301 (D )(603图2C30图4C ABE D图1图3— 3 —第二部分 非选择题(共80分)二、填空题(共6小题,每小题2分,共12分,直接把最简答案填写在题中的横线上)11. 设1x 、2x 是 一元二次方程2320x x +=的两根,则12______x x ⋅=. 〖答案〗 0 12.计算:)11= .〖答案〗 1 13. 已知32a b =,则a bb += . 〖答案〗5214. 在一副洗好的52张扑克牌(没有大小王)中,随机地抽出一张牌,抽出的扑克牌是梅花的概率是 . 〖答案〗1415. 小颖用几何画板软件探索方程02=++c bx ax 的实数根,作出了如图5所示的图象,观察得一个近似根为1 4.5x =-,则方程的另一个近似根为 (精确到0.1).〖答案〗2 2.5x =16. 如图6,在ABC △中,P 是AC 上一点,连结BP ,要使ABP ACB △∽△,则还须添加一个条件 (只须写出一个即可,不必考虑所有可能).〖答案〗ABP C ∠=∠或ABC APB ∠=∠或2AB AP AC =⋅等图6APCB图5— 4 —三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,共两小题,每小题3分)化简或计算:(1(2). 解:(1)原式=4 …………………………… 3' (2)原式= ……… 2'= ……………………… 3' 18.(本小题满分6分,共两小题,每小题3分) 用适当的方法解方程:(1)2343x x x -=; (2)4(1)1t t -=. 解:(1)移项得2370x x -= ……………… 1' 即(37)0x x -= ………………… 2'0x ∴=或370x -=即10x =,273x = ………………… 3'(2)原方程变形为24410t t -+= …… 1'即 2(21)0t -= …………………… 2'1212t t ∴==1' ……………………… 3' 19.(本小题满分7分)如图7,在ABC △中,90C =∠,在AB 边上取一点D ,使BD BC =,过D 作DE AB ⊥交AC 于E .(1)AED ∆与ABC ∆是否相似?为什么? (2)若86AC BC ==,,求:AE EC 的值. 解: (1)AED ∆∽ABC ∆.…………………… 1' 证明:DE AB ⊥,90ADE ∴∠=,ADE ACB ∴∠=∠. …………………… 2'又A A ∠=∠, AED ∴∆∽ABC ∆ .…………………………………………… 3'(2)在ABC Rt △中,10AB ==,1064AD ∴=-= …… 4'在ABC Rt △和ADE Rt △中, 有AD ACCOSA AE AB==, 得10458AB AE AD AC =⨯=⨯= ……………………………………………………… 6' 853EC AC AE ∴=-=-=, 故:5:3AE EC = ……………………………… 7'图7EDC BA— 5 —20.(本小题满分8分)汉字是世界上最古老的文字之一,字形结构体现了汉民族追求均衡对称、简明和谐的理念.如图8,三个汉字可以看成是轴对称图形. 小敏和小慧利用“土”、“口”、“木”三个汉字 设计一个游戏,规则如下:将这三个汉字分别 写在背面相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”、“土”构成“圭”)小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并写出构成的汉字和进行说明.解: 这个游戏对小慧有利.…………………………………………………………2' 每次游戏时,所有可能出现的结果如下: (列表)(树状图)\(〖说明〗列表或树状图只要列出其中一种即可)……… 5'总共有9种结果,每种结果出现的可能性均相同,其中能组成上下结构的汉字的结果共有4种:(土,土)“圭”、(口,口)“吕”、(木,口)“杏”或“呆”、(口,木)“呆”或“杏”.………………………………………………………………………………… 6'P ∴(小敏获胜)49=,P (小慧获胜)59=. ……………………………………… 8' ∴游戏对小慧有利. …………………………………………………………………… 9''(〖说明〗若组成汉字有误,而不影响数学知识的考查且结论正确,只扣1分)土 口 木图8土口木开始土(土,土)口(土,口) 木(土,木) 土(口,土)口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)— 6 —21.(本小题满分8分)(1)写出抛物线221y x x =--的开口方向、对称轴和与x 轴的交点坐标; (2)将此抛物线向下平移2个单位,再向右平移2个单位,求所得抛物线的解析式. 解: (1)抛物线221y x x =--的开口向上、对称轴为1x =. ……………………… 2'令0y =,则2210x x --=,由求根公式得:1211x x ==∴二次函数与x轴的交点坐标为(10),(10). ……………………… 4''(2)221y x x =--2212x x =-+-2(1)2x =--.……………………………… 6'∴原抛物线的顶点坐标是(12)-,,其向下平移2个单位,再向右平移2个单位后所得抛物线的顶点坐标是(34)-,,……………………………………………………………… 7' 所以平移后抛物线的解析式为22(3)465y x x x =--=-+.……………………… 8' (〖说明〗未化成一般式不扣分)22.(本小题满分8分)如图9,在某中学教学楼A 西南方向510米的C 处,有一辆货车以60/km h 的速度沿北偏东60方向的道路CF 行驶.(1)若货车以60/km h 的速度行驶时其噪声污染半径为100米,试问教学楼是否受到货车噪声的影响? (2)假设货车以60/km h 的以上速度行驶时,其行驶速度每增加10/km h 时其噪声污染半径约增大15米,要使教学楼不受货车的噪声影响,在此路段应该限速多少?(精确到10/km h ) 解:(1)A 教学楼不受货车的噪声影响.…………………………………………… 1' 作AH CF ⊥于H ,则15ACH ∠=.……………………………………………… 3'在Rt ACH ∆中,510AC =,sin155100.26132AH AC =⨯=⨯=∴(米).132100>∵,A ∴教学楼不受大货车的噪声影响. ……………………………… 5'(2)设在此路段应该限速/x km h ,由题意有:15(60)13210010x -⨯<-, 解得:81x <,因此在此路段应该限速80/km h . ………………………………… 8'(〖说明〗只要能用数学知识说明在此路段应该限速80/km h 即可给满分)图9 FAC北北— 7 —23. (本小题满分8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,商场每天可获利润y 元.①若商场经营该商品一天要获利润2210元,则每件商品应降价多少元? ②求y 与x 之间的函数关系式,并根据关系式求出该商品如何定价可使商场所获利润最多?最多为多少?解:(1)若经营该商品不降价,则该商场一天可获利润为100×(100-80)=2000(元) ……………………………………………… 2' (2)依题意得y 与x 之间的函数关系式为:2(10080)(10010)101002000y x x x x =--+=-++ …………………… 5'① 令2210y =得:21010020002210x x -++=, 化简得210210x x -+=,解得3x =或7x =.即商店经营该商品一天要获利润2210元,则每件商品应降价3元或7元. …… 6'②2210100200010(5)2250y x x x =-++=--+.∴当5x =时,y 取最大值2250(元) …………………………………………… 7' 即该商品定价95元时可使商场所获利润,最多为2250元.……………………… 8'— 8 —24.(本小题满分8分)已知ABCD 四个顶点到动直线l 的距离分别为a 、b 、c 、d .(1)如图10-①,当直线l 在ABCD 外时,证明:a c b d +=+;(2)如图10-②,当直线l 移动至与ABCD 相交(l 与边不平行)时,上述关系还成立吗?若成立,试给予证明,若不成立,试找出a 、b 、c 、d 之间的关系, 并给予证明.解:(1)如图10-①,连结AC 、BD 相交于O ,ABCD 是平行四边形, ∴O 为AC 、BD的中点,过O 作OP l ⊥于P ,则PO 为直角梯 形11AAC C 的中位线,2a c OP ∴+=.………………………………2'同理: 2b d OP +=a cb d ∴+=+. ………………………………4'(2)如图10-②,当直线l 移动至与ABCD 相交(l 与边不平行)时,上述关系不成立.以下分几种情况说明:…………………………………………………………… 5'① 当ABCD 四个顶点中,一个顶点在直线l 的一侧(不仿设是D ),而另外三个顶点在直线l 的另一侧时,则有b a c d =++.证明: 同(1),2a c O P +=.又连接1,DB 过O 作OP l ⊥于P ,延长交1DB 于Q ,则OQ为1DBB ∆的中位线,故1,22B B b OQ ==同理,2d PQ =,22b dOP OQ PQ ∴=-=-,即2b d OP -=,a c b d ∴+=-即b a c d =++.…………………………………… 6'② 当ABCD 四个顶点中,有两个顶点在直线l 的一侧(不仿设是A 、D ),而另外两个顶点在直线l 的另一侧时,则有a b c d +=+.…………………………………7'' 证明: 同①,2b d OP -=.又连接1,AC 延长OP 交1AC 于R ,则PR 为11AAC ∆的中位线,故1,22A A a PR ==同理,2c OR =,22c aOP OR PR ∴=-=-,即2c a OP -=, b d c a ∴-=-即a b c d +=+.……………………………………………………… 8'③当直线l 只过某一个顶点(不仿设是直线l 过点A ,点D 在直线l 一侧,点B 、C 在直线l 的另一侧)时,则2b d c =+.④当直线l 与对角线(不仿设是A 、C )重合时,则b d =.………………… 9'图10-①dc bal D 1C 1B 1A 1DCB A— 9 —25.(本小题满分9分)如图11,已知一抛物线过坐标原点O 和点(1,)A h 、(4,0)B ,C 为抛物线对称轴上一点,且OA AB ⊥,45COB ∠=. (1)求h 的值;(2)求此抛物线的解析式;(3)若P 为线段OB 上一个动点(与端点不重合),过点P 作PM AB ⊥于M ,PN OC ⊥于N试求PM PNOA BC+的值. 解:(1)OA AB ⊥,(1,)A h ,在Rt O A B ∆中,由勾股定理得:22222(1)(3)4h h +++=,即:23,0,h h h =<∴=-.…………………………………………………………… 2'(2)抛物线与x 轴的交点为坐标原点O 和(4,0)B ,故可设此抛物线的解析式为(4)y ax x =-,………………………………………………………………………… 3'又抛物线过点(1,A ,1(14)a =⨯⨯-,3a ∴=故此抛物线的解析式为2(4)y x x x =-=-.………………………… 5' ()3抛物线对称轴垂直平分OB ,而C 其上一点,CO CB ∴=.45COB CBO ∴∠=∠=,故18090OCB COB CBO ∠=-∠-∠=.…………… 6' PN OC ⊥,90,ONP ONP OCB ∴∠=∴∠=∠.又PON BOC ∠=∠,PON ∴∆∽BOC ∆,PN OPBC OB∴=. ………………………… 7' 同理可证PM PBOA OB=, …………………………………………………………………… 8' ∴1PM PN PB OP OP PB OBOA BC OB OB OB OB++=+===. ………………………………………………9' 图11。
2008—2009学年度九年级数学科第一学期期末复习试卷 C.Q.H.
2008—2009学年度第一学期期末复习数学科试卷 C.Q.H.题号 一二三四五总分分数一、选择题:(每小题4分,共32分) 1.下列计算正确的是( )A.234265+=B.325=-C.2733÷=D.2(3)3-=- 2.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 3.关于x 的方程x ²+mx -1=0的两根互为相反数,则m 的值为( )A. 0B. 2C. 1D. -24.三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )A. 24B. 24或16C. 16D. 22 5.下列事件中,必然事件是( )A.抛掷1个均匀的骰子,出现6点向上;B.两直线被第三条直线所截,同位角相等;C.2009年元旦一定不下雨;D.实数的绝对值是非负数.6.如图,正方形图案绕中心O 旋转180°后,得到的图案是( )7.如图,正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转 90°后,B 点到达的位置坐标为( )A 、(-2,2)B 、(4,1)C 、(3,1)D 、(4,0)8.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是线段AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在线段BC 上,则AP 的长是( )A.4B.5二、填空题:(每小题4分,共20分)9. 一个高为4cm ,母线长为5cm 的圆锥的全面积为 cm 2.10.图①、②是两种方法把6根圆形钢管用钢丝捆扎的截面图。
设图①、图②两种方法捆扎所需钢丝绳的长度是a 、b(不记接头部分),则a 、b 的大小关系为:a_______b(填“<”、“=”或“>”)。
明德九年级期末数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. 3.14D. -5/22. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a - 1 > b - 1D. a + 1 < b + 13. 已知函数f(x) = 2x - 3,如果f(x) > 0,那么x的取值范围是()A. x > 3/2B. x < 3/2C. x ≥ 3/2D. x ≤ 3/24. 在直角坐标系中,点A(2,3),点B(-1,4),那么线段AB的中点坐标是()A. (1,3.5)B. (3,2)C. (0,3.5)D. (1,4)5. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²6. 下列各数中,无理数是()A. √4B. √9C. √16D. √257. 已知等腰三角形ABC中,AB = AC,且底边BC的长度为6cm,那么腰AB的长度是()A. 3cmB. 6cmC. 9cmD. 12cm8. 下列各式中,等式成立的是()A. (x + y)² = x² + y²B. (x - y)² = x² - y²C. (x + y)² = x² + 2xy + y²D. (x - y)² = x² - 2xy + y²9. 如果一个正方形的周长是16cm,那么它的面积是()A. 16cm²B. 32cm²C. 64cm²D. 128cm²10. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 1, 4, 9, 16, 25C. 1, 3, 6, 10, 15D. 1, 4, 7, 10, 13二、填空题(每题5分,共50分)11. 已知x² - 5x + 6 = 0,那么x的值是______。
2008-2009学年度九年级数学第一学期期末调研测试 新人教版
2008-2009学年度九年级第一学期期末调研测试数学试题(考试时间:120分钟,总分:150分)一、选择题:本大题共10小题;每小题3分,共30分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后的括号内.1.X围内有意义,则x的取值X围是()A.x>2 B.x≥2 C.x<2且x≠1 D.x≤2且x≠12.下列根式中属于最简二次根式的是()ABCD3.方程2x2=32的根为()A.x=16 B.x=±16 C.x=4 D.x=±44.下列方程中,没有实数根的是( )A.x2-x-1=0 B.x2-2x+1=0C.x2+2x-3=0 D.x2-3x+4=05.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个6.如图,△ABC中,∠BAC=90°,P是△ABC内一点,将△ABP绕点A逆时针旋转一定角度后能与△ACQ 重合,如果AP=3,那么△APQ的面积是()A.18B.9CD.37.如图,在⊙O中,∠AOB=100°,C是AB上一点,则∠ACB= ()A.150°B.130°C.120°D.80°8.已知⊙O的直径为10cm,⊙O的一条弦AB的长为6cm,以O为圆心作一个小圆和AB相切,则小圆的半径是()A.3cm B.4cm C.5cm D.6cm9.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有()A.1个B.2个C.3个D.4个10.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.12个B.15个C.18个D.10个·OACB(第7题)(第6题)ABPQ1 / 62 / 6二、填空题:本大题共8小题;每小题4分,共32分.不需写出解答过程,请把最后结果填在题中横线上. 11.计算.12.某超市一月份的营业额为200万元,三月份的营业额为300万元,如果设平均每月的增长率为x ,那么根据题意,所列方程是.13.已知a ,b 是方程2x 2-6x +4=0的两根,则11a b+=. 14.已知点A (-3m +3,2m -1)关于原点的对称点在第二象限,则m 的取值X 围是. 15.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,则此弧所对的圆心角为°.160)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是. 17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.18.如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.三、解答题:本大题共9小题;共88分.解答时应写出文字说明、证明过程或演算步骤.19.(本题12分)(1)计算(2)(-÷+.20.(本题12分)解下列方程:(1)x 2+10x +21=0; (2)4111x x +=-.21.(本题6分)某村计划建造如图所示的矩形鲜花温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,鲜花种植区域的面积是392m 2?(第21题)(第18题)3 / 622.(本题10分)(1)如图(a ),在方格纸中如何通过平移或旋转这两种变换,由图形甲得到图形乙,再由图形乙得到图形丙(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);(2)如图(a ),如果点P ,P 3的坐标分别为(0,0)、(2,1),写出点P 2的坐标;(3)如图(b )是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧! 注:方格纸中的小正方形的边长为1个单位长度.23.(本题8分)如图,△ABC 内接于⊙O 中,弦AB =BC =1.8cm ,圆周角∠ACB =30°. 求:(1)⊙O 的直径;(2)弦AC 的长.24.(本题10分)如图,AB 是⊙O 的直径,AD 是弦,∠DAB °,延长AB 到点C ,使得∠ACD =45°. (1)求证CD 是⊙O 的切线;(2)若ABBC 的长.AB·O(第23题)C(第22题)(a )(b ) (第24题)AB CDO4 / 625.(本题10分)如图,已知在⊙O 中,ABAC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°. (1)求图中扇形OBCD 的面积;(2)若用扇形OBCD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.26.(本题10分)在不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同. (1)如果从袋中任意摸出一个球,那么摸到标有奇数的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树形图或列表的方法分析游戏规则对双方是否公平?并说明理由.27.(本题10分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字3,4,5,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向标有数字5的扇形的概率;(2)请在6,7,8,9这4个数字中选出一个数字....填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字..和.分别为奇数..与为偶数的概率相等,并说明理由. (第25题)ABCDOF5 / 608-09学年度九年级(上册)调研试卷数学试题参考答案1.B 2.A 3.D 4.D 5.C 6.C 7.B 8.B 9.C 10.A 11.12.200(1+x )2=300 13.32 14.m <12 15.144 16.内切 17.0.3 18.3519.(1)原式9×13………………………………………………3分4分………………………………………………5分=-.………………………………………………6分(2)原式=1分1-+……………………………………………4分1……………………………………………5分 =0. ……………………………………………6分20.(1)(x +3)(x +7)=0, ……………………………………………4分x 1=-3,x 2=-7. ……………………………………………6分 (2)去分母,得:4(x -1)+x =x (x -1), ……………………………………………1分去括号,整理,得:x 2-6x +4=0,……………………………………………2分解这个方程,得:x 1=3x 2=3………………………………………4分经检验,x 1=3x 2=3……………………………5分 所以,原方程的解为x 1=3x 2=3……………………………6分 21.解:设矩形温室的宽为x m ,则长为2x m . ………………………………………1分根据题意,得(x -2)(2x -4)=392. ………………………………………3分解这个方程,得x 1=-12(不合题意,舍去),x 1=16. …………………………5分 所以x =16,2x =32.答:当矩形温室的长为32m ,宽为16m 时,鲜花种植区域的面积是392m 2.……6分 22.(1)由图形甲向上平移4个长度单位得到图形乙,(1分)再由图形乙绕P 1顺时针旋转90°后(1分)再向右平移4个单位得到图形丙(1分) (2)(4,4);(3分) (3)画图正确(4分)23.(1)连接OA ,OB , ………………………………………1分∵∠ACB =30°,∴∠AOB =60°. ………………………………………2分∵OA=OB ,∴△AOB 是等边三角形. ………………………………………3分 ∴OA=OB =AB =1.8cm .∴⊙O 的直径为3.6cm ; ………………………………………4分 (2)∵AB =AC ,∴AB AC =.∴OB ⊥AC ,AM=CM . …………………………5分在Rt △BCM 中,∠ACB =30°,BC =1.8cm , ∴BM=0.9cm . ∴CM. …………………………7分 ∴AC =2CM. …………………………8分24.(1)连接OD ,…………………………1分∵∠DAB °,∴∠DOC =2∠DAB =45°. ……3分∵∠ACD =45°,∴∠ODC =90°,即OD ⊥CD . ……4分AB ·O(第23题)CM(第24题)AB CD O6 / 6∴CD 是⊙O 的切线.…………………………5分 (2)由(1)可知△ODC 是等腰直角三角形, ∵ABAB 是⊙O 的直径,∴OD =OB.…………………………8分 ∴OCOD =2.∴BC =OC -OB =2. …………………………10分25.连结AD . …………………………………………1分∵AC ⊥BD ,AC 是直径,∴AC 垂直平分BD .…………………………………………2分∴AB =AD ,BF =FD ,BC CD =.…………………………………………3分 ∴∠BAD =2∠BAC =60°, ∴∠BOD =120°. ∵BF =21ABAF.……5分 ∴OB 2=BF 2+OF 2.即2+(6-OB )2=OB 2. ∴OB =4.∴S 扇形OBCD =21204360π⨯=16π3.…………………………………………7分(2)设圆锥的底面圆的半径为r ,则周长为2πr ,∴1202ππ4180r =⨯.∴r =43. …………………………………………10分 26.(1)从3个球中随机摸出一个,摸到标有数字是奇数的球的概率是23;(2分)(2)游戏规则对双方公平.(3分)树形图或列表正确.(2分)P (小明数字大)=39,P (小东数字大)=39.(2分) 27.(1)∵标有数字5的扇形的面积为整个圆盘面积的14,∴指针指向标有数字5的扇形的概率为14P =.(4分) (2)填入的数字为6或8时,两数和分别为奇数与为偶数的概率相等.理由如下: 设填入的数字为x ,则有下表:从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足3+x ,4+x ,5+x 三个数中有2个是奇数,一个是偶数.所以x 只能取6,7,8,9这4个数字中偶数,即x =6或8. ∴填入的数字为6或8.(6分)(第25题)ABCDOF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明德实验学校2008~2009学年第一学期九年级期末
数 学 试 题
温馨提示:亲爱的同学,本次测试试题总分为120分,考试时间为100分钟,请仔细审题,细心答题,相信你一定会有出色的表现!祝你考出好成绩。
一、精心选一选(3x12=36)
1、如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于
点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于(▲ )
A .12cm
B .10cm
C . 8cm
D . 6cm
2、要使二次根
式有意义,字母x 必须满足的条件是
( ▲ )
A 、x ≥1
B 、
x >-1 C 、x ≥-1 D 、x >1
3、若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等
于 (▲ ).
A .1
B .2
C .1或2
D .0
4、对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;甲x =乙x ,S 2甲=0.025, S 2
乙=0.026,下列说法正确的是 (▲ )
A.甲短跑成绩比乙好
B.乙短跑成绩比甲好
C.甲比乙短跑成绩稳定
D.乙比甲短跑成绩稳定
5、在同一平面内,用两个边长为a 的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是▲
A .矩形 B.菱形 C.正方形 D.梯形
6、如图,在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则B
C E =∠( ▲ )
A.
55
B.
35
C.
25
D.
30
7、下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③ 相等的圆心角所对的弧相等.其中真命题的是(▲ )
A.①②
B. ②③
C. ①③
D. ①②③
8、已知两圆的半径是方程01272
=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( ▲ )
A.内切
B.相交
C.外离
D.外切 9、两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( ▲ )
A E
B
C
D
第6题
图 D
E
C
B
A
A.2
B.7
C.2或7
D.2或4.5 10、如图2,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为( ▲ )
A 、
B 、
C 、
D
㎝
11、对于抛物线21
(5)33
y x =--+,下列说法正确的是( )
A .开口向下,顶点坐标(53),
B .开口向上,顶点坐标(53),
C .开口向下,顶点坐标(53)-,
D .开口向上,顶点坐标(53)-,
12、若A (1,413y -
),B (2,45y -),C (3,4
1
y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是 ( )
A .123y y y <<
B .213y y y <<
C .312y y y <<
D .132y y y << 二、耐心填一填(3x8=24)
13、等腰ABC △两边的长分别是一元二次方程2
560x x -+=的两个解,则这个等腰三角形的周长是 ▲ .
14、数据11,8,10,9,12的极差是__ ▲ ____,方差是_ ▲ _______。
15、直接写出答案:_____3
2
=
;
)
1
1=
16、过⊙O 内一点M 的最长弦为10cm ,最短弦为8cm ,则OM= ▲ cm.. 17、 如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 ▲ 点. 18、Rt △ABC 中,∠C =90°,AC=5,BC=12,则△ABC 的内切圆半径为 ▲ . 19、某校九(3)班在圣诞节前,为圣诞晚会制作一个圆锥形圣诞老人的纸
帽,已知圆锥的母线长为30cm ,底面直径为20cm ,则这个纸帽的表面积为 ▲ .
20、如图⊙O 是△ABC 内切圆,切点为D 、E 、F ,∠A=100°,∠C=30°,则∠DFE 度数是 ▲ .
C
A
F
D E
B
G
(第17题图)
九年级数学答题纸
一、精心选一选
耐心填一填
13.____ ___ 14.__ ___ 15.__ _ ___
16. 17.___ ____ 18.__ _____
19 20
三、三、细心解一解(5x6=30) 21、计算01)12(1
2122118--++÷--
22、01422
=+-x x (用配方法解方程)
23、如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(结果保留π)
24、已知:如图8,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC
于点E ,交BC 的延长线于点F .
求证:(1)AD =BD ; (2)DF 是⊙O 的切线.
25、如图10,P 是⊙O 外的一点,PA 、PB 分别与⊙O 相切于点A 、B ,C
是 上 的任意一点,过点C 的切线分别交PA 、PB 于点D 、E. (1)若PA=4,求△PED 的周长; (2)若∠P=40°,求∠DOE 的度数.
四、思维大比拼(26、27题有A 类、B 类两题,A 类题8分,B 类题10分, 你可以根据自己的学习情况,在两类题中只选做...1.题.,如果两类题都做,则以A 类题计分) 26、(A 类)已知关于x 的一元二次方程x 2-m x -2=0………①.
(1) 若x =-1是这个方程的一个根,求m 的值和方程①的另一根;
(2) 对于任意的实数m ,判断方程①的根的情况,并说明理由.
(B 类)已知:如图,AB 是⊙O 的直径,PA 是⊙O 的切线.过点B 作BC ∥OP 交⊙O 于点C ,连结AC .
27、(A 类)如图①,△ABC 内接于⊙0,且∠ABC =∠C ,点D 在弧BC 上运动.过点D 作DE∥BC.DE 交直线AB 于点E ,连结BD . (1)求证:∠ADB=∠E ;
(2)求证:AD 2
=AC ·AE ;
(3)当点D 运动到什么位置时,△DBE∽△ADE 请你利用图②进行探索和证明.
图① 图②
(B 类)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋
千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. ?
我选 题解答如下:
第26题B
米
28、(本题10分)如图12,在直角梯形ABCD中,AD∥BC,∠B = 90°,AB =8㎝,AD=24㎝,BC=26㎝,AB为⊙O的直径。
动点P从A点开始沿AD边向点D以1 cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s 的速度运动,P、Q 两点同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t s ,求:
(1) t分别为何值时,四边形PQCD为平行四边形、等腰梯形?
(2) t分别为何值时,直线PQ与⊙O相交、相切、相离?。