臭氧
臭氧是什么
臭氧是什么
什么是臭氧?
都知道臭氧的化学式O3,在常温下可以自行还原为氧气。
它和我们熟悉的氧气的一种同素异形体,但是比重比氧大,易溶于水,易分解,没有氧气稳定。
臭氧有一定气味,是一种散发鱼腥气味的淡蓝色气体。
臭氧有强氧化性,是比氧气更强的氧化器,可在较低温度下发生氧化反应,如能将银氧化成过氧化银,将硫化铅氧化成硫酸铅、跟碘化钾反应生成碘。
臭氧的优势
1.消毒无死角,杀菌效率高,去除异味。
消毒时,臭氧发生器产生一定量的臭氧,在相对封闭的环境中扩散均匀,渗透性好,克服了紫外线杀菌中的消毒死角问题,达到全方位、快速、高效消毒杀菌的目的。
此外,由于其杀菌谱广,可杀灭细菌繁殖体、孢子、病毒、真菌、原虫孢子等多种微生物。
2.无残留、无污染。
臭氧利用空气中的氧气产生的,消毒氧化过程中,多余的氧原子在30min后又结合成为分子氧,不存在任何残留物质,解决了消毒剂消毒时残留的二次污染问题,同时省去了消毒结束后的再次清洁。
编辑搜图
请臭氧气体检测仪
霍尼艾格,愿安全与您同在。
臭氧
臭氧层的破坏(臭氧空洞)
• 臭氧洞形成的化学机理 致灾因子) 臭氧洞形成的化学机理(致灾因子
• 南极臭氧洞的成因,目前推测有四种: • 1.人为影响,人类活动产生的含氯化合物进入大 气层 人为消耗臭氧层的物质主要是:广泛用于 冰箱和空调制冷、泡沫塑料发泡、电子器件清洗 的氯氟烷烃(CFxCl4-x,又称Freon),以及用 于特殊场合灭火的溴氟烷烃(CFXBr4-x,又称 Halons哈龙)等化学物质。 • 2.与太阳活动周期有关的自然现象 • 3.区域性天气动力学过程 • 4.火山活动
• 2000年,南极上空的臭氧空洞面积达创记录 的2800万平方公里,相当于4个澳大利亚。 科学家目前尚不清楚2008年的臭氧空洞面积 是否会打破这个记录。 据美国国家地理网站报道,最新研究显示, 这个冬天的罕见低温天气产生的“美丽”云 团,剥去了北极大气层里具有保护作用的大 部分臭氧层,可能北极第一个臭氧洞已经形 成。
• 采取的政策措施通常有传统的环境管制措施,如禁用、限 制、配额和技术票准,并对非凡规定实施严厉惩罚。一类 是经济手段,如征收税费,资质替代物质和技术开发等。 美国对生产和使用消耗臭氧层物质实行了征税和可交易许 可证等措施。另外,许多国家和政府、企业和民间团体还 发起了自愿行动,采用各种环境标志,鼓励生产者和消费 者生产和使用不带有消耗臭氧层物质的材料和产品,其中 绿色冰箱标志得到了非常广泛的应用。
• 空调、清洗剂、灭火剂、涂改液、海绵垫中那些 使用了消耗臭氧层的物质,并制定适当的计划, 淘汰它们,用替换物品换掉它们; • 在办公室和生产过程中所用的消耗臭氧层物质, 如果生产的产品含有消耗臭氧层物质,那么应该 用替代物来改变产品的成分;
科学成果
• 研究臭氧层的300多位科学家,在布伊诺斯艾利斯举行的 国际会议上预测,臭氧层大洞大概会在50年内闭合。研究 人员说,臭氧层大洞的缩小主要是由于1987年各国开始采 取措施限制向大气中排放氟利昂等到化学物质收到了预期 效果。 研究人员同时指出,欧洲科学家在北极释放高空 探测气球对不同高度的去层进行取样分析,并于最近发表 报告指出,云层会加速臭氧层中臭氧的消耗,加剧臭氧层 的破坏,这是因为云层中的微粒会激活大气中的含氟化合 物。科学家发现,云层中的微粒对氯化物的激活作用要比 太阳更为厉害,这些微粒冬天被云层中的冰晶包裹,但到 了春天,冰晶中的水分会被阳光蒸发,从而导致大量微粒 出现在云层中,这是为什么春天大气臭氧层的破坏程度最 为严重的一个原因。
臭氧简介介绍
一些研究表明,臭氧可以用于辅助治疗一些疾病,如糖尿病足、褥 疮等,促进伤口愈合。
臭氧在其他领域的应用前景与发展趋势
农业领域
臭氧可以用于农业领域,如种子消毒、水果保鲜 、水产养殖等,提高农产品的产量和质量。
公共卫生领域
臭氧可以用于公共卫生领域,如疫情期间的空气 净化、公共场所的消毒等,保障公众的健康安全 。
臭氧在空气中的分布
垂直分布
臭氧在空气中的垂直分布受到多种因素的影响,如太阳辐射、气象条件等。一般 来说,臭氧在近地面浓度较高,随着高度的增加而逐渐减少。
水平分布
臭氧在空气中的水平分布受到地理位置、气象条件、工业排放等多种因素的影响 。在一些工业发达、交通繁忙的地区,臭氧浓度较高。而在一些自然保护区、乡 村等地区,臭氧浓度较低。
02
臭氧的来源与分布
自然来源
太阳辐射
太阳辐射中的紫外线与大气中的氧气分子相互作 用,产生臭氧。这是臭氧的主要自然来源之一。
雷电作用
雷电可以激发大气中的氧气分子,产生臭氧。这 种过程在雷电频繁的地区较为显著。
植物光合作用
植物通过光合作用吸收二氧化碳并释放氧气,其 中一部分氧气在光合作用过程中被转化为臭氧。
、空气净化等领域。
去除异味
臭氧可以与异味物质发生反应, 去除环境中的异味,如垃圾处理 厂、污水处理厂等场所的异味。
臭氧在医疗领域的应用前景
医疗器械消毒
臭氧可以用于医疗器械的消毒,杀灭细菌、病毒等微生物,保证 医疗器械的安全使用。
空气净化
医院病房、手术室等场所需要保持空气洁净,臭氧可以用于空气净 化,提高医疗环境的质量。
工业领域
臭氧可以用于工业领域,如化工、造纸、印染等 行业的污水处理,提高水质并减少污染。
臭氧气体化学式
臭氧气体化学式臭氧气体化学式为O3。
臭氧是一种具有特殊气味的无色气体,是地球大气中的一种重要成分。
它在大气层中起着重要的作用,既能保护地球免受紫外线的伤害,也能参与大气污染的形成。
臭氧的形成是通过光化学反应来实现的。
当太阳光照射到大气中的氮氧化合物和挥发性有机物时,它们会发生光解反应,产生一系列活性物质,其中包括臭氧。
这些反应主要发生在大气中的对流层,特别是平流层顶部的臭氧层。
臭氧在大气中的分布不均匀,主要分布在平流层顶部的臭氧层中。
臭氧层起到了过滤和吸收紫外线的作用,防止它们直接照射到地球表面。
紫外线是一种高能辐射,对生物和环境都具有很强的危害性。
臭氧层的破坏会导致紫外线穿透增加,对生物体和生态系统造成严重的损害。
然而,由于人类活动的影响,臭氧层正面临着严重的破坏。
工业生产和交通运输中的废气排放,以及化学品的使用,都会产生大量的氮氧化合物和挥发性有机物,进而加速臭氧层的破坏。
大气中的臭氧浓度不断上升,形成了地球上的“臭氧洞”。
臭氧洞的形成给人类和生物带来了巨大的风险。
紫外线的增加会导致皮肤癌、白内障等疾病的增加,还会对植物和生态系统产生负面影响。
因此,保护臭氧层成为全球关注的焦点之一。
国际社会采取了一系列措施来减少氮氧化合物和挥发性有机物的排放,以遏制臭氧层的破坏。
臭氧层的保护是人类共同责任。
我们每个人都应该意识到自己的行为对大气环境的影响,并采取相应的措施来减少污染物的排放。
只有通过全球合作,才能保护好臭氧层,保护我们的地球家园。
让我们共同行动起来,为我们的下一代创造一个更加美好的未来。
臭氧的基本知识讲解
家用臭氧机知识问答问:臭氧是什么?答:臭氧是由三个氧原子所构成,是天然的强力氧化剂、杀菌剂。
臭氧在臭氧层吸收太阳光的有害紫外线,保护地表的生物。
臭氧工业所制造的高纯度臭氧,则是取代氯消毒,广泛应用于自来水处理、包装水、医药/食品制程用水、表面杀菌、管线内杀菌,游泳池、冷却水塔、养殖循环水净化、专业空气净化。
或是氧化难生物分解有机物、废气氧化处理、化妆品级高岭土漂白、纸浆漂白、清洗衣物等领域。
在2001年6月美国FDA 正式核准臭氧可以和食品接触作生物抑制剂,臭氧在食品工业的用途更加广阔。
不好的臭氧:在都会地区,大量汽车排放的氮氧化物,经过阳光中的紫外线照射产生的臭氧是骯脏有害的臭氧。
这种混杂于光化学烟雾内的臭氧,并不受控制,而且对人体的呼吸道有强的刺激性,与臭氧工业使用的高纯度臭氧绝然不同。
问:臭氧的使用简要历史答:1840 年,臭氧被发现,且因其独特气味而命名。
1906 年,法国尼斯市是设立全球第一座臭氧净水厂。
1937 年,美国出现第一座使用臭氧处理的商业游泳池。
1940 年,美国印第安纳州首度使用臭氧净水处理。
1975 年,全美超过1000 臭氧除臭装置被安装在污水处理场。
1982 年,瓶装水开始使用臭氧杀菌。
1984 年,所有奥运的竞赛泳池全部以臭氧处理。
1989 年,美国环保署颁布地表水处理法规(The Surface Water Treatment Rules) 纳入臭氧杀菌CT值规范。
2000 年,全美约有300座自来水厂使用臭氧辅助处理水质。
2001 年,美国FDA正式核准臭氧可以和食品接触,作为微生物抑制剂。
问:臭氧是都会区烟雾污染的凶手吗?答:臭氧是净化者,并非污染者。
臭氧是由三个氧原子构成,别无杂物。
人类及动物不能在没有臭氧及氧气情况下存活,位于地表15~40公里平流层内的臭氧层具有吸收来自太阳的有害紫外线,保护地表的生物。
许多大都会区经常错误报导臭氧浓度高达3~5ppm。
臭氧的性质
臭氧的性质臭氧(OZONE),分子式O 3 ,分子量47.9982(≈48),在常温下为蓝色气体,有类似鱼腥的气味。
臭氧的理化数据:在标准状况下,密度 2.144g/L。
由于接近地面的干燥空气,密度为1.293g/L,因此臭氧密度是空气的1.658倍。
在-195.4 0 C时,液态臭氧密度为1.164g/ml。
临界温度为-12.1 0 C,临界压力为5.45×10 6 帕。
在冷水中的溶解度比氧气约大10倍。
空气中含有0.02PPm左右的臭氧。
一般情况下,空气中1PPm臭氧可取2.14mg/m 3 ,水中1PPm臭氧为1mg/L。
长期呼吸>0.1PPm臭氧,对人体有害。
臭氧浓度在0.02PPm时,嗅觉敏锐者能感觉到,称“感觉临界点”;0.15PPm时,一般人能嗅出,称“嗅觉临界值”(亦为卫生标准点);1-10PPm为“刺激范围”;10PPm以上为“中毒范围”。
臭氧不稳定,在高温时会迅速分解,在常温下会缓慢分解为(氧气),在1%的臭氧水溶液中半衰期约16分钟,在空气中的半衰期约25分钟。
臭氧的不稳定性使其很难实现瓶装贮存,一般只能利用臭氧发生器现场生产,随产随用。
臭氧是比氧气更强的氧化剂,且可以在较低温度下进行氧化。
所以,臭氧的一切应用(消毒、灭菌、水净化、漂白、作氧化剂等)本质上都是利用其强氧化能力。
由上可知,臭氧的强氧化性、常温作用性,特别是其“工作”后能还原为氧气,是其应用经久不衰,备受人类青脒的三大原因。
纯臭氧在受撞击、磨擦时会发生爆炸而分解,含高浓度臭氧溶液加热时易发生爆炸,但只要注意避免,此类事故即不易发生(至于臭氧对人体的毒害,臭氧问世150余年来,尚无一例中毒死亡的报告)。
臭氧用于空气消毒时,消毒现场不应有高浓度易燃易爆气体。
臭氧与水同存时为强烈漂白剂,其作用比氯气(Cl 2 )、双氧水(H 2 O 2 )、二氧化硫(SO 2 )快得多。
臭氧的获得:臭氧可通过高压放电、电晕放电、化学等方法获得。
臭氧的性质
臭氧的性质臭氧(OZONE),分子式O 3,分子量47.9982(≈48),在常温下为蓝色气体,有类似鱼腥的气味。
臭氧的理化数据:在标准状况下,密度2.144g/L。
由于接近地面的干燥空气,密度为1.293g/L,因此臭氧密度是空气的1.658倍。
在-195.4 0 C时,液态臭氧密度为1.164g/ml。
临界温度为-12.1 0 C,临界压力为5.45×10 6帕。
在冷水中的溶解度比氧气约大10倍。
空气中含有0.02PPm左右的臭氧。
一般情况下,空气中1PPm臭氧可取2.14mg/m 3,水中1PPm臭氧为1mg/L。
长期呼吸>0.1PPm臭氧,对人体有害。
臭氧浓度在0.02PPm时,嗅觉敏锐者能感觉到,称“感觉临界点”;0.15PPm时,一般人能嗅出,称“嗅觉临界值”(亦为卫生标准点);1-10PPm为“刺激范围”;10PPm以上为“中毒范围”。
臭氧不稳定,在高温时会迅速分解,在常温下会缓慢分解为(氧气),在1%的臭氧水溶液中半衰期约16分钟,在空气中的半衰期约25分钟。
臭氧的不稳定性使其很难实现瓶装贮存,一般只能利用臭氧发生器现场生产,随产随用。
臭氧是比氧气更强的氧化剂,且可以在较低温度下进行氧化。
所以,臭氧的一切应用(消毒、灭菌、水净化、漂白、作氧化剂等)本质上都是利用其强氧化能力。
由上可知,臭氧的强氧化性、常温作用性,特别是其“工作”后能还原为氧气,是其应用经久不衰,备受人类青脒的三大原因。
纯臭氧在受撞击、磨擦时会发生爆炸而分解,含高浓度臭氧溶液加热时易发生爆炸,但只要注意避免,此类事故即不易发生(至于臭氧对人体的毒害,臭氧问世150余年来,尚无一例中毒死亡的报告)。
臭氧用于空气消毒时,消毒现场不应有高浓度易燃易爆气体。
臭氧与水同存时为强烈漂白剂,其作用比氯气(Cl 2)、双氧水(H 2 O 2)、二氧化硫(SO 2)快得多。
臭氧的获得:臭氧可通过高压放电、电晕放电、化学等方法获得。
【臭氧】科普性知识
• 主要由原料气(压缩空气或者氧气)供应 系统、臭氧发生器主机、臭氧输送系统、 臭氧发生器冷却系统等部分组成。 • 浓度 空气源臭氧浓度可以达到3~6%wt, 氧气源可以达到6~14%wt。 • 耗电量 • 空气源在18~30KW/kg • 氧气源在9~15KW/kg
• •
3气源编辑
• • • •
• 制备编辑
• 通常都借助无声放电作用从氧气或空气制备臭 氧,臭氧发生器即根据这一原理制造。利用臭 氧和氧气沸点的差别,通过分级液化可得浓集 的臭氧。在紫外线辐射下,通过电子放射或暴 晒从双原子氧气可自然形成臭氧。工业上,用 干燥的空气或氧气,采用5~25kv的交流电压进 行无声放电制取。另外,在低温下电解稀硫酸, 或将液体氧气加热都可制得臭氧。
•
• • •பைடு நூலகம்•
臭氧的应用主要以发生量来确定,分为气态下消毒和液态下消毒两大类。臭氧发生量和使用量一 般按照发生量的额定发生量乘以时间来确定,但在不同的用途和不同的场所应计出衰减量而后确 定。臭氧发生器在使用中,气源的配置直接影响臭氧的发生浓度、产量和纯度,气源一般分为普 通气源、干燥空气源、富氧气源和工业氧气气源四种,以上气源的配置 ,在发生装置相同的情况, 浓度和产量依次递增。按照应用常识,一般不应配置普通气源,因为这会影响发生装置的连接使 用寿命并导致发生量不稳定。因此,常用的气源按用途大体可分为下列几种: 1)干燥气源——空间消毒、自来水处理、游泳池水、养殖水、生产循环水、中水回用等。 2) 富氧气源——臭氧浓度需求较高的使用场所,如纯净水、矿泉水、污水处理、医药食品车间 等。 3) 工业氧气源——纯度要求较高、浓度需求较重要、小气量应用场所等。 3. 用于大型空间的消毒应用,如医药、食品等行业车间的杀菌消毒,一般应安装专门管路分通到 车间内,使臭氧分布均匀,也有的通入中央空调风道管路,但这种方式有时会造成空调风道金属 件的腐蚀和臭氧消耗。 4. 用于水处理,则主要配置臭氧溶于水的投加装置,一般分为曝气式(直接曝气或氧化塔式)、 文丘里射流器式、旋涡负吸式或HICHINE泵混合式样等几种,以上其溶于水效率可依次提高, HICHINE泵式效率可达95%以上。 1)曝气式:自来水、养殖水、生产循环水、生活污水、工业废水等。 2)文丘里射流式:二次供水、纯净水、矿泉水、养殖水冷却、游泳池水等。 3)负吸式:小水体应用。 4)气液混合泵式:小水体应用或臭氧消毒水应用。
臭氧
《消毒技术规范》—臭氧臭氧又名三子氧,分子式为O3,分子量为48.00。
一、理化特性:臭氧在常温下为带蓝色的爆炸性气体,有特臭,为已知最强的氧化剂,密度为1.658(空气=1)。
臭氧气体经冷处理后可呈液状,其液体密度为1.71,沸点为-112.3℃,在水中溶解度比氧高,但因分压较低,故在平时使用温度与压力下,只能得到每升数毫克的溶液,含臭氧的溶液,温热时会爆炸。
臭氧的稳定性极差,在常温下可自行分解为氧,在270℃高温下可立即转化为氧。
1%水溶液在常温大气中半衰期为16分钟,所以臭氧不能像其它工业气体一样可以用瓶贮存,一般为现场生产,立即使用。
二、杀菌作用:臭氧是一种广谱杀菌剂,可杀灭细菌繁殖体和芽孢、病毒、真菌等,并可破坏肉毒杆菌毒素。
臭氧在水中杀菌迅速较氯快。
三、影响杀菌作用的因素: ①PH:用臭氧水溶液消毒时,若PH增高,则所需浓度必须增加。
②湿度:用臭氧熏蒸消毒时,相对湿度高则效果好,低则效果差,对干燥菌体几乎无杀菌作用。
③温度:温度降低有利于臭氧的溶解,可增强其消毒作用,甚至在0℃亦能保持较好的杀菌效果,如水温为4-6℃时,臭氧杀菌用量为100,水温10-21℃时为160,水温36-38℃时则为320,有机物可降低其杀菌作用。
四、毒性:空气中臭氧浓度达0.01-0.02mg/L时即可嗅知:浓度达到1mg/L时,可引起呼吸加速、变、胸闷等症状,在2.5-5mg/L时,可引起脉搏加速,疲倦、头痛,停留1小时可发生肺气肿,以至死亡,作业现场空气中容许的阀限值为0.2mg/m3.五、腐蚀性:臭氧为强氧化剂,可损坏多种物品,浓度越高对物品损害越重,可使铜片出现绿色锈斑,特别是使橡胶老化,色变暗,弹性降低,以致变脆,断裂,使织物漂白褪色.六、稳定性:臭氧稳定性极差,常温下即可自行分解为氧,停止发生后,通风30-60分钟后,其浓度与大气水平一样.七、使用范围:在消毒方面,臭氧的用途主要有以下几种: 1、液体消毒:饮用水、工业生活污水和饮料水的净化消毒. 2、物体表面消毒,饮食用具、理发工具、食品加工用具、衣物、钱币、票券等放密闭箱内消毒. 3、防腐保存:蔬菜水果蛋类鱼肉类干鲜土特产,水产品加工,贮存和冷藏等.八、使用方法: 1液体消毒:臭氧消毒饮用水时,其用量取决于水质,应由实验确定精确值,比较清洁的水,一般应加臭氧0.5-1mg/L,作用5-10分钟后,水中保持臭氧浓度为0.1-0.5mg/L;对于污染比较严重的饮用水,臭氧用量可增至3-6 mg/L。
臭氧的基本知识
应,经碰撞合为分子。
优点:产量大。
缺点:会伴随有。
依据电晕放电法原理的发生器件:平行板、陶瓷片、电真空管等。
臭氧发生器类型介绍:(1)空气型臭氧发生器,它由臭氧发生器系统、送风系统、定时系统、控制系统四部分组成。
空气型臭氧发生器应用中有以下几个特点:放置高处,臭氧比重在空气中较大,易下降,放在高处利于其散播。
湿度适当,臭氧灭菌效果在湿度50~80%条件最理想。
(2)水处理臭氧发生技术及配套技术:主要包括气源预处理、发生、气水混合一大基础部分电控系统、结构系统五大方面技术。
在气源预处理中包括:过滤、增压、泠却、干燥四个过程,气水混合方法通常有曝气法、方丘里法、涡轮负吸法、混合塔法等四种方法。
臭氧浓度检测的方法大致可分为化学分析法和仪器法两大类:化学分析法中最常用的的碘化钾法,硼酸碘化钾吸光光度法和靛兰二磺酸钠分光光度法。
仪器法检测臭氧的浓度的原理是采用化学发光法和紫外线吸收法,仪器法检测臭氧的优点在于灵敏度高,重复性好,对操作者水平要求也不高,是一种较好的方法。
应用臭氧时注意事项:禁止在有导电气体或爆炸性介质存在的环境中使用,因为臭氧发生器一般采用高频高压电源供电。
臭氧发生器件在高温或杂质油类含量较高的气体环境下工作时,特别是开放型发生器器件容易沾污或衍生斑垢,多了会影响发生量,应及时清洗。
要求使用环境:空气湿度〈95%。
臭氧的发生用纯氧气源或光谱方法、水解方法时,臭氧的纯正度较高。
不会对人体健康产生危害,但如果用普通空气发生臭氧,电介质材料或器件选用不当时会伴随产生NOx。
臭氧具有强氧化能力,使用时要注意使橡胶制品、钢铁等物品远离它,以免被腐蚀。
另外臭氧会刺激人的呼吸系统,严重会造成伤害。
文献报告,臭氧浓度在0.02ppm时,为感觉临界值;臭氧浓度在0.15ppm时,为嗅觉临界值,一般人能嗅出;臭氧浓度达到1-10ppm时,为刺激范围;臭氧浓度在10ppm以上时,为中毒极限。
①重污染水和顽性汗水,投放量和作用时间须由预先的试验得出。
臭氧的知识
臭氧的知识臭氧(ozone,O3)是一种强氧化剂和催化剂,具有广谱、高效的杀菌作用。
臭氧用于消毒已有近百年的历史,最初用于水消毒,现已成为重要的消毒方法。
目前臭氧主要用于饮水消毒、污水处理、空气消毒、食品保鲜、冷藏冷冻物品除菌、医院消毒、家庭消毒等方面,在工农业中的应用也日趋广泛和深入。
一、理化性质臭氧是由三个氧原子组成的氧(O2)的同素异形体,三个氧原子呈三角排列,夹角为116°49,±30“),O-O键长为0.1278±0.0003nm,常态下为淡蓝色气体,有特殊的刺激性,高压下可变成深褐色液体,臭氧在水中的溶解度为3% ,是O2的10倍,臭氧不稳定,易分解,在水中臭氧的半衰期与温度和PH值有关,PH值越高,分解越快;温度越高,分解也越快,在20。
C,PH为7.6时半衰期约为21~22min 。
臭氧具有极强的氧化能力,其标准氧化还原电位达 2.07V,仅次于氟(2.87V),大大高于过氧化氢(1.78V)、二氧化氯(1.50V)和氯(1.36V).这种强氧化性对微生物具有较强的杀灭作用.由于臭氧的不稳定性和毒性使其应用受限,现在新型臭氧发生方法的产生使它在消毒领域内的应用范围不断拓宽.二、对微生物的杀灭作用臭氧是一种高效消毒剂,可以杀灭各种微生物.(一)对细菌繁殖体臭氧对细菌繁殖体具有较好的杀灭作用.但不同细菌对臭氧的抵抗力不同,一般认为较敏感的菌有:枯草杆菌、肠系膜杆菌、金黄色葡萄球菌、大肠杆菌等;普通变形杆菌的抵抗力稍强;无色杆菌、假单细胞菌的抵抗力最强。
敏感菌和抗力强的细菌之间杀灭浓度相差2倍。
也有把大肠杆菌作为抵抗力稍强的细菌。
臭氧对G-菌的效果优于G+菌,对细菌的效果优于酵母菌。
臭氧对空气中人工污染的微生物的杀灭效果较好,对自然菌的杀灭率则差。
有研究报道,用无声放电法产生的臭氧对空气中人工污染的白色葡萄球菌,作用3min,臭氧浓度为51.4mg/m3,杀灭率就达到99.99% 。
关于臭氧的科普
臭氧的科普知识一、概述臭氧(O3)是大气中的一种重要成分,它主要存在于平流层,对流层中的臭氧对人类生活有重要影响。
臭氧对人类生存环境的影响主要表现在以下几个方面:1.太阳辐射吸收:臭氧吸收太阳辐射中的紫外线,为地球表面提供了防护。
2.气候影响:平流层中的臭氧对地球表面温度和气候变化有一定影响。
3.空气质量:低层臭氧对空气质量有重要影响,高浓度的臭氧会对人体健康造成危害。
二、化学性质臭氧的化学性质非常活泼,很容易与其它物质发生反应。
在大气中,臭氧主要与一些气态污染物发生反应,将它们转化为无害或低害的物质。
同时,臭氧也会与一些自然界的物质发生反应,如植物表面、土壤和水中的物质。
三、影响低层臭氧的形成主要是由于人类活动产生的污染物在阳光的作用下氧化而产生的。
这些污染物主要包括氮氧化物(NOₓ)、挥发性有机物(VOCs)等。
因此,控制这些污染物的排放对于减少低层臭氧污染至关重要。
四、利用和保护臭氧在工业、农业、环保等领域有广泛的应用,如用于水的消毒、空气的净化、漂白等方面。
然而,过量的臭氧会对人体健康造成危害,因此需要采取措施控制臭氧的浓度。
为了保护臭氧层,国际社会签订了蒙特利尔议定书,限制使用那些可能导致臭氧层破裂的物质,如CFCs(氯氟烃)。
此外,我们也可以通过减少污染物排放、使用环保能源等方式来减少臭氧的排放,保护我们的大气环境。
五、防护措施由于臭氧具有强烈的氧化性,长期接触高浓度的臭氧会对人体造成伤害,如引起呼吸系统问题、眼睛不适等。
因此,在臭氧浓度较高的环境中,我们需要采取适当的防护措施:1.避免长时间在户外活动:尤其在日照强烈、气温较高的日子,应尽量减少户外活动时间。
2.佩戴防护口罩:选择N95或更高级别口罩,过滤由臭氧引起的空气污染。
3.减少汽车出行:尽量选择公共交通工具,减少汽车尾气排放。
4.室内空气净化:使用空气净化器,过滤进入室内的污染空气。
5.定期关注空气质量预报:根据预报调整出行和活动计划。
臭氧及其应用介绍
臭氧及其应用介绍简介臭氧,化学分子式O3,臭氧在常温下是略带有特殊新鲜气味的淡蓝色气体。
低浓度的臭氧具有使人兴奋、感觉清新怡人的味道,尤如一股淡淡的草鲜味。
在雷雨天气后由于空气中含有微量的臭氧,因此人们在雷雨天气后感到空气特别的清新。
臭氧在自然界中主要存在于高空大气层,(距地球表面约20000米),即大气臭氧层。
在自然界其它存在臭氧较为丰富的地方,就是瀑布下、海边、森林里(特别是针叶林,其树种分泌的化学物质和大气中的氧气发生反应后生成臭氧)。
在下雨天雷击时,雷电作用于大气中的氧气使氧分子转化为臭氧。
1886年,臭氧开始用作杀菌剂试验,1898年,出现新的原型板式臭氧发生器,并用于规模化水处理厂中。
70年代美国首先采用臭氧进行城市污染处理,作为废水预处理的重要组成部分。
目前,臭氧在日本、欧洲、美洲、澳洲等发达国家和台湾等地得到广泛应用,已是国际上处理废水,自来水处理,食品加工等方面的首选技术。
目前,臭氧的已在以下几个领域得到了较为普及的应用:餐饮业食具炊具消毒洗涤、饮料业瓶具消毒洗涤、食品加工业杀菌保鲜、自来水处理、养殖业河川水源改善处理、室内空气净化(特别是车船仓等密闭空间),及家庭用来清洗蔬菜瓜果的农药残毒、居室环境清洁、饮用水质处理、吸氧保健养生、美容等。
据不完全统计,日本使用臭氧产生机的医院就有札幌自卫队医院、名古屋保健生大学等28所医院,使用臭氧技术处理食品保鲜、卫生保健的企业,医院达53家之多,台湾使用臭氧产生机的有荣民总医院,养殖示范中心等51家。
早期的臭氧发生器是根据高压放电原理制造的,因此臭氧的制造成本很高。
目前出现了很多新的臭氧发生理论,在这些新理论基础上制造的臭氧发生器效率大为提高,而能耗大幅下降,如高压脉冲可提高臭氧生产效率两倍,高频陶瓷沿面放电技术可解决发生器小型化、实用化问题,低温等离子技术大为提高臭氧生成效率及浓度。
臭氧有极强的氧化能力,脱色、脱臭、杀菌、消毒效果显著,高于常用的液氯和次氯酸钠,尤其是没有二次污染问题。
臭氧
灭 菌
渗透胞膜组织,侵入细胞膜内作用于外膜脂 蛋白和内部的脂多糖,使细胞发生通透畸变, 导致细胞溶解死亡。并且将死亡菌体内遗传 03 基因、寄生菌种、寄生病毒粒子、噬菌体、 支原体及热原(细菌病毒代谢产物、内毒素) 等溶解变性灭亡。
臭氧的广谱消杀效果
臭氧广谱消杀效果
臭氧的广谱杀菌消毒原理
臭氧分解的科学原理
杀 菌
祛病 延年
工厂异味 药物臭 病患者体臭 尿粪便臭 垃圾臭 研究核辐射 电视机电脑终端机 微波炉 电磁炉 X光线
清除 辐射
臭氧与空气
负离 子
调整自主神经平衡 促进发育 增强血液溶氧量 清新空气 促使细胞活泼 镇静、利尿作用
臭氧的灭菌原理
臭氧消毒杀菌机理
90%
1ppm
温度
湿度 时间
15℃
73% 30分钟
密闭塑料瓶
任意 45分钟
20℃
水中 30分钟
常温
正常 100分钟
22℃
正常 5分钟
臭氧消毒的优越性
臭氧消毒的优越性
速度上的优越性
3000倍
是紫外线的
300-600倍
是氯的
传统灭菌和臭氧灭菌的比较
对比项目
杀菌效率 有无副作用 适用范围 杀菌范围 杀菌时长 安全系数
森林中,旅游地带,空气格外清新,是因植物在吸收CO2过程中制造了 [O],氧原子在形成过程中,部分形成O2(我们呼吸的氧气),一部分形
成O3(臭氧)。
臭氧的应用
臭氧的应用
臭氧是自然界平衡的杠杆
侵害人体健康
细菌 真菌
控制细菌生长
臭氧
净化、灭菌
人与 动物
恐惧,害怕被灭亡
自然界中细菌无处不在,在适合的条件下繁殖迅速,人类在发现细菌后,甚至谈菌色变,生怕人类被细菌 吃掉。自然界的一切都处在平衡状态,人们没有必要忧虑,现在我们可以断定,正是自然界中无处不在的 臭氧和太阳光中的紫外线,在控制着细菌的生存平衡,保护着人类健康。
臭氧的处理方法
臭氧的处理方法.臭氧是一种淡蓝色气体,具有青草的味道,主要存在于距地球表面20~35公里的同温层下部的臭氧层中。
在常温常压下,臭氧稳定性较差,可自行分解为氧气。
臭氧不溶于液态氧、四氯化碳等,但可溶于水。
臭氧在水中的溶解度比氧大约13倍,比空气高25倍。
但臭氧水溶液的稳定性受水中所含杂质的影响较大,特别是有金属离子存在时,臭氧可迅速分解为氧。
臭氧的密度是2.14g/L,沸点是-111°C,熔点是-192°C。
在光照条件下,臭氧会迅速分解为氧气。
如白天它的寿命不超过3分钟,但在黑暗、干燥和低温条件下,臭氧的寿命可达15小时,这也是臭氧的储存或运输条件。
含量为1%以下的臭氧,在常温常态常压的空气中分解半衰期为约16小时。
随着温度的升高,分解速度加快,温度超过100℃时,分解非常剧烈,达到270℃高温时,可立即转化为氧气。
臭氧在水中的分解速度比空气中快。
在含有杂质的水溶液中,臭氧迅速回复到形成氧气。
如水中臭氧浓度为6.25×10-5mol/L时,其半衰期为5~30分钟,但在纯水中分解速度较慢。
在蒸馏水或自来水中的半衰期大约是20分钟(20℃),然而在二次蒸馏水中,经过85分钟后臭氧分解只有10%。
若水温接近0℃时,臭氧会变得更加稳定。
臭氧在冰中极为稳定,其半衰期为2000年。
臭氧是一种非常活泼的气体,由三个氧原子组成,非常不稳定。
当臭氧在室内循环而不能及时排到室外时,需要对其进行处理。
臭氧的氧化性极强,极易对人体的呼吸道造成伤害。
常温常压下,臭氧最多存在三十分钟左右,之后会很快被还原成氧气。
因此,去除臭氧的方法很多,比较常用的就是加温和用活性炭吸附。
有文献证明,低浓度下臭氧的半衰期和温度和湿度有关。
温度湿度增加的话,臭氧消除的速率变大。
因此,可以把空净放在暖气和加湿器附近,能减少一些臭氧。
纯靠hepa网过滤的空净养不起。
除臭氧的方法有以下几种:一是让空气流动,冲淡臭氧浓度,最后达到消除。
臭氧知识
臭氧知识臭氧的英文名字叫OZONE,分子式O3,分子量为48,是氧气(O2)的同素异形体,由三个氧原子组成,常温下臭氧是淡蓝色,鱼腥味气体,1ppm臭氧=1.963mg/m3臭氧密度ρ=2.144g/I,空气密度=1.293 g/I。
臭氧在水中的溶解度大约是氧的10-15倍,在水中稳定性较差。
臭氧具有不稳定性和很强的氧化能力。
臭氧是由一个氧分子携带一个氧原子[O]组成,是一种暂存的状态。
臭氧与人们常用的几种消毒物质还原电位的比较如下:臭氧易分解,不稳定参比状态下臭氧的半衰期为22~25分钟,一个小时的衰退率为61%,在1%的臭氧水溶液中半衰期为16分钟,且温度越高,湿度越大,半衰期越短。
国际卫生组织对其灭菌功效曾归纳比较,臭氧与其它性质杀菌剂对大肠杆菌的杀灭效果依次为:臭氧—>次氯酸—>二氧化氯—>银离子—>次氯酸根—>高铁酸盐—>氯胺臭氧灭菌介绍臭氧灭菌机理:臭氧灭菌的过程属于生物化学反应,臭氧灭菌有以下三种形式:①臭氧氧化分解了细菌内部氧化葡萄糖氧化酶;②直接与细菌、病毒发生作用,破坏其细胞壁DNA和RNA,分解蛋白质、脂质类和多糖等大分子聚合物,使细菌的物质代谢生长和繁殖过程遭到破坏;③渗透细胞膜组织,侵入细胞膜内作用于外膜脂蛋白和内部的脂多糖,使细胞发生通透性畸变,导致细胞的溶解死亡,并且将死亡菌体内的遗传基因,寄生菌种、寄生病毒粒子、噬菌体、枝原体及热原(细菌病毒代谢产物、内毒素)等溶解变性灭亡。
由水落石出,臭氧灭菌属于溶菌,是一种灭菌方式中最彻底的形式。
既然臭氧能杀死病毒、细菌,那么会不会也把健满面的细胞杀死呢?不会,因为健康细胞具有强人的平衡酶系统,因而臭氧对健康细胞无害。
臭氧具有的强氧化性,有四大功用:灭菌、氧化、脱色、除味;臭氧灭菌具有广谱性、高效性、环保性、操作方便、使用经济和性能稳定、寿命长等特点;臭氧制造方法:*人类制造臭氧主要是通过模拟自然界产生臭氧的方法而来。
臭氧的知识点总结
臭氧的知识点总结一、臭氧的形成1.1 臭氧的形成途径臭氧的主要形成途径有两种,一种是紫外光照射下的氧分子产生的单质氧,再通过化学反应与另外一个氧分子结合形成臭氧;另一种形成途径是通过一氧化氮的光解作用形成的自由基与氧分子反应形成臭氧。
1.2 影响臭氧形成的因素紫外光照射是臭氧形成的必要条件,所以当大气中的紫外线辐射量增大时,可以促进臭氧的形成;而气象条件也对臭氧的形成起到了一定的影响。
二、臭氧的性质2.1 物理性质臭氧是无色的,有刺激性气味的气体,它的融点是-192.5℃,沸点是-110℃,密度是0.00143g/cm3;2.2 化学性质臭氧是一种强氧化剂,它可以与许多物质发生化学反应,如与双键、三键形成过氧化物、与还原剂反应等。
三、臭氧的应用3.1 水处理领域利用臭氧的氧化性,可以将水中的有机物、氨氮等污染物氧化分解,从而实现水的净化;3.2 医疗领域利用臭氧具有杀菌、消毒的特性,可以应用于医院手术室、血液透析器等的消毒;3.3 废水处理领域臭氧可以将废水中的有机物、重金属等进行氧化还原反应,从而实现废水的净化。
四、臭氧的危害4.1 对人体的危害臭氧对人体的呼吸系统、眼睛等有一定的刺激作用,长时间暴露在高浓度的臭氧环境下会导致人体出现呼吸困难等症状;4.2 对环境的危害臭氧是一种强氧化剂,在大气中参与了许多气体和颗粒物的反应,导致了大气的污染,影响了空气质量。
五、臭氧的监测与控制5.1 监测方法目前常用的臭氧监测方法有分光光度法、紫外吸收法等;5.2 控制措施控制臭氧的方法主要有控制空气中的有机物排放,减少不必要的紫外线辐射等。
六、臭氧层的保护6.1 臭氧层的功能臭氧层的主要功能是吸收99%的紫外线,保护地球上的生物免受紫外线的伤害;6.2 臭氧层破坏的原因主要是由于温室气体的排放增多、氟氯烃类化合物的排放等所导致的。
七、臭氧的管理7.1 国际上的管理在国际上,有关臭氧的管理主要是通过国际公约,如蒙特利尔议定书等来进行的;7.2 国内的管理在国内,臭氧的管理主要是由环保部门来负责,通过监测、控制等手段来进行管理。
臭氧的基本知识
家用臭氧机知识问答问:臭氧是什么?问:臭氧的使用简要历史问:臭氧是都会区烟雾污染的凶手吗?问:如何制造臭氧?问:使用臭氧安全吗?问:臭氧比氯及其它化学药剂的优点在哪里?问:可以使用臭氧水来清洗食物及流理台吗?问:家居使用臭氧有什么好处?问:何谓臭氧?问:臭氧在空气中或水中会不会分解?其分解物是什么?问:臭氧的主要功能?问:臭氧为何能达到杀菌的效果?问:臭氧对口腔、牙齿的保健有何功效?问:听说臭氧能治疗香港脚,真有此事?问:使用臭氧泡澡可以促进身体健康吗?问:臭氧为何能达到脱臭的效果?问:臭氧是否有食品保存的功能?问:家庭用多功能活氧机适用那些场所?问:臭氧除了饮用水之外还可作那些用途?臭氧应用中常用名词解释1、臭氧:常温常压下是一种淡蓝色腥臭味的气体,分子式为O3,具有极强的氧化能力与杀菌性能。
2、臭氧产量:即臭氧的产率,以小时为单位臭氧的发生量。
计量单位:mg/h、g/h、kg/h。
浓度×流量≈产量。
3、臭氧浓度:单位体积内臭氧的含量。
计量单位:mg/L,mg/m3,ppm。
4、水溶臭氧浓度:臭氧溶于水中,单位体积的臭氧含量。
计量单位:mg/L、ppm。
5、空气应用臭氧浓度:用于空气消毒的臭氧浓度,一般在1~10mg/m3。
6、环境臭氧浓度:环境空气中所含有的臭氧浓度,环境质量标准规定的一二三级环境质量标准分别为0.12/0.16/0.2mg/m3。
7、电耗:不包含空气处理系统的情况下,臭氧发生器主机每产生1kg臭氧的耗电量。
(该单位为评价臭氧发生器性能的指标,不同于设备的功率)。
计量单位:kw·h/kgO3。
8、投加量:一定单位的液体或气体所投加臭氧的量。
计量单位:g/m3、g/T。
9、单位放电面积的产量:放电介质单位面积内所产生的臭氧量,该指标为评价放电介质性能的指标。
计量单位:g/m3。
10、露点:为空气干燥度的指标,空气在多少温度下开始出现结露现象。
计量单位:℃。
11、进气流量:每小时进入臭氧发生器放电室中原料气体量。
臭氧知识
什么是臭氧臭氧(分子式为O3)是氧气(O2)的同素异形体,在常温下,它是一种有特殊臭味的淡蓝色气体。
英文臭氧(Ozone)一词源自希腊语ozon,意为“嗅”。
臭氧主要存在于距地球表面20公里的同温层下部的臭氧层中,含量约50ppm。
它吸收对人体有害的短波紫外线,防止其到达地球。
O2经紫外光照射而得。
在大气层中,氧分子因高能量的辐射而分解为氧原子(O),而氧原子与另一氧分子结合,即生成臭氧。
臭氧又会与氧原子、氯或其他游离性物质反应而分解消失,由于这种反复不断的生成和消失,乃能使臭氧含量维持在一定的均衡状态,而大气中约有90%的臭氧存在于离地面 15到50公里之间的区域,也就是平流层(Stratosphere),在平流层的较低层,即离地面20到30公里处,为臭氧浓度最高之区域,是为臭氧层(Ozone Layer),臭氧层具有阳光中大部分的紫外线,以屏蔽地球表面生物,不受紫外线侵害之功能。
发现1785年,德国人在使用电机时,发现在电机放电时产生一种异味。
1840年法国科学家克里斯蒂安·弗雷德日将它确定为臭氧。
性状臭氧具有等腰三角形结构,三个氧原子分别位于三角形的三个顶点,顶角为116.79度,密度约为氧气的1.5倍,其沸点和凝固点圴高于氧。
臭氧液态呈蓝色,固态呈紫色。
它与氧气不同带明显令人恶心的气味但低浓度的臭氧闻起来就像下过雨后出门闻到的“新鲜空气”的那种气味,十分怡人(当然也十分危险)。
臭氧反应活性强,极易分解,很不稳定,在常温下会逐渐分解为氧气,其性质比氧活泼,比重为一般空气之1.7倍。
臭氧会因光、热、水份、金属、金属氧化物以及其他的触媒而加速分解为氧。
它不溶于液态氧,四氯化碳等。
有很强的氧化性,在常温下可将银氧化成氧化银,将硫化铅氧化成硫酸铅。
臭氧可使许多有机色素脱色,对橡胶和纤维破坏性很大,很容易氧化有机不饱和化合物。
臭氧在冰中极为稳定,其半衰期为2000年。
臭氧可利用碘化钾来检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O2 → 2O
ClO+O → Cl+O2
Cl?自由基与O3反应的速度比NO与O3的反应快6倍。反应过程中释放的氯可以在平流层中存在好几年,因此一个Cl?自由基能够消耗10万个O3就不足为怪了。
一般情况下CFCs放出一个氯离子,但是剩下的基团可以通过与氧气等的后续反应,使CFCs中的全部氯都以破坏臭氧层的活动形态放出。
大气平流层中保存了大气中90%的臭氧,位于这一高度的臭氧能够吸收大部分对地球生物健康有害的UV-B段紫外线。20世纪70年代以来,科学家们发现全球臭氧总量有逐渐减少的趋势,并推断臭氧的减少主要在臭氧层。南极科学考察表明从1977年开始,南极上空的臭氧总量迅速减少,形成一个“臭氧空洞”。随后的科学观测表明,臭氧空洞的面积正在不断地扩大,臭氧浓度的下降还在加快。进一步的观测表明臭氧层的损耗不仅是在南极已经发生了,在北极上空和其他中纬度地区也都出现了程度不同的臭氧层耗损现象。我们国家大部分属于中纬度地区,臭氧的总量也已经在减少。我国科学家观测到我国青藏高原存在一个臭氧低值中心,这在北半球是非常异常的现象。臭氧层剧烈耗损的这种现状已经引起了各国政府和人民的普遍担忧。
其实破坏臭氧层的物质对我们而言并不陌生,在日常生活中它几乎无处不在。冰箱、空调、电子产品、灭火器材、烟草、泡沫塑料、发胶、杀虫剂等产品的生产过程或使用过程中,人们大量使用的人造化学物质很多都具有破坏臭氧层的能力。科学家把这些破坏大气臭氧层、危害人类生存环境的化学物质称为“消耗臭氧层物质”(Ozone depleting substances),简称ODS。
虽然在接近地面的高度,臭氧是一种重要的空气污染物,人们做出了许多努力想要求降低它的浓度,然而在平流层这种情况恰恰相反!臭氧层变薄会导致大量对人体及其他地表生物有害的UV-B段太阳紫外线到达地球表面。实验证明UV-B段紫外线会损伤眼角膜和晶状体,引起白内障等疾病的发生。据分析,平流层的臭氧层每减少1%,全球白内障的发病率将增加0.6%至0.8%,全世界由于白内障引起失明的人数将增加1万到1万5千人。更为严重的是,UV-B段太阳紫外线的增加能明显诱发皮肤癌与皮肤疾病并且使人体免疫能力降低,这将使许多发展中国家人民的健康状况更加恶化。研究表明,超过50%的植物会受到UV-B段紫外线的负面影响,与人的生活密切相关的豆类瓜果类作物会因过多UV - B类紫外线的辐射而大量减产。
二、气相反应引起的臭氧层破坏
人类生产和使用大量CFCs,因其化学稳定性好、在对流层下易被分解而进入平流层。到达平流层的CFCs受到短波紫外线UV—C的照射,分解为Cl?自由基,参与对臭氧的消耗,见下图。
Cl?自由基消耗臭氧的连锁循环过程如下:
CFxCly → CFxCly-1+Cl
Cl+O3 → ClO+O2
大气层是由对流层、平流层、中间层、热成层、逸散层组成,臭氧层是分布在平流层中距地面15至25公里左右富含臭氧的部分。臭氧层能吸收绝大部分太阳紫外线,使地球生物免受紫外线的危害。在自然状态下,大气平流层中的臭氧分子能够吸收紫外线的能量,分解成为氧原子,并很快与大气中的氧气发生进一步的化学反应生成新的臭氧分子,使臭氧层中的臭氧分子达到动态平衡。这个过程周而复始从而抵挡大量的有害的紫外线到达地球。
2.平流层和臭氧层
对流层顶上直至大约50km高度之间称为平流层。该层几乎没有水汽,因此空气比较干燥。垂直温度先是随高度增加而变化甚小,到30~35km高度基本保持在-55℃左右,再往上温度则随高度增加而上升,到平流层顶温度升至-3℃以上。对流层顶以上,平流层内臭氧量增加,在15~25km臭氧浓度达到最大值,称为臭氧层。臭氧层能吸收绝大部分太阳紫外线,阻挡了强紫外线辐射到地面,同时加热平流层,使地面生物和人类免受紫外线伤害。
过多的紫外线辐射还会使浅海中的浮游生物数量减少。浮游生物是海洋食物链的基础,因而将直接导致鱼类及贝类的产量减少,从而损害整个水生生态系统。同时,臭氧层破坏使更多的UV-B段紫外线到达低层大气,导致对流层大气化学反应更为活跃,增加大量有害气体的产生使得一些城市的空气质量下降,而过量的紫外线还会使许多的人工合成材料加速老化,致使整个社会的经济成本增加。
在干洁空气中,易变的成分是二氧化碳(CO2)、臭氧(O3)等,这些气体受地区、季节、气象以及人类生活和生产活动的影响。正常情况下,二氧化碳含量在20km以上明显减少。
大气中组分是不稳定的,无论是自然灾害,还是人为影响,会使大气中出现新的物质,或某种成分的含量过多地超出了自然状态下的平均值,或某种成分含量减少,都会影响生物的正常发育和生长,给人类造成危害,这是环境保护工作者应研究的主要对象。
O3+hυ → J[10]O2+O
O3+O → 2O2
M为反应第三体,它们是氮气和氧气分子,其作用是与生成的臭氧相碰撞,接受过剩的能量以使臭氧稳定。臭氧的浓度取决于上述纯氧反应理论生成反应和消除反应的平衡状态,它可以大体上重现出臭氧浓度的高度分布。但是从定量角度看,这一理论得出的平流层臭氧浓度 是实际臭氧浓度的2倍左右。
古往今来太阳一直都是人们热情讴歌与无尽向往的对象。阳光在赋予生命万物契机的同时也带给人类无限的憧憬与遐想。然而阳光能带给我们的并不只是明媚与温暖,当到达地球的太阳辐射太多时,带给我们的或许就会是灾难。若干亿年来正是由于大气层中的一个天然屏障 - 臭氧层阻挡了过多的太阳紫外线辐射,地球上的生命才得到繁衍生息。
5.逸散层
这是大气圈的最外层,离地表800km以上。由于大气向上越来越稀薄,地心引力减弱,以致一个气体质点被碰撞出这一层后,就很难有机会再被上层气体质点撞回来,而进入宇宙空间了。逸散层是一层相当厚的过渡层,其高度约为2000~3000km,该层温度也随高度增加而升高。
二、大气组成
自然状态下,大气是由混合气体、水汽和杂质组成。除去水汽和杂质的空气称为干洁空气。干洁空气的主要成分为78.09%的氮,20.94%的氧,0.93%的氩。这三种气体占总 量的99.96%,其它各项气体含量计不到0.1%,这些微量气体包括氖、氦、氪、氙等稀有气体。在近地层大气中上述气体的含量几乎可认为是不变化的,称为恒定组分。
科学家们一般将来自太阳的紫外线按照波长的长短分为三个区:波长在315至400纳米之间的紫外线称为UV-A区,该区的紫外线不能被臭氧有效吸收,但是也不会造成地表生物圈的损害,事实上这一波段少量的紫外线是地表生物所必需的;波长为280至300纳米的紫外线称之为UV-B区,这一波段的紫外辐射可能到达地表并对人类和生态系统造成极大危害;波长为200至280纳米紫外线部分称为UV-C区,该区紫外线波长短能量高,不过该区的紫外线能被大气中的臭氧和氧气完全吸收,即使是平流层的臭氧发生损耗,UV-C 区波段的紫外线也不会到达地球,所以不会对地球表面造成不良影响。
3.中间层
离地表50~85km这一区域称为大气的中间层。在平流层之上温度随着高度增加而下降,中间层的温度可降至-100℃,在该层内又出现比较强的垂直对流作用。
4.热成层
中间层之上,上界可达800km以上的大气层称为热成层。该层内大气因直接吸收太阳辐射而得到能量,因此温度随高度而ห้องสมุดไป่ตู้加发生电离,而且有较高密度的带电粒子,是电离层的主要分布层。电离层能反射无线电波,其变化对全球的无线通讯有重大意义。
当科学家认识到臭氧层的破坏和人工合成的氟氯化碳类物质有关后,臭氧层破坏问题引起全球的重视,虽然臭氧层的耗损主要是由于发达国家大量使用消耗臭氧层物质造成的,但由此引起的灾难性影响却有可能波及全球。
大气的组成及臭氧层
一、大气的结构与组成
大气是指包围地球外围的空气层,总质量大约为5.3 x 1015 t,仅是地球总量的百万分之一。由于受重力的作用,大气从地面到高空逐渐稀薄,大气质量主要集中在下部,50%集中在5km以下,75%集中在10km以下,98%集中在30km以下。
目前大量使用的ODS主要包括下列几类物质:1)氟氯化碳(CFCs):主要用作制冷剂、清洗剂和发泡剂;2)哈龙(Halon):主要用作灭火剂;3)四氯化碳:主要用作化工生产的助剂和清洗剂;4)甲基氯仿:主要用作清洗剂;5)溴甲烷:主要在农业种植、粮食仓储或商品检疫中用作杀虫剂;6)氢氟氯烃(HCFC):主要用作制冷剂、清洗剂和发泡剂。
仅仅根据气相反应理论,臭氧减少的最明显的高度应在40km附近。但是实际上臭氧减少趋势最大的高度是20km附近。而20km附近正是臭氧浓度最高的区域,这一事实进一步说明了臭氧层破坏的严重性。这种气相反应经典理论,与实际臭氧层破坏状况不一致的原因现已找到。这是由于破坏臭氧的反应通常是在颗粒状气溶胶表面进行,即非均相反应所造成的。正是非均相反应极大地破坏臭氧层才造成南极“臭氧空洞”。
与此类似,臭氧的消耗应反还可以通过溴原子来进行,这些溴原子是从卤代烷灭火剂即哈龙中释放出来的。虽然哈龙对臭氧的破坏能力比CFCs要高,但由于大气中哈龙的浓度要远低于CFCs,整体而言,哈龙对臭氧的破坏要比CFCs小。在我国使用哈龙1211和哈龙1301的数量很大,就其破坏臭氧层的能力而言是CFCs的1/3,其破坏作用不可忽视。
破坏臭氧层机理
一、气相反应
一、臭氧层的形成
在平流层中,一部分氧气分子可以吸收小于240μm波长的太阳光中的紫外线,并分解形成氧原子。这些氧原子与氧分子相结合生成臭氧,生成的臭氧可以吸收太阳光而被分解掉,也可与氧原子相结合,再度变成氧分子。其过程可用下面的化学反应方程式来表示: